1. Show that the only elements of $\operatorname{Isom}^{+}\left(\mathbb{E}^{3}\right)$ with order 2 are rotations about a straight line through an angle π. These are called involutions. Show that every orientation preserving Euclidean isometry $T \in \operatorname{Isom}^{+}\left(\mathbb{E}^{3}\right)$ can be written as the composite $R_{2} \circ R_{1}$ for two involutions R_{1}, R_{2}.
2. Show from the formula

$$
J(\boldsymbol{x})=\boldsymbol{c}+\left(\frac{r^{2}}{\|\boldsymbol{x}-\boldsymbol{c}\|^{2}}\right)(\boldsymbol{x}-\boldsymbol{c}) .
$$

for inversion in the sphere $S(\boldsymbol{c}, r)$ that inversion maps a sphere to another sphere.
3. Let J be inversion in a sphere Σ and Q inversion in the unit sphere S^{2}. Show that Σ is orthogonal to S^{2} if and only if $J \circ Q=Q \circ J$.
4. Draw the set of points that lie within a fixed hyperbolic distance ρ_{o} of a geodesic α in the unit disc \mathbb{D} and in the unit ball B^{3}.
5. Show that the translation length of the transformation $M_{k}: z \mapsto k z$ is $\log |k|$. Hence show how to find the translation length of the Möbius transformation

$$
z \mapsto \frac{2 z+1}{5 z+3} .
$$

6. Let R_{1}, R_{2} be involutions with axes α_{1}, α_{2} in \mathbb{H}^{3} that do not meet either in \mathbb{H}^{3} or on its boundary. Show that $R_{2} \circ R_{1}$ is hyperbolic when both α_{1} and α_{2} lie in a hyperbolic plane.
7. Suppose that T is a Möbius transformation that maps the unit disc \mathbb{D} onto itself. Then T also acts as an isometry of the hyperbolic 3 -space B^{3}. How are fundamental sets for $G=\langle T\rangle$ acting on \mathbb{D} related to fundamental sets for G acting on B^{3} ?
8. Let Δ be a triangle in the hyperbolic plane \mathbb{H}^{2} with vertices A, B, C, angles α, β, γ and sides with hyperbolic length a, b, c.

Suppose first that $A=0$ and the triangle is in the unit disc \mathbb{D}. Show that

$$
\tanh \frac{1}{2} c=|B| ; \quad \tanh \frac{1}{2} b=|C| ; \quad \tanh \frac{1}{2} a=\left|\frac{C-B}{1-\bar{B} C}\right| .
$$

Use this to find formulae for $\cosh a, \cosh b, \cosh c$ and $\sinh a, \sinh b, \sinh c$.
Deduce that, in any hyperbolic triangle we have the first hyperbolic cosine rule:

$$
\cosh a=\cosh b \cosh c-\sinh b \sinh c \cos \alpha
$$

Find the length of the hypotenuse of a right-angled hyperbolic triangle in terms of the other two side lengths.
Now fix A, α, β and consider the angle γ as a function of c. Show that γ is a strictly decreasing function of c. Deduce that there is a hyperbolic triangle with angles α, β, γ if and only if $\alpha+\beta+\gamma<$ π. Is this triangle unique up to hyperbolic isometry?
9. Let G be a discrete group of Möbius transformations. An invariant disc for G is a disc which every element of G maps into itself. Show that G can not have an invariant disc if it contains a loxodromic transformation. Show also that there is group G that contains no loxodromic transformations but still has no invariant disc. [Hint: Look for groups G generated by two transformations.]
10. Let $C_{0}, C_{1}, C_{2}, C_{3}$ be four circles with C_{i} tangent to C_{i+1} at the point z_{i} for $i \equiv 0,1,2,3(\bmod 4)$ and there are no other points of tangency. Prove that $z_{0}, z_{1}, z_{2}, z_{3}$ all lie on a circle.
11. Show that there is an isometry T of \mathbb{H}^{2} taking the pair of points (a, b) to the pair (u, v) if, and only if, $\rho(a, b)=\rho(u, v)$. Is this still true for pairs of points in \mathbb{H}^{3} ?
12. Let ℓ, ℓ^{\prime} be two hyperbolic geodesics. Draw the points m that are equidistant from ℓ and ℓ^{\prime}. Show that, in a hyperbolic triangle, the three angle bisectors meet at a point.
13. Give an example of an elliptic element of a Kleinian group with fixed points that do not lie in the limit set. Give an example of a Kleinian group for which the limit set is empty.
14. Let G be a Kleinian group with an invariant disc $\Delta \subset \mathbb{P}$. Show that the limit set of G is a subset of $\partial \Delta$.
15. The Gaussian integers are $\mathbb{Z}[i]=\{a+i b: a, b \in \mathbb{Z}\}$. Let G be the set of Möbius transformations $z \mapsto \frac{a z+b}{c z+d}$ with $a, b, c, d \in \mathbb{Z}[i]$ and $a d-b c=1$. Prove that G is a discrete group of Möbius transformations.
For each point $w=\frac{p+i q}{r}$ with $p, q, r \in \mathbb{Z}$, find a parabolic transformation $T \in G$ that fixes w. Deduce that w is in the limit set for G and hence that the limit set is all of the Riemann sphere.

Please send any comments or corrections to me at: t.k.carne@dpmms.cam.ac.uk.

