If $\left(z_{n}\right)$ is an infinite sequence of points in \mathbb{C} which converges to ∞ then the product

$$
\prod_{n=1}^{\infty}\left(1-\frac{z}{z_{n}}\right)
$$

need not converge. However, if $\sum\left|z_{n}\right|^{-1}$ converges, then the product will converge to an entire function with zeros precisely at the points z_{n}. To deal with sequences $\left(z_{n}\right)$ which have $\sum\left|z_{n}\right|^{-1}$ divergent we need to introduce exponential factors into the product.

Theorem Weierstrass products
Let $\left(z_{n}\right)$ be a sequence of points in \mathbb{C} which is either finite or else tends to ∞. Then there is an entire function f which has a zero at each point ζ in the sequence with order equal to the number of times that it occurs in the sequence, and no other zeros. If g is another such function then $f(z)=g(z) \exp h(z)$ for some entire function h.

Proof:

Choose positive numbers M_{n} for which $\sum M_{n}$ converges. The function $z \mapsto \log \left(1-\frac{z}{z_{n}}\right)$ is analytic on $\left\{z:|z|<\left|z_{n}\right|\right\}$ so its Taylor series

$$
-\frac{z}{z_{n}}-\frac{1}{2}\left(\frac{z}{z_{n}}\right)^{2}-\frac{1}{3}\left(\frac{z}{z_{n}}\right)^{3}-\ldots
$$

converges uniformly on $\left\{z:|z| \leqslant \frac{1}{2}\left|z_{n}\right|\right\}$. Hence we can choose natural numbers $N(n)$ so that

$$
q_{n}(z)=\frac{z}{z_{n}}+\frac{1}{2}\left(\frac{z}{z_{n}}\right)^{2}+\frac{1}{3}\left(\frac{z}{z_{n}}\right)^{3}+\ldots+\frac{1}{N(n)}\left(\frac{z}{z_{n}}\right)^{N(n)}
$$

satisfies

$$
\left|\log \left(1-\frac{z}{z_{n}}\right)+q_{n}(z)\right| \leqslant M_{n} \quad \text { for } \quad|z| \leqslant \frac{1}{2}\left|z_{n}\right| .
$$

Therefore, the series

$$
\sum_{n=1}^{\infty}\left(\log \left(1-\frac{z}{z_{n}}\right)+q_{n}(z)\right)
$$

will converge locally uniformly. Hence,

$$
f(z)=\prod_{n=1}^{\infty}\left(1-\frac{z}{z_{n}}\right) \exp q_{n}(z)
$$

converges and gives an entire function f with the desired properties.
If g were another such function then g / f would be an entire function with no zeros and therefore equal to $\exp h$ for some entire function h.

Corollary

Every meromorphic function $f: \mathbb{C} \rightarrow \mathbb{C}_{\infty}$ is the quotient a / b of two entire functions a and b.

Proof:

The theorem enables us to construct an entire function b whose zeros are poles of f. Then $a=b . f$ is also entire.

As an example, let us try to construct a entire function with zeros at the integer points. The series $\sum n^{-2}$ converges so the proof of Weierstrass theorem shows that

$$
f(z)=z \prod_{n \neq 0}\left(1-\frac{z}{n}\right) e^{z / n}
$$

converges to the desired entire function. We can rewrite this series as

$$
f(z)=z \prod_{n=1}^{\infty}\left(1-\frac{z^{2}}{n^{2}}\right)
$$

Because of the locally uniform convergence we can differentiate the product to obtain

$$
\begin{aligned}
f^{\prime}(z) & =f(z)\left\{\frac{1}{z}+\sum_{n \neq 0}\left(\frac{1}{z-n}+\frac{1}{n}\right)\right\} \\
& =f(z)\left\{\frac{1}{z}+\sum_{n=1}^{\infty}\left(\frac{2 z}{z^{2}-n^{2}}\right)\right\}
\end{aligned}
$$

Hence $f^{\prime}(z)=f(z) \varepsilon_{1}(z)=f(z) \pi \cot \pi z$. We also have $f^{\prime}(0)=1$ so we can solve this differential equation to obtain

$$
z \prod_{n=1}^{\infty}\left(1-\frac{z^{2}}{n^{2}}\right)=f(z)=\frac{\sin \pi z}{\pi}
$$

Exercises

Show that the product

$$
g(z)=\prod_{n=1}^{\infty}\left(1-\frac{z}{n}\right) e^{z / n}
$$

converges and satisfies

$$
g^{\prime}(z)=g(z) \sum_{n=1}^{\infty}\left(\frac{1}{z-n}+\frac{1}{n}\right)
$$

Deduce that $g(z+1)=-z g(z) e^{\gamma}$ for some constant γ and prove that

$$
\gamma=\lim _{N \rightarrow \infty} \sum_{n=1}^{N} \frac{1}{n}-\log N
$$

(This is Euler's constant.)

