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1. Prove that two points w, z ∈ C∞ correspond to antipodal points in S2 under stereographic projec-
tion if, and only if, w = J(z) for the transformation J(z) = −1/z.

Show that any Möbius transformation T other than the identity has either one or two fixed points
on C ∪ {∞}. Show that the Möbius transformation corresponding under stereographic projection
to a non-trivial rotation has two antipodal fixed points.

Show that a Möbius transformation T : z 7→ (az + b)/(cz +d) with ad− bc = 1 satisfies J−1TJ = T
precisely when d = a and c = −b.

2. Prove that Möbius transformations of the extended complex plane C∞ preserve cross-ratios. Let
the points u, v ∈ C correspond under stereographic projection to points P ,Q ∈ S2. Show that the
cross-ratio of the four points u, v,−1/u,−1/v (in some order) is equal to − tan2 1

2d(P ,Q), where
d(P ,Q) is the spherical distance between P and Q.

3. Let J : z 7→ 1/z be inversion in the unit circle and recall that Möbius transformations map inverse
points to inverse points.

Show that, a Möbius transformation T maps the unit circle onto itself if and only if J−1TJ = T .
Deduce that a Möbius transformation

T : z 7→ az + b

cz + d
with ad− bc = 1

maps the unit disc D onto itself if and only if d = a and c = b. Show that every such transformation
is an isometry for the hyperbolic metric.

Show that we can also write these Möbius transformations as

z 7→ ζ

(
z − zo

1− zoz

)

for some zo ∈ D and some ζ ∈ C of modulus 1.

4. Let Γ be the hyperbolic circle {z ∈ D : ρ(z, z0) = ρo} in the disc D. Show that it is also an Euclidean
circle and a spherical circle but that the Euclidean or spherical centre and radius can be different
from the hyperbolic centre zo and radius ρo.

5. Show that a hyperbolic circle with hyperbolic radius r has length 2π sinh r and encloses a disc of
hyperbolic area 4π sinh2 1

2r. Sketch these as functions of r.

6. Show that two hyperbolic lines have a common orthogonal line if and only if they are ultraparallel.
Prove that, in this case, the common orthogonal line is unique.

7. Fix a point P on the boundary of the unit disc D. Describe the curves in D that are orthogonal to
every hyperbolic line that passes through P .

8. Prove that a hyperbolic N -gon with interior angles α1, α2, . . . , αN has area (N −2)π−
∑

αj . Show
that, for every N > 3 and every α with 0 < α < (1− 2

N )π, there is a regular N -gon with all angles
equal to α.

9. Show that in a spherical, Euclidean or hyperbolic triangle, the angle bisectors are lines and they
meet at a point.

10. Let ` and m be two fixed hyperbolic lines that cross at an angle α at a point A. Another line n
crosses ` at a (movable) point B and a fixed angle β. If n also crosses m at an angle θ, show that
θ varies monotonically as the point B moves along the line `.

Deduce that there is a hyperbolic triangle with angles α, β, γ provided that α + β + γ < π.

11. State the sine rule for hyperbolic triangles. Show that a 6 b 6 c if and only if α 6 β 6 γ.

12. If w, z are points in the upper half-plane, prove that the hyperbolic distance between them is
2 tanh−1 |(w − z)/(w − z)|.
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13. In this question we will show how to deduce the sine rule and second cosine rule for a hyperbolic
triangle from the first cosine rule.
Use the cosine rule to show that

cos α =
cosh b cosh c− cosh a√
cosh2 b− 1

√
cosh2 c− 1

and sin2 α =
D2

(cosh2 b− 1)(cosh2 c− 1)

where D2 = 1− cosh2 a− cosh2 b− cosh2 c + 2 cosh a cosh b cosh c. Deduce that
sin2 α

sinh2 a
=

D2

(cosh2 a− 1)(cosh2 b− 1)(cosh2 c− 1)
.

Show that, since the right hand side is symmetric in a, b, c, this implies the hyperbolic sine rule.
In a similar way, show that

cos β cos γ + cos α =
D2 cosh a

(cosh2 a− 1)
√

cosh2 b− 1
√

cosh2 c− 1
and deduce the second cosine rule:

cos α = − cos β cos γ + sinβ sin γ cosh a .

Deduce that two hyperbolic triangles are congruent if and only if they have the same angles.
14. Let ∆ be a triangle on a sphere of radius R, with angles α, β, γ and sides of length a, b, c. Prove a

version of the cosine and sine rules for this triangle.
Show that, if we formally set R equal to the complex number i, then we obtain the hyperbolic
cosine and sine rules. (Thus hyperbolic geometry is the geometry of a sphere with radius i and
curvature R2 = −1.)

15. The quaternions Q consist of all 2× 2 complex matrices

q =
(

a b
−b a

)
with addition and multiplication as for the matrices. Every such quaternion q can be written as
q0 + q1i + q2j + q3k where

 =
(

1 0
0 1

)
; i =

(
i 0
0 −i

)
; j =

(
0 1
−1 0

)
; k =

(
0 i
i 0

)
.

Show that these four elements, together with their additive inverses −,−i,−j,−k form a non-
commutative group: the Quaternion 8-group. We can identify the subspace of Q spanned by i, j,k
with R3 by making i, j,k correspond to the standard basis vectors of R3. We can then write any
quaternion q as q0 + v for a scalar q0 and a vector v ∈ R3. Prove that we then have

(p0 + u)(q0 + v) = (p0q0 − u · v) + (p0v + q0u) + (u× v) .

In particular, for two vectors u,v ∈ R3 we have uv + vu = −2(u · v).
The conjugate of a quaternion q = qo + v is q = q0 − v. Show that qq = ||q||2 = qq where
||q||2 = q2

0 + ||v||2. Prove that, for any unit vector u ∈ R3, we have

uxu = x− 2(x · u)u .

So the map Tu : R3 → R3 ; x 7→ uxu is reflection in the plane perpendicular to u. By writing
any isometry of S2 as a composite of reflection, or otherwise, show that for each quaternion q with
||q|| = 1 the map

Tq : R3 → R3 ; x 7→ qxq

is an orientation preserving isometry of S2. Hence show that

T : S(Q) → SO(3) ; q 7→ Tq

is a group homomorphism from the unit sphere S(Q) (which is a 3-dimensional sphere S3) onto
SO(3) with kernel {−,}.

Please send any comment or corrections to t.k.carne@dpmms.cam.ac.uk .

Supervisors can obtain an annotated version of this example sheet from DPMMS.


