COMPLEX DIFFERENTIAL EQUATIONS - Example Sheet 2 (For supervisors.)

TKC Lent 2008

1. Find a second order linear differential equation with both $\sin z^{1 / 2}$ and $\cos z^{1 / 2}$ as solutions. Is the differential equation unique? Where are its singular points and what are the indicial equations there? Find the transition matrix for the curve $\gamma:[0,2 \pi] \rightarrow \mathbb{C} ; t \mapsto e^{i t}$.

$$
z f^{\prime \prime}(z)+\frac{1}{2} f^{\prime}(z)+\frac{1}{4} f(z)=0
$$

is unique and has regular singular points at 0 and ∞. The indicial equation is $\lambda\left(\lambda-\frac{1}{2}\right)$ at both. Analytically continuing around γ changes $z^{1 / 2}$ to $-z^{1 / 2}$ and so the transition matrix, relative to the given basis, is

$$
\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
e^{i \pi} & 0 \\
0 & 1
\end{array}\right)
$$

2. Find a second order linear differential equation with both $z^{1 / 2}$ and $z^{1 / 2} \log z$ as solutions. Is the differential equation unique? Where are its singular points and what are the indicial equations there? Find the transition matrix for the curve $\gamma:[0,2 \pi] \rightarrow \mathbb{C} ; t \mapsto e^{i t}$.

$$
z^{2} f^{\prime \prime}(z)+\frac{1}{4} f(z)=0
$$

has regular singular points at 0 and ∞. The indicial equation is $\left(\lambda-\frac{1}{2}\right)^{2}=0$. The transition matrix is

$$
\left(\begin{array}{cc}
-1 & 0 \\
-2 \pi i & -1
\end{array}\right)
$$

3. Solve the differential equation:

$$
z^{2} f^{\prime \prime}(z)-3 z f^{\prime}(z)+4 f(z)=0
$$

Regular singular points at 0 and ∞. Indicial equation $(\lambda-2)^{2}$. One solution is z^{2}. Looking for others in the form $z^{2} u(z)$ gives $z u^{\prime \prime}(z)+u^{\prime}(z)=0$ and so $u(z)=A \log z+B$.
4. Show that the Gaussian hypergeometric differential equation:

$$
z(z-1) f^{\prime \prime}(z)+[(a+b+1) z-c] f^{\prime}(z)+a b f(z)=0
$$

has a power series solution that begins

$$
f(z)=1+\frac{a b}{c} z+\frac{a(a+1) b(b+1)}{1 \times 2 c(c+1)} z^{2}+\ldots
$$

Find a formula for the nth coefficient when c is not an integer. What happens when c is an integer? What is the radius of convergence of the power series?
What are the singular points of the equation and the indicial equation at each?
This solution is usually denoted by $F(a, b, c ; z)$ and called the Gaussian hypergeometric function.
The singular points are $0,1, \infty$ and the indicial equations are

$$
\begin{aligned}
\lambda(\lambda-1)+c \lambda & =\lambda(\lambda-1+c) \\
\lambda(\lambda-1)+(a+b+1-c) \lambda & =\lambda(\lambda+a+b-c) \\
\lambda(\lambda-1)-(a+b+1) \lambda+a b & =(\lambda-a)(\lambda-b)
\end{aligned}
$$

respectively. Hence the roots are $0,1-c ; 0,-a-b+c$; and a, b.
5. Prove that
(a) $\frac{d F}{d z}(a, b, c ; z)=\frac{a b}{c} F(a+1, b+1, c+1 ; z)$.
(b) $(1-z)^{-a}=F(a, b, b ; z)$.
(c) $\sin ^{-1} z=z F\left(\frac{1}{2}, \frac{1}{2}, \frac{3}{2} ; z^{2}\right)$.
(a) Differentiate the hypergeometric differential equation for $F(a, b, c ; z)$.
(b) Either show that $(1-z)^{-a}$ satisfies the hypergeometric differential equation or else show that the power series for $F(a, b, b ; z)$ is a binomial series.
(c) Write $\sin ^{-1} z=z \phi\left(z^{2}\right)$ for an analytic function ϕ with $\phi(0)=1$. Then compute the first and second derivatives of $\sin ^{-1} z$ in terms of ϕ and use these expressions to show that ϕ satisfies the hypergeometric differential equation.
6. Consider the matrix form of the Riemann hypergeometric differential equation:

$$
F^{\prime}(z)=\left(\frac{A}{z}+\frac{B}{z-1}\right) F(z) .
$$

Let G be the group of those Möbius transformations that permute the three singular points 0,1 and ∞ in \mathbb{P}. Find the transformations in G explicitly and identify G as an abstract group. For each $T \in G$, show that $\widetilde{F}(z)=F(T(z))$ is a solution of another Riemann hypergeometric differential equation.
Which, if any, of the transformations in G map solutions

$$
\mathcal{P}\left\{\begin{array}{ccccc}
0 & 1 & \infty & & \\
\alpha_{1} & \beta_{1} & \gamma_{1} & ; & z \\
\alpha_{2} & \beta_{2} & \gamma_{2} & &
\end{array}\right\}
$$

of the scalar Riemann hypergeometric differential equation to other solutions?
For a Möbius transformation T we have

$$
\widetilde{F}^{\prime}(z)=T^{\prime}(z) F^{\prime}(T(z))=T^{\prime}(z)\left(\frac{A}{T(z)}+\frac{B}{T(z)-1}\right) F(T(z))=\left(A \frac{T^{\prime}(z)}{T(z)}+B \frac{T^{\prime}(z)}{T(z)-1}\right) \widetilde{F}(z)
$$

The group G is the permutation group on the three points $0,1, \infty$. Each $T \in G$ permutes the residues at the three singularities.
A similar result holds for the Riemann hypergeometric differential equation but not for the Gauss hypergeometric differential equation.
7. Legendre's equation is:

$$
\left(1-z^{2}\right) f^{\prime \prime}(z)-2 z f^{\prime}(z)+n(n+1) f(z)=0 .
$$

Where are its singular points? Show how the solutions are related to hypergeometric functions.

$$
\mathcal{P}\left\{\begin{array}{ccccc}
-1 & 1 & \infty & & \\
0 & 0 & -n & ; & z \\
0 & 0 & n+1 & &
\end{array}\right\}
$$

8. Let f be a solution of the linear differential equation:

$$
f^{\prime \prime}(z)+a_{1}(z) f^{\prime}(z)+a_{0}(z) f(z)=0 .
$$

Show that the logarithmic derivative: $g(z)=f^{\prime}(z) / f(z)$ satisfies the Riccati differential equation:

$$
g^{\prime}(z)+a_{0}(z)+a_{1}(z) g(z)+g(z)^{2}=0
$$

More generally, $g(z)=f^{\prime}(z) / c(z) f(z)$ satisfies

$$
g^{\prime}(z)+\frac{a_{0}(z)}{c(z)}+\left(a_{1}(z)+\frac{c^{\prime}(z)}{c(z)}\right) g(z)+c(z) g(z)^{2}=0 .
$$

Use this to solve the Riccati differential equation:

$$
g^{\prime}(z)+b_{1}(z) g(z)+b_{2}(z) g(z)^{2}=0 .
$$

Set $a_{0}=0, a_{1}=b_{1}, c=b_{2}$. Then we need to solve

$$
f^{\prime \prime}(z)+b_{1}(z) f^{\prime}(z)=0 .
$$

9. Show that $g(z)=2 z /\left(z^{2}-1\right)$ is a solution of

$$
g^{\prime}(z)=-\frac{g(z)}{z\left(z^{2}-1\right)}-\frac{1}{2} g(z)^{2}
$$

Show that the general solution is

$$
g(z)=\frac{2 z}{\left(z^{2}-1\right)^{1 / 2}\left[\left(z^{2}-1\right)^{1 / 2}-C\right]}
$$

Where are the singular points?
Use the previous question to show that the general solution is

$$
g(z)=\frac{2 z}{\left(z^{2}-1\right)^{1 / 2}\left(\left(z^{2}-1\right)^{1 / 2}-C\right)}
$$

10. Show that

$$
g^{\prime}(z)=\frac{1}{2 z}-\frac{1}{2 z} g(z)+\frac{1}{2} g(z)^{2}
$$

has a solution $z^{-1 / 2} \tan z^{1 / 2}$ and find the general solution.
Look for a solution of the form $z^{-1 / 2} h(z)$ and show that

$$
h^{\prime}(z)=\frac{1}{2 z^{1 / 2}}\left(1+h(z)^{2}\right)
$$

So the general solution is

$$
\tan \left(z^{1 / 2}+C\right) / z^{1 / 2}
$$

11. Show that the product

$$
g(z)=\prod_{n=1}^{\infty}\left(1-\frac{z}{n}\right) e^{z / n}
$$

converges and satisfies

$$
g^{\prime}(z)=g(z) \sum_{n=1}^{\infty}\left(\frac{1}{z-n}+\frac{1}{n}\right) .
$$

Deduce that $g(z+1)=-z g(z) e^{\gamma}$ for some constant γ and prove that

$$
\gamma=\lim _{N \rightarrow \infty} \sum_{n=1}^{N} \frac{1}{n}-\log N
$$

(This is Euler's constant.)
The product converges by comparison with $\sum \frac{1}{n^{2}}$. Then $\log g(z)$ is a convergent sum and we can differentiate it term by term.

$$
g(z+1)=-z g(z) \prod_{n=1}^{\infty} \frac{n}{n+1} e^{1 / n}
$$

Compare the Γ-function, which has simple poles at all the points $0,-1,-2, \ldots$.
12. Show that a Blaschke product converges locally uniformly on $\mathbb{P} \backslash \mathbb{D}$. Where are its poles? More generally, prove that it converges on the complement of the closure of the zeros $\left(z_{n}\right)$. Give an example of a Blaschke product where the unit circle is a natural boundary (so the product can not be analytically continued from \mathbb{D} to any larger domain).

Observe that

$$
\frac{\left|z_{n}\right|}{-z_{n}}\left(\frac{z-z_{n}}{1-\overline{z_{n}} z}\right)-1=\frac{1-\left|z_{n}\right|}{-z_{n}}\left(\frac{\left|z_{n}\right| z+z_{n}}{1-\overline{z_{n}} z}\right) .
$$

13. Show how to construct Weierstrass products on the unit disc in order to produce an analytic function $f: \mathbb{D} \rightarrow \mathbb{C}$ with zeros at the points $\left(z_{n}\right)$ where $\left(z_{n}\right)$ is any discrete set of points in \mathbb{D} that does not accumulate at any point in the interior of \mathbb{D}.
14. Let D be a proper subdomain of the complex plane. For $z \in D$, set

$$
d(z)=\inf \{|z-w|: w \in \mathbb{C} \backslash D\}
$$

Show that the zeros of a non-constant analytic function $f: D \rightarrow \mathbb{C}$ must be finite or else a sequence $\left(z_{n}\right)$ with $d\left(z_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$.
The following argument shows how to construct Weierstrass products to prove the converse. Let $\left(z_{n}\right)$ be a sequence in D with $d\left(z_{n}\right) \rightarrow 0$. For each z_{n} chose $w_{n} \in \mathbb{C} \backslash D$ with $\left|z_{n}-w_{n}\right|=d\left(z_{n}\right)$. Show that there are polynomials P_{n} with

$$
\left|\log \left(1-\frac{z_{n}-w_{n}}{z-w_{n}}\right)-P_{n}\left(\frac{z_{n}-w_{n}}{z-w_{n}}\right)\right| \leqslant 2^{-n}
$$

for $\left|z-w_{n}\right| \geqslant 2 d\left(z_{n}\right)$. Hence the product

$$
\prod\left(\frac{z-z_{n}}{z-w_{n}}\right) \exp -P_{n}\left(\frac{z_{n}-w_{n}}{z-w_{n}}\right)
$$

converges locally uniformly on D.
Choose P_{n} to be a partial sum of the Taylor series for $\log (1-\zeta)$ with $\left|\log (1-\zeta)-P_{n}(\zeta)\right| \leqslant 2^{-n}$ for $|\zeta| \leqslant \frac{1}{2}$.
If $\left|z-w_{n}\right| \geqslant 2 d\left(z_{n}\right)=2\left|z_{n}-w_{n}\right|$, then

$$
\zeta=\frac{z_{n}-w_{n}}{z-w_{n}} \quad \text { satisfies } \quad|z e t a| \leqslant \frac{1}{2} .
$$

Since $d\left(z_{n}\right) \rightarrow 0$, we have $\left|z-w_{n}\right| \geqslant d(z) \geqslant 2 d\left(z_{n}\right)$ for all sufficiently large n.
15. Consider the linear differential equation:

$$
f^{\prime \prime}(z)+2 p(z) f^{\prime}(z)+q(z) f(z)=0 .
$$

Let f_{1}, f_{2} be two linearly independent solutions. Show that the Wronskian satisfies

$$
W^{\prime}(z)+2 p(z) W(z)=0
$$

and deduce that $W(z)=C \exp -2 P(z)$ for some constant C and a function P with $P^{\prime}=p$. Prove that $g(z)=f(z) \exp P(z)$ satisfies the differential equation

$$
g^{\prime \prime}(z)+I(z) g(z)=0 \quad \text { for } \quad I(z)=-p^{\prime}(z)-2 p(z)^{2}+q(z) .
$$

(This is the normal form of the differential equation.) What is the Wronskian for this differential equation
The Schwarzian derivative $\mathcal{S} u$ of an analytic function u is defined as

$$
\mathcal{S} u=\left(\frac{u^{\prime \prime}}{u^{\prime}}\right)^{\prime}-\frac{1}{2}\left(\frac{u^{\prime \prime}}{u^{\prime}}\right)^{2}
$$

Show that $\mathcal{S}(T \circ u)=\mathcal{S} u$ for any Möbius transformation T. Find all of the functions u with $\mathcal{S} u \equiv 0$.
Show that the ratio $u=f_{1} / f_{2}$ satisfies $\mathcal{S} u=2 I(z)$.
To solve $\mathcal{S} u \equiv 0$, set $r=u^{\prime \prime} / u^{\prime}$. Then we have the simple Riccati differential equation:

$$
r^{\prime}=\frac{1}{2} r^{2} .
$$

Solutions are

$$
r=\frac{-2}{z+c} \quad u(z)=\frac{A z+B}{z+c}
$$

(and $r \equiv 0$).
Let $u=f_{1} / f_{2}$, so $u^{\prime}=W / f_{2}^{2}$. Then

$$
\frac{u^{\prime \prime}}{u^{\prime}}=\left(\log u^{\prime}\right)^{\prime}=\frac{W^{\prime}}{W}-2 \frac{f_{2}^{\prime}}{f_{2}}=-2\left(p+\frac{f_{2}^{\prime}}{f_{2}}\right) .
$$

Therefore,

$$
\mathcal{S} u=-2\left(p+\frac{f_{2}^{\prime}}{f_{2}}\right)^{\prime}-2\left(p+\frac{f_{2}^{\prime}}{f_{2}}\right)^{2}=-2 p^{\prime}-2 p^{2}+2 q
$$

