
Implementing Mathematical Objects in Set

Theory

Thomas Forster

July 7, 2007

In general little thought is given to the general question of how to
implement mathematical objects in set theory. It is clear that—at
various times in the past—people have gone to considerable lengths
to devise implementations with nice properties. There is a litera-
ture on the evolution of the Wiener-Kuratowski ordered pair, and
a discussion by Quine of the merits of an ordered-pair implemen-
tation that makes every set an ordered pair. The implementation
of ordinals as Von Neumann ordinals is so attractive that it is uni-
versally used in all set theories which have enough replacement to
prove Mostowski’s collapse lemma. I have frequently complained in
the past about the widespread habit of referring to implementations
of pairs (ordinals etc) as definitions of pairs (etc). My point here is a
different one: generally little attention has been paid to the question
of what makes an implementation a good implementation. In most
cases of interest the merits of the candidates are uncontroversial.
What I want to examine here is an example where there are com-
peting implementations for ordered pairs, and—although it is clear
to the cognoscenti and also (with a bit of arm-waving) plausible to
the logician in the street that some of the impossible candidates are
impossible, nobody has ever given a satisfactory explanation of why
this is so.

The example I have in mind is the implementation of ordered
pairs in Quine’s NF.1 The complications attending implementations
of mathematical entities in NF all arise from the failure in NF of un-
stratified replacement. This is highly significant, and for quite gen-
eral reasons. In general, the successful implementation of a math-

1This topic has never been given a thorough treatment in the literature, though it was
discussed briefly in the closing pages of Lake’s Ph.D. Thesis [3].

1

ematical gadget into set theory will generate a typing discipline.
For example, when one is implementing pairing into set theory, one
does not generally care whether or not x should ever be equal to
〈x, y〉. There are exceptions to this: for example both the Hailperin
[1] axiomatisation of NF and Gödel’s F -functions for generating L
trade on the fact that ordered pairs are Wiener-Kuratowski ordered
pairs and have particular set-theoretic structure) but generally ex-
pressions like “x = 〈x, y〉” are regarded as syntactically aberrant,
and—at that—aberrant in a fairly straightforward way. It is an im-
portant fact (one perhaps not sufficiently widely appreciated) that
expressions which respect the obvious syntactic constraints turn out
to be invariant under choice of implementation, and conversely. In-
deed, the syntactic discipline wouldn’t be much use if this were not
so! Equally important is that this equivalence implies the axiom
scheme of replacement! For example, Mathias [unpublished] has
shown that if we assume that x × y exists for all x and y irrespec-
tive of our choice of implementation of ordered pair then the axiom
scheme of replacement holds. However in NF we know that unstrat-
ified replacement fails. This warns us that in NF it might really
matter how we implement ordered pairs, in the sense that the truth-
value of certain assertions about relations or functions or cartesian
products (the feature common to these topics being the need for an
implementation of ordered pair) will vary with our choice of imple-
mentation of ordered pair.

What is an implementation of ordered pair anyway? At the very
least it must be a three-place relation P (x, y, z) satisfying

(1) (∀xy)(∃!z)(P (z, y, z))

and

(2) (∀z)(∀x)(∀x′)(∀y)(∀y′)(P (x, y, z) ∧ P (x′, y′z) → x =
x′ ∧ y = y′)

Any P satisfying this will be said to be a pairing relation. What
else can we insist that a pairing function should do? There are some
things that it clearly cannot be asked to do. Pairs cannot be required
to have any particular set-theoretic structure. There is a natural
type-theoretic discipline proper to any use of ordered pairs (and
this type discipline has nothing whatever to do with stratification
à la NF(!)) and according to it expressions like ‘x ∈ 〈y, z〉’ are

2

ill-typed. It doesn’t mean that they are illformed or will lack truth-
values once pairing has been implemented: clearly they will have
truth-values. The point is merely that it is no part of the job of the
implementation to give them one truth-value rather than another.

The kind of thing we could reasonably insist that an implementa-
tion of pairing should reproduce would be uncontroversial banalities
of utterly elementary theories of things that require ordered pairs.
One such theory is elementary (binary) relational algebra. This
theory has operations like composition (R ◦ G), inverse (R−1) and
boolean operations on relations (thought of as their graphs) over
any fixed domain. This theory contains assertions like

R ⊆ S → R−1 ⊆ S−1

R ⊆ S → R ◦ T ⊆ S ◦ T .

Agreeing to reproduce truths like these commits us to having a no-
tion of ordered pair that means that the composition of two (graphs
of) relations is the (graph of) a relation, and so on.

(Bearing in mind that it is implementations in NF that we are
considering) let us make at this stage the observation that if the
composition of two relations R and S is to be a relation then R ◦ S
which is of course

{z : (∃x ∈ R)(∃y ∈ S)(∃abc)(P (a, b, x)∧P (b, c, y)∧P (a, c, z))} (1)

had better be a stratified set abstract. That is to say, ‘(∃x ∈
R)(∃y ∈ S)(∃abc)(P (a, b, x) ∧ P (b, c, y) ∧ P (a, c, z))’ must be strat-
ified. This requires that ‘P (−,−,−)’ be stratified and that ‘a’, ‘b’
and ‘c’ all receive the same type.

That is to say that in ‘P (−,−,−)’ the first two vari-
ables must receive the same type. (2)

It doesn’t tell us anything about the type of the third variable.
Similarly uncontroversial will be the expectation that every relation
should have an inverse. However this won’t tell us anything new.
Consideration of the expression

R−1 = {z : (∃z′ ∈ R)(∃ab)(P (a, b, z′) ∧ P (b, a, z))}

3

will tell us that the first two arguments to ‘P (−,−,−)’ must
receive the same type in any stratification. Again, it tells us nothing
about the type of the third argument.

This insight enables us to answer the point often made by people
encountering Cantor’s theorem in NF for the first time. If we try
to prove that a map f : X → P(X) is not onto we find ourselves
considering the diagonal set

{x ∈ X : (∀w ∈ f)(∀X ′ ⊆ X)(P (x, X ′, w) → x 6∈ X ′)} (3)

For us to be confident that the diagonal set is genuinely a set
we would need ‘P (x, X ′, w)’ to be stratified with ‘x’ one type lower
than ‘X ′’ and this of course we do not have.

However we can prove an analogue, which for many purposes is
just as good: in some sense it will enable us to recover the same
mathematics. Recall that ι is the singleton function, so that ι“x is
{{y} : y ∈ x}. (This notation does not presuppose that the graph
of ι is a set!). Clearly {{y} : y ∈ x} is a set, being the denotation
of a stratified set abstraction. Next we attempt to prove that no
function f : ι“X → P(X) can be surjective. This time the diagonal
set is

{x ∈ X : (∀w ∈ f)(∀X ′ ⊆ X)(P ({x}, X ′, w) → x 6∈ X ′)}

which can be seen (even before we eliminate the curly brackets
in ‘{x}’ !) to be stratified. So we seem to have proved that there are
fewer singletons than sets. But what about the singleton function—
surely it is a bijection between ι“V and V ? Yes, but its graph isn’t
a set. And this is because, as we saw earlier, the two components of
the ordered pair must be given the same type.

It may be worth thinking a little bit about what would happen
were we prepared to change our definition of ordered pair so that
‘P (x, y, z)’ were stratified with ‘x’ one type higher than ‘y’. Then
the set abstract in (3) would be a set and the proof would suc-
ceed. We would have shown that X is indeed smaller than P(X).
But what does “smaller than” mean with this definition of ordered
pair? Since our definition no longer ensures that the composition of
(the graphs of) two relations is a (graph of a) relation we find that
equinumerosity no longer appears to be transitive.

4

This is the explanation that NF-istes offer to non NF-istes for
the decision to opt for ordered pair functions that give their two
inputs the same type. The explanation convinces most questioners.
Or perhaps one should say that it silences them. People who come
to introductory talks on NF generally want to know about how
mathematics is done in NF and are correspondingly willing to refrain
from picking fights over definitions of ordered pairs if such restraint
on their part enables them to get on with what they came for.

The choice of pairing functions that that tradition has made for
NF has resulted in our perforce making certain choices about which
assertions about relations and functions we wish to come out true.
Faced with a choice between making every set the same size as its set
of singletons and ensuring that equinumerosity was an equivalence
relation we decided to go for the pairing that makes equinumerosity
an equivalence relation. This was certainly the correct thing to do,
but can we explain why?

I believe we can, and that it is as follows. There are various ba-
nalities about pairing, relational algebra and functions that we can
express in a strongly typed system that regards the components of
the ordered pairs as having no internal structure. Nothing must be
allowed to override the requirement on an implementation that it
respect those banalities about pairing, relational algebra and func-
tions that can be captured in this way. For example, the assertions
that the composition of two relations always exists does not require
us to look inside the components of the ordered pairs, as contem-
plation of formula (1) above will confirm. Similarly equinumerosity.
The assertion that

If x and y are equinumerous and y and z are equinumerous,
then x and y are equinumerous

—although it requires us to look inside x, y and z—does not
require us to look inside any of the components of the ordered pairs
that we mention.

Contrast this with the desideratum for an ordered pair function
of making x and ι“x turn out to be the same size. We will find
that if we state this properly we will be looking inside one of the
components of an ordered pair—specifically to state that it is a
singleton. It is worth making the point here that the expectation
that x and ι“x are the same size relies on an appeal to an instance

5

of the axiom of replacement. The failure of the singleton function to
be a set according to all implementations of ordered pair satisfying
(2) is in fact exactly what we want. We do not want to include
in our spec for the implementation of the pairing function that it
should make x and ι“x appear to be the same size. That is not a job
for the implementation of pairing: that is a job for the set existence
axioms.

The point is not that all well-typed banalities should be accom-
modated. It should be conceded that the existence of compositions
and converses of relations does depend on set existence axioms—
albeit fairly trivial ones. The formula asserting existence of tran-
sitive closures of relations is also well-typed, in that it does not
require us to look inside the components of the ordered pairs it dis-
cusses. However, it does require a bit more set theory—enough to
perform inductive definitions—and so one should not expect an im-
plementation of ordered pair to automatically deliver the existence
of transitive closures. The point is rather that no well-typed ba-
nality should be sacrificed as part of an attempt to accomodate a
less-strictly-typed assertion (such as the existence of the graph of
the singleton function) which might be thought desirable.

I think the consideration I invoked a few paragraphs ago—that
we cannot require of our pairing function that it deliver the truth (or
falsehood) of any general assertion about sets, functions and rela-
tions that involve looking into the internal structure of components
of ordered pairs—is completely general in the sense that analogous
considerations apply to implementations of other mathematical en-
tities.

However, these general considerations have left some points open.
We have decided that the formula P (x, y, z) (whichever formula it
should turn out to be) that says that z is the ordered pair of x and y
must be stratified with ‘x’ and ‘y’ receiving the same type. It doesn’t
tell us what type ‘z’ should be given relative to ‘x’ and ‘y’. For
example, the Wiener-Kuratowski ordered pair is perfectly accept-
able in NF. We have to be more careful with Wiener-Kuratowski
triples and n-tuples for higher n. The usual definition of ordered
triples in the Wiener-Kuratowski style makes 〈w, x, y〉 the Wiener-
Kuratowski pair 〈w, 〈x, y〉〉 where the embedded pair is Wiener-
Kuratowski. This triple is unsatisfactory, since it makes ‘x’ and
‘y’ two types higher than ‘w’. A much better solution is to take

6

〈w, x, y〉 to be 〈{{w}}, 〈x, y〉〉. where once again the two pairs are
Wiener-Kuratowski: this makes ‘x’, ‘y’ and ‘w’ all the same type.
A similar manœuvre can be used for quadruples and higher types.
This is the implementation used by Hailperin [1].

We should note that in NF we can actually prove that there is no
pairing relation P (x, y, z) where ‘z’ is one type lower than ‘x’ and
‘y’. Suppose there were; then the map x 7→ {〈x, x〉} is an injection
from V into ι“V contradicting the fact that there are more sets than
singletons.2

However, the pair that is always used in NF is the Quine pair. I
shall not explain it here, since there are already adequate discussions
of it in the literature. It has two quite desirable features. The first is
that it makes everything into a pair. The second is that the formula
P (x, y, z) (that says that z is the Quine pair of x and y) makes ‘x’, ‘y’
and ‘z’ all the same type. We noticed that the considerations earlier
did not constrain the type of ‘z’, but there is no doubt that having
‘x’, ‘y’ and ‘z’ all the same type makes life easier. It means that
when we procede to triples and quadruples etc as in the previous
paragraph we do not have to wrap curly brackets around variables
to ensure that all components of tuples are the same type.

Finally, some quite subtle considerations. We have resigned our-
selves to the graph of the singleton function not being a set. Let
us now consider the natural numbers: by defining IN to be the in-
tersection of all sets containing the singleton of the empty set and
closed under succ where succ(x) =: {w : (∃y ∈ w)(w \ {y} ∈ x)}
we make no use of pairing functions.

Cogitations on stratifications like those in the previous paragraph
will convince us that for a natural number n there is in general no
reason to suppose that there will be a bijection between an arbitrary
set of size n and the set [0, n] of natural numbers less than n. This
set, [0, n], is finite and its cardinal is a natural number, and we
notate this cardinal ‘T 2n’. Why ‘T 2’? Why don’t we define this T
function so that Tn = |[0, n]|? The point is that (check it!) |[0, n]| is
two types higher than n not one. For a variety of technical reasons it
is more sensible to have as our defined term something that raises by
one type than something that raises by two. Note that, although the
assertion that each natural number counts the set of its predecessors
is not stratified, there is no good reason to suppose it is refutable.

2And there is no difficulty proving Schröder-Bernstein!

7

Something similar happens with ordinals. If α is an ordinal,
the set of ordinals strictly less than α is naturally wellordered, and
therefore has a length which is an ordinal. What is this ordinal?
For stratification reasons this ordinal will not be α but will turn out
to be the result of applying a T -like function to α. Ward Henson,
who was the first person to consider this function applied to ordi-
nals rather than cardinals (see [2]), was sensitive to the difference
between ordinals and cardinals in this respect, and he wrote the op-
eration on ordinals with a ‘U ’ not a ‘T ’.3 |[0, n]| is two types higher
than n. How many types higher than ‘α’ is the ordinal of the set of
ordinals below α ordered by magnitude? Let’s calculate it. Ordinals
are implemented as isomorphism classes (which turn out to be sets)
of wellorderings. So we consider the set of ordinals below α, and we
wellorder it by magnitude. This gives us a set (‘A’ for the moment)
of ordered pairs of ordinals, and we take its equivalence class under
isomorphism, and this is the ordinal we want. It will of course be
one type higher than A. But what is the type of A relative to the
type of α? The answer to this will depend on our choice of ordered
pair! If we are using Quine pairs it will be one type higher than α,
but if we are using Wiener-Kuratowski pairs the difference with be
three!

We can of course also implement wellorderings not by means of
ordered pairs, but as the set of their initial (or for that matter, their
terminal) segments. One then implements ordinals as isomorphism
classes of wellorderings as before. The fact that under any sensible
implementation of ordered pair (or even without it, by using the
initial segment coding) the collection of all ordinals is a set has the
consequence that there must always be a nontrivial appearance of
the T (or, if you are Ward Henson, the U) function to enable us to
say that

T kα is the length of the ordinals below α: (4)

If α counted the length of the ordinals below α we would be able to
prove the Burali-Forti paradox. Therefore any true (4)-like assertion
about the length of an initial segment of ordinals must involve a T -
function. (This is sharp contrast to the case with natural numbers
where the assertion that each natural number counts the set of its
predecessors appears to be consistent—albeit strong.) The appear-

3Nowadays it usually written with a ‘T ’, using overloading.

8

ance of the T function here is therefore not an artefact of our choice
of implementation for ordered pairs or wellorderings: it is a genuine
manifestation of the underlying mathematics associated with having
a set of all ordinals.

Despite the inevitability of the appearance here of a T -function,
there is nothing in the underlying mathematics to tell us what the
exponent on it must be in formula (4)! This fact is generally known
to nfistes but its significance seems not be understood even by them.
The most helpful remark in this connection is probably the obser-
vation of Dana Scott’s (personal communication) that NF is really
a type theory not a set theory. It bears thinking about.

References

[1] Hailperin, T. [1944] A set of axioms for logic. Journal of Symbolic
Logic 9 pp. 1−19.

[2] Henson, C.W. [1973] Type-raising operations in NF. Journal of
Symbolic Logic 38 pp. 59−68.

[3] Lake, J. [1974] Some topics in set theory. Ph.D. thesis, Bedford
College, London University.

Thomas Forster
Department of Pure Mathematics and Mathematical Statistics
Centre For Mathematical Sciences
Wilberforce Road
Cambridge CB4 3NE

9

