COMPLEX DIFFERENTIAL EQUATIONS - Example Sheet 3 (For supervisors.)

TKC Lent 2008

1. Show that each of the following equations has a fixed singularity, where, along a suitable path approaching the singularity, the solutions have no limits.

$$
\begin{gathered}
f^{\prime}(z)=z^{-2} f(z) \\
f^{\prime}(z)=i(1-z)^{-1} f(z) \\
f^{\prime}(z)=f(z) .
\end{gathered}
$$

Solve by separation of variables.
$f(z)=A e^{1 / z}$ singularity at 0 and $f(i y)$ has no limit as $y \rightarrow 0$.
$f(z)=A(1-z)^{-i}$ singularity at 1 and $f\left(1-e^{-t}\right)$ has no limit as $t \rightarrow+\infty$.
$f(z)=A e^{z}$ singularity at ∞ and $f($ iy $)$ has no limit as $y \rightarrow 0$.
Note, in each case, that $A=0$ gives a non-singular solution.
2. Give an example of a singular point of a differential equation where there is at least one solution that is analytic at that point.

See question 1. Alternatively, construct a second order linear differential equation with solutions, say, z and $z^{1 / 2} .\left(2 z^{2} f^{\prime \prime}(z)-z f^{\prime}(z)+f(z)=0\right)$
3. Find all of the fixed singularities of

$$
(z+f(z)) f^{\prime}(z)-z+f(z)=0
$$

and determine the character of the solutions near these points. Show that there are movable branch points of order 1 .

Write $w=f(z)$, so

$$
\frac{d w}{d z}=\frac{z-w}{z+w}=\frac{P(z, w)}{Q(z, w)}
$$

Possible fixed singularities are at points z_{o} where:
(a) $Q\left(z_{o}, \cdot\right) \equiv 0$.
(b) There exists w_{o} with $P\left(z_{o}, w_{o}\right)=Q\left(z_{o}, w_{o}\right)=0$.
(c) Write $\omega=1 / w$, so

$$
\frac{d \omega}{d z}=-\omega^{2} \frac{P(z, 1 / \omega)}{Q(z, 1 / \omega)}=\frac{P_{1}(z, \omega)}{Q_{1}(z, \omega)}
$$

for polynomials P_{1}, Q_{1}. There exists ω_{o} with $P_{1}\left(z_{o}, \omega_{o}\right)=Q_{1}\left(z_{o}, \omega_{o}\right)=0$.
For this example, $P(z, w)=z-w, Q(z, w)=z+w$. So there are no fixed singularities of type (a). For (b) we have $z_{0}=0$ or ∞. For (c), $P_{1}(z, \omega)=\omega^{2}(1-z \omega), Q_{1}(z, \omega)=1+z \omega$. So there are no fixed singularities of type (c). In fact even 0 and ∞ are not singularities.
The equation is homogeneous so we solve it by setting $w=z v$. Then

$$
z \frac{d v}{d z}+v=\frac{1-v}{1+v} .
$$

Separating the variables gives $(v+1)^{2}-2=A z^{-2}$, so

$$
f(z)=z\left(\left(2+A z^{-2}\right)^{1 / 2}-1\right)
$$

This is meromorphic at both 0 and ∞.
There are movable branch points where $Q\left(z_{o}, w_{o}\right)=0$. Now $Q\left(z_{o}, w\right)=z_{o}+w$ has a simple zero at $-z_{o}$ so the branch points are of order 1 . These are the points where the square root $\left(2+A z^{-2}\right)^{1 / 2}$ is singular $\left(A=-2 z_{o}^{2}\right)$.
4. Find the fixed singular points of

$$
f^{\prime}(z)=P(z, f(z))
$$

where P is a polynomial in 2 variables.
There are no fixed singular points of type (a) or (b). Write $P(z, w)=\sum_{n=0}^{N} P_{n}(z) w^{n}$ with $P_{N} \not \equiv 0$. Then

$$
\frac{d \omega}{d z}=-\frac{\sum_{n=0}^{N} P_{n}(z) \omega^{N-n}}{\omega^{N-2}} .
$$

So there are fixed singular points at z_{o} where $P_{1}\left(z_{o}, \cdot\right)$ and $Q_{1}\left(z_{o}, \cdot\right)$ have a common zero. This is where $P_{N}\left(z_{o}\right)=0$.
5. Find the singularities of

$$
f^{\prime}(z)=z^{1 / 2}+z^{3 / 2} f(z)-f(z)^{2} .
$$

The coefficients are algebraic so we need to add to the possible fixed singularities listed in the answer to question 3 the singularities of the coefficients. These are 0 and ∞. By question 4, there are no other fixed singularities.
[We can convert this to a differential equation with holomorphic coefficients by setting $x=z^{1 / 2}$. Then

$$
\frac{d w}{d z}=2 x^{2}+2 x^{4} w-2 x w^{2}
$$

is a Riccati equation and has local power series solutions. Thus the solutions of the original equation are power series in $z^{1 / 2}$]
6. Show that

$$
f^{\prime}(z)=z^{3}+f(z)^{3} ; \quad f(0)=w_{0}
$$

has movable branch points and find their order. If $w_{o}>0$, the branch point $b\left(w_{o}\right)$ nearest to the origin lies on the positive real axis. How does $b\left(w_{o}\right)$ change as w_{o} increases? Where are the fixed singular points of the differential equation, if any?

By question 4 the differential equation

$$
\frac{d w}{d z}=z^{3}+w^{3}
$$

has no fixed singularities. At points z_{o} where $w\left(z_{0}\right)$ is finite, the solution is locally holomorphic. Now consider those points z_{o} where $w\left(z_{o}\right)=\infty$.
Write $\omega=1$ / w to get

$$
\frac{d \omega}{d z}=\frac{1+z^{3} \omega^{3}}{-\omega}
$$

Note the pole where $\omega=0$. To solve this near $z=z_{o}, w=\infty, \omega=0$, write it as

$$
\frac{d z}{d \omega}=\frac{-\omega}{1+z^{3} \omega^{3}} .
$$

This has a power series solution:

$$
z=z_{0}-\frac{1}{2} \omega^{2}\left(1+a_{1} \omega+a_{2} \omega^{2}+\ldots\right)=z_{0}-\frac{1}{2}(\omega h(\omega))^{2}
$$

So $\omega h(\omega)=-2\left(z-z_{0}\right)^{1 / 2}$ and hence ω is a power series in $\left(z-z_{0}^{1 / 2}\right.$, say $\omega=b_{1}\left(z-z_{0}\right)+b_{2}(z-$ $\left.z_{o}\right)^{2}+\ldots$. Now it is clear that $w=1 / \omega$ has a branch point at z_{o} of order 1
Consider only non-negative real values for z and w. The graph of w against z is strictly increasing on $\left[0, b\left(w_{o}\right)\right)$ and tends to $+\infty$ at $b\left(w_{o}\right)$. Now the solutions for different values of w_{o} can not intersect, so, as w_{o} increases, so the point $b\left(w_{o}\right)$ where w becomes infinite must decrease.

