COMPLEX DIFFERENTIAL EQUATIONS - Example Sheet 2

TKC Lent 2008

1. Find a second order linear differential equation with both $\sin z^{1 / 2}$ and $\cos z^{1 / 2}$ as solutions. Is the differential equation unique? Where are its singular points and what are the indicial equations there? Find the transition matrix for the curve $\gamma:[0,2 \pi] \rightarrow \mathbb{C} ; t \mapsto e^{i t}$.
2. Find a second order linear differential equation with both $z^{1 / 2}$ and $z^{1 / 2} \log z$ as solutions. Is the differential equation unique? Where are its singular points and what are the indicial equations there? Find the transition matrix for the curve $\gamma:[0,2 \pi] \rightarrow \mathbb{C} ; t \mapsto e^{i t}$.
3. Solve the differential equation:

$$
z^{2} f^{\prime \prime}(z)-3 z f^{\prime}(z)+4 f(z)=0
$$

4. Show that the Gaussian hypergeometric differential equation:

$$
z(z-1) f^{\prime \prime}(z)+[(a+b+1) z-c] f^{\prime}(z)+a b f(z)=0
$$

has a power series solution that begins

$$
f(z)=1+\frac{a b}{c} z+\frac{a(a+1) b(b+1)}{1 \times 2 c(c+1)} z^{2}+\ldots
$$

Find a formula for the nth coefficient when c is not an integer. What happens when c is an integer? What is the radius of convergence of the power series?
What are the singular points of the equation and the indicial equation at each?
This solution is usually denoted by $F(a, b, c ; z)$ and called the Gaussian hypergeometric function.
5. Prove that
(a) $\frac{d F}{d z}(a, b, c ; z)=\frac{a b}{c} F(a+1, b+1, c+1 ; z)$.
(b) $(1-z)^{-a}=F(a, b, b ; z)$.
(c) $\sin ^{-1} z=z F\left(\frac{1}{2}, \frac{1}{2}, \frac{3}{2} ; z^{2}\right)$.
6. Consider the matrix form of the Riemann hypergeometric differential equation:

$$
F^{\prime}(z)=\left(\frac{A}{z}+\frac{B}{z-1}\right) F(z) .
$$

Let G be the group of those Möbius transformations that permute the three singular points 0,1 and ∞ in \mathbb{P}. Find the transformations in G explicitly and identify G as an abstract group. For each $T \in G$, show that $\widetilde{F}(z)=F(T(z))$ is a solution of another Riemann hypergeometric differential equation.
Which, if any, of the transformations in G map solutions

$$
\mathcal{P}\left\{\begin{array}{ccccc}
0 & 1 & \infty & & \\
\alpha_{1} & \beta_{1} & \gamma_{1} & ; & z \\
\alpha_{2} & \beta_{2} & \gamma_{2} & &
\end{array}\right\}
$$

of the scalar Riemann hypergeometric differential equation to other solutions?
7. Legendre's equation is:

$$
\left(1-z^{2}\right) f^{\prime \prime}(z)-2 z f^{\prime}(z)+n(n+1) f(z)=0
$$

Where are its singular points? Show how the solutions are related to hypergeometric functions.
8. Let f be a solution of the linear differential equation:

$$
f^{\prime \prime}(z)+a_{1}(z) f^{\prime}(z)+a_{0}(z) f(z)=0
$$

Show that the logarithmic derivative: $g(z)=f^{\prime}(z) / f(z)$ satisfies the Riccati differential equation:

$$
g^{\prime}(z)+a_{0}(z)+a_{1}(z) g(z)+g(z)^{2}=0
$$

More generally, $g(z)=f^{\prime}(z) / c(z) f(z)$ satisfies

$$
g^{\prime}(z)+\frac{a_{0}(z)}{c(z)}+\left(a_{1}(z)+\frac{c^{\prime}(z)}{c(z)}\right) g(z)+c(z) g(z)^{2}=0 .
$$

Use this to solve the Riccati differential equation:

$$
g^{\prime}(z)+b_{1}(z) g(z)+b_{2}(z) g(z)^{2}=0
$$

9. Show that $g(z)=2 z /\left(z^{2}-1\right)$ is a solution of

$$
g^{\prime}(z)=-\frac{g(z)}{z\left(z^{2}-1\right)}-\frac{1}{2} g(z)^{2}
$$

Show that the general solution is

$$
g(z)=\frac{2 z}{\left(z^{2}-1\right)^{1 / 2}\left[\left(z^{2}-1\right)^{1 / 2}-C\right]}
$$

Where are the singular points?
10. Show that

$$
g^{\prime}(z)=\frac{1}{2 z}-\frac{1}{2 z} g(z)+\frac{1}{2} g(z)^{2}
$$

has a solution $z^{-1 / 2} \tan z^{1 / 2}$ and find the general solution.
11. Show that the product

$$
g(z)=\prod_{n=1}^{\infty}\left(1-\frac{z}{n}\right) e^{z / n}
$$

converges and satisfies

$$
g^{\prime}(z)=g(z) \sum_{n=1}^{\infty}\left(\frac{1}{z-n}+\frac{1}{n}\right) .
$$

Deduce that $g(z+1)=-z g(z) e^{\gamma}$ for some constant γ and prove that

$$
\gamma=\lim _{N \rightarrow \infty} \sum_{n=1}^{N} \frac{1}{n}-\log N
$$

(This is Euler's constant.)
12. Show that a Blaschke product converges locally uniformly on $\mathbb{P} \backslash \mathbb{D}$. Where are its poles? More generally, prove that it converges on the complement of the closure of the zeros $\left(z_{n}\right)$. Give an example of a Blaschke product where the unit circle is a natural boundary (so the product can not be analytically continued from \mathbb{D} to any larger domain).
13. Show how to construct Weierstrass products on the unit disc in order to produce an analytic function $f: \mathbb{D} \rightarrow \mathbb{C}$ with zeros at the points $\left(z_{n}\right)$ where $\left(z_{n}\right)$ is any discrete set of points in \mathbb{D} that does not accumulate at any point in the interior of \mathbb{D}.
14. Let D be a proper subdomain of the complex plane. For $z \in D$, set

$$
d(z)=\inf \{|z-w|: w \in \mathbb{C} \backslash D\}
$$

Show that the zeros of a non-constant analytic function $f: D \rightarrow \mathbb{C}$ must be finite or else a sequence $\left(z_{n}\right)$ with $d\left(z_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$.
The following argument shows how to construct Weierstrass products to prove the converse. Let $\left(z_{n}\right)$ be a sequence in D with $d\left(z_{n}\right) \rightarrow 0$. For each z_{n} chose $w_{n} \in \mathbb{C} \backslash D$ with $\left|z_{n}-w_{n}\right|=d\left(z_{n}\right)$. Show that there are polynomials P_{n} with

$$
\left|\log \left(1-\frac{z_{n}-w_{n}}{z-w_{n}}\right)-P_{n}\left(\frac{z_{n}-w_{n}}{z-w_{n}}\right)\right| \leqslant 2^{-n}
$$

for $\left|z-w_{n}\right| \geqslant 2 d\left(z_{n}\right)$. Hence the product

$$
\prod\left(\frac{z-z_{n}}{z-w_{n}}\right) \exp -P_{n}\left(\frac{z_{n}-w_{n}}{z-w_{n}}\right)
$$

converges locally uniformly on D.
15. Consider the linear differential equation:

$$
f^{\prime \prime}(z)+2 p(z) f^{\prime}(z)+q(z) f(z)=0 .
$$

Let f_{1}, f_{2} be two linearly independent solutions. Show that the Wronskian satisfies

$$
W^{\prime}(z)+2 p(z) W(z)=0
$$

and deduce that $W(z)=C \exp -2 P(z)$ for some constant C and a function P with $P^{\prime}=p$. Prove that $g(z)=f(z) \exp P(z)$ satisfies the differential equation

$$
g^{\prime \prime}(z)+I(z) g(z)=0 \quad \text { for } \quad I(z)=-p^{\prime}(z)-2 p(z)^{2}+q(z) .
$$

(This is the normal form of the differential equation.) What is the Wronskian for this differential equation
The Schwarzian derivative $\mathcal{S} u$ of an analytic function u is defined as

$$
\mathcal{S} u=\left(\frac{u^{\prime \prime}}{u^{\prime}}\right)^{\prime}-\frac{1}{2}\left(\frac{u^{\prime \prime}}{u^{\prime}}\right)^{2}
$$

Show that $\mathcal{S}(T \circ u)=\mathcal{S} u$ for any Möbius transformation T. Find all of the functions u with $\mathcal{S} u \equiv 0$. Show that the ratio $u=f_{1} / f_{2}$ satisfies $\mathcal{S} u=2 I(z)$.

