
COMPLEX DIFFERENTIAL EQUATIONS – Example Sheet 2 (For supervisors.)
TKC Lent 2008

1. Find a second order linear differential equation with both sin z1/2 and cos z1/2 as solutions. Is the
differential equation unique? Where are its singular points and what are the indicial equations
there? Find the transition matrix for the curve γ : [0, 2π]→ C; t 7→ eit.

zf ′′(z) + 1
2f
′(z) + 1

4f(z) = 0

is unique and has regular singular points at 0 and ∞. The indicial equation is λ(λ − 1
2 ) at both.

Analytically continuing around γ changes z1/2 to −z1/2 and so the transition matrix, relative to
the given basis, is (

−1 0
0 1

)
=
(
eiπ 0
0 1

)
.

2. Find a second order linear differential equation with both z1/2 and z1/2 log z as solutions. Is the
differential equation unique? Where are its singular points and what are the indicial equations
there? Find the transition matrix for the curve γ : [0, 2π]→ C; t 7→ eit.

z2f ′′(z) + 1
4f(z) = 0

has regular singular points at 0 and ∞. The indicial equation is (λ − 1
2 )2 = 0. The transition

matrix is (
−1 0
−2πi −1

)
.

3. Solve the differential equation:

z2f ′′(z)− 3zf ′(z) + 4f(z) = 0 .

Regular singular points at 0 and ∞. Indicial equation (λ − 2)2. One solution is z2. Looking for
others in the form z2u(z) gives zu′′(z) + u′(z) = 0 and so u(z) = A log z +B.

4. Show that the Gaussian hypergeometric differential equation:

z(z − 1)f ′′(z) + [(a+ b+ 1)z − c]f ′(z) + abf(z) = 0

has a power series solution that begins

f(z) = 1 +
ab

c
z +

a(a+ 1) b(b+ 1)
1× 2 c(c+ 1)

z2 + . . . .

Find a formula for the nth coefficient when c is not an integer. What happens when c is an integer?
What is the radius of convergence of the power series?
What are the singular points of the equation and the indicial equation at each?
This solution is usually denoted by F (a, b, c; z) and called the Gaussian hypergeometric function.

The singular points are 0, 1,∞ and the indicial equations are

λ(λ− 1) + cλ = λ(λ− 1 + c)
λ(λ− 1) + (a+ b+ 1− c)λ = λ(λ+ a+ b− c)
λ(λ− 1)− (a+ b+ 1)λ+ ab = (λ− a)(λ− b)

respectively. Hence the roots are 0, 1− c; 0,−a− b+ c; and a, b.
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5. Prove that
(a) dF

dz (a, b, c; z) = ab
c F (a+ 1, b+ 1, c+ 1; z).

(b) (1− z)−a = F (a, b, b; z).
(c) sin−1 z = zF ( 1

2 ,
1
2 ,

3
2 ; z2).

(a) Differentiate the hypergeometric differential equation for F (a, b, c; z).

(b) Either show that (1− z)−a satisfies the hypergeometric differential equation or else show
that the power series for F (a, b, b; z) is a binomial series.

(c) Write sin−1 z = zφ(z2) for an analytic function φ with φ(0) = 1. Then compute the first
and second derivatives of sin−1 z in terms of φ and use these expressions to show that φ
satisfies the hypergeometric differential equation.

6. Consider the matrix form of the Riemann hypergeometric differential equation:

F ′(z) =
(
A

z
+

B

z − 1

)
F (z) .

Let G be the group of those Möbius transformations that permute the three singular points 0, 1
and∞ in P. Find the transformations in G explicitly and identify G as an abstract group. For each
T ∈ G, show that F̃ (z) = F (T (z)) is a solution of another Riemann hypergeometric differential
equation.
Which, if any, of the transformations in G map solutions

P

 0 1 ∞
α1 β1 γ1 ; z
α2 β2 γ2


of the scalar Riemann hypergeometric differential equation to other solutions?

For a Möbius transformation T we have

F̃ ′(z) = T ′(z)F ′(T (z)) = T ′(z)
(

A

T (z)
+

B

T (z)− 1

)
F (T (z)) =

(
A
T ′(z)
T (z)

+B
T ′(z)

T (z)− 1

)
F̃ (z)

The group G is the permutation group on the three points 0, 1,∞. Each T ∈ G permutes the
residues at the three singularities.

A similar result holds for the Riemann hypergeometric differential equation but not for the Gauss
hypergeometric differential equation.

7. Legendre’s equation is:

(1− z2)f ′′(z)− 2zf ′(z) + n(n+ 1)f(z) = 0 .

Where are its singular points? Show how the solutions are related to hypergeometric functions.

P

−1 1 ∞
0 0 −n ; z
0 0 n+ 1


8. Let f be a solution of the linear differential equation:

f ′′(z) + a1(z)f ′(z) + a0(z)f(z) = 0 .

Show that the logarithmic derivative: g(z) = f ′(z)/f(z) satisfies the Riccati differential equation:

g′(z) + a0(z) + a1(z)g(z) + g(z)2 = 0 .

More generally, g(z) = f ′(z)/c(z)f(z) satisfies

g′(z) +
a0(z)
c(z)

+
(
a1(z) +

c′(z)
c(z)

)
g(z) + c(z)g(z)2 = 0 .

Use this to solve the Riccati differential equation:

g′(z) + b1(z)g(z) + b2(z)g(z)2 = 0 .

Set a0 = 0, a1 = b1, c = b2. Then we need to solve

f ′′(z) + b1(z)f ′(z) = 0 .
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9. Show that g(z) = 2z/(z2 − 1) is a solution of

g′(z) = − g(z)
z(z2 − 1)

− 1
2g(z)2 .

Show that the general solution is

g(z) =
2z

(z2 − 1)1/2[(z2 − 1)1/2 − C]
.

Where are the singular points?
Use the previous question to show that the general solution is

g(z) =
2z

(z2 − 1)1/2((z2 − 1)1/2 − C)
.

10. Show that
g′(z) =

1
2z
− 1

2z
g(z) + 1

2g(z)2

has a solution z−1/2 tan z1/2 and find the general solution.
Look for a solution of the form z−1/2h(z) and show that

h′(z) =
1

2z1/2
(1 + h(z)2) .

So the general solution is
tan(z1/2 + C)/z1/2 .

11. Show that the product

g(z) =
∞∏
n=1

(
1− z

n

)
ez/n

converges and satisfies

g′(z) = g(z)
∞∑
n=1

(
1

z − n
+

1
n

)
.

Deduce that g(z + 1) = −zg(z)eγ for some constant γ and prove that

γ = lim
N→∞

N∑
n=1

1
n
− logN.

(This is Euler’s constant.)
The product converges by comparison with

∑
1
n2 . Then log g(z) is a convergent sum and we can

differentiate it term by term.

g(z + 1) = −zg(z)
∞∏
n=1

n

n+ 1
e1/n .

Compare the Γ-function, which has simple poles at all the points 0, −1, −2, . . . .

12. Show that a Blaschke product converges locally uniformly on P \ D. Where are its poles? More
generally, prove that it converges on the complement of the closure of the zeros (zn). Give an
example of a Blaschke product where the unit circle is a natural boundary (so the product can not
be analytically continued from D to any larger domain).

Observe that
|zn|
−zn

(
z − zn
1− znz

)
− 1 =

1− |zn|
−zn

(
|zn|z + zn
1− znz

)
.
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13. Show how to construct Weierstrass products on the unit disc in order to produce an analytic
function f : D→ C with zeros at the points (zn) where (zn) is any discrete set of points in D that
does not accumulate at any point in the interior of D.

14. Let D be a proper subdomain of the complex plane. For z ∈ D, set

d(z) = inf{|z − w| : w ∈ C \D} .
Show that the zeros of a non-constant analytic function f : D → C must be finite or else a sequence
(zn) with d(zn)→ 0 as n→∞.
The following argument shows how to construct Weierstrass products to prove the converse. Let
(zn) be a sequence in D with d(zn) → 0. For each zn chose wn ∈ C \ D with |zn − wn| = d(zn).
Show that there are polynomials Pn with∣∣∣∣log

(
1− zn − wn

z − wn

)
− Pn

(
zn − wn
z − wn

)∣∣∣∣ 6 2−n

for |z − wn| > 2d(zn). Hence the product∏(
z − zn
z − wn

)
exp−Pn

(
zn − wn
z − wn

)
converges locally uniformly on D.

Choose Pn to be a partial sum of the Taylor series for log(1− ζ) with | log(1− ζ)−Pn(ζ)| 6 2−n

for |ζ| 6 1
2 .

If |z − wn| > 2d(zn) = 2|zn − wn|, then

ζ =
zn − wn
z − wn

satisfies |zeta| 6 1
2 .

Since d(zn)→ 0, we have |z − wn| > d(z) > 2d(zn) for all sufficiently large n.

15. Consider the linear differential equation:

f ′′(z) + 2p(z)f ′(z) + q(z)f(z) = 0 .

Let f1, f2 be two linearly independent solutions. Show that the Wronskian satisfies

W ′(z) + 2p(z)W (z) = 0

and deduce that W (z) = C exp−2P (z) for some constant C and a function P with P ′ = p. Prove
that g(z) = f(z) expP (z) satisfies the differential equation

g′′(z) + I(z)g(z) = 0 for I(z) = −p′(z)− 2p(z)2 + q(z) .

(This is the normal form of the differential equation.) What is the Wronskian for this differential
equation
The Schwarzian derivative Su of an analytic function u is defined as

Su =
(
u′′

u′

)′
− 1

2

(
u′′

u′

)2

.

Show that S(T ◦u) = Su for any Möbius transformation T . Find all of the functions u with Su ≡ 0.
Show that the ratio u = f1/f2 satisfies Su = 2I(z).

To solve Su ≡ 0, set r = u′′/u′. Then we have the simple Riccati differential equation:

r′ = 1
2r

2 .

Solutions are

r =
−2
z + c

u(z) =
Az +B

z + c

(and r ≡ 0).

Let u = f1/f2, so u′ = W/f2
2 . Then

u′′

u′
= (log u′)′ =

W ′

W
− 2

f ′2
f2

= −2
(
p+

f ′2
f2

)
.

Therefore,

Su = −2
(
p+

f ′2
f2

)′
− 2

(
p+

f ′2
f2

)2

= −2p′ − 2p2 + 2q .
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