COMPLEX DIFFERENTIAL EQUATIONS - Example Sheet 3

TKC Lent 2008

1. Show that each of the following equations has a fixed singularity, where, along a suitable path approaching the singularity, the solutions have no limits.

$$
\begin{gathered}
f^{\prime}(z)=z^{-2} f(z) \\
f^{\prime}(z)=i(1-z)^{-1} f(z) \\
f^{\prime}(z)=f(z) .
\end{gathered}
$$

2. Give an example of a singular point of a differential equation where there is at least one solution that is analytic at that point.
3. Find all of the fixed singularities of

$$
(z+f(z)) f^{\prime}(z)-z+f(z)=0
$$

and determine the character of the solutions near these points. Show that there are movable branch points of order 1.
4. Find the fixed singular points of

$$
f^{\prime}(z)=P(z, f(z))
$$

where P is a polynomial in 2 variables.
5. Find the singularities of

$$
f^{\prime}(z)=z^{1 / 2}+z^{3 / 2} f(z)-f(z)^{2} .
$$

6. Show that

$$
f^{\prime}(z)=z^{3}+f(z)^{3} ; \quad f(0)=w_{0}
$$

has movable branch points and find their order. If $w_{o}>0$, the branch point $b\left(w_{o}\right)$ nearest to the origin lies on the positive real axis. How does $b\left(w_{o}\right)$ change as w_{o} increases? Where are the fixed singular points of the differential equation, if any?

