COMPLEX DIFFERENTIAL EQUATIONS - Example Sheet 1

TKC Lent 2008

1. Let $\left(K_{n}\right)$ be a compact exhaustion of a domain $D \subset \mathbb{C}$. Show that a sequence of continuous functions $f_{n}: D \rightarrow \mathbb{C}$ converge locally uniformly on D if and only if they converge for the metric

$$
d(f, g)=\sum_{n=1}^{\infty} 2^{-n} \min \left(1, \sup \left\{|f(z)-g(z)|: z \in K_{n}\right\}\right)
$$

2. Let $f: H^{+}=\{x+i y: y>0\} \rightarrow \mathbb{C}$ be a bounded analytic function on the upper half plane with $f(i y) \rightarrow \ell$ as $y \searrow 0$. Prove that $f(z)$ converges uniformly to ℓ in any cone of the form:

$$
\left\{x+i y \in H^{+}:|x| \leqslant k y\right\}
$$

[Hint: Consider $f_{n}(z)=f(z / n)$.]
3. Let $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ be a power series with radius of convergence $R>0$. Show that the partial sums converge locally uniformly to f on $\{z \in \mathbb{C}:|z|<R\}$ but need not converge uniformly.
Give an example of a function f for which the partial sums do converge uniformly on the disc of convergence.
4. A power series $f(z)=\sum a_{n} z^{n}$ has radius convergence R with $0<R<\infty$. Show that there is at least one singular point w with $|w|=R$: that is a point w for which f can not be continued analytically to any neighbourhood of w.
If $a_{n} \geqslant 0$ for each $n \in \mathbb{N}$, prove that R is a singular point. (Pringsheim's theorem.)
Show that the (lacunary) power series

$$
\sum z^{2^{n}}
$$

has radius of convergence 1 and every point on the unit circle is a singular point.
5. Solve the differential equation:

$$
f^{\prime}(z)=\frac{f(z)-z}{z^{2}} \quad ; \quad f(0)=0
$$

[Write the answer as an integral.]
Explain why this can not be solved as a power series about 0 .
6. Let $T_{n}, T: M \rightarrow M$ be contraction mappings on a complete metric space M, with fixed points w_{n}, w respectively. If $T_{n} \rightarrow T$ uniformly, is it necessarily true that $w_{n} \rightarrow w$?
7. Let $f:[0,1] \rightarrow[0, \infty)$ be a continuous function with $f(0)=0$ and $\lim _{t \searrow 0} \frac{f(t)}{t}=0$. Show that, if f satisfies

$$
f(t) \leqslant \int_{0}^{t} \frac{f(u)}{u} d u \quad \text { for all } t \in[0,1]
$$

then f is identically 0 .
8. Let $f, g:[0,1] \rightarrow[0, \infty)$ be continuous functions that satisfy

$$
f(t) \leqslant g(t)+K \int_{0}^{t}(t-u) f(u) d u \quad \text { for all } t \in[0,1]
$$

Show that

$$
f(t) \leqslant g(t)+K^{1 / 2} \int_{0}^{t} \sinh \left(K^{1 / 2}(t-u)\right) g(u) d u
$$

9. Are there any non-trivial functions $f:[0,1] \rightarrow[0, \infty)$ that satisfy

$$
f^{\prime}(t) \leqslant-1-f(t)^{2} \quad \text { for all } t \in[0,1] ?
$$

10. Solve $f^{\prime}(z)=f(z) ; f(0)=1$ explicitly by finding successive approximations starting from the constant function 1.
Solve $f^{\prime}(z)=1+f(z)^{2} ; f(0)=0$ explicitly by finding successive approximations starting from the identity function $z \mapsto z$.
11. Find all of the solutions of $f^{\prime}(z)=2 f(z)^{1 / 2}$ when we take a branch of the square root. (Note that there is one exceptional solution with $f(0)=0$.)
12. Let $f_{1}, f_{2}: D \rightarrow \mathbb{C}$ be two analytic functions on a domain $D \subset \mathbb{C}$ that are linearly independent over \mathbb{C}. Show that there is a (non-trivial) second order, linear differential equation

$$
f^{\prime \prime}(z)+a_{1}(z) f^{\prime}(z)+a_{0}(z) f(z)=0
$$

which has f_{1} and f_{2} as solutions. Where are the singular points of this differential equation?
13. Eisenstein series. Show that, for $k \geqslant 2$, the series

$$
\varepsilon_{k}(z)=\sum_{n \in \mathbb{Z}} \frac{1}{(z-n)^{k}}
$$

converges locally uniformly on \mathbb{C} to give a meromorphic function. Prove the following properties of these functions.
(a) Each ε_{k} is periodic with period 1.
(b) Each ε_{k} has a pole of order k at each integer and nowhere else.
(c) $\varepsilon_{k}(x+i y) \rightarrow 0$ as $y \rightarrow \pm \infty$ uniformly for $x \in \mathbb{R}$.
(d) $\varepsilon_{k}^{\prime}(z)=-k \varepsilon_{k+1}(z)$.

Prove that a meromorphic function $f: \mathbb{C} \rightarrow \mathbb{P}$ with period 1 can be written as a series:

$$
f(z)=\sum_{n \in \mathbb{Z}} f_{n} \exp 2 \pi i n z
$$

that converges locally uniformly. Deduce that each ε_{k} is a rational function of $\exp 2 \pi i z$.
Prove that

$$
\varepsilon_{2}(z)=\frac{\pi^{2}}{\sin ^{2} \pi z}
$$

14. Eisenstein series (continued). Show that the function

$$
\varepsilon_{1}(z)=\frac{1}{z}+\sum_{n \in \mathbb{Z} \backslash\{0\}} \frac{1}{z-n}+\frac{1}{n}
$$

defines a meromorphic function on \mathbb{C} with $\varepsilon_{1}^{\prime}(z)=-\varepsilon_{2}(z)$. Solve this differential equation to find an explicit formula for ε_{1}.
Solve the equation

$$
f^{\prime}(z)=\varepsilon_{1}(z) f(z)
$$

and hence find an infinite product for $\sin \pi z$.
15. Write $1 /(z-n)$ as a Laurent series about 0 . Hence find the Laurent series for ε_{1} about 0 . (Write the coefficients in terms of the Riemann ζ function

$$
\left.\zeta(s)=\sum_{n \in \mathbb{N}} n^{-s} .\right)
$$

What is its radius of convergence?
Find the Laurent series for each ε_{k} about 0 .
Prove that

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\zeta(2)=\frac{\pi^{2}}{6}
$$

Please send any comments or corrections to me at: t.k.carne@dpmms.cam.ac.uk.

