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Chapter 1

Stuff to fit in

1.1 Wellfounded relations on V coming back to
life

This ancient topic is now (end 2021) taking on a new lease of life, as a result
of interest in synonymy. Is NF (or any theory like it) synonymous with ZF (or
anything like it)? We are looking for negative answers. If (as it were) NF is
synonymous with (as it were) ZF, in the strong sense in which any model of one
can be turned into a model of the other by internal definitions (think: boolean
algebras and boolean rings), then NF would know about an internally definable
wellfounded extensional relation defined on the whole of V.

Suppose R(, y) is a homogeneous n-formula with two free variables that
denotes a wellfounded extensional relation. Such a relation of course supports
induction, and by such induction we can prove that every set is n-symmetric—
which of course is impossible, so there can be no such formula.

The same proof will go through even if R has parameters, as long as the
parameters are all symmetric. Let’s write this out properly.....

Let R(, y) be a homogeneous n′-formula with some parameters all of which
are symmetric sets, and let n be some concrete natural number s.t. n′ ≤ n and
all the parameters are k-symmetric for assorted k all ≤ n.

We can now prove by R-induction that every set is n-symmetric. Let 
be such that every y s.t. R(y, ) is n-symmetric (*). Let σ be an arbitrary
permutation of V. Since R is homogeneous and all the parameters are ≤ n-
symmetric we certainly have R(y, ) ←→ R(jnσ(y), jnσ(). By assumption
(*) y = jnσ(y) for all y s.t. R(y, ), so  and jnσ() have the same R-
predecessors. But then  = jnσ() by extensionality of R. But σ was arbitrary;
so  is n-symmetric.

Now ‘homogeneous n-formula’ is a very strong condition, so we need to tackle
weaker conditions, and they may be harder to deal with.

We might require merely that R(, y) be stratified.
Keeping in mind that our motivation was synonymy of NF with a theory

9



10 CHAPTER 1. STUFF TO FIT IN

of wellfounded sets, we need to consider wellfounded extensional relations on V
defined by inhomogeneous and unstratified formulæ

For the other direction we need to consider the possibility of definable bi-
nary relations in ZF-like theories that turn the carrier set into a model of NF.
It shouldn’t be difficult to show that this is a ridiculously strong hypothesis.
However thereis no objection the universe supporting an atomic boolean alge-
bra structure, so we have to exploit somehow the bijection between the algebra
and the atoms.

But i think we can do better than the above.

1.2 Synonymy Questions concerning the Quine
systems

I have recently encountered ideas of synonymy in set theory, and have benefitted
hugely from the patience and kindness of Ali Enayat and Albert Visser. Being an
NF-iste I am naturally interested in applying these ideas to the Quine systems.

There have been phenomena in Quine systems which have been in plain sight
for years that cry out for these ideas to be applied to them.

The Church-Oswald construction is so neat and so invertible that it gives
one the idea that Church’s CUS is really just syntactic sugar for ZF(C), For
years i tried to persuade my Ph.D. students to prove that CUS and ZFC were
synonymous, but none of them would be drawn. My motive was a polemical
one. As an NFiste I have had to listen, over the years, to a lot of unthinking
sterotyped nonsense about how everyone knows that there is no universal. Bet-
ter men than me have been irritated in the same way: Alonzo Church for one.
Church makes it clear that (one of hi) motices in formulating CUS was to make
the point that the universe, V (unlike the Russell class) is not a paradocxical
object My motive in seeking a proof of synonymy for ZF(C) and CUS was to
make the point that, since (in virtue of their synonymy) they capture the same
mathematics, and since they disagree about whether or not there is a universal
set, then it follows that the existence or otherwise of a (the?) universal set is
not a mathematical question but a matter of choice of formalism. Recently Tim
Button has proved a sysnonymy result of the kind o have been looking for.

That’s nice, but CUS is not NF; it’s a much weaker system. Will CO con-
structions ever give us a model of anything like NF? Years ago Richard Kaye
said to me that that will never happen. I attached more importance to this
remark of his than he ever did, since while i have remembered it ever since and
it has been a spur to my thinking i don’t believe he has ever published it. Now
that i have met the ideas of synonymy of theories I have been moved to con-
sider a version of Kaye’s conjecture that uses those ideas: “No extension of NF
is synonymous with any theory of wellfounded sets”. I am chuffed to be able
to present to public a proof of a theorem with this flavour. I do this in what
follows.

Where does NFU fit into this picture? NFU is NF with extensionality re-
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laxed to allow urelemente. The original proof of consistency for NFU is due to
Jensen and is a beautiful salad of ideas from Ransey theory and model theory1.
Subsequent work by Boffa (build on by Holmes and Solovay) relates NFU to the
theory internal to a model of ZF(C) with a nontrivial automorphism. Indeed
one can hear people saying (loosely) that NFU is the theory of a nonstandard
model of KF [?]. It may yet turn out that there may be synonymy results for
some extensions of NFU and KF-like theories enriched with a function-symbol
for an automorphism.

One idea i was grateful to be taught by Enayat and Visser was that of a
tight theory. A theory T is tight iff any two extensions T′ and T′′ that are
synonymous are actually identical. Apparently ZFC and PA are tight. I prove
below that NF is not tight, but that it is in some sense stratified-tight

CO=models NF is stratified-tight. NFU

THEOREM 1 No invariant extension of NF is synonymous with any theory of
wellfounded sets.

Proof:
If NF is to be synonymous with a theory of wellfounded sets then there will

be two expressions ϕ and ψ in L(∈,=) both with two free variables s.t.

(i) NF ` ϕ(, y) is a wellfounded extensional relation (at the very
least) and

(ii) some theory T of wellfounded sets proves that 〈V,ψ〉 |= NF.

We will show that (i) fails. Augment the language of NF with a single
function symbol σ intended to denote an automorphism of 〈V,∈,=〉. We now
prove by ϕ-induction that σ is the identity, as follows. Suppose (∀y)(ϕ(y, )→
σ(y) = y). Since σ is an automorphism we must have (∀y, )(ϕ(y, ) ←→
ϕ(σ(y), σ())). But (by induction hypothesis) all y s.t. ϕ(y, ) are fixed by
σ, so  and σ(),have the same ϕ-predecessors and therefore are identical by
extensionality of ϕ. So σ is the identity.

So if there is such a formula ϕ then NF proves that there is no non-trivial
automorphism of 〈V,∈〉. But NF proves no such thing: Nathan and i have
recently shown that the existence of a non-trivial automorphism of 〈V,∈〉 is
consistent wrt any invariant extension of NF. (The same result with ‘NF+ AC2’
in place of ‘NF’ is an old result of mine. The proof is easy: with AC2 we can
show that any two involutions that fix the same number of things and move
the same number of things must be conjugate. So (let c be complementation)
j(c) and j2(c) are cnojugated by some σ, and Vσ contains an automorphism
of order 2—which is a set of the model.)

So no stratified (indeed: no invariant) extension of NF is synonymous with
any theory of wellfounded sets.

1Jensen apparently said it was his best work. But that was before fine structure theory
and the Covering Lemma. There’s some stiff competition for the honour of being Jensen’s
best work!
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Now Randall thinks there is an interesting difference in this setting between
NF and NFU. The thought is not that there cannot be ϕ defining a relation that
is wellfounded and extensional, but that there can, only it won’t be wellfounded
seen from outside. However here we haven’t used or made any assumption that
ϕ is wellfounded seen from outside.



Chapter 2

Letter to Nathan

Nathan,
I am picking up my pen to pester you in the hope that you might be in a mood

for a diversion. I have been thinking about your work on universal involutions
and related matters. I have reached a point where i think a resolution to an
old problem is within reach, but i am finding that the cognitive-decline-of-the-
elderly is beginning to hamper me. Trying to do reaearch in Pure Mathematics
is probably the most sensitive test of cognitive function that one can imagine,
and—when i run it on myself—i find that my mental powers are not what they
were. With that in mind i have now decided that (if i do in fact go back to
Cambridge for 21/22–which is the current provisional plan) that it will be my
last gig at Cambridge. I shall lecture Part III Computability and Logic one last
time (Imre seems to want me to do it) and I have been asked to teach an M.A.
level lecture course in Set Theory at Auckland in july next year and i shall do
that, but then it’s definitely time to put my feet up.

As it is, i am now installed in my nice new flat in Wellington, on the fringes
of campus. The plan is that i will retire here. In some sense i have retired here
already—starting as i mean to go on. There is a spare bedroom with a double
bed, so you are most welcome to come and stay.

Now! Universal involutions. And antimorphisms. I have wanted for years to
show that the existence of antimorphisms is consistent with NF. The way to do
this is of course to find a permutation τ such that τ and jτ · c are conjugate.
You can show that two involutions of the same cycle type are conjugate as
long as you have AC2 but if you have AC2 you can prove that there are no
antimorphisms. (In fact the very last letter that Boffa wrote concerned this
very question). This is why your device of universal involutions is so important:
it holds out the possibility of proving things conjugate without using AC.

You showed that j(c) is a universal involution. It is easy to check that both
{ : c“ = } and { : c“ 6= } are of size |V|. So we can copy The
action of j(c) on the non-fixed points over to the whole of V, thereby obtaining
an involution which is universal for involutions-without-fixed-points. Let’s call
this involution υ. Now suppose AC2 fails. Then there are involutions-without-

13
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fixed-points which—thought of as partitions-of-V-into-pairs—lack transversals.
In particular υ is an involution-without-fixed-points and with no transversal.
The fact that it has no transversal means that jυ has no fixed points. What we
want is for υ and jυ ·c to be conjugate, so we get a polarity (= antimorphism of
order 2) in the permutation model given by the conjugating permutation. Now
comes the thought prompted by your work. We can’t prove that υ and jυ · c
are conjugate by means of AC2 beco’s we ditched AC2 as part of clearing the
decks for an antimorphism, but we might be able to use the universal-involution
gadgetry. If we can show that jυ · c is universal-for-involutions-without-fixed-
points then υ and jυ · c must be conjugate.

That’s as far as i’ve got. It is true that υ is definable, but the definition
isn’t very nice, and i am wondering if there is a proof that isn’t too sensitive to
the definition. Had i properly understood your proof of the universal nature of
jc i would be in a better position to see whether or not it can be tweaked to
show that jυ · c is universal-for-involutions-without-fixedpoints.

So my question to you is this: do you see any chance
of showing that jυ · c is universal-for-involutions-without-
fixedpoints?

Nathan has a rather neat reply to this, with far-reaching implications, which
i copy from his email and have edited.

“Suppose that we have an ordinal alpha and an alpha-indexed family
〈P :  < α〉 of unordered pairs with no choice function (I see no way to rule
this out). α = ω will do. Since υ is universal, we may assume without loss of
generality that each of the P is a pair of things exchanged by υ. Then there is a
transversal for (jυ) ·c. To see this, we will explain how to pick one element from
each pair {A,B} which are exchanged by jυ · c. First note that if P is disjoint
from A then it is included in B and vice versa. Since the P have no choice
function they can’t all meet A in precisely one element; at least one of them is
either disjoint from A or included in A. Find  minimal with this property. Now
we select A as the element of the transversal from {A,B} if P is included in A,
and we select B otherwise.”

This is a major pain. What it shows is that if τ is an involution-without-
fixedpoints that has a wellorderable subset that lacks a transversal then jτ · c
has a transversal and therefore cannot be conjugate to τ. If we are to persist
with this then we need to ask of every involution-without-fixed-points that we
bump into not just whether or not it has a transversal but ask about which
of its subsets have transverals. If it has countable subsets without transversals
then we are in trouble.

So, let’s summarise. If we want a permutation model containing a polarity
(an antimorphism of order 2) then we seek an involution π such that π and
jπ · c are conjugate. Let us call such a π a pre-polarity.

If π has a transversal then jπ · c has a fixed point and this cannot be al-
lowed. So neither π nor jπ · c have either transversals or fixed points. Nathan
has this nice argument to the effect that if π has a wellorderable subset lack-
ing a transversal then jπ · c has a transversal. This property (possession of a
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wellorderable subset without a transversal) is preserved by conjugation, so both
π have the rather curious property that every wellorderable subset has a choice
function.

We need to check to see what the implications for π are of jπ · c having
lots of partial transversals. jπ · c having a fixed point entails that π has a
transversal, but transversals don’t seem to propagate information downwards
in the same way. Let  be a subset of π and t transversal for it. Then consider
′ = t ∪
⋃

(π \ ). ′ is trying to be a fixed point for jπ · c but it doesn’t work
unless  = π. However although ′ is not actually a fixed point it does have
large intersection with jπ ·c(′), where large means || give or take a T. So the
condition on transversals for wellordered subsets turns into a condition saying
that there are lots of s which have moderately large intersection with jπ ·c().
Fortunately that doesn’t seem to have any particularly strong consequences.

It is a consequence of NCI fini that every wellorderable set of pairs (of n-
tuples, for fixed n, in fact) has a choice function. However (i) NCI fini might
imply that all partitions of V into pairs are the same size and (ii) it might be
the case that no pre-polarity can be of size T |V|. If both of these bad things
happen then we cannot hope to work in a model of NCI fini.

OK, so suppose NCI is finite and that AC2 fails. Then there are involutions
without either fixed points or transversals but which nevertheless have the prop-
erty that every wellordered subset has a transversal. That’s a good start; nice
to have it under one’s belt. It would be nice to know further that if π is such
an involution then so is jπ · c. Then we want there to be a universal involution
π with this property, and we want jπ · c to be universal too.

It would help to get straight how many conjugacy classes there are of invo-
lutions without either fixed points or transversals. AC2 says none of course but
¬AC2 might imply that there are lots—m say. It certainly tells us that m ≥ 2
because it says that there are partitions into pairs that lack transversals and of
course c is one that does have a transversal. Ideally we want m = 2 but that’s
a bit much to ask. There is also the related question of how many different sizes
there are of partitions of V into pairs—n, say. AC2 → n = 1 but of course we
are ditching AC2. Obviously n ≤∗ m.

Suppose P is a partition of the universe into pairs that has fewer than T |V|
pieces. We can consider the partition P t P that is the disjoint union of two
copies of P. How big is P t P? It can’t be of size T |V| beco’s of Sierpinski’s
result about 2n = 2m→m = n. Can it be of size |P|? Nothing to say that it
can’t. . .

Another nugget that comes from Nathan’s aperçu is that if there is a polarity
then every wellordered subset of it (thought of as a partition of V into pairs)
has a selection function! If the polarity is universal then it implies that every
wellorderable set of pairs has a choice function. This is also a consequence of
NCI fini. Must a polarity be universal? That would imply that there is only
one conjugacy class of polarities.
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Chapter 3

Stuff to fit in somewhere

The collection of transitive sets is not a set. An old result of mine, with a
better proof by Boffa. Time i wrote it up better. This has been copied from my
monograph—and i found i couldn’t understand what i had written there, so i
reproved it from scratch. Tho’ it should still be called Boffa’s proof.

PROPOSITION 1 The class of all transitive sets is not a set.

Proof:
Suppose per contra that T is the set of all transitive sets. Then we can

define TC() =df
⋂

{y ∈ T :  ⊆ y}, and TC is a homogeneous function,
albeit with a parameter. Clearly we want to diagonalise, to look at something
like { :  6∈ TC()}. That won’t work beco’s it’s not stratified. { :  6∈
TC({})} is OK but it’s trivially empty. But perhaps we can do something
with { :  6∈ TC(ι“)}, which is stratified. (I think it is this that is the clever
idea of Boffa that unlocks the proof). Call it A. Observe that

(∀)(TC(ι“) = ι“ ∪ TC()),

so we have

A ∈ TC(ι“A) iff A ∈ ι“A ∪ TC(A)

But A is not a singleton, so A 6∈ ι“A so we can simplify the RHS:

A ∈ TC(ι“A) iff A ∈ TC(A).

But the LHS is A 6∈ A by dfn of A, whence

A 6∈ A iff A ∈ TC(A).

But A ∈ A→ A ∈ TC(A) so we conclude

A 6∈ A∧ A ∈ TC(A).

So there is y ∈ A with A ∈ TC(y). But, since y ∈ A, we have

17
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y 6∈ TC(ι“y), which is equiv to y 6∈ (ι“y ∪ TC(y)) so, in particular
y 6∈ TC(y).

But this contradicts y ∈ A∧ A ∈ TC(y).

A set is infinite iff it is both even and odd. So we can express AxInf by
saying that V is an odd set. (It’s obviously even). So we can say: (∃)(V \{}
has a partition into pairs). How many quantifiers..?

There is a set  and a set P. . .
(∀)(∀p, p′ ∈ P)( ∈ p∧  ∈ p′ → p = p′)
(∀p ∈ P)(∀, ′′′np)( = ′ ∨  = ′′ ∨ ′ = ′′)
∃∀ so far
∀y 6= ∃p ∈ Py ∈ p
∃∀∃ so far
(∀p ∈ P)(∃, ∈ p)( 6= )
So: ∃∀∃. But some of these quantifiers are restricted, making it 2 . . . but

then everything is 2!
We know that AxInf cannot be ∃∀. It’s not yet clear that it cannot be

∀∃. The ordering principle is ∃∀∃. This means that my project of adding all
consistent ∀∃ sentences and then all consistent ∃∀∃ sentences and so on will
not give NF. . .

Unless of course ¬AC is ∃∀∃. “There is a partition without a transversal”
There is P
“P is a set of pairwise disjoint sets” is ∀
“T is a transversal” is
(∀p ∈ P)(∃y ∈ T)(y ∈ p)
(∀tt′ ∈ T)(∀p ∈ P)(t, t′ ∈ p→ t = t′)

So “T is not a transversal” ie ∃∀

3.0.1 definable automorphisms—ain’t none.

Let’s minute the fact that there is no ∈-automorphism definable by a stratifiable
expression. Suppose ϕ(, y) were such an expression. Think about the level of
the variable ‘’ in ϕ. We certainly have (∀, y)(ϕ(, y) ←→ ϕ({},{y})).
But observe that, in ϕ({},{y})), the variable  is one level lower than it is
in ϕ. So ‘’ can be taken to be of level 0—which is of course absurd.

Is there anything at all that one can say about the group of all ∈-
automorphisms? I’m guessing not. It’s a subgroup of J∞, but that doesn’t tell
us much. It raises the question (which i have worried about elsewhere) about
setences preserved under directed intersections. J∞ is a directed intersection of
the Jn which are all elementarily equivalent (tho’ the inclusion embeddings are
not elementary) so perhaps we can say something abot J∞. . . ?

It’s presumably something to do with ∀∃! expressions. What has only just
occurred to me is that the arguments that ∀ and ∃! are preseved work also for
the higher-order language.
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One thing that should be fitted in somehow: any τ in J∞ (in fact anything
in J3) is “almost” an automorphism, in the sense that τ and jτ are conjugate
(as long as we have GC). Thus “τ is conjugate to jτ” is equivalent to something
stratified as long as we have GC. I think that (if we have GC) then “τ is
conjugate to jτ” is equivalent to “τ is conjugate to something in J2”. Or even
“τ has the same cycle type as something in J2”.

This suggests a refinement to the thoughts about Fine’s principle that i had
years ago. I proved that for any set and any (satisfiable) one-place predicate
ϕ, there is a permutation model in which that set has ϕ. However i now think
that we should consider  to be predisposed to be ϕ if there is a permutation
τ ∈ Jn s.t Vτ |= ϕ() for some suitably large n. We can say

DEFINITION 1 “ is n-predisposed to be ϕ” iff there is τ ∈ Jn s.t. Vτ |=
ϕ().

Then the theorem in my monograph says that for all  and ϕ  is 1-disposed
to be ϕ.

“π is an ∈-automorphism” is
π = j(π) and
Vσ |= π is an ∈-automorphism” is
σn(π) = j(σn+1(π) So we want σ(π) to be a permutation. So we want σ

to be in Jn for some n depending on our choice of pairing function.

Use the function letter ‘C’ for centralisers. Let 22 be the two-element group
generated by c. J1 is the set of permutations that are j of something. G is the
group {σ : (∀)(σ() = ∨ σ() = V \ )}.

We have the following inclusions

22 ⊆ C2(22) ⊆ C(J1) ⊆ G ⊆ C(G) ⊆ C2(J1) ⊆ C(22)

It an old result of mine that

22 ⊆ C(J1) ⊆ G ⊆ C(22)

and, since C is order reversing, you get

C2(22) ⊆ C(G) ⊆ C2(J1) ⊆ C(22)

and then you do some hand-calculation to merge them.

3.1 Two questions about extracted Models

From Thomas Forster <tf@dpmms.cam.ac.uk>

To: Randall Holmes <m.randall.holmes@gmail.com>

Date: 21 Sep 2020 04:20:56 +0100

Subject: Just given a talk..
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in which i presented Jensen’s proof. I got two quite good questions:

(1) Is every model of TZTU extracted from a model of TZT?

(2) Why not define the membership of the extracted model by  ∈′ y
iff y = ιn(z)∧  ∈ z?

I now think i have two helpful answers.

Question 1

The answer to (1) is: no. One thing that is clear is that, if a model M extracted
from a model of TZT is actually a model of TZTU, then each each level  + 1
of the extracted model is of size in of the size of level , for some concrete n
depending on . For each n and  this is a first-order condition expressible in
L(TZT).

DEFINITION 2
• Let ϕ,m be the formula of L(TZT) that says that the cardinality of level + 1
is in of the cardinality of level .
• For each  ∈ Z, let  be the type {¬ϕ,m :m ∈ IN}.
• Let us give the name ‘TZT(Omit)’ to the smallest theory that locally omits
all the .

TZT(Omit) is axiomatisable but (presumably) not recursively axiomatis-
able. (It’s obviously not vacuous!) Let us minute the following fact.

REMARK 1
A model of TZTU is a model extracted from a model of TZT iff, for each  ∈ Z,
it omits .

Proof:
One direction is obvious: clearly an extracted model omits all the .
For the other direction, consider a model M |= TZTU that omits all the .

Such a model knows (for each ) that the size of its level +1 is in of the size of
its level , for some concrete n (depending on ). But then it knows about sets
of sizes of all these intermediate i numbers, and can use these sets to fake up
a model in which no levels between  and + 1 have been discarded. Evidently
all models obtained from M in this way are isomorphic.

Let us call this process backfilling.

Backfilling

So the extracted model knows whence it came. One might have thought that all
information in the discarded levels is irretrievably lost, since the atoms cannot
be distinguished, but—as we have seen—the information is retained. This may
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be something to do with the fact that all the information is stratified1. This is
probably worth flagging.

REMARK 2 Any model of TZT can be recovered from any model extracted
from it.

Clearly by compactness there are models of TZT that realize plenty of these
types, so the answer to question (2) is ‘no’.

Let’s retrace Jensen’s original proof (or—perhaps i should say—my recollec-
tion of it!). We start with a model M of TZT, and successively extract models
M :  ∈ IN from it, with the M satisfying ambiguity for ever more expres-
sions as  increases. All the M are models of TZT(Omit). We then take an
ultraproduct, M∞, which will be ambiguous. (That was the point, indeed).
However it will also be a model of TZT(Omit). Now, although it is a model
of TZT(Omit) it obviously realizes all the , and therefore cannot be an ex-
tracted model. Observe, too, that altho’ Th(M∞) extends TZT(Omit), it does
not itself locally omit the . If it did, it would have a model that omitted the
, and that would be an extracted model, and the model from which it was
extracted would be an ambiguous model of TZT. Finite extensions of theories
that locally omit a type will locally omit that type, but infinite extensions might
not, and the example to hand is a useful illustration.

3.1.1 Wherein we spell out the connection between TCnT
and special models of NFU

REMARK 3 The following are equiconsistent, for any concrete n:

(1) TCnT;
(2) NFU + |V| = in|sets|;
(3) TZT+ the scheme {ϕ,n :  ∈ Z}.

Proof:

If M∗ is a model of TZTU extracted from M a model of TZT, and M∗ is
ambiguous then, for some n, it satisfies ϕ,n for every . This means that when
we backfill to recover M we find that it is a model of Ambn. And clearly if
M |= Ambn then we can extract an ambiguous model of TZTU + the scheme
ϕ,n for all .

There is the thought that TZTU and Tangled TZTU might be synonymous.

At the very least if we start with a model of TZT and extract we can backfill
and end up where we started. Going in the opposite sense doesn’t work, beco’s
not every model of TZTU is an extracted model.

1There are echoes here of an old question about how discernible the atoms in a model of
NFU can be.
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If we have a model of TZTU + ambiguity obtained by extracting, then, for
some n, we retained every nth level. By backfilling we recover a model of TZT,
and that model satisfies Ambn. So you get a model of TCnT2! See [?].

In fact i claim that, for each concrete n, the two theories TCnT and NFU
+ |V| = in|sets| are synonymous. If we backfill a model of NFU + |V| =
in|sets| we obtain a model of TCnT; if we discard all but one level of a model of
TC2T we obtain a model of NFU + |V| = in|sets|. . . and the two constructions
are mutually inverse.

[Are they actually synonymous?]
So here is a question about models of NFU. There are these two methods of

obtaining models of NFU:
(i) Start with a model of TZT; extract lots of models from it, getting more

and more ambiguity. Get a saturated ultraproduct which will be glissant; take
a quotient over the tsau.

Is every model of NFU elementarily equivalent to a model arising in this
way?

(ii) There are the models arising from nonstandard models of KF. Are they
ever models of NFU + |V| = in|sets| for any n. . . ? One suspects not. But
what if one starts with a nonstandard version of the Baltimore model?

One might have to allow permutations
Suppose M = 〈M,∈M〉 is a model of NFU + |V| = in|sets| for some n.
(i) We obtain a modèle glissant M∗ of TZTU + Amb by taking Z-many

copies of M. We then
(ii) “backfill” to obtain a modèle glissant M∗∗ of TZT+ Ambn. That is to

say, we interpolate n − 1 new levels between any two levels of M∗.
(iii) Any modèle glissant M∗∗ of TZT+ Ambn can quotient out to give a

model of TCnT.
It might be an idea to spell out the details.
(i) is old tech. M = 〈M,∈M〉, so M is the carrier set of M. Construct

a model M∗ of TZTU by declaring level  to be M × {}; we then define a
membership relation ∈M∗

between (sets belonging to) level  and (sets belonging

to) level  + 1 by saying 〈, 〉 ∈M∗ 〈y,  + 1〉 iff M |=  ∈ y. The operation of
incrementing the second component of the ordered pairs is of course a tsau for
M∗, making M∗ a modèle glissant M∗ of TZTU + Amb as claimed.

Next (ii) we have to explain how to backfill M∗ to obtain a model of TZT+
Ambn as promised.

We have to set up a bijection between the object at level  that started off in
M as sets and the (internal) power set of the whole of level − 1 (that started
off as M). Every element of sets of level  corresponds to a subset of level ,
which is to say a subset of M. Via the tsau, it now corresponds to a subset of
level  − 1. This means we can use sets ×{} as the level to be interpolated
(“inserted”?) immediately above level . What is to be the next level above
that? Obviously we want P(sets)—which is a perfectly respectable set of M.
We insert P2(sets) similarly. And so on up. The newly inserted levels mean

2I am not sure where this fact is written up!
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that the expanded structure is now a model of extensionality. There is still a
tsau (the same tsau as before, in fact) but it shifts everything up by n levels

not 1, so it is a modl̀e glissant all right but of Ambn rather than Amb.
(iii) A modl̀e glissant of TZT+ Ambn can quotient out by the tsau to reveal

a model of TCnT.

Actually, for any concrete n we can go directly from a model of NFU +
|V| = in|sets| to a model of TCnT without the detour through TZT. Suppose,
as before, that M |= NFU + |V| = in|sets|. For each 1 ≤ k < n, M contains
sets of size ik |sets| and we take these sets (one for each k, only finitely many
choices) together with V, to be the levels of our model of TCnT.

Somewhere i should re-use this snippet from the monograph:

THEOREM 2 (Holmes) (NFU + AC)
For each concrete n, in|P(V)| < |V|

Proof:
Suppose not. Then there is a concrete n such that in|P(V)| does not exist.

Let n be the smallest such. Observe that in+1|P(V)| does not exist, and that
in|P(ι“V)| does exist.

Let m be the smallest cardinal such that i(m) does not exist for some .
Let j+ 1 be the smallest such . Now look at the sequence of iterated images of
Tm under exp. The Tj+1 st element of this sequence exists and is greater than
T |V| = |ι“V|, so it has no more than n iterated images under exponentiation;
between 1 and n+1 new terms are added to the sequence. Thus, the number of
terms in the sequence for Tm is finite and differs from the number of terms in
the sequence for m mod n+ 2 (say); recall that n is standard,so m is different
from Tm. Thus m < Tm (by minimality of m). But then T−1m < m, and
T−1m is easily seen to have between 1 and n + 1 fewer terms in its sequence
of iterated images under exponentiation than m, violating minimality of m.

Notice that this refutation of AC is different in nature from the refutation of
AC from in|P(V)| = |V|. That is a stronger assumption, strong enuff to power
the connection to TCnT.

The ambiguity scheme is not finitisable

While we are about it, let us record that the ambiguity scheme is not finitisable,
in the following strong sense. (It’s pretty obvious that it is not finitisable in the
obvious sense; we mean something stronger and more interesting.) For each
stratifiable expression ϕ of L(∈,=) there is a scheme of biconditionals between
the results of decorating the variables in ϕ with level subscripts. Let us call that
scheme Amb(ϕ). Clearly there are infinitely many such schemes. The ambiguity
scheme is the union of all of them. We will show that it is not axiomatised by
any finite set of them.

Suppose per impossibile that ambiguity is entailed by finitely many Amb(ϕ),
arising from ϕ1 . . . ϕn. Let M be an arbitrary model of TZT. Perform the
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Jensen/Ramsey extraction for ϕ1 . . . ϕn, successively, thereby obtaining a model
M∗ of TZTU + Amb. Each level  of M∗ knows how many levels have been
discarded between it and the level immediately below it. This number must
be finite, since M∗ is an extracted model, and further it must be the same at
each level , beco’s of ambiguity. Call this number k. That means that when
we backfill M∗ to obtain a model of TZT (without atoms) it must be a model
of TZT+ Ambk . Now the model obtained by backfilling is of course M. So M
was a model of TZT+ Ambk . But M was arbitrary.

Maybe there is a cuter proof of this using van der Waerden.

Question 2

The answer to (2) is that, no, it doesn’t make any difference. In fact there is,
up to isomorphism, only one way to discard any family of levels.

If we are to extract level X and the level Pn(X) above it (n > 1 obviously)
then we discard3 the intermediate levels. We fix an injection  : P(X) ,→ Pn(X),
and then say that:

 (a member of X) is a “member of” Y (a member of Pn(X)) iff
 ∈ −1(Y).

Notice that things not in the range of  are empty, just as they should be.

A fundamental requirement is that this new membership relation should sup-
port axioms of comprehension (it clearly supports extensionality for nonempty
sets) in the extracted model, and for this it is necessary that the expression “
is a member of y in the new sense” should be a formula of L(TZT). We now
show that any two injections which are definable in this sense give rise to the
same model (up to isomorphism).

REMARK 4 The model obtained by extracting some chosen levels depends only
on the levels chosen and not on the manner in which the extraction is performed.

Proof:
Key fact: all injections satisfying the above condition are conjugate. Roughly

this is beco’s Pn(X) is so much bigger than P(X) that if  and j are two injections
from P(X) into Pn(X) then the two complements (in Pn(X)) of their ranges
are the same size. Then reflect that, in general, if X, Y ⊆ V satisfy |X| = |Y |
and |V \X| = |V \Y |, then there is a permutation of V mapping X onto Y . . . so
there is a permutation π of Pn(X) such that  = π · j. This relies on the model
knowing that “P(X) and j“P(X) are the same size. And the model will know
this, because  and j are both definable in the original model.

That’s the idea. Mind you, a bit of detail will not go amiss.

We are working in TZT. If we discard a single level between two levels that
we are extracting we need to know the following. Let α be the size of the level

3For obvious reasons we don’t want to use the word ‘omit’ !
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we are discarding; then we want that whenever α+ β = 2α, then β = 2α. This
is an immediate consequence of Bernstein’s lemma, since (and this is where we
exploit the fact that we are in TZT) we have 2α · 2α = 2α. So, whatever we
take  to be, the complement of its range is of size 2α. Thus, whatever  amd j
are, there is a bijection between the complements of their ranges.

Discarding more than one intermediate level is essentially the same; if any-
thing, it’s even easier.

However, for the sake of completeness, let us consider TST as well. If we are
working in TST then either (i) the bottom level is inductively finite (internally)
in which case everything is easy, or (ii) the bottom level is not inductively finite,
in which case—after a small finite amount of grinding of gears—everything
works as in the TZT case. But since we are interested in infinitely many levels,
a finite amount of gear grinding costs us nothing: we can always discard an
initial segment of badly behaved levels.

Notice that all the reasoning in either case (TST or TZT) can be carried
out inside the model and makes no use of AC.

I think this makes for a nicer way of presenting Jensen’s extracted models
than the usual method: we don’t need to know what the injection is; all we
need to know is that there are injections and that it matters not which one we
use. I think one should just say: if we want to discard levels n · · ·m − 1, then
one calls to mind any internally definable injection from level n to level m, and
feeds it into the above construction.

A couple of additional, minor, points. . .
(i) This presentation does a better job of making it clear that a composition

of two extractions is an extraction. Compose the two injections with ι in the
middle:  · jι · j.

(ii) The sets that one retains as nonempty in the original setting and the
sets one retains as nonempty in the modified setting suggested by my questioner
at Vic are related to each other by the involution

∏

∈V(ι
n(), ιn“), which is

striking but is evidently a red herring.

3.2 Tangled Types

Tangled TZT has this funny substructure property. Starting with a model of
TZT, if you discard some levels, and all the ∈-relations associated with those
levels, then you still have a model of TZT.

That makes it sound as if TZT should be a 1 theory in some language.

God help us there is also a tangled version of TCnT.

Any model of TZT has a canonical expansion (well, it’s not quite an expan-
sion but never mind) to a model of Tangled TZTU.
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There is an injection from the set of models of TZT to the set of models of
Tangled TZTU. It’s an injection not a surjection. The same idea (the obvious
expansion) gives a map from models of TZTU to models of Tangled TZTU. This
map is not injective. Put it this way: there is an obvious map (the expansion
map) from [the set of] models of TZTU to [the set of] models of Tangled TZTU.
Its restriction to model of TZT is injective.

What happens if you try to backfill an arbitary model M of TZTU? If M
arose as a result of extracting from a model of TZT you can recover that model.
It all depends on whether the cardinality of each level is a precise beth number
of the cardinal of the level immediately below it.

But suppose we start from the other end. Start with a model M of Tangled
TZTU. Throw away the tangles to obtain a model of TZTU. Then canonically
expand. Do you get back to where you started? I think so: this time you do.

So i think TZTU and Tangled TZTU are synonymous. However TZTand
Tangled TZTU are not synonymous.

Consider the class of models of TZTU that arise from extracting every second
(or nth, mutatis mutandis) level from a model of TZT. The theory of these
models is axiomatisable, and is synonymous with TZT.

Van der Waerden

Not profound, but it might be nice.

Think about models of TZT, and extracting levels from them to get models
of TZTU.

Notice that, in all extracted models, each level knows how many levels have
been discarded between it and the level immediately below it in the extracted
model: for concrete k, the assertion “there are k levels that have been discarded
immediately below me” is expressible as a first-order formula of L(TZT). This
means that if the levels you extract to get your extracted model are not evenly
spaced, then your extracted model is guaranteed to violate ambiguity—for that
expression at least. Of course you don’t expect it to obey all of ambiguity
anyway, but this is an extra thing to think about. What it does mean is when
we think of the Ramsey construction of iterated extractions it might make for
an extra cuteness if we do a little bit of Van der Waerden to ensure that the
monochromatic set we extract is an AP. I don’t know how much difference this
will make, but it may be worth thinking about.

I suppose it does something. Suppose i start with a model of TZT; i want to
enforce ambiguity for ϕ1 . . . ϕn. Then i 2n-colour the k-tuples from Z and i get
a monochromatic set containing a suff long AP. So i not only get Ambiguity for
ϕ1 . . . ϕn but this shows it’s compatible with ambiguity for the formulae that
tell us about the number of levels omitted. But we know that full ambiguity is
consistent anyway. So it doesn’t really do anything after all.

Suppose we have a model of Tangled TZT in front of us. Fix a level  for
the moment. Every level above  thinks that it is P(), so  induces a partial
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bijection between any two ′, ′′ >  as follows. Each  ∈ ′ encodes a subset y
of ; if this y is encoded by an element of ′′ then send  to that element.

Partial bijection? Why only partial? Beco’s our power sets are not honest,
they are only first-order mimics. So not every subset is coded at every level.
But we do at least know that each level defines a commuting system of partial
maps.

Can we get permutations of a level? Yes. Let 1 > 2 > 3 > 4 be four
levels. We can define a permutation of 1 as follows. (Need a picture!) 3
and 4 both induce partial bijections between 1 and 2. We can compose
these bijections to obtain a permutation of 1. Do we get a group? Isn’t there
a worrying possibility that the composition of two of these partial bijections
might be the empty map, at which point all information is destroyed and we
lose associativity? Yes, almost certainly.

Suppose the ambiguity scheme is finitely axiomatisable in the sense that
there are finitely many stratifiable formulæ wiithout type indices such that the
finitely many schemes ∈ZZϕ ←→ ϕ+1 axiomatise the whole of Amb when
added to TZTU. That means we have an extracted model of TZTU plus Am-
biguity. Now in this extracted model each level V knows how many levels have
been left out between it and V−1, and this number must be the same for all .
This gives us a model for NFU + |V| = ik(|V|) for some k, and this refutes
AC.

But NF is finitely axiomatisable, so does that mean that over TZT rather
than TZTU, the ambiguity scheme is finitely axiomatisable in the sense that
there are finitely many stratifiable formulæ wiithout type indices such that the
finitely many schemes ∈ZZϕ ←→ ϕ+1 axiomatises the whole of Amb when
added to TZT?

Julia Millhouse writes to me from Paris about how she likes the theorem that
(∀α ∈ NC)(Tα ≤ α) implies the axiom of counting. It occurs to me that it is
equivalent to: “every set of singletons embeds into its sumset”. Can we usefully
generalise it? I think the correct generalisation is: replace “set of singletons”
by “set of pairwise disjoint sets”; it says:

(∀α, β)(β ≤∗ α→ Tβ ≤ α).

Interesting. . . this is a choice principle as well as a cardinality principle. It’s the
partition principle—more-or-less.

Ordinals are isomorphism classes of wellorderings. Is there a canonical family
of representatives? Morally, yes, beco’s each ordinal is the order type of the set
of its predecessors in their natural order. So you implement an ordinal as the
set of its predecessors, and the recursion must succeed. But that of course relies
on a certain amount of comprehension (enuff to show that each initial segment
is a set and then enough separation to ensure that the desired bijections are
sets.) These representatives are to be had without AC and they cohere.
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What is the situation in NF? Small ordinals have canonical representatives,
but big ones don’t. I’m pretty sure that NF doesn’t prove the existence of a
set of representatives for NO, and absolutely sure that it shows that there is no
coherent set of representatives. If there were, its union would be a wellordering
of maximal length.

3.3 A conversation with Adam Lewicki 24/ii/19
(He worries too much)

Functions ƒ : X→ Y and g : X→ Y. We want a coequaliser.

ƒ

g

c

h h′

X Y

c is the coequaliser, h is any function s.t. h · ƒ = h · g.

There is an equivalence relation ∼ƒ ,g on Y s.t z1 ∼ z2 iff (∃ ∈ X)(ƒ () =
z1 ∧ h() = z2). Any h : Y → wide blue yonder gives rise to an equivalence
relation on Z: the equivalence classes are the fibres of h. Now if h is any
function s.t. h · ƒ = h · g then this equivalence relation given by h is at least
as coarse as ∼ƒ ,g. How about we take the intersection of all the equivalence
relations that arise from these h? What do we get? Do we get exactly ∼ƒ ,g?
Adam sez it’s not obvious that we do. He is concerned by the possibility that
the intersection of all these equivalence relations might be strictly coarser than
∼ƒ ,g.

But what is he worried about? Even if it isn’t, and the intersection is
precisely ∼ƒ ,g, it’s of no help to us in our quest for the Holy Coequaliser,
because the problem all along was the inhomogeneity of the quotient map.
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Actually he has a point. What happens if there happens to be, somehow, an
h : Y → the wide-blue-yonder such that the equivalence relation that it gives
rise to is the unique ⊆-minimum equivalence relation? Then this h really is the
Holy Coequaliser! And this can happen even if this equivalence relation is not
∼!

[continuing to think aloud . . . ] the intersection of all the equivalence rela-
tions arising from morphisms h : Y → wide blue yonder that satisfy h · ƒ = h ·g
is a perfectly well-defined object of whose existence we can be confident. It is
true—as Adam says—that if this equivalence relation arises from some h : Y →
wide blue yonder then that h is the Holy Coequaliser even if the equivalence
relation isn’t ∼ƒ ,g. The trouble is that there doesn’t seem to be any way of
obtaining such an h.

It’s probably worth spelling out what happens if X and Y are sets of single-
tons. We obtain ∼ as above; every equivalence class is a set of singletons; so we
consider the result

⋃

(Y/ ∼) of raising4 the type of the quotient (“rub out one
layer of curly brackets”). The result genuinely is a coequaliser. But there is no
reason to suppose that it is T of anything.

IO implies that direct limits and projective limits exist.

Presumably one can prove a synonymy result for any permutation in CJ0(J1).
Write ∈1 and ∈2 for the two membership relations. We have

 ∈2 y iff  ∈1 y←→ A(y)

where A is some formula with y free at level. And of course all ∈s in A are ∈1.
How do we define ∈1 in terms of ∈2? Well, it’s going to be

 ∈1 y iff  ∈2 y←→ B(y)

where B is some formula with y free at level. And of course all ∈s in A are ∈2.
Substituting  ∈1 y←→ A(y) for  ∈2 y in the expansion of  ∈1 y we get
A(y)←→ B(y)

Albert says that PA is not mutually interpretable with any finitely axioma-
tisable theory. Therefore (for example) the arithmetic of NFU + iNF must be
MORE than PA.

Is the collection of Cantorian cardinals closed under EXP? Yes.
Is the collection of cantorian ordinals (or scordinals) closed under DT? Pre-

sumably, but spell it out.
Albert says that GB proves Con(ZF) in the sense that there is a definable

cut in the naturals of GB in whose arithmetic one can prove Con(ZF). One
wants to compare this situation with Morse-Kelley and Quine’s ML (vis-a-vis
NF).

4lowering. . . ?
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Must get straight this business of NF and internal automorphisms

Facts to be understood properly:

Every model of TZT is elementarily equivalent to a strongly extensional
model. So every ambiguous model of TZT is elementarily equivalent to one
without an (internal) automorphism. Doesn’t seem to work for NF

Every model of NF has a permutation model with an (internal) automor-
phism.

No internal automorphism can be got rid of by a definable permutation

Is every model of NF elementarily equivalent to a strongly extensional one?

Can automorphisms be got rid of by permutations? NF ` �(There are no
automorphisms)?

A message from Nathan in Spring 2019

“I had some thoughts on the question of symmetric models. First of all, as
you mention, downward extensions play an important role here, and it would
be bothersome if there could be multiple possible downward extensions. It
seems at first that there could be, since there can be multiple cardinals κ with
2κ = |V0|. But we can always identify the cardinality of the previous level
uniquely as the ≤-largest among them. More precisely, let W be ι′′V−1. Then
we have 2|W| = |V0|, but also for any cardinal κ with 2κ = |V0| there must
be some set X such that κ = |ι“X| and |PX| = |V0|. Since ι“X is a subset of
ι“V−1, it follows that κ ≤ |W|. Thus |W| can be uniquely identified (uniqueness
follows from Cantor-Bernstein), and the same goes for the cardinalities of all
previous levels.”

If i understand this correctly then it must mean that in NF we can show that
(∀)(|P()| = T |V| → || ≤ T |V|). So, in particular, any surjective image of
ι“V injects into ι“V.

This “in particular” is worth spelling out. It’s certainly true that if |A| ≤∗
T |V| and |P(A)| = T |V| then |A| ≤ T |V|. But is it the case that for every A s.t
|A| ≤∗ T |V| we can find a B with |A| ≤ |B| such that |P(B)| ≤ T |V|? I think
we just take B to be A t ι“V. Then |P(A t ι“V)| = |P(A)| · |P(ι“V)| which is
γ · T |V| for some γ ≤ T |V|. Then |A| ≤ |B| and, since |P(B)| = T |V| which
gives B ≤ T |V|, we get |A| ≤ T |V|.

Can we do the same for T2|V|? Sse |A| ≤∗ T2|V|. Then |P(A)| ≤ T2|V|.
So |A| < 2|A| ≤ T |V|. So WLOG A is a set of singletons: A = ι“B. Rerunning
the argument we get |ι“B| ≤∗ T2|V|, whence |B| ≤∗ T |V| and then |B| ≤ T |V|
and then |A| = T |B| ≤ T2|V|. So it works for T2|V| as well.

Not sure how much use this is!

It means that every partition of V is the same size as a set of singletons. . .

If it is true (and Randall says it isn’t) then we can show that |V| is inde-
composible. Sse T |V| = α · β, with α, β < T |V|. Then, by Bernstein’s lemma,
α, β ≤∗ T |V| whence α, β ≤ T |V| after all. So T |V| is indecomposible.
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HOWEVER Randall is now insisting that Nathan got it wrong, and he’s
convinced Nathan. Let’s go thru’ this with a fine-toothed comb. Suppose we are
in a model of TST, and we want to consider downward extensions. A downward
extension by one is a set X s.t. P(X) is in 1-1 correspondence with ι“V1. (Here
we are using the more inclusive definition of exponentiation, from my Ph.D.
thesis and Crabbe’s article ‘A propos de 2’ under which 2|| is T−1|P()| if
this second thing is defined.) Such an X will give us a new level 0. It will be an
element of level 1, and so a subset of level 0. Nathan’s original thought would
have been that there is obviously a ⊆-maximal such X, namely the whole of
level 0. What’s not to like?

I’m still not convinced. Randall’s argument, as i understand it, runs as
follows.

Suppose T |V| is the maximum α s.t 2α = |V|. (We use the Crabbe/Forster
definition of exponentiation.)

Then we can show that
T2|V| is the maximum α s.t. 2α = T |V|.
and indeed
Tn|V| is the maximum α s.t. 2α = Tn−1|V|.
for each concrete n.
Notice we do not have a uniform proof of this, since the exponent on the T

is not a quantifiable variable.
That is why i am not happy......

A message from Alice in spring 2019

Hope you’re keeping well! I’m afraid I’ve been neglecting pretty much all of my
social obligations lately, so apologies for being even scarcer than usual.

I have a puzzle which may be relevant to doing a certain kind of realizability
model over NF.

Say you have a strongly Cantorian, complete Heyting algebra, H. Define an
H-set as a set X equipped with an H-valued equality relation (i.e. an e : X ×
X → H with e(, y) ≤ e(y, ) and e(, y)∧ e(y, z) ≤ ƒ (, z)–no reflexivity
requirement). A strict predicate on (X, e) is a P : X → H such that P() ≤
e(, ) and P()∧ e(, y) ≤ P(y). Given a strict predicate on (X, e) we get
an H-subset defined by (X,λy.P()∧ e(, y)).

The question: In NF, is there an H-set (U, e) such that every H-set arises
by restriction of this H-set to a strict predicate? I’m trying to figure out if the
appropriate category of H-sets actually has a universe; if it doesn’t then that
rules out one way of using realizability to get NF(U)-like business.

Looking forward to our Spring Break Rager!
-A

Just noticed . . .
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Trying to formulate a ∀∗∃∗ sentence that says there is no total ordering of
the universe. We think of a total ordering as an ordernesting, a family of sets
totally ordered by ⊆ with special properties. One wants to say that for any two
things there is a member of  that contains one but not the other. However
that requires too many quantifiers.
(∀X)(
if  is totally ordered by ⊆
(which is to say (∀1, 2 ∈ X)(1 ⊆ 2∨2 ⊆ 1), which is ∀∗ as desired
then
(∀, b ∈ X)( 6= b→ | XOR b| ≥ 2)
The effect of this is that if 2 “is an immediate successor of” 1 then there

are at least two things in 2 \ 1 so X cannot distinguish them.
(∀, b ∈ X)( 6= b→ (∃ 6= )(, ∈  \ b)∨ (, ∈ b \ )))
But we also have to somehow compel X to cover everything, to contain ∅

and V.
so we want to say: ∀X either X is not totally ordered by ⊆ or V 6∈ X or

∅ 6∈ X or all symmetric differences between its members are of size at least 2
V 6∈ X is (∀ ∈ X)(∃y)(y 6∈ X);
∅ 6∈ X is (∀ ∈ X)(∃y)(y ∈ X)
Now this is a ∀∗∃∗ sentence. What does it say? It certainly implies that if

there is an ordernesting of V it must satisfy the symmetric difference condition,
but that implies that V is infinite, so it says that if there is a total order of V
then V is infinite. But if there is no total order of V then V is infinite. So it is
a ∀∃ sentence that implies infinity.

Is it consistent? No! Because it implies that all total orders of V are dense.
If V has any total orders at all it must have some that aren’t dense.

Let’s hope that there is a way of modifying it into something sensible.

Asaf tells me that in Gitik’s model the smallest σ-ring containing all single-
tons is actually the whole universe. He derives this claim from the fact that in
Gitik’s model every set is a union of countably many smaller sets. I say: that
relies on the order relation <NC on cardinals being wellfounded. He says: no,
beco’s of the Vαs. I might have to write out a proof of that.

Xmas at the farm 2018. Zachiri points out that in the Baltimore model
construction the original model injects into the Baltimore model. Send ∅ to
Vω. (What do you do subsequently??)

I think Holmes’ clever permutation that kills off infinite transitive well-
founded sets will work for any infinite ordinal α > Tα. For any ordinal α > Tα
one orders the finite sets of ordinals below α in the clever Holmes fashion, bi-
ject, extend the bijection to a permutation and one obtains a model wherein
are no infinite transitive wellfounded sets. As far as i can see none of the
goodies that we have so far extracted from the Holmes permutation rely on
α being Ω. Now what about finite n > Tn? By extending an arbitrary injec-See material on Holmes’

weird order in logicrave.tex
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tion P({m :m< n}) ,→ {m :m< n} to a permutation we get a permutation
model in which every wellfounded set is finite. What extra information do we
get if the injection is a clever Holmes injection?

Do we get a proof that every transitive wellfounded set is strongly cantorian?
Notice that there are an awful lot of injections P({m :m< n}) ,→ {m :m<
n} and they might give us different stories. I think we should think about this!

3.4 NZF

It might be an idea to collect in one place all the facts known about NZF. (It’s ZF
∩ NF). And a few questions as well, for that matter. And there is the point to be
made that it is not obvious that we cannot have both ZF ` Con(NZF) and NF
` Con(NZF). The obvious argument runs: suppose we had both of these, then
we would have NZF ` Con(NZF) which we can’t have beco’s NZF is recursively
axiomatisable, being the intersection of two recursively axiomatisable theories.
The point is that it’s far from 100% obvious that we can arithmetize ZF and
NF in such a way that the two assertions of Con(NZF) are the same formula in
L(∈,=). I’m guessing, nevertheless, that a single arithmetisation is available,
and that the obvious argument works; spelling out the details can do no harm.

A trivial observation: NZF is recursively axiomatisable. NZF is an inter-
section of two semidecidable sets of formulæ and so is semidecidable. By an
observation of Craig’s it therefore has a decidable set of axioms. A finite set?
No.

Let’s prove instead the more general:

REMARK 5 Let T1 and T2 be recursively axiomatisable theories in the same
language, with T1 finitely axiomatisable and T2 not finitely axiomatisable.

Then T1 ∩ T2 is recursively axiomatisable but not finitely axiomatisable.

Proof:
Let 〈A :  ∈ IN〉 be an axiomatisation of T2. (We do need the whole of IN

beco’s it is given that T2 is not finitely axiomatisable).
Then 〈T1 ∨ A :  ∈ IN〉 or (for our purposes more usefully)

〈(¬T1)→ A :  ∈ IN〉 is an axiomatisation of T1 ∩ T2, where (overload-
ing) T1 is a conjunction of all the finitely many axioms of T1. If T1 ∩ T2 is
finitely axiomatisable then it can be axiomatised by finitely many of these
axioms. Any conjunction of finitely many of these axioms is logically equivalent
to something of the form (¬T1)→ A where A is a conjunction of finitely many
of those A that axiomatised T2. If T1 ∩ T2 is finitely axiomatisable then, for
some such A, (¬T1)→ A implies each (¬T1)→ A. Now observe (not a lot of
people know this!) that the converse of the logical principle S is a truth table
tautology, so—from ((¬T1) → A) → ((¬T1) → A) for each —we can infer
(¬T1)→ (A→ A) for each A. Observe further that ¬T1 is a theorem of T2,
so we can axiomatise T2 with the two axioms ¬T1 plus A. So T2 is finitely
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axiomatisable. But we know it isn’t. So there is no such A. So T1 ∩ T2 was
not finitely axiomatisable.

There is a rather striking way of putting this. Let T1 and T2 be theories in
the same language, with T1 and T1 ∩ T2 both finitely axiomatisable. Then T2
is finitely axiomatisable.

In particular NZF is recursively axiomatisable but not finitely axiomatisable.
Notice that we have not used any assumption of Con(NF) in this calculation.
After all, if ¬Con(NF) then NZF = ZF, and ZF is not finitely axiomatisable.
However we have (of course) used Con(ZF). And we have used that NF and ZF
contradict one another: NF ∪ ZF is inconsistent.

My guess is (always assuming Con(NF)) that NZF is extensionality, pairing,
sumset, power set, infinity, transitive containment, stratified separation and
(full!) collection.

Can we prove this? It would be sufficient to show, in this theory, that
each (unstratified) instance of replacement follows from the nonexistence of a
universal set. We would also need to show in NZF that if there is a noncantorian
set, or if IO fails, or ∃NO, then there is a universal set. That all looks like a
tall order. So perhaps there is more to NZF than meets the eye. And NZF +
AC = ZFC!

We don’t know which (if indeed either) of ZF and NF proves Con(NZF),
tho’ we do know that they cannot both prove it.

Let us prove something fairly general.

REMARK 6 Let T1 and T2 be two theories. Then every model of T1 ∩ T2 is
either a model of T1 or a model of T2.

Proof:
Let T1 ` ϕ1 and T2 ` ϕ2. Then T1∩T2 ` ϕ1∨ϕ2. Suppose M |= T1∩T2;

then M |= ϕ1∨ϕ2. If M 6|= T1 then there is a ϕ1 ∈ T1 s.t. M 6|= ϕ1; but then
M |= ϕ2 (any of them) whence M |= T2.

I was quite alarmed when i discovered this proof, and suspected an error,
but it’s quite innocent really. After all, T + ϕ and T + ¬ϕ are two theories
whose union is inconsistent, and every model of their intersection is a model of
one or other. So there’s no surprise really.

Thus, taking T1 and T2 to be NF and ZF, NZF + IO axiomatises ZF; NZF
+ ¬IO axiomatises NF. This makes for a contrast with KF. NZF plus either of
∃NO, ¬IO gives NF. As far as i know it’s open whether or not either of these
things entail the existence of a universal set when added to KF.

COROLLARY 1 Let T, T′, S and S′ be theories with T synonymous with T′

and S synonymous with S′. Then T ∩ S and T′ ∩ S′ are synonymous (in the
“same models” sense).
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Proof:
By 6, every model of T ∩ S is either a model of T (in which case it can be

turned into a model of T′) or a model of S (in which case it can be turned into
a model of S′).

REMARK 7
Let T1 and T2 be two theories s.t. T1 ∪ T2 is inconsistent;

Let ϕ be a formula such that T1 ` ϕ and T2 ` ¬ϕ.
Then T1 ∩ T2 + ϕ ` T1 and T1 ∩ T2 + ¬ϕ ` T2.

Proof:
Let ψ be any theorem of T1. Then T2 ` ϕ → ψ and also T1 ` ϕ → ψ,

whence T1 ∩ T2 ` ϕ → ψ. Thus T1 ∩ T2 + ϕ ` ψ. But ψ was an arbitrary
theorem of T1. So T1∩T2+ϕ proves all theorems of T1. We argue analogously
for theorems of T2.

Thus both T1 and T2 are finite extension of T1 ∩ T2. Surely some connection here
with Lyndon’s interpola-
tion lemma (which—to my
shame—i have only just
discovered!)

OK, we took NZF to be NF ∩ ZF. What would have turned out different
had we taken it to be NF ∩ ZFC?

Notice that T ` Con(T ∩ S) iff T ` (Con(T)∨ Con(S)). The converse of
the following is easy, but what of the formula itself (the hard direction)?

T ` (Con(T)∨ Con(S)) → T ` Con(S)?

Try

T0 = T

Tn+1 = Tn ∪ {Con(Tn)∨ Con(S)}

T∞ =
⋃

∈N
Tn

WANT:

T∞ ` Con(T∞)∨ Con(S) but T∞ 6` Con(S)

which would be a good counterexample.
It seems to me that the desideratum T∞ ` Con(T∞)∨Con(S) holds because

we can argue in something very elementary (so presumably in T) that in every
model of T∞ either Con(S) holds or

∧

∈N Con(Tn) holds, which should be
enough to show that Con(T∞) holds. Therefore T∞ ` Con(T∞)∨ Con(S).

Now to persuade ourselves that T∞ 6` Con(S). If T∞ ` Con(S) then
Tn ` Con(S) for some n. id est:

T ` (
∧

≤n
(Con(T)∨ Con(S)))→ Con(S)
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or

T ` ((
∧

≤n
Con(T))∨ Con(S))→ Con(S)

whence

T `
∧

≤n
Con(T)→ Con(S)

So T∞ |= Con(T∞)∨Con(S) seems to hold but T∞ |= Con(S) doesn’t—as
desired.

Now we can prove the inconsistency of elementary arith-
metic

We proved in remark 1 above that NZF is not finitely axiomatisable. Ev-
ery recursively axiomatisable theory has an independent axiomatisation, so—in
particular—NZF has an independent axiomatisation. Consider the theory NZF
+ ∃V. ∃V is not a theorem of NZF so this gives us an infinite independent
axiomatisation of NF, by adding ∃V to an independent axiomatisation of NZF.
But NF is finitely axiomatisable, and clearly no finitely axiomatisable theory
can have an infinite independent axiomatisation. Contradiction

Where is the mistake? The obvious place to look is remark 5.
Ah! I think i see it. Let A be the infinite independent axiomatisation of

NZF. Add ∃V. The axiomatisation of NF that we obtain is not independent.
Lots of things in A follow from ∃V.

A good thing to think about would be NZF + IO, or NZF + ∃NO.

A message from Richard Kaye

A good question.
Suppose T is sufficiently strong. (T extends Δ0 induction + exponentiation

will do. T ⊇ Prim rec arithmetic is more than enough.) suppose also that T
is consistent, and T + ¬con(S) ` con(T). Then, by the assumption that T is
strong we have:

1. If σ is any 1 sentence then T ` ‘T proves σ’ ( in fact, T ` ‘Q proves σ’,
where Q is Robinson’s minimal artithmetic containing only the recursive defns
of + and . )

2. the second incompleteness theorem can be formalised in T, that is: T
proves ‘ con(T) implies “T does-not-prove con(T)” ’

Now consider an arbitrary model M of T. (This is easier than writing things
like T proves ‘... proves “ ... proves ...” ’ !) Suppose for the moment that M |=
¬con(S). Then by (2) M contains a proof from T of ¬con(S), and by simple
modification of these nonstandard proofs, together with the standard proof that
T+¬con(S) implies con(T) we have that M contains a proof (of nonstandard
length) of con(T). But this implies, by 2, that M satisfies ¬con(T), for if
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M |= con(T) then it can’t have a proof of con(T). Thus M |= ¬con(T) and
¬con(S), contradiction, so no such M exists so T ` con(S).

This argument seems to depend critically on the second incompleteness the-
orem formalised in the model, so it seems unlikely that the 1 disjunction
property is possible in general. Actually, its well known that it isn’t true in
general. We need two facts:

3. For T extending Δ0 + exp, as before, T proves the Matijasevic theorem
so any Δ0 formula is equivalent to existential and universal forms. This in turn
means that any extension of models of T automatically preserves Δ0 formulas.

4. There is something called the JOINT EMBEDDING PROPERTY. A
theory T has JEP iff for every pair of models M, N of T there is a third model
K of T and embeddings M ,→ K and N ,→ K. Plenty of theories have JEP.
eg Tp = the theory of fields of a given charateristic p. (You don’t have to
say anything else, not even that the fields are alg closed.) Some don’t, eg the
theory of fields. (you cant jointly embed two fields of different characteristic) A
well know PRESERVATION theorem says T has JEP iff whenever T proves a
disjunction of purely universal sentences then it proves one of them. Unfortu-
nately no theory extending Δ0 + exp has JEP. (This is proved either by a neat
argument involving Post’s simple set, or by a double diagonalization argument,
i.e. producing the disjunction explicitly.)

There’s a very strange and rather weak theory of arithmetic, called Open
induction + normality, which does have JEP. It’s the only one we know of:
weaker theories tend not to have it, and stronger theories don’t either. The
rather surpising result that NOI has JEP was proved by Otero recently. Unfor-
tunately it (NOI) is too weak to talk about consistency, or prove the Matijasevic
theorem.

Hope this is of interest,
Richard

Is this the place to note the old suggestion that NF might be the result of
adding ¬Con(T) to some otherwise sensible theory T. Surely it shouldn’t be
to hard to show that this is nonsense?

Suppose ZF ` Con(NF) and NF ` ¬Con(NF). This is a Believable Scenario.
Then, by remark 7, we have NZF + ¬Con(NF) = NF. But since Con(NZF) →
Con(NF) we have NZF + ¬Con(NZF) = NF.

No, hang on. That doesn’t quite work: the inference Con(NZF)→ Con(NF)
relies on Con(ZF). Let’s look at this closely. In the Believable Scenario we have
NZF + ¬Con(NF) = NF. So we want NZF ` Con(NZF) → Con(NF). We
certainly have NZF ` Con(ZF) ∨ Con(NF). So it would suffice to have NZF `
(what?)

If NF ` ¬Con(NF), and ZF ` Con(NF), then ‘Con(NF)’ is one of those
things that enables you to choose between NF and ZF. So NZF + Con(NF) =
ZF.

No: here’s what to do. Con(NZF) is a “fork”. This is beco’s ZF ` Con(NF)
so certainly ZF ` Con(NZF). But NZF 6` Con(NZF) whence NF 6` Con(NZF).
Every model of NZF is either a model of ZF or of NF. A model of NZF +
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¬Con(NZF) cannot be a model of ZF so it must be a model of NF. So NZF +
¬Con(NZF) is at least NF. Is it no more? Nothing to say that it can’t be. . .

NZF + Con(NZF) and NZF + ¬Con(NZF) must be ZF and NF respectively.

I think that works!

Having another look . . .

Suppose we have two theories, T1 and T2, with T1 ` Con(T2) and T2 `
¬Con(T2).

Then T1 ∩ T2 + Con(T2) ` T1 and T1 ∩ T2 + ¬Con(T2) ` T2.

So Con(T2) is a “fork”.

What about (T1 ∩ T2) + ¬Con(T1 ∩ T2)? Assuming that T1 ∩ T2 knows
that it’s a subset of T2, T1 ∩ T2 can infer ¬Con(T2) from ¬Con(T1 ∩ T2).
So (T1 ∩ T2) + ¬Con(T1 ∩ T2) ` T2.

This seems quite general. If T2 is a consistent theory that mistakenly proves
its own inconsistency then it is of the form T + ¬Con(T) for some T.

Is NZF tight? Consider NZF + ϕ and NZF + ψ. There are several cases to
consider. ϕ and ψ both theorems of ZF (but not NF) — or the other way round.
Or one is in ZF and one in NF. Then it matters that NF is not synonymous
with ZF (Kaye’s conjecture)

Is the intersection of tight theories tight?

3.5 An Interesting Combinatorial Principle
from Randall

Let X ∈ V3 be a set. Find Y ∈ V2 s.t. every permutation of V0 that fixes Y
also fixes X.
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V3X

V2Y

V1

V0

At the time two things struck me, and they stick in my mind (what remains
of it): (i) It uses four levels not three; (ii) it seems to say that information about
any object at level n + 1 can be encoded at level n—one level down. That of
course is deeply untrue, and that is what makes this principle interesting.

Randall says that if you have AC it’s easy. Find a wellordering of
⋃⋃

X
and think of it as an ordernesting. Then that is the Y you want.

First some notation: any permutation of V0 acts on the inhabitants of higher
levels in an obvious way, and when i write “ π(t) ” where t is something that
obviously belongs to one of these other things then it is the obvious action of π
that we have in mind.

Let π be a permutation of V0. The action of π on V2 will preserve ⊆. Now
〈Y,⊆〉—being a wellordering—is rigid, so any π that fixes Y pointwise (and
therefore setwise) must fix every member of Y. (Here we need 〈Y,⊆〉 to be
a wellorder not merely a linear order, co’s we need rigidity. It may be worth
checking that rigidity is all we need.) We want to show that such a π also fixes
every member of X. But such a π must fix every member of

⋃⋃

X and will
therefore fix X.

So it worked by fixing everything in
⋃⋃

X. So we have a very simple proof
of the modified version:

Let X ∈ V3 be a set. Find Y ∈ V1 s.t. every permutation of V0 that
fixes Y also fixes X.

. . . with Y ∈ V1 rather than V2. But here we want π to fix
⋃⋃

X pointwise
not setwise.
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3.6 Spectra (well, i’ve got to call them some-
thing)

Let M be a model of TST, and ϕ a stratifiable expression of the language of set
theory. Let the spectrum of ϕ (in M) be the set of n ∈ IN such that ϕ is true
at level n. In pursuit of Con(NF) we want models M such that every spectrum
is finite or cofinite. It might be an idea to consider what sort of subsets of IN
can be spectra. Why do i have the feeling that the Thue-Morse set cannot be
a spectrum? Is it possible to arrange that every spectrum is almost-periodic
(periodic except at finitely many points)? I’m guessing that it is, and that that
is compatible with AC.

The set of spectra of a model of TST (or TZT, for that matter) forms a
boolean algebra. Is it atomic?

Randall says that every set is a spectrum.

3.7 Music minus one

For any formula ϕ in L(TST) we can cook up a formula ϕ∗ which says that ϕ
holds in the model obtained by removing a single element from level zero. We
fix some thing  at level 0; then we replace all occurrences of ‘(∃0) . . .’ by
‘(∃0)(0 6= ∧. . .’ and replace all occurrences of ‘(∀0) . . .’ by ‘(∀0)(0 6=
→ . . .’ similarly at higher levels. Then we bind ‘’ with a quantifier. It doesn’t
make any difference which thing we delete, so the quantifier can be whichever
of ∃ and ∀ we find more convenient. Now we need to think about the scheme
ϕ ←→ ϕ∗. It certainly follows from the assertion that the bottom level is
Dedekind-infinite.

We should really show that * (or whatever we end up calling it) commutes
with Booleans.

3.8 B() and foundation

REMARK 8 The existence of B() contradicts foundation.

This is obvious if you have
⋃

, beco’s
⋃

B() = V always. I suspect that you
need
⋃

to get V, but one can contradict foundation just with the principle that
Allen Hazen calls adjunction. (Or was it insertion?)

Let’s set this up the right way round.

 ∈ {} definition of singleton;
 ∈ (B() ∪ {}) monotonicity of ⊆; exists by adjunction
(B() ∪ {}) ∈ B() definition of B();
(B() ∪ {}) ∈ (B() ∪ {}) monotonicity of ⊆.
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So the existence of B() implies the existence of self-membered sets as long
as we have adjunction.

3.9 A Salutory Tale about Stratification, Vari-
ables and Recursive Definitions

Alice told me I should write this up. This has got garbled: sort it
outWe always have  ⊆ P(

⋃

). Indeed we have  ⊆ Pn(
⋃n ) for every

(concrete) n. And these assertions are stratifiable. There is the thought that
we might obtain the union

⋃

n∈NPn(
⋃n ). Let’s call this object F() and

hope to prove that it always exists. Values of F look a bit like Zermelo cones,
which is why they are interesting. F() looks like a kind of natural environment
for .

Consider the function

ƒ (n, ) = Pn(
n
⋃

).

It looks as if we should be able to define it in NF; after all, for each concrete
n, ‘ = ƒ (n, )’ is stratified. So we can, for every concrete n, prove that
(∀)(ƒ (n, ) exists). Indeed we can even, for each concrete n, prove the sethood
of the graph {〈, y〉 : y = ƒ (n, )}. We can even prove further that if g is any
function that is a set, the function  7→ P(g(

⋃

)) is also a set! What we can’t
do is prove the same about ƒ with ‘n’ a variable.

This merits reflection.
So let us try to declare ƒ by recursion on IN. Thus

ƒ (0, ) =: ; ƒ (n + 1, ) = P(ƒ (n,
⋃

)).

That is to say, ƒ is the ⊆-least set of triples extending {〈0, , 〉 :  ∈ V} and
closed under the operation 〈n,

⋃

, y〉 7→ 〈n + 1, ,P(y)〉. Observe, however,
that this operation we are closing under is not stratified.

(∀y)( ∈ y∧ (∀)( ∈ y→ (∀z)(ϕ(, z)→ z ∈ y))) (PHI)

and if we want this inductively defined collection to be a set then PHI had
better be stratified. But of course it will be stratified only if ϕ is homogeneous.
In the recursive declaration of ƒ above ϕ relates 〈n,

⋃

, y〉 to 〈n + 1, ,P(y)〉.
So we can’t be sure that the graph of ƒ is a set. Can we be sure that

it isn’t? Suppose it were. Then we would have the graph of the function
 7→
⋃

n∈N ƒ (n, ). Let’s call this function F as above.
My guess is that the graph of F cannot be a set. However I am having

more trouble with this than i expected. Randall says that if it is consistent
that every transitive set is either V or is hereditarily finite then the graph of F
might be a set. That doesn’t quite work as it stands beco’s if F is a set then
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{ : F() 6= V} (which is definitely a set) looks as if it might be Vω. . . but the
point is well-made.

Consider now the function G() =
⋃

{y : F(y) ⊂  ∧ F(y) 6= }. The
graph of G is a set, too. Check that G is ⊆-monotone. So by Tarski-Knaster it
has a greatest fixed point.

Thinking aloud. . .
Suppose Y is a fixed point. Then Y =

⋃

{X : Y 6= F(X) ⊂ Y}. But
X ⊆ F(X) so this is Y =

⋃

{F(X) : Y 6= F(X) ⊂ Y}. I don’t seem to be reaching
a contradiction.

Of course the desired F is a fixpoint for the operation that sends a function
H to λ.P(H(

⋃

)). This is a type-raising operation, and there is a theorem
about fixed points for type-raising operations. If we can find  s.t.  and op()
are n-equivalent for some n, then in a permutation model we have a fixpoint.

Is it consistent with NF that there is a function sending each  to
⋃

n∈N ƒ (n, )? I suspect not, it might give us the collection of all transitive
sets.

Should look into this

3.10 A Conjecture about Permutation Models

Presumably the following is true: Whenever  is a stratified n-type that is
realized by an n-tuple of wellfounded sets then there is a permutation model in
which  is realized by an n-tuple of illfounded sets.

Let  be the n-type realized by all n-tuples of wellfounded sets. That is
to say,  is the set of all the σ(1 . . . n) s.t. NF ` (∀~)(WF(~) → σ(~)).
Can we suppose that no n-tuple of illfounded sets realizes it? What does the
type contain? ‘(∀y)(y ∈ )’ for one. More generally  6= {y : ϕ(y)} for most
stratified ϕ with one free variable. So what was the correct question?

I’ve had this thought more than once . . . copying this in from another file

Can we characterise sensible versus silly illfounded sets? A Quine atom is
illfounded for a silly reason, and for every n there is a wellfounded set that is
n-similar to it. That is nature’s way of trying to tell you that it ought to be
wellfounded. I think that is the condition we want. That is to say, you are a silly
illfounded set iff you are in the completion of the topology on the wellfounded
sets given by the symmetry classes. Let’s spell this out a bit. We have a
notion of n-equivalence, which can be either the standard NF version using
permutations or the (possibly subtly different) version in Church. Anyway, take
the equivalence classes to be the basic closed (we do mean closed, not open. . . ?)
sets of a topology. We then complete it, thereby adding lots of illfounded sets.
These illfounded sets are all silly, useless illfounded sets, not inhabitants of the
attic.

I think i am correct in saying that these are precisely the illfounded sets
that can be added to a model of ZF by (Rieger-Bernays) permutation methods.
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I wonder if NF has a model in which all sets that are illfounded are properly
illfounded. I think this would be a consequence of the assertion that if  is not
wellfounded then, for some concrete n,

⋃n  = V.

Having V in your transitive closure is a sufficient condition for not being
wellfounded. It’s a sufficient condition even for the status of not being, for
every n, n-equivalent to a wellfounded set.

Can we find an omitting types model in which . . . if for every n,  is n-similar
to a wellfounded set then  is actually wellfounded? Call this property ∞ψwf.
If all your members are ∞ψwf are you ∞ψwf too?

We can certainly try to omit the 1-type that says that, for each n, there is
a welfounded set that is n-similar to  while insisting that TC() 6= V.

Or, again, by OTT we might perhaps obtain models in which, or all , if 
is, for each n, n-similar to a wellfounded set, then it is itself wellfounded.

Isn’t this something to do with the question i consider elsewhere of when
every equivalence class of a homogeneous equivalence relation contains a well-
founded set? (We are in ZF, of course)

3.11 Cardinals of high rank imply Con(NF)?

Let θ be a cardinal of very high rank, like much bigger than ℵ(2ℵ0). Consider
its tree. There is an equivalence relation on cardinals which says α ∼ β iff 〈〈α〉〉
and 〈〈β〉〉 are elementarily equivalent. Beco’s τκ is so large, this equivalence
relation isn’t going to be just the identity relation. The equivalence relation
give us a quotient of τκ, in the sense that the function sending a cardinal to
its equivalence class is a graph homomorphism.

What sort of things can happen? We have a concept of layer in this tree,
and the layers are ordered like the negative integers, with {θ} as the top layer.
(Actually we can extend it upward of course. . . ) If two cardinals from different
layers are equivalent then we get a model of TST + Ambn for some n, and this
we like. If Th(〈〈α〉〉) = Th(〈〈β〉〉) then Th(〈〈2α〉〉) = Th(〈〈2β〉〉), and so on
up. Eventually the two branches will join, at some cardinal κ, at which point
we will have Th(〈〈κ〉〉) = Th(〈〈in(κ)〉〉), where n is the numerical difference
between the levels. But this theory extends Ambn.

So suppose we don’t.

Let’s look closely at the quotient. The equivalence relation is finer than
the equivalence relation “belong to the same layer” by assumption. Any two
cardinals in the tree that launch elementarily equivalent natural models live at
the same level. Is the quotient a wellfounded tree? [need to explain here what
the candidate tree strux is] If it isn’t then we have an infinite path through it,
and that gives us a rather special extension of TZT, which is a second thing we
should consider (might be useful).

So suppose neither of those aces take a trick; what will we be left with?
We have a wellfounded tree, but this time it’s a tree of theories, not a tree of
cardinals, and it is of cardinality at most 2ℵ0 . Doesn’t seem to do anything . . .
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3.12 Partitions and Coequalisers

The category of NF sets has coequalisers iff every partition injects into ι“V. My
guess is that this assertion is independent of NF but is not strong.

Might there be any hope of proving it? Who knows! After all i saw no hope
of proving that there are precisely as many pairs as singletons (and nor did
Specker!) until Nathan showed us how to do it.

For α a reasonably small cardinal α (as-a-set) must be the same size as ι“V.
“Finite” is certainly sufficient. (It follows from Nathan’s work that |FN| ≤
T |V|). So if a partition P has |P| 6≤ T |V| then it must have some infinite pieces.
One might think there is some leverage in that the larger the pieces in a partition
the fewer there can be of them, but it doesn’t do very much for us. Just how
little it does is illustrated by the following factoid: If P is a partition of V then
{V × p : p ∈ P} is a partition of V the same size as P all of whose pieces are
of size |V|. So if there is a bad partition there is a bad partition every one of
whose pieces is as big as can be!

Reflect that, in general, if P1 and P2 are partitions of V then {p1 × p2 :
p1 ∈ P1∧p2 ∈ P2} is also a partition of V, and there are natural embeddings
. . .

Let us say that an equivalence relation on V is of small index if the quotient
injects into ι“V. Then an intersection of two equivalence relations of small index
is another equivalence relation of small index.

Later

How about we say P1 ≤ P2 if there is an injection ƒ : V ,→ V s.t j(ƒ ) : P1 →
P2. Note that in these circumstances P1 might have fewer pieces than P2;
every partition ≤ {V} and ι“V ≤ every partition! The parallels with Nathan’s
quasiorder on involutions rather suggest that there might be a Cantor-Bernstein
theorem to the effect that if P1 ≤ P2∧P2 ≤ P1 then there is a permutation π
s.t. j2π(P1) = P2. (i.e., P1 and P2 are conjugate). Sadly no: it’s not hard to
find partitions P1 and P2 where P1 is a partition with a singleton piece and and
lots of doubleton pieces and P2 is a partition into pairs. I s’pose i should check
Nathan’s Cantor-Bernstein proof in stratificationmodn since this looks like
a counterexample. It could be illuminating to spell out the difference between
the two settings.

How important is it to have a C-B–style theorem? Suppose we define instead
P1 ≤ P2 iffdƒ there is an injection ƒ : V ,→ V s.t. for every piece p ∈ P1, ƒ“p is
a piece of P2. That supports a C-B–style theorem, but it might not be natural.

3.13 A conversation with Zachiri, Gothenburg
15th april 2015

We know that Zermelo can have models in which every set of infinite-sets-all-of-
different-sizes is finite, but all known such models are models of AC. This raises
the question: does Zermelo + ¬AC prove that any set that contains infinite
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sets of all sizes (every infinite set is the same size as a member of it) must be
infinite?

Zachiri observes that AxCount≤ ∨ AxCount≥ implies that every cantorian
natural is strongly cantorian. This implies that the cantorian naturals are an
initial segment of IN, as well as being an elementary substructure. The arith-
metic of the cantorian naturals must prove con(TSTI) but for general reasons
it an elementary subthingie of the arithmetic of NF: the inclusion embedding
from the cantorian naturals into the naturals is elementary for arithmetic.

So what matters is that the fixed points for T should be an initial segment
of IN.

A tho’rt prompted by a question of Oren’s. . . does the S hierarchy in NF
satisfy anything like condensation?

(∀α)(∀M ≺str(1) Sα)(∃β ≤ α)(M ' Sβ)?

3.14 An Epimorphism that doesn’t split

Adam Lewicki wants an example of an epimorphism that doesn’t split. My
first thought was that there can’t be a choice function on the ordinals, but
actually that’s not obvious. There certainly can’t be a choice function that
picks wellorderings that are pairwise disjoint.

We could deduce a contradiction from DC if we could show the following:

Let 〈X,R〉 be a wellordering. Then there is a wellordering 〈Y, S〉
with X ∩ Y = ∅ and |Y | ≥ |X|.

Now i think this is correct. Let X be a wellorderable set, and consider the
partition of V into X and V \ X. We would like |V \ X| to be |V|, so suppose it
isn’t, but is smaller. But then, by Bernstein’s lemma, X and V \ X both map
onto V. But X is wellorderable, so V, being a surjective image of a wellorderable
set, would be wellorderable too. But it isn’t.

Randall sez: consider the function that sends every wellordering W with a
last element to butlast(W).

Obvious, really.

3.15 NFU

Boise, 2001. Holmes is proving that if one adds to NFU the following: Choice,
cantorian sets are stcan, every definable class of scordinals is the intersection
of a set of ordinals and the class of scordinals then there is a coding of sets of
scordinals as scordinals making the class of scordinals into a model of ZFC +
the class ordinal is weakly compact. In fact the two theories are equiconsistent.
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Holmes reassures me that on the whole constructions like this can be run in
NF as well. The domain of the model can be taken to be scordinals (as above)
or one can do a relational type construction or even use Hstcn.

3.16 Equivalents of AxCount≤

Consider the relation T < y on IN. Let’s write it ‘E’. Now E is wellfounded
iff AxCount≤ . Thus AxCount≤ is equivalent to the assertion that we can do
induction for stratified expressions over E.

Now i proved somewhere that AxCount≤ is equivalent to �(the graph of
the comparative-rank quasiorder on Vω is a set). So perhaps one should be able
to prove something directly in the arithmetic of NF+AxCount≤ . Let R be a
relation on IN satisfying (∀n,m ∈ IN)((n = 0∨ (∀k En)(∃k′ Em)(k Rk′))→
nRm) (That is as much as to say that R is a comparative-rank relation for
E.) What can we prove about R using E-induction? That it is a wellfounded
quasiorder?

(i) Prove by E-induction that every subset of IN has an R-minimal member?

(ii) Prove by E-induction that (∀n,m ∈ IN)(nRm∨mRn)?

(i) looks OK: any set of natural numbers containing 0 has a R-minimal
member. Now suppose n to be such that, for each mEn, any set of nat-
ural numbers containing m has an R-minimal member. Suppose n ∈ X ⊆
IN. If n is R-minimal we are done. If not, then (by non–R-minimality of
n) there is mRn with m ∈ X and ¬(nRm). This last condition gives
(∃k En)(∀k′ Em)(¬(k Rk′))

err......

Write ‘ ≤T y’ for ‘T ≤ y’. AxCount≤ implies not only that that the strict
part <T is well-founded, it implies that ≤T is a well-quasi-order. It is transitive
because if Tn ≤ m∧ Tm ≤ k then T2n ≤ k and k ≤ Tk so T2n ≤ Tk and
Tn ≤ k as desired.

For the condition concerning ω-sequences let 〈 :  ∈ IN〉 be an ω-sequence
of distinct natural numbers. (If they’re not all distinct we’re home and hosed).
By AxCount≤ it has a ≤T -minimal element, n, say. (*) Let X be the set ofWe need the result at *
elements of 〈 :  ∈ IN〉 that occur later in the sequence than n does. Suppose
there is no  ∈ X s.t. n ≤T . That is to say (∀ ∈ X)(¬(Tn ≤ )) which is to
say (∀ ∈ X)( ≤ Tn). So X must have been finite, so some number appears
more than once.

[presumably there is an analogous result for (∀n ∈ IN)(n ≥ Tn). Indeed an
analogous result for any endomorphism]

Is it BQO?

Is there any way one can discuss the tree of bad sequences for this WQO? In
ML somehow? There is no reason for it to be a set, but if it is, it is a wellfounded
tree. And if it is a proper class, then ML will think it has a rank.
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3.17 Building the stratified analogue of L very
very slowly

A nugget by Nathan Bowler written up by Thomas Forster

Fast Food/Slow Food

This arose during the regular saturday meeting of the reading group on the
literature on hereditarily symmetric sets and related topics, occasioned by the
visit of Edoardo Rivello to the Cambridge NF-istes.

The background to this note is that if we construct the stratified analogue
of L very slowly, collecting (“banking”)5 very often, then we might end up con-
structing the whole of L. The point is that every time you bank you are adding
a set that is defined only as the closure of a set under stratified operations,
and such a definition is typically not stratified—unless the operations are all
homogeneous. So banking adds unstratified information. Vu said: if there is
anything in L that is never going to be constructed at all, however slow we go,
then there is probably such a object of very small rank. How about the von
Neumann IN? I said. Nathan took up the challenge of constructing the von
Neumann IN by going slow . . .

The first attempt is the stratified Δ0 function.

, y 7→







 ∪ {y} if || = |ι“y|

= ∅ o/w







(3.1)

The idea is that closing {∅} under this will give us the set of von Neumann
naturals. But this function isn’t Δ0, so it doesn’t work. But the idea is a good
one. The next adjustment is due to Vu Dang.

The idea now is to find a stratified Δ0 function such that closure under it
will churn out the bijections we need. The following function will spit out, for
each n, a bijection between the set of (von Neumann) naturals below n and the
set of singletons of (von Neumann) naturals below n

ƒ : , y 7→  ∪ {〈π1“y,{{z : {z} ∈ π2“y}}〉}

The πs are the unpairing functions and the angle brackets are Wiener-
Kuratowski ordered pairs. This time the definition is indeed Δ0—and still
stratified.

Let B be the closure of {∅} under ƒ . For each n ∈ IN, B contains the
bijection {〈,{}〉 :  < n} —plus a lot of other rubbish besides (which we
don’t need to worry about).

5The reference is to The Weakest Link where contestants have to bank their winnings every
now and then. We have to do this too, every time we close under anything, since otherwise
the closed set we have just obtained might not be a set of the model.



48 CHAPTER 3. STUFF TO FIT IN SOMEWHERE

g : , y, z 7→











 ∪ {y} if z is  bijection  ' ι“y nd neither
 nor y contin ny ordered pirs

= ∅ o/w

(3.2)

Then we close B under g. The effect is to add all the von Neumann naturals.
Call the result C. We want (C\B)∪{∅}. We can do this as long as we have B
and C. If B is to be a set in the model then presumably we bank B as soon as
we make it. This means that the thing we obtain at the next stage by closing
under g is not the set C we have just described but the closure of B∪{B}. We
can get round this by modifying g to

g : , y, z 7→



















 ∪ {y} if z is  bijection  ' y nd neither  nor y
contin ny ordered pirs nor even

nything contining ny ordered pirs

= ∅ o/w

(3.3)

When we close B ∪ {B} under g we never pick up anything with B inside
it because B contains ordered pairs. This means that the closure C of B∪ {B}
under g contains B and all members of B and all the von Neumann naturals.
The von Neumann IN is accordingly obtained as (C \ (B∪{B}))∪{∅}. How-
ever, as Nathan observes, there’s actually no need to modify g, since there’s no
possibility of B bijecting with anything in B ∪ {B} except itself—it’s too big.
The point however is well-made: at some point in our construction we have a
set B, say. We close it under ƒ1, then under ƒ2, then under ƒ3 and so on. It
does make a difference whether or not we bank after each closure. In the above
case we wanted to take away everything in some set C that was the closure of
a stage under an operation. So we needed S to be a set. It so happens that
we could get C as a set without banking it but that was down to good luck not
good management.

3.18 NFΩ

Here might be a useful chain of theories. . . . Start with NF0. Add function
symbols for its operations, and call the new language L1. Now consider the

theory whose axioms are extensionality + ΔL1
0 comprehension. This theory is

obtained from NF0 by adding, for each NF0 word W, an axiom giving us the
existence of { : W(, ~z) ∈ y} where ~z and y are parameters. This theory
properly extends NF0, because one of its axioms is the existence, for all y, of
{ : B() ∈ y}, and there are models of NF0 (e.g., the term model) where
some values of this function are missing. Other examples are { : {} ∈ y},
and { : {} ∪ z ∈ y}. There will be infinitely many of them.
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Let us call this theory ‘NF(1)’ (at least for the moment—we’ve got to call it
something!) Now let L2 be the language obtained from L1 by adding function
letters for all the operations that NF(1) says that the universe is closed under.

Now consider the theory whose axioms are extensionality + ΔL2
0 compre-

hension. This will of course be notated ‘NF(2)’. We can keep on doing this,

obtaining languages Ln and theories NFn (extensionality + ΔLn

0 comprehension)

for each n ∈ IN. Let the union of the languages be LΩ and the corresponding

theory ‘NFΩ’ be extensionality + ΔLΩ
0 comprehension.

Observe that, for each n, NF(n) has a Ln

2 axiomatisation.

Let us define Ω-formulæ and Ω-terms by a simultaneous recursion.

An Ω-term is either a variable or an expression of the form ‘{ : ψ(,~t)}’
where ψ is a stratified Ω-formula and the ~t are Ω-terms. An Ω-formula is a
boolean combination of expressions t = t′, t′′ ∈ t′′′ where t, t′, t′′ and t′′′ are
Ω-terms.

NFΩ is extensionality plus the existence of { : ϕ(, ~z)} where ϕ is a
stratified Ω-formula.

How well behaved are these theories? It turns out that NF(1) is consistent
and that the term model for NF0 is a model of NF(1). It turns out that NF(2)
properly extends NF0 and the term model for NF0 is not a model of NF(2).

First we show that the term model for NF0 is a model of NF(1). We must
show that every word of the form { : W1() ∈ W2()} or { : W1() ∈
W2()} (where W1 and W2 are NF0 words) is equal to an NF0 word. The way
to do this is to show that every such word (equation or membership-statement)
is equal to a boolean combination of equations and membership-statements
between shorter words.

Consider the set abstract { :W1() ∈W2()}. W2() will be a boolean
combination of NF0 words in the generator ‘’ with a finite amount of modi-
fication by addition or deletion of singletons. So { : W1() ∈ W2()} will
be a boolean combination of things of the form { : W3() ∈ W1()} and
singletons of shorter words, so clearly we have a recursion on our hands.

What about { :W1() =W2()}? Both W1() and W2() are boolean
combinations of B of shorter terms with a finite amount of modification by
addition or deletion of singletons. As before, we can only have W = W′ when
the things that W is a boolean combination of are pointwise identical with the
things that W′ is a boolean combination of. So, again, we have reduced it to a
finite combination of smaller problems.

Eventually we will have reduced both { : W1() = W2()} and
{ : W1() ∈ W2()} to boolean combination of terms of that flavour—
which cannot be reduced any further. These bedrock terms are things like
{ : W1() = W2()} and { : W1() ∈ W2()} where at least one of
W1() and W2() are atomic—and these are taken care of by NF0 words.

But this tells us that the term model for NF0 is in fact a term model for
NF(1). Why? Well, any NF(1) word can be thought of as a syntactic tree. We
look inside this tree for the lowest occurrences of NF(1) constructors. But—as
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we have just seen—any such subterm can be replaced with an NF0 term. Thus
we can ratchet our way up the syntax tree and eventually end up with an NF0
term.

However, we cannot extend this to NF(2). This because, altho’ every NF(1)
word (without generators) is equal to (has the same denotation in all models)
as an NF0 word, nevertheless an NF(1) word with a generator is not reliably
equal to an NF0 word in that generator. This is certainly the case—since
{ : B() ∈ y} is not an NF0 word in ‘’—and it may matter. Of course
{ : B() ∈ t} is an NF0 word whenever t is an NF0 term. But that isn’t
enough. The killer is the NF(2) term { : {y : B(y) ∈ } ∈ {z : {z} ∈ }}
(also known as { : {B−1“ ∈ }). It should be easy to show that this cannot
have the same denotation as any NF0 term.

Why might this be interesting? I can think of two reasons. One is that NF
is finitely axiomatisable. One dispiriting consequence of this is that any infinite
hierarchy of subsystems of NF either reaches NF in finitely many steps or never
reaches it at all—usually the former. This system NFΩ is either going to be
equal to NF—in which case one of the NF(n) is already equal to NF—or it is
strictly weaker, and might offer a stepping stone—in the sense that it might
be possible to prove it consistent and also prove NF consistent relative to it.
Finally it’s a nice theory because in the language with all the function symbols
it has a ∀∗∃∗ axiomatisation.

But observe that the theory NF∃ (aka NF∀) also has a ∀∗∃∗ axiomatisa-
tion. Simply add a function letter for each axiom and then lots of axioms to
tell you what the operations mean, such as ∀∀y( ∈ P(y)←→  ⊆ y)—and
all such axioms are ∀∗∃∗.

Nathan has made me see some things..
If M is a countable model of TZT0 think of it as a direct limit of its finitely

generated substructures, but consider only those finitely generated substructures
that are generated by things that cannot be TZT0 words. Hereafter a generator
is something that is not a singleton, B of anything, not the empty set not the
universe, not a boolean combination etc.

I think the idea is to show that every 2 sentence generalises downwards to
any of these guys.

I’m still trying to prove that every ∀∗∃∗ sentence consistent with TZT0 is
true in the term model. Here is something that might work. let M be a countable
model of TZT0. Then it is a direct limit of a suitable ω-chain 〈S :  ∈ IN〉 of
finite substructures, with embeddings 〈ƒ :  ∈ IN〉 from S into S+1. But each
S is of course embeddable into T the term model of TZT0. So we flesh out
each S to a copy of T and expand somehow each ƒ to an injection also called
ƒ from T into T. Can we do this? Yes, every countable binary structure (so,
in particular, T) can be embedded into T—and, indeed, into any cofinite subset
of T. The hard part is to ensure that the new direct limit is the same as the
old. To bring this about we have to do is ensure that every ƒ -thread eventually
lands inside an S. To do this we will have to exploit the fact that M is a model
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of TZT0, not just any arbitrary countable structure—because the result we are
trying to prove isn’t true for an arbitrary countable structure! Also it has to
be an argument that exploits the fact that M is a term model of TZT0 rather
than NF0, beco’s of unstratification and the possibility of Quine atoms.

Express TZT0 in the language with function letters for the operations. Then
it is universal-existential, which may or may not help. Let M be a countable
model of TZT0 (countability might not help, but it’s not going to do any harm).
Express M as a direct limit of an ω-sequence 〈M :  ∈ IN〉 of some of its finitely
generated substructures. Each M can be embedded somehow into a copy T of
T the term model of TZT0. We want to do this in such a way that the direct
limit of the 〈T :  ∈ IN〉 is actually M.

I think (check it!) that if a model M of TZT0 is thought of as an LB,ι
structure then it embeds into T thought of as a LB,ι structure.

All these things i want to connect. . .
universal-existential sentences in TZT. Also ∀∗∞∃

∗
∞ sentences. The way in

which every countable structure embeds in the term model of NF0 in contin-
uum many ways; countable categorical theories; something to do with random
structures. See quantifiertalk.tex. Are there any models for TZT that are
random? Is the term model for NF0 a random structure for the theory of ex-
tensionality? (Doesn’t the existence of a universal set bugger things up?) What
about the model companion of NF? Aren’t model companions something to do
with random structures?

Are co-term models a distraction?
model companions

random structures
universal-existential
zero-one
nice embeddings

3.19 Co-term models

Term models are inductively defined sets: they are manifestations/denotations
of the (inductively defined) set of words in a suitable language. There is of
course also the co-inductively defined set of (co-)words, which are of course
infinite . . . streams. What about these coinductively defined analogues?

Is it by omitting types that we prove the existence of such models?
If T is an algebraic theory then it has term models. The interesting cases

from our point of view are theories T that, in addition to having axioms that
say that the universe is closed under certain operations, have annoying extra
axioms such as extensionality whch might prevent the family of T-terms from
being a model of T.
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Consider NF0. A co-term model of NF0 is a model of NF0 in which every
object is a boolean combination of B objects B() and singletons {y} , where
the s and ys are themselves boolean combinations of . . . . But this is first-order
isn’t it? “(∀) there is a finite set of sets and a string of connectives such that
. . . ” Or, if we don’t want quantifiers over finite sets, we can do it by omitting
the 1-type c that says

(∀y)( 6= B(y)), (∀y)( 6= V\B(y)), (∀y)( 6= {y}), (∀y)( 6= V\{y}), . . .
(c)

Then there is the type  that one has to omit to get a term model. Anything
that realizes c will realize , but there is no reason to expect the converse.
So it might be that it is easier to omit c than it is to omit .

For some theories T the theory of co-term models of T is axiomatisable. If
T has two operations ƒ and g then the theory of a co-term model of T is just T
+ (∀)(∃y)( = ƒ (y)∨  = g(y)), so it’s first-order. If T has infinitely many
operations ƒ then a co-term-model of T is one that omits the type

∈N(∀y)( 6= ƒ(y)) (c)

So:

� for T to have a term model is for T to have a model that omits the type
;

� for T to have a co-term model is for T to have a model that omits the
type c.

If T locally omits c then it certainly locally omits .
If T has a co-term model then it must have a term model, since the term

model is a substructure of the co-term model that is closed under everything
under the sun. If the co-term model is a model of T (by satisfying extensionality
or whatever) then presumably the term model is too.

T might have a co-term model for trivial reasons. If T has a pair of operations
ƒ and g that are inverse then clearly everything is the denotation of the stream
ƒgƒgƒg . . .. (NF is such a theory, because of ι and

⋃

). Is there a nontrivial
notion of co-term model to be had for such theories?

So are there theories T with lots of operations that don’t have to have
inverses, such that T might not have a term model (perhaps beco’s of problems
like those we have with extensionality in NF) but where T perhaps has a co-term
model?

With the term model it is clear what equality is. Not so clear with the
co-term model: any bisimulation on the family of streams will do.

What about NF0? The set of NF0 words defines a unique model. This
model satisfies every ∀∗∃∗ sentence consistent with NF0. Now consider the
co-term model. It’s not clear that the set of co-words defines a unique model,
nor that that structure has a decidable theory. There may be lots of different
ways of turning the set of co-terms into a model.



3.19. CO-TERM MODELS 53

To get a feel for what is going on, consider a particular theory and a partic-
ular co-term model: TZT0 and its co-term model. What might equality be in
this structure? If we have a notation that does not distinguish ∪y from y∪
then we have a strict identity that is simply identity of strings. But then there
is also a maximal bisimulation. But are these two not exactly the same? So
what is ∈ between these things? There is available to us the same recursion as
in the term model case, and the freeness of the constructors will ensure that it
usually halts. When might it not? Well, ask whether B∞ at level n is a member
of the B∞ at level n+ 1. That enquiry never halts. That seems to be about it.
The corresponding enquiry about ι∞ gets the prompt answer ‘yes’.

The problem with the co-term model is of course extensionality. I have
found myself wondering if the inclusion embedding from the term model into
the co-term model is elementary . . . and indeed it is. Suppose the co-term model
satisfies (∃y)ϕ(~), y) where the ~ are from the term model. The parameters
~ are all k-symmetric for k sufficiently large, so think about some type at least
k below all the variables in ϕ. Any permutation of this type will fix all the
parameters, so we want one that will move the witness y to a denotation of a
TZT0 term. Now, because y is in the co-term model, it can be expressed as
some complicated horrendous word in B and ι and the booleans over a lot of
generators at level −k−1. There are only finitely many of these generators, and
there are infinitely many denotations-of-TZT0-words to swap them with. Let
π be one such permutation. It fixes all the ~s and swaps y with a denotation
of a TZT0 word.

(Do we need all permutations of finite support to be setlike in the term
model and co-term model? Perhaps we do, but—fortunately—they are!)

What does this rely on? It’ll work for any extension of TZT0 all of whose
constructors are type-raising. The other thing we are exploiting is the feature
that, for any  in the co-term-model and any k,  is k-equivalent to a denotation
of a closed term. This reminds me of the condition that cropped up in the
attempt Randall and i made to prove the existence of a symmetric model of
TZT: For every  and every k,  is k-equivalent to a symmetric set. So
presumably every model in which this is true is elementarily equivalent to a
term model. . . ?

Now what about the theory (NFP? . . . NFI. . . ?) which becomes NF when
you add the axiom of sumsets? Is it axiomatisable exclusively with extension-
ality plus axioms giving closure under type-raising operations? If so, does its
typed version have a term model/co-term model? Presumably we can do the
same trick to show that the term model is an elementary substructure of the
co-term model.

I think the same argument will prove that the inclusion embedding Vω ,→
⋃

{X : X ⊆ Pℵ0(X)} is elementary for weakly stratified formulæ.
However the same construction will not prove that the inclusion embedding
⋂

{X : Pℵ1(X) ⊆ X} ,→
⋃

{X : X ⊆ Pℵ1(X)} is elementary for (weakly?)
stratified formulæ. We could prove that the inclusion embedding Vω ,→

⋃

{X :



54 CHAPTER 3. STUFF TO FIT IN SOMEWHERE

X ⊆ Pℵ0(X)} is elementary for stratified formulæ because everything in Vω is
symmetric. Sadly not everything in

⋂

{X : Pℵ1(X) ⊆ X} (aka Hℵ1 or HC) is
symmetric. Can we do anything similar to this for HS. . . ? We’d need a model
in which, for every set  and infinitely many n,  is n-similar to something in
HS.

There does seem to be a general question here. . . if F : V → V is an operation
on sets, for which class  of formulæ is the inclusion embedding from the lfp for
F into the gfp for F elementary?

Consider the following structure M for L(TZT). Level −n is the set of finite
subsets of level −n− 1. At positive levels, we stipulate that level n+ 1 be the
set of almost-symmetric subsets of level n. What is “almost-symmetric”? A set
 at level n is almost symmetric iff there is a finite subset H of level 0 s.t. every
permutation fixing H pointwise will also fix  when it acts n levels up.

Observe that this ensures not only that every set at level n is almost-n-
symmetric in the old (FM) sense of almost n-symmetric (when you were almost-
n-symmetric iff your support n levels down was finite), it ensures that every set
at level n is almost-k-symmetric (in the old sense of almost k-symmetric) for
every k > n! Suppose  is a set at level n. It is almost-n-symmetic, with

support H, say. H is finite, and so is
⋃(k−n)H. But then  is almost-k-

symmetric, with support
⋃(k−n)H.

This is a key feature, since it was its lack in the earlier attempt by Holmes and
Forster that caused that attempt to fail. This structure M looks like a Fraenkel-
Mostowski model of TST grafted onto a ω∗ root-stock where each level is the
coinductive object corresponding to Vω. (What is that object called??)

Now consider a shifting ultraproduct of this structure. (To be precise: for
each  ∈ IN, let M() be the result of relabelling the types of M so that level 
of M is level 0 of M()). Let U be a nonprincipal ultrafilter on IN. Then the
shifting ultraproduct MU is simply an ultraproduct of the M().) What happens
in it? If  is a element of level 0 of the shifting ultraproduct MU then it is an
object whose th coordinate is an element of M that is almost-j-symmetric for
every j ≥ —and therefore almost-j-symmetric for all sufficiently large j. So (in
MU )  ought to be almost-j-symmetric for all sufficiently large j. Of course
that inference is blocked because “almost-j-symmetric for all sufficiently large
j” isn’t first-order. However we do get something.

MU is part of the way to our goal of a model in which every set is almost-k-
symmetric for all sufficiently large k. To obtain such a model we have to omit
(at each level) all the 1-types:

{ “ is not almost-k-symmetric”: k > }

for every  ∈ IN. The extended omitting types theorem tells us that we can
do this if we have a theory T that locally omits all these types. The obvious
candidate for such a theory is Th(MU ). So what we need to establish is that
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Th(MU ) locally omits each of these types.6 Let us write ‘T’ for ‘Th(MU )’.
Suppose ϕ is such that T ` (∀)(ϕ() →  is not k-symmetric for any

k > ). Then, for each k ∈ IN, T ` (∀)(ϕ()→  is not k-symmetric). This
is first-order, and so must be true in each factor, which is to say, in a large set
of the M(). But then nothing in M() can be ϕ. So nothing in MU can be ϕ
either. But this says that T locally omits the 1-type:

{ “ is not almost-k-symmetric”: k > }
as desired.

Let’s pause to draw breath . . . and recycle some letters . . .

Let M be a model of TZT in which every set is almost-k-symmetric for all
sufficiently large k. We will show that the substructure of M consisting of the
symmetric sets of M is elementary.

Suppose M satisfies (∃y)ϕ(~), y) where the parameters ~ are symmetric
sets. The parameters ~ are all k-symmetric for some k suitably large, so think
about some type at least k levels below all the variables in ϕ. Any permutation
of this type will fix all the parameters, so we want one that will move the seems to be some duplication

herewitness y to a symmetric set. Now y is almost-k-symmetric, and it has finite
support. Just find a permutation π that moves everything in the support of
y to something symmetric (hereditarily finite will do). π has now moved y to
something y′ whose support consists of hereditarily finite sets of rank < j for
some j. But now any permutation k + j levels down fixes everything in the
support of y′. But this means that y′ is k + j-symmetric. And of course y′ is
also a witness to (∃y)ϕ(~), y)—because the parameters (being ≤ k-symmetric)
are fixed.

How difficult is it to show that all single transpositions are setlike? [let us
reserve ‘τ’ as a variable to range over single transpositions (, b).]

I think it is true in the term model for TZT0 that all transpositions are
setlike. Any transposition is certainly 1-setlike, because τ“ is either , or
( ∪ {}) \ {b}, or ( ∪ {b}) \ {}, and all these things exist. There is no
easy move to be made at the next level up, but if the model we are working in
is a term or co-term model then we have other tricks up our sleeve.

To see this trick, start by thinking about what j2(τ) does to B(). If  is 
or b it sends it to B of the other one, and o/w B() is fixed. So all these values
exist. In general, an element of the term model or co-term model is a boolean
combination of singletons and principal ultrafilters. For n > 0, jn(τ) commutes
with the boolean operations, so we will be OK if we know how to define jn(τ)
on singletons and principal ultrafilters.

We conclude that in the term model or any co-term model every permutation
of finite support is setlike.

6Parenthetical remark: “Th(M) locally omits ” is not obviously the same as “M omits
”. If“Th(M) locally omits ” then whenever Th(M) ` ϕ() → σ() for all σ ∈  then
Th(M) ` (∀)¬ϕ(). M might realise , but whenever ϕ is a property that holds of an 
that realises  then ϕ also holds of some y that does not realise .
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Again, what does this depend on? Will not the same work for term and
co-term models of any fragment of TZT that has type-raising operations only?

The almost-symmetric sets of TZTstandard.tex have the property that they
are n-equivalent to symmetric sets, but only for some n, not infinitely many,
which is what the above arguments need. They behave a bit like the denotations
of co-terms. Perhaps what we want is a model of TZT containing at each level
all possible illfounded hereditarily finite sets. Then we say a set is almost-
symmetric if it has a finite family of these things as its support. Observe that a
set that is almost-symmetric in this sense is indeed n-equivalent to a symmetric
set for infinitely (cofinitely!) many n!!

I think i can show that there is no relation R ⊆ ι“V×V which is extensional
and “skew–well-founded”: (∀X ⊆ V)(∃ ∈ X)(∀y ∈ )(〈¬({}, y〉 ∈ R)).

Suppose there were such an R. We could then copy it onto a relation
S on a moiety of a rather special kind. We want

⋃

dom(S) to be disjoint
from rn(S) so that we can do a Rieger-Bernays model with the permutation
∏

∈
⋃

(dom(S))(,
⋃

R−1“) which will give us a wellfounded set the same size
as a moiety—which we know to be impossible by a theorem of Bowler which
says that any wellfounded set is smaller than ιk“V for every concrete k.

Details: First split V into two moieties A and B. Further split A into A1
and A2. We must set up the copy of R as a relation between singletons of things
in A1 and things in A2.

This matters because any CO model of NF has an (external) engendering
relation on it which is wellfounded and not too far from being extensional. Let
me explain. There will be a relation E such that, for any , |{y : E−1“{y} =
E−1“{}}| is small, being the size of the set of wands. E thus isn’t extensional,
but extensionality doesn’t fail badly.

If E were extensional it would correspond to an injection from V ,→ ι“V.
This weaker condition says it corresponds to an injection ,→ ι“V from not V
but a partition of V into countable pieces. Can we generalise Bowler’s argument
to exclude that?

3.20 Fixed points for type-raising operations

I proved a theorem about this that i need to review. I think the thought ran
along the following lines.

LEMMA 1 Suppose ƒ is a definable n-stratified inhomogenous function that
raises types by 1. Then  ∼n y→ ƒ () ∼n+1 ƒ (y).

Proof: ‘z = ƒ ()’ is stratified with z one type higher than . Suppose further
that  ∼n y beco’s (jn(σ))() = y.

Then we reason:
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z = ƒ ()

iff

jn+1(σ)(z) = ƒ (jn(σ)()).

which is to say, since z = ƒ (),

jn+1(σ)(ƒ ()) = ƒ (jn(σ)()).

and thence

jn+1(σ)(ƒ ()) = ƒ (y).

(since (jn(σ)() = y).
But this is merely to say that
ƒ () ∼n+1 ƒ (y) in virtue of σ
Now

z = ƒ (jn(σ−1(y))←→ jn+1(σ)(z) = ƒ (y).

Now this gives us a strategy for finding fixed points for ƒ in Rieger-Bernays
permutation models.

Suppose i want Vπ |= (∃)( = ƒ ())
This is just

(∃)(πn+1() = ƒ (πn()))

relettering πn() as y

(∃y)((jnπ)(y) = ƒ (y))

So, if we want a permutation model containing a fixed point for an operation
ƒ that raises types by 1, it suffices to find a permutation π that sends some y
to ƒ (y).

3.21 Parameter-free-NF

Let’s give it a name: NFpf.
Is it finitely axiomatisable? Presumably not unless it is inconsistent. Observe

that if it has any models at all then it has only infinite models. (It proves the
existence of every concrete Zermelo natural and proves that they are all distinct.)
Does it prove the axiom of infinity?

If NFpf has a term model then NF is consistent: any term model for NFpf
is a term model for NF.
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Consider theories of the form: Extensionality + axioms saying that certain
(closed, parameter-free) set abstracts exist. Some of these theories are consis-
tent, some are inconsistent. As things stand, I know of no inconsistent theory
of this kind whose inconsistency needs extensionality. Further I don’t think
excluded middle has any rôle to play in the paradoxes of na¨ive set theory. So
I float the conjecture:

If T is a constructive theory whose nonlogical axioms are all asser-
tions that certain (closed, parameter-free) set abstracts exist, then
Con(T) → Con(T + Ext + Excluded middle)

Getting rid of extensionality would be good, because the rules for extension-
ality are cut-absorbing. If we know that any inconsistency in a finite fragment
of NFpf has a genuine cut-free proof we would surely be able to do something
with the stratification.

[nov 2014: Michael Rathjen tells me that there are models of constructive
ZF in which the collection of regular sets is {∅}]

Do we ever need extensionality to obtain a contradiction? Zachiri sugested
the paradoxical collection { : (∃y)(∀z)(z ∈ y←→ z ∈ )∧ y 6∈ )} but you
don’t need extensionality to obtain a contradiction. But something like that
might work.

However we do sometimes need trivial axioms like subcision. See Forster-
Libert . . .

Does every finite fragment of NFpf have a model?

—Probably

Does every finite fragment of NFpf have a term model?

We have to be careful here. We can’t expect that every finite fragment has
a term model in which every term answers to a single set existence axiom of
that fragment. Consider the theory that is extensionality + existence of the von
Neumann ordinal 2. This has a term model, but the model contains ∅, {∅}
and {∅,{∅}}. So we mean that the fragment should have a model consisting
of the denotation of closed terms possibly additional to those mentioned in the
axioms.

Once that is cleared up the answer is: quite possibly, but it isn’t much use,
beco’s there is no obvious way to stitch them together. Here’s why. Let X
be the set of closed set abstracts. The finite fragments of NFpf are indexed
by Pℵ0(X ). Consider the collection of ⊆-closed subsets of Pℵ0(X ). This has
the finite intersection property so we can find a nonprincipal ultrafilter U on X
containing all these ⊇-closed subsets. This gives us a model of NFpf without
extensionality as follows. We rule that s ∈ t holds iff the set of finite fragments
that believe s ∈ t belongs to U . But now consider the empty set and the set
of all total orders of V. Our model might believe these terms are distinct,
because a large set of factors believe it. Each factor will have a witness to their
distinctness. But there may be infinitely many witnesses, so that no one of them
is believed by a large set to be a witness to their distinctness.
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Is it plausible that there should be a finite fragment of NFpf that is consistent
but has no finite models?

Observe that finite fragments with apparently quite sophisticated axioms can
have trivial models. Consider the fragment that says that the Frege IN exists.
There might not be any set other than V that contains 0 and is closed under S—
in which case IN is the intersection over the empty set and is V! Thus a model
consisting of a solitary Quine atom is a model of extensionality + the existence
of the Frege IN. In fact such a trivial model is a model of that fragment of NFpf
that asserts the existence of any set defined as the ⊆-minimal set containing
this and closed under that—as long as the set abstract is stratified of course.

Is the set of axioms of NFpf closed under conjunction? Is the fragment that
asserts the existence of terms t1 . . . tn is implied by the single axiom asserting
the existence of {t1 . . . tn}? (Tho’ the converse implication clearly does not
hold). Probably not: as Randall says, the axiom asserting the existence of the
unordered pair of the empty set and the Russell Class succeeds in asserting the
existence only of the empty set.

In ‘The Quantifier Complexity of NF’, Bulletin of the Belgian Mathematical
Society Simon Stevin, ISSN 1370-1444, 3 (1996), pp 301-312. Kaye shows that

NF = NFpf + NFO + existence of sumset (*)

(This is theorem 2.3.)

Consider the set of those theorems of ZF(C) that are of the form
(∃)(∀y)(y ∈ ←→ ϕ(y)) where FV(ϕ) = {‘y’}.

This is a recursively axiomatisable theory. Let’s call it T. My guess is that
Con (NF) → Con(NF ∪ T). Does the axiom of choice make any difference?

3.22 More stuff to fit in

Statement of the Bleeding obvious

. . . except i missed it. The collection of BFEXTs is the welllfounded part of the
collection of APGs under the obvious “child of star” embedding relation.

Recursive APGs

How about getting a model of iNF using recursive APGs

A recursive APG is an APG whose domain is the natural numbers and whose
graph is a recursive subset of IN × IN. A possible world is a general recursive
function. Given two RAPGs A and B a world W believes A = B iff (i) For every
child  of A there is a child b of B s.t. some value of W is a function that maps
 to b. and conversely (ii) For every child b of B there is a child  of A s.t.
some value of W is a function that maps b to . (The possibility of the value
of W that does the work not being 1-1 takes care of the contraction condition.)
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3.22.1 Almost-symmetric sets again

If we can find, by hook or by crook, a model of TZT wherein for every  there
are infinitely many concrete k such that there is a (concrete) n such that  is
almost-k-n-symmetric then we can have a model of TZT in which every set is
symmetric. On that much we are agreed. So can we find such a model?

Let M be a model of TZT. Let M0 be the FM model whose bottom level
(type 0) is the level 0 of M, built as a substructure of M, so that its atoms are
just the elements of M of level 0.

Next let M1 be that substructure of M0 obtained by retaining only those
atoms of M0 that are finite-or-cofinite subsets of M0 and then sticking on the
bottom the level −1 of M to obtain a model of TST whose bottom type is
labelled ‘−1’

Next let M2 be that substructure of M1 obtained by retaining only those
atoms of M1 that are finite-or-cofinite subsets of M1 and then sticking on the
bottom the level −2 of M to obtain a model of TST whose bottom type is
labelled ‘−2’

and so on. What happens? I think that if you are an element of level k
of M then you are almost k-symmetric, almost k + 1-symmentric . . . almost
k + -symmetric. Now take an ultraproduct of these M. This ought to give us
a model in which if you are almost k-symmetric you are almost m-symmetric
for all m> k.

Perhaps we need to be more subtle

If M is a model of TZT and S a notion-of-symmetry, let us say a set  is almost-
n-k-symmetric (in the new sense) iff there is a k-sized subset y of the universe n
levels down (aka V−n), all of whose members are symmmetric-in-the-sense-of-S,
s.t.  is fixed by all permutation of V−n \ y. I have just described a way of
getting a new notion-of-symmetry from an old one. We want a fixed point for
this operation that gives an extensional family of sets. Clearly the operation is
monotone wrt ⊆. Ordinary old symmetry is a fixed point, but we don’t know
that the symmetric sets are extensional. There will be a greatest fixed point . . .

3.22.2 Notes on the seminar of the gang of four

Zachiri asks: do we know of any structures that obey stratified separation and
choice but fail at least some of unstratified separation?

In asking this he is lowering his sights slightly from the project to find a
model of KF + ∃NO! Answer: yes, but infinity fails as well. Work in NFU
+ ¬AxCount≤ so there is n ∈ IN with n < Tn. Then there is k ∈ IN with
k > 2Tk . If we now do the Ackermann permutation we get a set that looks
like Vω, so it’s a model of the stratified axioms of ZF but Cantor’s theorem
fails—since the diagonal set that would prove Cantor’s theorem does not exist.

While we are on that subject it seems to be an open question in NF whether
the power set of NO is bigger than NO or small or incomparable. It clearly
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can’t be same size. If it can be smaller than we do the following: work in NFU,
in a model where P(NO) is smaller than NO, and consider the proper class of
hereditarily wellordered sets. It’ll be a model for stratified replacement, power
set and choice but presumably not unstratified separation. Well, you did ask!

Inductively defined sets

Thierry has a nice observation: let P be a property which is possessed by every
transitive set. Then the least fixed point for

 7→ set of all P-flavoured subsets of  (A)

is paradoxical.
The point about paradoxical least fixpoints for operations like this (vary P ad

libitum) is that they seem to be paradoxical iff P is is some sense *unbounded*.
I have been writing up a section on inductive definitions in NF for the hand-

bok article. This suggests to me an axiom for NF:
Let P be a set that misses at least one transitive set. Then the least fixed

point for (A) above is a set.
Might this be consistent?

(∀P)(∀)(
⋃

 ⊆  6∈ P→ (∃X)(∀y)(y ∈ ←→ (∀Y)((∀z)(z ⊆ Y∧z ∈ P→ z ∈ Y)→ y ∈ Y)))

(∀P)(∀)(
⋃

 ⊆  6∈ P→ (∃X)(∀y)(y ∈ ←→ (∀Y)((PP(Y) ⊆ Y)→ y ∈ Y)))

There are transitive sets (V) that are not wellordered, so this will tell us that
the set of hereditarily wellordered sets (lfp) is a set. Similarly we get the set of
all wellfounded hereditarily cantorian sets, the set of all wellfounded hereditarily
strongly cantorian sets

This can now be deleted i think

Thierry,
thank you for your clarification. I think i now understand what the closure

of the class of wellfounded sets is, and why. Tell me if i have got this right.
If we think of wellfounded sets inductively (which is the only sensible way to

think of them) then a set is wellfounded iff it belongs to every set that contains
all its subsets. We call this WF* (becos WF is to be the class of all wellfounded
sets) So WF* is the intersection of all sets that extend their own power sets.
This ought to be a paradoxical object. However, if you look closely, the proof
of the contradiction relies on our ability to perform what Allen Hazen calls
*subcision*
(∀y)(∃z)(z =  \ {y})
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And subcision fails in GPC. Subcision would give us WF from WF*, and
WF is paradoxical!

How do we know that WF* is unique? Might there not be lots of sets WF*
such that WF∗ \{WF∗} =WF? No there can’t be. Suppose there were, then
we could take the intersection of all of them—which would be a set beco’s an
arbitrary intersection of closed sets is closed—and that intersection would be
WF.

This reminds me of something—and it may be pure coincidence. If we look
at this a bit more closely it shows not only that there can be at most one WF∗

such that WF∗ \{WF∗} =WF; it shows that i cannot have two sets WF1 and
WF2 such that

WF1 \ {WF2} =WF2 \ {WF1} =WF
and so on for larger finite loops. What this reminds me of is a conjecture in

NF—the universal-existential conjecture:

There is a model of NF satisfying simultaneously every ∀∃ sentence individ-
ually consistent with NF. One thing that appears to be consistent is

(∀y1y2)(y1 \ {y1} = y2 \ {y2}→ y1 = y2)
and a similar version for loops

(∀y1y2)(y1 \ {y2} = y2 \ {y1}→ y1 = y2)
The nonexistence of Quine atoms is a special case. One reason why coun-

terexamples to these assertions are pathological is that they can violate ∈-
determinacy.

So three things seem to be connected (i) the failure of subcision needed to
avoid Mirimanoff’s paradox in GPC, (ii) the universal-existential conjecture for
NF and (iii) ∈-determinacy.......

Inductive definitions

In ZF we cannot in general define inductively defined sets “top-down” as the
intersection of a suitably closed family of sets. This is because we cannot—on
the whole—rely on there being a set that contains the founders and is closed
under the operations in question. (A good illustration of this is the difficulty we
have in proving that the collection of hereditarily countable sets is a set.) We can
do it only “bottom-up” by recursion over the ordinals. It doesn’t much matter
how we implement ordinals, and in principle any sufficiently long wellordering
will do. There’s the rub: how do we know that there always is a sufficiently
long wellordering? That’s where Hartogs’ theorem comes in. It tells us that if
a recursive definition crashes, it won’t be for shortage of ordinals. In NF the
existence of big sets restores the possibility of direct top-down definitions of
inductively defined sets: any inductively defined set that can be defined at all
can be given direct “top-down” definition. (This is for the gratifyingly simple
reason that—whatever your founders and operations—the universal set contains
all founders and is closed under all operations, so when we take the intersection
of the set of all sets containing the founders and closed under the operations we
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are not taking the intersection of the empty set.) Thus we obtain the effect of
Hartogs’ theorem without actually having the theorem itself.

However, altho’ such inductive constructions as can be executed at all can
be executed in the direct top-down fashion, it is still possible to import ordinals
into a description of this activity. Suppose our inductive construction starts
from a set X with a stratified definition (so it is { : ϕ} for some stratified
formula ϕ with one free variable) and we want to obtain the least superset of
X closed under some infinitary homogeneous operation. Examples would be:
union of countable subsets; or F(X) := {y : (∃ƒ : y →→ X)(ƒ is countable-to-
one)}. The collection of F-stages is the least set containing X, and closed under
F and unions of chains. It is of course a set, and it is—for the usual reasons—
wellordered by ⊆. Therefore one can associate an ordinal with every F-stage.
(As usual there are several ways of doing it: (i) the set of stages and the set
of ordinals are alike wordered so there is a canonical map between them; (ii)
each stage bounds an initial segment which has an ordinal for its length. (ii) is
guaranteed to work even tho’ (i) isn’t.)

Now we are in a position to find an echo of the ZF way of doing things. The
closure ordinal is in a weak sense well-behaved. It must at least be cantorian.
Let ƒ be the map that sends the ordinal α to the αth stage in the construction.
ƒ has a stratified definition without parameters, so the expression

ƒ (α) = ƒ (β)←→ ƒ (Tα) = ƒ (Tβ)

is stratified (fully stratified: it has no parameters) and can be proved by induc-
tion on ordinals. This means that if α is the closure ordinal (that is to say, the
least β such that ƒ (β) = ƒ (β + 1)) then so is Tα.

It would close the circle very nicely if we knew that every closure ordinal
of a stratified recursion were strongly cantorian, but i see no proof. Perhaps
it’s a very strong assumption. It would follow from Henson’s axiom CS (“Every
wellordered cantorian set is strongly cantorian” and i think NF + CS is as strong
as ZF). Is that why Henson thought of it. . . ?

3.22.3 Hereditarily Strongly Cantorian Sets

Suppose Vω exists. Then it contains sets of all finite sizes.
If counting fails, then Vω contains all its stcan subsets and is therefore a

superset of Hstcan, but is not equal to it, and Hstcan would not be a set.
If Hstcan is a set, so is the set of natural numbers that are cardinals of its

members, so we can prove the axiom of counting.
If Hstcan is a set then it isn’t stcan, so it isn’t countable: it will be quite

large.
Randall sez Vω might be Hstcan. . . but in those circumstancs i think neither

of them would be sets

3.22.4 A brief thought about extracted models

Randall:
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Just had a thought. It concerns permutation models in a general context (not
just NF). I’ve used a few times the following trick. Let ƒ be a (preferably strati-
fied but not necessarily homogeneous) function satisfying the pseudo-injectivity
condition:

(∀∀y)(ƒ () = ƒ“y→  = y) (3.4)

The singleton function has this property. Pseudo-injectivity of ƒ is useful
because then the permutation

π :=
∏

∈A
(ƒ (), ƒ“)

is well-defined. What is A here? Could be anything—might be V.
Anyway, take ƒ to be ι. What happens in Vπ? Not hard to see that π

must swap ∅ and {∅} so it adds a Quine atom. I got quite excited for a while
beco’s if X is a transitive set then ι“X is a transitive set in Vπ but that doesn’t
really matter. Of much more importance—it seems to me—is the following
observation.

Remember that there is always the possibility of a P-embedding from V into
Vσ whenever σ is a permutation. There is an obvious recursion:

() := σ−1(“) (3.5)

and if V is actually wellfounded this is a legitimate definition. For our
transposition π above, it turns out to be easy to prove that the injection 
is precisely the singleton function. Presumably in general it is going to be
precisely ƒ . This struck me. Does this remind you of anything? It reminded me
of extracted models of the kind that produce atoms. Define a new membership
relation on V by saying  ∈ne y iff y = {z} and  ∈ z. Anything not a
singleton is an urelement.

We seem to be doing something very similar here, the difference being that
the things that aren’t copies of old sets become illfounded sets rather than
urelemente. We don’t throw all their structure away, just some.

It occurs to me to wonder if one can reconstrue in the same way the extracted
models that one uses to get models of NFU Jensen-Boffa style. We probably
have to be quite careful how we do it, and we should start with a simple case.
Another thing we have to do is reconstrue type-theory as a one-sorted theory
of sets with an I-am-the-same-type-as-you relation definable in terms of ∈.

In this setting applying the permutation π above should correspond somehow
to extracting every second type.

Sse {} = ι“y. Then, for any z,

z ∈  iff
z ∈2 {} iff
z ∈2 ι“y iff
z ∈ {} for some  ∈ y iff
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z = for some  ∈ y iff
z ∈ y

so  = y by extensionality.

This should be turned into an exercise. What about {} = {ι“z : z ∈
y}. . . ? Actually i think it should be ι“ = {ι“z : z ∈ y}. . . .

Suppose ι“ = {ι“z : z ∈ y} and z ∈ . Then {z} ∈ ι“ = {ι“z : z ∈ y}.
So {z} = ι“ for some  ∈ y, giving z =  by the foregoing, and z ∈ y.
Better check that it’s an iff.

But what in general do we want to say about two functions ƒ and g s.t.
(∀y)(ƒ () = g(y) →  = y)? A symmetrical binary relation. . . let’s write it
with an ‘R’. R(ƒ , ƒ ) → ƒ is injective. Do other conditions on ƒ get captured
neatly by R?

Suppose ƒ : A→ A and g : A→ A. Then we have a two-generator boolean
algebra, with ƒ“A and g“A. Look at ƒ“A∩g“A. The preimages under ƒ and g
are the same, and they constitute a region A′ ⊆ A st ƒ �A′ = g�A′ are injective.

3.23 Yablo’s paradox in NF

I have just discovered a wonderful connection between Yablo’s paradox and
wellfounded sets and permutation models in NF.

Suppose the largest fixed point for λ.({∅} ∪ ι“) exists. This is the
collection of all those  s.t. every nonempty thing in TC() is a singleton.
Let’s call it H. Now let

π :=
∏

∈H
(,V \ )

(Actually you don’t have to swap  with V \ : anything large and distant
will do.) What happens in Vπ? Suppose 〈n : n ∈ IN〉 were a descending ∈-
sequence of singletons-in-the-sense-of-Vπ, so that π(n) = {n+1} for all n.
We derive a contradiction from this assumption.

The contradiction we obtain is a version of Yablo’s paradox: we ask whether
or not each  is fixed by π. π swaps with its complement everything that is
a singletonn for every n. Also, if  ∈ H then π() is a singleton, and in this
sequence π(n) = {n+1}.

Suppose k is moved. Then one of k and π(k) is a singleton∞ and since
π(k) is known to be a singleton (it is actually {π(k+1)}), it must be π(k)
that is a singleton∞. But then k+1 is a singleton∞ and is therefore moved,
and moved to π(k+2) which is a singleton and is the complement of k+2.
This is impossible: we cannot have two singletons which are complements! So
k wasn’t moved; k was arbitrary, so they are all fixed. But if they are all fixed,
1 is a singleton∞ and must be moved.

I think this means that in the new model the only things whose transitive
closure consists entirely of singletons are the Zermelo naturals. Of course it
doesn’t prove that the Zermelo naturals is a set, but it’s good for a laugh. Feel
free to make any use of it you like.
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Now let’s think about how to generalise this. Let S be a 1-stratified prop-
erty (like being finite, or a singleton or something like that) with the feature
that we can’t have both S() and S(V \ ). Suppose further that the set
H := { : (∀y ∈ TC({}))S(y)} exists.

Let π be the permutation

∏

∈H
(,V \ ).

Notice that every set that is moved is either a thing in H or the complement
of a thing in H, and we can always tell which.

I claim that, in Vπ, every set of things that are S must have an ∈-minimal
element.

Suppose not, and let X be a counterexample. Since S is 1-stratifiable, Vπ |=
S() iff S(π()). Let  be an arbitrary element of X. We ask: “is  moved?”.
Suppose it were. We know that S(π()) so π() cannot be the complement of
a thing in H so it must be in H. So any ′ believed by Vπ to be in  is also
in H, and is therefore moved by π. Moved to what? Moved to π(′) which we
know is S, beco’s S is 1-strat. But then ′ and π(′) are complements and
both are S. This isn’t possible.

So  is fixed. Now  was arbitrary, so everything in X is fixed. What we
want to do now is to argue that any given  ∈ X must now be moved beco’s
everything in its transitive closure is fixed. But this doesn’t work: all we know
is that everything in {y ∈ TC({}) : S(y)} is fixed, and that’s not enuff to
place  in H.

So on reflection perhaps the Yablo angle is a red herring. Can’t we kill off
all singletons∞ by swapping every singleton2 with its complement?

3.24 Proving Con(NF) by eliminating cuts from
SF

Randall sez: think about proving inequations in SF. He sez: prove  6= y
by exhibiting a set that contains one but not the other. I say: things might
be unequal while having the same stratified properties. He sez, this is not a
problem beco’s consider. Suppose we have concluded that  6= y beco’s  ∈ 
and y 6∈ y. Then we do a case split: either

1.  ∈ y in which case we conclude  6= y beco’s  6∈  and  ∈ y or

2.  6∈ y in which case we conclude  6= y beco’s  6∈ y and y ∈ y

. . . and we have made one of the two stratified. But this only works for
weakly stratified formulae
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[HOLE Say something about how Quine’s trick for defining the naturals
without quantifying over infinite sets doesn’t do anything for us here.  is well-
founded iff every y it belongs to that meets all its nonempty members contains
the empty set. This isn’t constructive—for the same reason as before (but [prove
it!] july 1998]

3.25 A puzzle of Randall’s

Find a permutation model containing, for each strongly cantorian cardinal α, a
set of Quine atoms of size α. Beco’s of the analogy with the sentence IO (that
says that every set is the same size as a set of singletons) and the fact that it’s
due to Holmes i shall call it ‘HO’, thus:

Every strongly cantorian set is the size of a set of Quine atoms HO

One thinks immediately of Henson’s permutation

∏

α∈On
(Tα,{α}).

This gives a permutation model in which every old strongly cantorian ordinal
has become a Quine atom, and in which every Quine atom arises from a strongly
cantorian ordinal. The significance of the Henson permutation in this context
is that it gives us a model in which every wellordered strongly cantorian set is
the same size as a set of Quine atoms, whereas what we are after is the same
assertion with the ‘wellordered’ dropped. Perhaps a similar idea will give us the
stronger result we want . . . ?

Think: ι“V is NO, {} 7→ {ι“} is T. So let π be

∏

{}∈ι“V
({{}},{ι“})

The trouble is: this analogue of the T function doesn’t have enuff fixed
points. As Randall says, this permutation turns any set of Quine atoms into
a Quine atom. What one really wants is a kind of T operation on a set larger
than any strongly cantorian set. One can do this to BF or even the set of all
set pictures. However there are deep reasons why one cannot do it to V.

One would need a set X larger than any strongly cantorian set, together with
a stratified but inhomogeneous injective function ƒ : X→ X (That is to say, the
graph of ƒ · ι is a set) such that ƒ has a lot of fixed points.

The Henson permutation for Dn is the product of all transpositions
({X}, T(X)) for X ∈ Dn. The question now is: is there an n such that ev-
ery strongly cantorian set is size of a set of T-fixed members of Dn?

There is a surjection from Dn+1 to Dn and this surjection commutes with
T, so it sends T-fixed things to T-fixed things. Thus the chances of a successful
search improve as n gets bigger.
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Holmes and i both feel that this is the only hope of finding a permutation
that makes his proposition true.

Further observations.

� If AxCount fails then the Henson permutation makes Holmes’ formula
true;

� There doesn’t seem to be any obvious objection to the assertion that
there is a function defined on V which, to every stcan set , assigns a set
of singletons the same size as .

Of course, the natural thing to consider is not HO but �HO.
3/vii/06

3.25.1 Part IV Set Theory

Spend a lot of time explaining stratification and explaining how to compute
sizes of noncantorian sets.

Then talk about cantorian and strongly cantorian sets and subversion of
stratification. Tell them to read relaxing.tex

It is important not to think of this as a pathology of NF, and accordingly
as a good reason for eschewing NF. The correct point to take away from this
is that we have here an important fact about the nature of syntax and the
type distinctions that arise from it. There is a moral here for typing systems
everywhere.

The hard part is to fully understand stratification. There is an easy rule of
thumb with formulæ that are in primitive notation, for one can just ask oneself
whether the formula could become a wff of type theory by adding type indices.
It’s harder when one has formulæ no longer in primitive notation, and the reader
encounters these difficulties very early on, since the ordered pair is not a set-
theoretic notion. How does one determine whether or not a formula is stratified
when it contains subformulæ like ƒ () = y? The technical/notational difficulty
here lands on top of—as so often—a conceptual difficulty. The answer is that
of course one has to fix an implementation of ordered pair and stick to it. Does
that mean that—for formulæ involving ordered pairs—whether or not the given
formula is stratified depends on how one implements ordered pairs? The answer
is ‘yes’ but the situation is not as grave as this suggests, and this is for a logically
deep reason that I want you to understand. Let us consider again the formula
 = ƒ (y). This is of course a molecular formula, and how we stratify it will
depend on what formula it turns out to be in primitive notation once we have
settled on an imp[lementation of ordered pairs. If we use Wiener-Kuratowski
ordered pairs then the formula we abbreviate to  = ƒ (y) is stratified with 
and y having the same type, and that type is three types lower than the type
of ƒ . If we use Quine ordered pairs then the formula we abbreviate to  = ƒ (y)
is stratified with  and y having the same type, and that type is one type lower
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than the type of ƒ . There are yet other implementations of ordered pair under
which the formula we abbreviate to  = ƒ (y) is stratified with  and y having
the same type, and that type is two or possibly more types lower than the type
of ƒ .

The point is that our choice among the possible implementations will affect
the difference in level between  (and y) and ƒ but will not change the formula
from a stratified one to an unstratified one. This is subject to two important
provisos:

1. we must restrict ourselves to ordered pair implementations that ensure
that in  = 〈y, z〉 y and z are given the same type.

2. We do not admit self-application: (ƒ (ƒ )).

Thes two provisos are of course related. The second will seem reasonable
to anyone who thinks that mathematics is strongly typed. (The typing system
in NF interacts quite well with the endogenous strong typing system of mathe-
matics.) If we consider expressions like  = 〈, y〉 we see that their truth-value
depends on how we implement ordered pairs. There is a noncontroversial sense
(entirely transparent in the theoretical CS tradition) in which expressions of
this kind are not part of mathematics—in contrast to expressions like  = ƒ (y)
which are. The only formulæ whose stratification status are implementation
sensitive in this way are formulæ that are not in this sense part of mathematics.

The second one is a bit harder to understand: why should we not have an im-
plementation that compels y and z to be given different types in a stratification
of  = 〈y, z〉—or even make the whole formula unstratified?

H I A T U S
If we make  = 〈y, z〉 into something unstratified then we cannot be sure

that X × Y exists, nor that compositions of relations (that are sets) are sets;
converses of relations might fail to exist; and we will not really be able to do
any mathematics. After all, X × Y is {z : (∃ ∈ X)(∃y ∈ Y)(z = 〈, y〉)}
and if z = 〈, y〉 is not stratified then the set abstraction expression might not
denote a set.

However, even if we muck things up only to the extent of allowing  = 〈y, z〉
to be stratified with y and z of different types then we will find not only that
some compositions of relations (that are sets) are not sets but also that for some
big sets X (such as X := V) that the identity function 1X is not a set. Let’s look
into this last point a bit more closely. Suppse “ = 〈y, z〉” is stratified but with
y and z being given different types. Then X× Y is {z : (∃ ∈ X)(∃y ∈ Y)(z =
〈, y〉)} which this time is stratified, so X×Y is a set. However if R ⊆ X×Y and
S ⊆ Y × Z then R ◦ S is {z : (∃ ∈ X)(∃y ∈ Y)(∃z ∈ Z)(〈, y〉 ∈ R∧ 〈y, z〉 ∈
S∧ z = 〈, z〉)}

This is not stratified. If the difference between the types of the two compo-
nents of an ordered pair is n, then  and y have types differing by n, and y
and z too have types differing by n, and  and z have types differing by n!

The problem with 1X arises because (∃ ∈ X)(y = 〈, 〉) is not stratified,
so its extension is not certain to be a set. By the same token no permutation of



70 CHAPTER 3. STUFF TO FIT IN SOMEWHERE

a set can be relied upon to be a set. The (graph of the) relation of equipollence
might fail to be reflexive, or symmetrical, or transitive.

The conclusion is that if we want our implementation of mathematical con-
cepts into set theory to be tractable from the NF point of view, then we want a
pairing/unpairing function that interprets  = 〈y, z〉 as a stratified formula with
y and z having the same type. One such ordered pair is the Wiener-Kuratowski
ordered pair that we all know and love. In fact in NF we usually use the Quine
ordered pair which i will now explain.

Does the difference between Quine pairs and W-K pairs matter? Much less
than you might think. In some deep sense it doesn’t matter at all. Let me
explain.

[discussion of Cantor’s theorem here: the problem is caused by the fact that
the argument and the values of the surjection are of different types. That cannot
be cured by changing from W-K to Quine or Quine to W-K.]

If your mathematics is strongly typed, and all your mathematical operations
are implemented by stratified operations on sets, then everything is OK.

START REWRITING HERE
There are various standard definitions of ordered pair, and they are all le-

gitimate in NF, and all satisfactory in the sense that they are “level” or ho-
mogeneous. All of them make the formula “〈, y〉 = z” stratified and give the
variables  and y the same type; z takes a higher type in most cases (never
lower). How much higher depends on the version of ordered pair being used,
but there are very few formulæ that come out stratified on one version of or-
dered pair but unstratified on another, and they are all pathological in ways
reminscent of the paradoxes. The best way to illustrate this is by considering
ordinals (= isomorphism classes of wellorderings) in NF. For any ordinal α the
order type of the set (and it is a set) of the ordinals below α is wellordered. In
ZF one can prove that the wellordering of the ordinals below α is of length α.
In NF one cannot prove this equation for arbitrary α since the formula in the
set abstract whose extension is the graph of the isomorphism is not stratified for
any implementation of ordered pair. Now any wellordering R of a set A to length
α gives rise to a wellordering of {{{}} :  ∈ A}, and if instead one tries to
prove (in NF) that the ordinals below α are isomorphic to the wellordering of
length α decorated with curly brackets, one finds that the very assertion that
there is an isomorphism between these two wellorderings comes out stratified or
unstratified depending on one’s choice of implementation of ordered pair! This
is because, in some sense, the applications of the pairing function are two deep
in wellordering of the ordinals below α, but only one deep in the wellordering
of the set of double singletons. If we use Quine ordered pairs, the assertion is
stratified—and provable. If one uses Wiener-Kuratowski ordered pairs then the
assertion is unstratified and refutable. However if one uses Wiener-Kuratowki
ordered pairs there is instead the assertion that the ordinals below α are iso-
morphic to the obvious wellordering of {{{{{}}}} :  ∈ A}, which comes
out stratified (and provable). In general for each implementation of ordered
pair there is a depth of nesting of curly brackets which will make a version of
this equality come out stratified and true. This does not work with deviant im-
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plementations of ordered pair under which “〈, y〉 = z” is unstratified or even
with those which are stratified but give the variables  and y different types.
Use of such implementations of ordered pairs result in certain sets not being the
same size as themelves!

Perhaps a concrete example would help. Let us try to prove Cantor’s the-
orem. The key step in showing there is no surjection ƒ : X →→ P(X) by re-
ductio ad absurdum is the construction of the diagonal set { ∈ X :  6∈
ƒ ()}. The proof relies on this object being a set, which it will be a set if
“ ∈ X ∧  6∈ ƒ () ∧ ƒ : X → P(X)” is stratified. This in turn depends on
“(∃y)(y ∈ P(X)∧ 〈y, 〉 ∈ ƒ ∧ ƒ : X → P(X))” being stratified. And it isn’t
stratified, because “〈y, 〉 ∈ ƒ” compels ‘’ and ‘y’ to be given the same type,
while “ƒ : X → P(X)” will compel ‘y’ to be given a type one higher than ‘’.
This is because we have subformulæ ‘ ∈ X’ and ‘y ⊆ ’. Notice that we can
draw this melancholy conclusion without knowing whether the type of ‘ƒ ’ is one
higher than that type of its argument, or two, or three . . . . We cannot prove
Cantor’s theorem.

However if we try instead to prove that {{} :  ∈ X} is not the same
size as P(X) we find that the diagonal set is defined by a stratified condition
and exists, so the proof succeeds. This tells us that we cannot prove that
|X| = |{{} :  ∈ X}| for arbitrary X: graphs of restrictions of the singleton
function tend not to exist. (If they did, we would be able to prove Cantor’s
theorem in full generality.) This gives rise to an endomorphism T on cardinals,
where T |X| := |{{} :  ∈ X}|. T misbehaves in connection with the sets
that in NF studies we call big (as opposed to large, as in large cardinals (in
ZF)). These are the collections like the universal set, and the set of all cardinals
and the set of all ordinals: collections denoted by expressions which in ZF-like
theories will pick out proper classes. If |X| = |{{} :  ∈ X}| we say that
X is cantorian. If the singleton function restricted to X exists, we say that
X is strongly cantorian. Sets whose sizes are concrete natural numbers are
strongly cantorian. IN (the set of Frege natural numbers) is cantorian, but the
assertion that it is strongly cantorian implies the consistency of NF.

Weakly stratified

To explain weakly stratified we have to think of stratifications as defined on
occurrences of variables not on variables. Something is weakly stratified if there
is a stratification that gives all occurrences of each bound variable the same
type. Two occurrences of a free variable may be given two different types. If a
variable has only one occurrence then it can never be responsible for the failure of
a stratification: each occurrence can be connected to only one other occurrence
of one other variable. So what happens if we have three-placed predicates???

If we write an ∈-restricted-to-small-sets-is-wellfounded condition into the
definition of small we find that ι′′V is not small: ι“V ∈ {ι“V} ∈ ι“V. Perhaps
the correct notion of smallness is being the size of a set of singletonn for every
n
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partiii2006: get straight the definition of extracted model: use Barnaby’s
trick:

We start by thinking of the old ∈-relation as a single one-sorted global
relation in terms of which one can define the types.

Have an axiom to say that the relation sametype(y1, y2) defined by
(∃)(y1 ∈ ∧y2 ∈ ) is an equivalence relation. (This is universal-existential,
for what it’s worth.) Then there is a relation S(, y) which says that  is one
type lower than y: (∃z1, z2)( ∈ z1 ∈ z2 ∧ y ∈ z2)

Extensionality now says
(∀12)(sametype(1, 2)→ (1 = 2 ←→ (∀y)(y ∈ 1 ←→ y ∈ 2)))
We need the sametype clause in lest we make empty sets at different types

identical. We could use the other version of extensionality

(∀12)(1 = 2 ←→ (∀y)(1 ∈ y←→ 2 ∈ y))

but this might upset some purists since it relies on the existence of singletons.
We can now set up an axiom scheme of comprehension. Let ϕ be a stratified

formula with k variables to wit: n bound variables z1 . . . zn, one free variable
n and remaining free variables yn+1 . . . yk . Suppose further that the variable
with subscript j has type σ(j) in ϕ. Then the following is an axiom
(∀1 . . . n)(A(1 . . . n)→
(Where A is the conjunction of all the true assertions about the type relations

between the various , assertible using S)
(∃y)(∀z)(S(z, y)→ (z ∈ y←→ . . .
and now comes the hard bit: we have to restrict the variables to their types,

in order to make sense when we assert existence axioms like complement etc.
Think of the new ∈-relation as one-sorted: global.  ∈etrct y iff ιk() ∈ y

where y is k + 1 types higher than 

Cooking up a nontrivial congruence relation for ∈

Ain’t none.
If  ∼ ′ then  ∈ {}→ ′ ∈ {} so  = ′

But that’s the wrong definition. What we can sensibly ask for is a relation ∼
such that if  ∼ ′ and  ∈ y then there is y′ ∼ y with ′ ∈ y′. And the answer
to this—on quite weak assumptions—is ‘yes’. Cycles of ∈-automorphisms are
equivalence classes for equivalence relations like this.

Modal equivalence classes

Let us say that ϕ and ψ are 2-equivalent if 2ϕ ←→ 2ψ and �-equivalent if
�ψ ←→ �ϕ. It’s not clear to me that these two equivalence relations are the
same, tho’ they look as if they should be.

Can we prove any theorems like: Let  be a class of formulæ (a quantifer
class or something like that) then Every �-equivalence class contains a member
of ..?
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3.25.2 Körner Functions

A Körner function is a function ƒ : X → X, X an initial segment of the
ordinals, such that (∀ ∈ X)( ≤ ƒ (T)). Friederike Körner and I realised
independently at about the same time that these were the gadget needed to
refine Boffa permutations to obtain models of NF in which ∈ restricted to finite
sets is wellfounded. Friederike used Henson-style Ehrenfeucht-Mostowski models
to show that for any consistent stratified extension S of NF, if S has models at
all, then it has models with Körner functions for IN. That’s why I call them
“Körner functions”.

Friederike’s original model had a special kind of natural number, which i
call a Körner number, which is a natural number k such that for all k′ > k,
k′ < Tk′. This gives a Körner function immediately (“add k”!) and this Körner
function is inflationary and monotone, but sadly it does not commute with T.

First we check that

REMARK 9 If there is a Körner function ƒ : X → X then there is one (ƒ∗

say) that is inflationary and monotone increasing.

Moreover, if ƒ commutes with T we can take ƒ∗ similarly to commute with
T.

And, with some very weak, sensible, conditions on X:

REMARK 10 If there is a Körner function on X that commutes with T then
AxCount≤ holds

Proof:
Let ƒ be a Körner function IN→ IN that commutes with T. Using the remark,

we can safely assume that ƒ is monotone and inflationary. Define g(n) = ƒn(0).
We want g to commute with T. Are we to prove this by induction? True for
n = 0. Now suppose

g(Tn + 1) = ƒ (g(Tn)) = ƒ (T(g(n)) = T(ƒ (g(n)) = T(g(n + 1)).

But is the induction stratified? We have to give g (and therefore ƒ ) two different
types, so it isn’t stratified, but it is weakly stratified which should be enough.

Now suppose we have Tn < n for some n. Consider g(Tn) and g(n). We
have

g(n) ≤ ƒ (T(g(n))) = ƒ (g(Tn)) = g(Tn + 1)

But in these circumstances Tn+1 < n so g is not increasing! So in particular
ƒ is not increasing. But we could have made ƒ increasing by “rounding-up”,
since rounding-up doesn’t destroy commuting-with-T. (This might involve some
work!) So we conclude:

REMARK 11 If there is a Körner function IN → IN that commutes with T,
then AxCount≤ holds.
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Suppose ƒ is a Körner function NO → NO. Does this proof work? Is g
defined for all naturals?

If ƒ is a function NO→ NO the rounded-up function ƒ∗ is defined by

ƒ∗(α) :=m(ƒ (α),
∑

β<α

ƒ∗(β))

Two things to check. If ƒ is a Körner function then so is ƒ∗ and if ƒ commutes
with T so does ƒ∗.

Notice that the existence of a Körner function on NO doesn’t obviously imply
the existence of a Körner function on the naturals: if ƒ is a Körner function on
the ordinals its restriction to the naturals might not be a Körner function on
the naturals!

There can be no Körner function ƒ : NO → NO that commutes with T.
Suppose there were, and reason, à la Henson, about ϕ(α, ƒ ). We argue that
the least α such that ϕ(α, ƒ ) is finite must be cantorian and we then find that
|ϕ(α, ƒ )| is both odd and even.

(i) The existence of a Körner function: ƒ : IN → IN s.t. n ≤ ƒ (Tn) fits in
nicely here. I think we will need to consider its extension to the ordinals. What
about a function ƒ : On→ On st α ≤ ƒ (Tα)? It’s not obviously impossible. It
clearly implies that cƒ (Ω) is cantorian (and so Ω is not regular, contradicting

AC2). If there is such an ƒ , set g(α) :=
∑

β<α
ƒ (β) + 1. Then g has the same

nice property and is both cts and inflationary. Of course there can’t be such a
function which commutes with T, since presumably the least thing moved would
be a disaster, or the least thing that cannot have g applied to it infinitely often
and so on.

We might have to consider the extension of Körner functions to BF. It seems
to me that this should have modal consequences. I mean: what happens in the
model given by the Ackermann permutation?

3.26 ∈-games

There is this paradox, that Isaac calls ‘Forster’s paradox’, to the effect that I

and II cannot be sets. In what sense can ∈-determinacy hold in a model of
NF? There is a result in the book that sez that V can be the disjoint union of
X and Y where X = P(Y) and Y =

P
(X) but that’s a red herring, beco’s by the

preceding result, in those circumstances, they can’t be I and II!
But can there be a global nondeterministic winning strategy for I? This

would be a relation E, say, such that {〈{}, y〉 : Ey} is a set, and Ey →
 ∈ y, the idea being that Ey if  ∈ y and I has no winning strategy in
Gy or  is a member of y ∩ II of minimal rank if there is such a thing. That
way all I has to do, on being confronted with y, is to reach for any  s.t.
Ey. E must not only be wellfounded but must satisfy the extra condition
that for any , either every descending E-chain starting at  is even, or every
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descending E-chain starting at  is odd. This condition, being “even” or “odd”
is not stratified, so there is no obvious lapse into paradox. Noteworthy that the
existence of E as a set does not allow us to define a rank relation, any more
than the existence of Hκ implies the existence of κ.

So is there a permutation model containing such a set of ordered pairs??

“There is a set E ⊆ {〈{}, y〉 :  ∈ y} s.t., E−1“{} isn’t empty unless
 is, and for every  either every descending E-chain starting at  is even or
every descending E-chain starting at  is odd.”

3.27 Stuff to fit in

J0 is paradoxical (in Wagon’s sense). Any two countable sets are J0-
equidecomposable with one piece, or—simpler—J0 equivalent. So we can find
disjoint sets A and B, and σ, τ ∈ J0 such that A = σ“A and A ∪ B = τ“A. All
we need was a couple of disjoint countable sets. By the same token, all we need
to show Jn paradoxical is a couple of disjoint set of singletonsn.

It still isn’t clear to me whether or not AxCount≤ implies the analogue for
ctbl ordinals. What is clear to me is that if i wish to get to the bottom of this
i will have to *really* understand the theory of ordinal notations. If you are
interested in this you may wish to take up my suggestion that the way in is
to consider why AxCount≤ implies that α ≤ Tα for all ordinals below ε0, for
example. It’s beco’s we have a system of notation for the ordinals below ε0 that
makes each such ordinal a finite object—in the sense that there is a bijection
between them and IN that commutes with T. In the standard treatment in the
literature this is just the condition that the bijection be definable. Now there is
a theorem of Diana Schmidt that says that for each ctbl alpha there is a ‘nice’
system of notation for the ordinals below alpha. If the proof is ‘nice’ enuff then
presumably one can recover a proof that the notation system respects T. But i
think this is going to be hard. Worth getting to the bottom of tho’....

Find a model for iNF in the recursive functions.

3.28 Chores and Open problems

NFO ⊆ NF3. NFO ⊆ NFP ⊆ NFI.

Holmes sez NF3 + NFP = NF, beco’s NF3 has unions (which is what we
have to add to NFP to get NF) and NFP has a type-level ordered pair (which
is what we have to add to NF3 to get NF). Note NF3 6⊆ NF beco’s

⋃

 is in
NF3.

NF∀ ⊆ NF3.

Holmes’ axiom of small ordinals: for any property ϕ of ordinals whatever,
there is a set X s.t. the class of all α such that (ϕ(α) ∧ α = Tα) = X∩ the
class of all α such that ϕ(α).

(Explain how this is like P = NP)
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In conjunction with large ordinals we can show that there is a canonical set
that will do. let ϕ be any property. It is shadowed by a set, C. C and T−1“C
both shadow it. If they are the same, we’re done. If not, consider the smallest
element of CΔT−1“C. It is above Tn‘Ω for some n, so grab T−n“(CΔT−1“C).
Gulp. This is closed under T and T−1.

Randall next sez: call sets which “commute with T” natural sets. Then
postulate that every property of natural sets (of ordinals) is coded by a set.

Randall is also concerned about what he calls the “downward cofinality” of
the noncantorian ordinals. How long can a descending class of noncantorian
ordinals be? A natural axiom to consider is one that sez that, if you are a
noncantorian ordinal, then, for some n, TnΩ is below you. This is something
one can approach with omitting types....
Ω

1. Randall asks: how about a pairing function that raises types by one in
NF3? Does it give NF? (You can’t use his clever pair beco’s—since it
looks inside the components—it uses too many types) Add a primitive
pairing relation.

2. Is there a ∀∗∃∗ version of the axiom of infinity? (see Parlamento and
Policriti JSL 56 dec 91 pp 1230–1235; see also Marko Djordjevic JSL 68
(2004) pp 329–339)

3. NF ` �¬∃Vω? If we express AxInf in Zermelo in the form “there is
an infinite set” then we cannot prove the existence of Vω or indeed any
particular infinite set.

4. NF ` Con(TSTω)? NF ` Con(TSTω∗)? Do either of these follow from
AxCount≤ ?

5. Is NF3 as strong as TST? Holmes thinks so. He adds that NF3 is much
weaker than TST? Perhaps Pabion’s result is relevant here: NF3 =
second-order arithmetic.

6. Once you’ve solved the universal-existential question for TZT do it for
TZTλ.7

7. Are the ƒ ∈ INN that commute with T cofinal in the partial order under
dominance?

8. AxCount≤ → (∀α < ω1)(α ≤ Tα)?

9. If  is a sentence in arithmetic-with-T that is true of the identity but not
provable in arithmetic-with-T is there an Ehrenfeucht-Mostowski model
in which it fails?

7The obvious comprehension axiom for TZTλ is

(
∧

α)(
∧

β)((∀α)(∃!yβ)((α , yβ))→ (∃ƒα→β)((∀α)(α , ƒ ‘α)))

. . . with parameters of course!
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10. André’s question. (∃n ∈ IN)(n 6= Tn∧ (∀m< n)(m ≤ Tm))

11. What holds in the constructible model of KF?

12. Understand Orey’s proof well enough to know whether or not
AxCount≤ suffices to prove Con(NF).

13. Takahashi’s proof that every P
n

formulae is in Leyn+1 . Does it really need
foundation?

14. Can there be ƒ : NO→ NO with (∀α)(α ≤ ƒ ‘Tα)?

Well, if there is, then ACo fails beco’s cƒ (Ω) must be cantorian. If there
is such an ƒ then there must be one that is cts and inflationary i think.

Set g(α) :=
∑

β<α
ƒ (β) + 1.

15. is there a bijection V ←→ VV that enables us to interpret the λ-calculus
in NF?

16. Aczel’s point about V ∼ V → V being possible constructively.....

17. Is the theory of wellfounded sets in NF invariant?

Holmes has this permutation that kills off infinite transitive wellfounded
sets, whatever model you start in. This means that if AxCount≤ , for
example, then the theory of wellfounded sets is not invariant, since possibly
there are infinite transitive wellfounded sets and possibly there aren’t.

18. Is there always a permutation model of Forti-Honsell Antifoundation?

It says:

(∀X)(∀g : X→ P(X))(∃!Y, ƒ )(ƒ“X = Y ∧ ƒ = (j‘ƒ ) ◦ g)

To find out what � of this is, reletter the failures of stratification.

(∀X,Z)(∀g : X→ P(Z))(∃!Y, ƒ , h)(ƒ“X = Y ∧ h = (j‘ƒ ) ◦ g)

(∀X,Z)(∀g : πn+1‘X→ P(πn‘Z))(∃!Y, ƒ , h)(ƒ“X = Y∧πn+1h = (j‘(πn+1ƒ ))◦πn+2‘g)

(∀X)(∀g : jn+1‘X→ P(X))(∃!Y, ƒ )(ƒ“X = Y ∧ ƒ j
n‘π = (j‘ƒ ) ◦ g)
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Each ordinal α has a unique representation in the form 2α1+2α2+ . . . with
that α strictly decreasing. Consider α as the set {α1, α2 . . .}. Then ω = {ω}
is non-well-founded, but we only get non-well-founded sets of particular form.
If we only consider ordinals less than ε0 then we only get one autosingleton.
Which part of Aczel’s AFA holds in this case?

Maurice.
Holmes sez: Marcel has a proof that NFU can be interpreted in the theory

of stratified comprehension. Define eq to be the relation of having the same
extension. A thing is a set if it is a union of eq-equivalence classes, otherwise
it is an urelement.

Proofs by reductio where the absurdus is an allegation that all ordinals can be
embedded in the propositum. (!) Specker (and Conway’s generalisation).

Diag(y, ) sez y is a formula with one free variable and  is the result of
substituting the gnumber of y in y.

We want things like: diag(y, )∧ ϕ(). This is a formula that sez of itself
that it is ϕ. Now i want a three-place relation.

S(A,B,C): A is the result of substituting for the free variable in B the
numeral of the gnumber of C.

(why don’t i know whether or not to insert the words “numeral of” before
“gnumber”??)

So once we start thinking “permutation models” we get
S(A,B,C)π: A is the result of substituting for the free variable in B the

numeral of π of the gnumber of C.
So there is an operation splat such that
(∀ABC)(S(A,B,C)π ←→ S((splat‘π)‘A,B,C)).
to be continued

3.28.1 Transitive sets

5/xi/97
The class of all transitive sets is the set of all prefixed points for the increasing

(but nohow cts) function P : V → V. The following cute facts may be helpful.
∈�the set of transitive sets is transitive. This is standard.
It’s also antisymmetrical:  ∈ y→  ⊆ y and y ∈ → y ⊆  so  = y!
Transitive sets form a wellfounded CPO under ⊂.
The funny thing is: they also form a wellfounded CPO under (the irreflexive

part of) ∈! (Actually i’m not sure that they form a wellfounded CPO but we
do know that every set has a GLB, namely its (settheoretic) intersection

⋂

).
We knew this equivalence of ⊂ and ∈ with Von Neumann ordinals but i for

one hadn’t expected to see it in this more general context.
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The other night i think i had persuaded myself that ∈ restricted to the GFP
set of hereditarily transitive sets was connected but i can’t now remember why
and i now think i was mistaken.

Is there anything to be said for adopting an axiom scheme that says
that for any set  and any finite family of stratified (but possibly
inhomogeneous) ΔP

0 operations ~ƒ the ƒ -closure of  is a set? What
we’ve just shown is that AxCount≤ is equivalent to the special case
where  is {∅}.

We would use this, starting with {V} and setting ~ƒ to be the stra-
trud operations, to get lots of models of NF. Let us write Sr() for
the stratrud closure of . (It might be an idea to pause and check
that Sr({V}) does not contain a Quine atom, or Hℵ0 by showing
that if  is a Quine atom then V \ {} contains V and is stratrud
closed. Ditto V \ {Hℵ0}. It might also be an idea to check that
Sr({V}) 6∈ Sr({V}).) Another question: if  = Sr() does 
contain all constructible sets?

Then we consider the inductively defined class containing {V} and
closed under λ.Sr(∪ {}). Consider the wellfounded part of its
sumclass. That is L.

The attraction of this is that it draws our attention to a new kind
of submodel. Submodels which preserve complementation are not
transitive. Another way to put it: any model has a universal set.
Does this universal set have to be the same as the domain of the
model? No, of course not. Another detail to check: does respecting
complementation ensure that inclusion is a 1-embedding? One needs
B as one of the operations but relativised B is stratrud . . .

(18.viii.97)

Actually that isn’t quite what we want. We want the intersection of all
stratrud-closed sets containing V that also contain wellfounded sets of arbitrarily
high rank.—because there doesn’t seem to be any reason to believe that there
can’t be a countable set with the first condition and we want something that
has the effect achieved in the ZF case by requiring the sets concerned to contain
all Von Neumann ordinals. We haven’t got a rank function that is a set, but it
doen’t matter, because (see section ?? remark 38) all the various rank relations
that we might have all agree on wellfounded sets. Perhaps we could replace “that
also contain wellfounded sets of arbitrarily high rank.” with that meets every
ordinal containing a wellordering of a wellfounded set.” Are these perhaps
equivalent? They are both attempts at saying “contains all Von Neumann
ordinals” which is emphatically not what we really mean beco’s they might stop
at ω.
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Can we define L as the intersection of all rud-closed sets X such that (∀α)(X∩
Vα ∈ X)?

�∃Vω ought to be equivalent to an assertion in arithmetic-with-T . . . but which?
The search from obscure bits of unstratified arithmetic reminds me of the (at
times) acrimonious exchange between Richard K and me about the unstratified
version of Paris-Harrington.

A subset of IN is relatively large (or ‘0-large‘ for short) if its size is bigger
than its smallest member. Thereafter  is n + 1-large iff  minus its bottom
element is n-large. Now let ƒ be a slowly increasing function IN → IN. We say
 is ƒ -large iff  is ƒ (||)-large. Does this give a version of P-H?

3.28.2 An axiom for H?

For any property ϕ, let Hϕ =
⋂

{ : Pϕ() ⊆ }. Easy to show that Hϕ 6∈ Hϕ
beco’s ¬ϕ(Hϕ). So Hϕ can be taken as a generic example of something that is
not ϕ? Tasty! Let’s see what goes wrong. If ϕ is self-identity then we get WF,
which cannot be a set, so this is only going to work if there are some things
that aren’t ϕ. It won’t work if ϕ is transitivity beco’s that way we get the von
Neumann ordinals. So we chuck out unstratified properties as well. But then
we have things like being hereditarily not equal to V (and in ZF we’d have a
problem with ‘wellordered’) or we express it in terms of sets. So how about:

WF 6⊆ → H is a set?
This implies for example that if there are any infinite wellfounded sets then

Vω exists. Unlikely to be a theorem of NF but not obviously terribly strong. Is
it related to assertions of the kind WF ≺ V?

I once had an axiom that said for each  either H is a set or it is WF. This
doesn’t work beco’s Htrns is paradoxical but not equal to WF. Presumably we
have to restrict it to  that are downward-closed.

3.28.3 A message from Holmes on reflection

The idea is to redefine  ∈ y as T ∈ y (where the older ∈ is the natural relation
on isomorphism classes of digraphs). But this does not work out exactly as one
would wish. The definition which works is to define  ∈ y (new sense) as T ∈ y
and for all z ∈ y, T−1z exists. This gives a fine interpretation of NFU!

To get an interpretation of NF, you need a class of isomorphism types such
that all “elements” are images under T and which has adequate comprehension
properties. Even in NF, I haven’t been able to define such a class; in fact, there
is no reason to expect that one could, since an interpretation of NFU constructed
in this way will generally satisfy the Axiom of Endomorphism, which is false in
NF.
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–Randall
But a suitable version of NFU will reflect itself exactly in this way! –Randall

Even if Hℵ0 exists there is no guarantee that we can define functions on it
by ∈-recursion. However we can try the following. Start with the branching
quantifier formula that says that there is a function of the sort you want, and
then look at the approximants.

A good place to start would be with the formula that says that ƒ ‘ = sup
T2ƒ ‘y for y ∈ , or perhaps the formula that says there is a homomorphism
from 〈FN,∈〉 to 〈IN,<T 〉

This is

A : (∀y1∈FN)(∃n1)
(∀y2∈FN)(∃2)(y1 ∈ y2 → Tn1 < n2 ∧ y1 = y2 → n1 = n2)

One also immediately thinks of branching-quantifier formulæ saying that
<T is wellfounded. (or rather, that there is a homomorphism from 〈IN,<T 〉 to
〈IN,<〉.) This is

(∀m1)(∃n1)
(∀m2)(∃n2)

(Tm1 <m2 → n1 < n2 ∧m1 =m2 → n1 = n2)

But even the first approximant implies AxCount≤ .
There is also the formula stating that there is a homomorphism in the op-

posite direction:

(∀m1)(∃n1)
(∀m2)(∃n2)

(m1 <m2 → Tn1 < n2 ∧m1 =m2 → n1 = n2)

. . . which is presumably true. But what is the difference between A and

A′ :(∀y1∈FN)(∃n1∈N)(∀y2∈FN)(∃2∈N) (y1 ∈ y2 → n1 < n2 ∧ y1 = y2 → n1 = n2)

Isn’t this going to show something quite general? Namely that assuming
that a structure is wellfounded is no stronger than assuming that it lacks loops.

3.29 A message from Isaac

[A] Big Sur is real - it is on the cliffs overlooking the Pacific Ocean, about 200
miles south of San Francisco. Its unique character is something like this: Rapidly
changing conditions and views, but it (almost) always looks like something out
of a Chinese landscape painting. Big Sur is associated with Henry Miller and
Robinson Jeffers, who both lived there. Also the Esalen Institute, a cutting-
edge humanistic/peak-experience academically-oriented psychological institute
there. Steep cliffs, deep forests, difficult access, unspoiled.

[B] I looked up ’burble’ in the OED: It is a verb which means to confuse,
confound (to *paradox* ?). I wonder how to use it?
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I have a lot of thoughts relating to your paradox and game, here are my
current rough ideas (I am forwarding these thoughts to you as-is because I
suspect you can think through some of them very rapidly, whereas it might
take me several months; also I surmise that some feedback may be useful to
you before I got to Big Sur. When I return, I will attempt to write up some
thoughts in a more thorough fashion)

[C] Regarding time limits in your game: Let’s suppose that for all x, Player
I has a winning strategy. Then for all x, we can associate a ”rank” for x. E.g.,
0 has the lowest rank, all well-founded sets have the standard rank, the rank of
a,b is one higher than the rank of either member, and so on.

The “rank” is a measure of how fast Player I can win - that’s what I meant
about time limit.

[D] Is the following true?

(NF is consistent) → (NF + Player-I-always-wins) is consistent

[E] (Straight off, I think that Player-I-always-wins is a truth about sets)

In Malitz set theory, Player I always wins. In NF, this is not the case (e.g.
suppose the game begins with V, and V minus its own singeleton.)

On account of this, you could say that in Malitz set theory, all sets are
semi-well-founded.

[G] Items I am thinking about:

Hypothesis [D] above.

Is there some variation of the Malitz Game for which it is consistent that
Player I always wins in NF?

The Malitz Game is nice because it leads to a characterization of all sets
as being semi-well-founded, it provides simple ways to build models. Is there
a variation of the Malitz Game or Forster’s game that allows similar stuff for
NF?!?

3.30 A message from Adrian

Let M be the model obtained as follows. Put t = {0,{0},{{0}}, ...}. Notice
that t is transitive. Set M(0) = t, M(n + 1) = Poer(M(n)) and let M =
⋃

n<ωM(n). Then ω is not a member of M: that follows from our first Lemma

∩ω = n implies Poer()∩ω = n+ 1 which is readily proved by induction

on n and since t ∩ ω = 2 has the Corollary Poerk(t) ∩ ω = k + 2 M is

a model of the rest of Zermelo (the set of M(n)’s is fruitful in the sense of my
paper except for 1.0.1), and t is a member of M, and is Dedekind infinite under
the map z 7→ {z}. [amusing question: does this model contain a relation on t

which well-orders it in order type ω ? actually it does, but can you prove in our
weakened Zermelo, that there is a dedekind infinite set which is well-orderable
? If you’re desperate, start from the assumption that there is a set z such that
0 ∈ z and whenever y ∈ z then {y} ∈ z.

Bonus marks if you do NOT USE the power set operation.]
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On the other hand, if you start from N(0) = ω and then iterate the power set
operation ω times, you get a model of Zermelo containing ω but not containing
t. Call it N.

Theorem N ∩M = HF.

Define z(0) = 0, z(n + 1) = {z(n)}, so t = {z(n) | n ∈ ω}.

Define s(n) = {z(m) |m< n}.

Lemma 0 = s(0), 1 = s(1), 2 = s(2).
there it stops, baby.

Lemma ω ∩ t = 2 = s(2). Lemma  ∩ t = s(n) implies Poer() ∩ t =
s(n + 1). Corollary Poerk(ω) ∩ t = s(k + 2). Proof of the theorem:

Suppose  ∈ Poerk(t) ∩ Poerm(ω). We show that  ∈ HF. Case 1:

k ≥m: then
⋃m  ⊆ Poerk−m(t) ∩ω = k −m + 2

Case 2: k < m: then
⋃k  ⊆ t∩Poerm−k(ω) = s(m− k+ 2). In either

case,
⋃j  for some finite j is a subset of a hereditarily finite set, and therefore

 is hereditarily finite. a

3.31 Does NF+ AxCount≤ prove Con(NF)?

Since NF+AxCount≤ proves Con(Zermelo) and various people have con-
jectured that NF is no stronger than Zermelo, we would expect that
NF+AxCount≤ proves Con(NF).

Actually NF+AxCount≤ proves Con(Zermelo) by a pretty roundabout
route (You have to prove that there is a wellfounded extensional relation of
rank ωω with no holes, and you infer this from the existence of sets of size ℵω)
so we shouldn’t be too discouraged by the apparent difficulty of proving that
NF+AxCount≤ proves Con(NF). See Roland: NF et l’axiome d’universalité:
jaune n)

Anyway, if we are to show that NF+AxCount≤ proves Con(NF) the obvious
thing to do is to try to recreate in NF+ AxCount≤ Orey’s demonstration that
NF+ Axiom of counting` Con(NF).

OK, let’s have an Orey model with four types. That is to say T0 = ι3“V;
T1 = ι2“V; T2 = ι“V and T3 = V. Also ∈2 (∈ between types 2 and 3) is ⊆,
∈1 (∈ between types 1 and 2) is RUSC(⊆), ∈0 (∈ between types 0 and 1) is
RUSC2(⊆). Let the variables of bottom type be  with subscripts. Then b for
type 1 and so on.

We might be interested in assignment functions ƒ that commute with T in
the sense that

(∀n)(∀)(ƒ (ðdnñ) = → (ƒ (ðcTnñ) = {}))∧
(∀n)(∀)(ƒ (ðcnñ) = → (ƒ (ðbTnñ) = {}))∧
(∀n)(∀)(ƒ (ðbnñ) = → (ƒ (ðTnñ) = {}))
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but this condition is clearly unstratified. The right thing to do is to look for
some relation on which to do induction that is wellfounded only if AxCount≤
holds.

There is a pretty obvious tro on assignment functions. If ƒ sends ‘n’ to ,
ƒ∗ must send ‘bT−1n’ to ι−1‘; if ƒ sends ‘bn’ to , ƒ∗ must send ‘cT−1n’ to
ι−1‘; if ƒ sends ‘cn’ to , ƒ∗ must send ‘dT−1n’ to ι−1‘.

Slight worry about this: ƒ∗ contains less information than ƒ beco’s it says
nothing about what happens to  variables.

To recap. Type 0 is ι3“V×{0}; type 1 is ι2“V×{1}; type 2 is ι“V×{2};
type 3 is V × {3}. The tro τ is λ.〈ι−1fst(), snd() + 1〉.

Notice that the + operation on formulæ must commute with T if we are to
stay sane, but it will commute if the gnumbering is natural and recursive

If ƒ is an assignment function defined on variables of type 0, 1 and 2, then
cƒ (ƒ ) (Orey’s notation) is the function that, on being given a variable of types
1 2 or 3, with gnumber n, shunts it down one type (remember + and its inverse
are homogeneous operations!), applies T to it (presumably it doesn’t matter in
which order it does these two things since + commutes with T) applies ƒ to the
resulting variable to obtain 〈, k〉 (where k is 0, 1 or 2) and returns τ(〈, k〉)
which is to say 〈ι−1(), k + 1〉

cƒ (ƒ ) = λn.τ(ƒ (T(n−)))

The idea is that cƒ is a bijection between the assignment functions for
types 0, 1 and 2 and the assignment functions for types 1,2 and 3. A Pétry
diagram will show that cƒ (g) = ƒ is stratified but inhomogeneous: ‘g’ is one
type higher than ‘ƒ ’.

Is it obvious that ƒ satisfies Tn iff cƒ (ƒ ) satisfies n+? Is this immediate or
something very hard that we have to prove? (“yes, gentlemen, it is obvious”)
and we prove it by structural induction on formulæ

I think the hard thing to prove is that that ƒ satisfies n iff it satisfies Tn.
(Remember that Tn and n talk about the same types). So perhaps what we
should be trying to prove is that n is true (satisfied by all assignment functions)
iff Tn is true. Any chance of proving this by induction on the funny wellfounded
relation in IN? It’s not looking hopeful: There doesn’t seem to be any reason
why AxCount≤ should be any more useful than AxCount≥.

This may be the place to think about André’s axiom scheme. Also
Friederike’s axiom about fast-growing functions.

Something worth bearing in mind is that AxCount≤ is strong only when
there are big sets around: Mac is equiconsistent with KF. So we must make use
of big sets.

3.32 Weak Stratification

Albert and I are going over Michael’s latest thoughts on Cnumbers in NFU, and
thinking about the significance of there being lots of empty sets.

[This is northern autumn 2019]
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I have never worried about this until now, but Albert has pointed out to me
there is a problem.

We work with NFU. It has lots of atoms, empty sets. We want to make
life easier for ourselves by designating one of the empty sets as the empty set.
I had always supposed that this was completely unproblematic—just expand
the language by adding a new constant symbol. We have a new notion of
stratification, according to which the new constant symbol can be given any
type—indeed multiple types in any stratification. The obvious question is: is
this extension conservative? Do we get any new theorems in the old language.
I had always assumed that the answer is ‘no’ and it seemed so obvious that i
had never bothered to check it. However on reflection it seems a great deal less
obvious. Is it even true!?

[One way of phrasing this question occurs to me (I’m not sure if it is exactly
the same question but it’s pretty similar). Take two copies of a model of NFU
and expand them by decorating in each an empty set as the empty set. Are these
two structures elementarily equivalent? This reminds me of an old question
about whether the atoms in a model of NFU can be indiscernible. That looks
like a strong assumption (Holmes has shown that most methods of producing
models of NFU produce models in which the atoms are very much discernible!)]

Albert is contrasting this with a situation that he calls ‘parametric inter-
pretation’ where (in this case) you reserve a variable —‘λ’, say—to point to
the empty set, but it remains a variable. Under this scheme everything in the
range of this (“parametric”) interpretation has a free variable in it. This means
that the axiom giving the existence of the von Neumann ordinal 2 is no longer
stratified:
(∃)(∀y)(y ∈ ←→ y = λ∨ (∀z)(z ∈ y←→ y = λ))
Albert is saying that it is not obvious that NFU interprets NFU∗ (the theory

in the new language) [Later: i am no longer sure what are the formulæ of the
new theory: are they the literal translations using λ in this way, open formulaæ
Or are they things of the form (∀λ)((∀)( 6∈ λ)→ ϕ)? I think that must be
what is meant. . . see below]

Is this extension conservative?
The answer is yes! And for well-understood general reasons that i have never

thought about, to my shame.
Suppose (∃y)(∀z)(z ∈ y ←→ ϕ(z)) is a comprehension axiom under the

new dispensation, with lots of occurrences of ‘∅’, possibly at lots of different
types. Replace every occurrence of ‘∅’ with an occurrence of a new variable ‘λ’.
We now need the axiom

(∀λ)(∃y)(∀z)(z ∈ y←→ ϕ(z, λ))

but this is weakly stratified and therefore is an axiom!

Let’s try to place this is a general context. Names not just for the empty set

Suppose NF(U)` (∃)(ϕ()). We expand the language by adding a con-
stant symbol ‘p’ and extend NF(U) by adding an axiom ϕ(p). We modify
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our definition of stratification for the new language by ruling that different oc-
currences of ‘p’ in a formula may be given different types in a stratification.
This gives us new comprehension axioms. We want the new theory to be a
conservative extension of the old.

We rely on two facts.

(i) The comprehension axioms of NF(U) allow parameters;
(ii) the eigenformula in a comprehension axiom of NF(U) is required
merely to be weakly stratified and is not required to be stratified.

Take a new comprehension axiom:

(∀~)(∃)(∀y)(y ∈ ←→ ψ(~, y, p))

where ψ is weakly stratified in the new sense, where every occurrence of ‘p’ can
be given any type in a stratificiation. Replace every occurence of ‘p’ by a new
variable ‘’ and bind the new variables to obtain

(∀)(∀~)(∃)(∀y)(y ∈ ←→ ψ(~, y,))

which is in the old language and weakly stratified, and is therefore an axiom.
Now we instantiate the ‘∀’ to some  s.t. ϕ() and we infer

(∀~)(∃)(∀y)(y ∈ ←→ ψ(~, y, ))

which is now a theorem of NF(U) and is an alphabetic variant of the suspect
new comprehension axiom.

Hmm . . . . That’s clearly true and important, but it’s not yet a proof of
conservativeness.

Suppose we have, in the new theory, a proof of a formula A that does not
mention ‘p’. It uses various axioms like
(∀~)(∃)(∀y)(y ∈ ←→ ψ(~, y, p)) and ϕ(p). It seems pretty clear that

we can manipulate this proof into a proof of A in the old theory that uses
(∀)(∀~)(∃)(∀y)(y ∈  ←→ ψ(~, y,)), but it might be instructive to
supply the details.

Afterthoughts

This should work comfortably in general. Let T be a theory that proves
(∃)ϕ(). Extend L(T) by adding a constant symbol ‘p’ and extend T by
adding an axiom ϕ(p), thus obtaining a new theory T′. Let Ψ be an expres-
sion, not containing ‘p’, which has a T′-proof. This proof will look like

ϕ(p)

...
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Ψ

We can modify this to
...

[ϕ(p)] (∃)ϕ()

...

Ψ

where the ‘ϕ(p)’ is the discharged assumption of an ∃-elimination. If we do
this to all occurrences of ‘ϕ(p)’ we obtain a T-proof.

So this worry about parameter-freeness is a red herring. Unless the availabil-
ity of parameters does nore than prove conservativeness, that is. For example,
we know that if we add to L(∈,=) a symbol ‘∅’ and add to any theory T that
proves (∃y)(∀)( 6∈ y) an axiom (∀)( 6∈ ∅), then T ∪{(∀)( 6∈ ∅)} is a
conservative extension of T. But now let’s think of NFU as a theory in the pure
language of set theory—no constant symbols. Take model—any model—of this
version of NFU, make two copies of it. Expand the theory by adding a name
for the empty set, and expand the two models by baptising, in each, one of the
atoms as THE empty set. Different atoms of course. Are these two structures
elementarily equivalent? That doesn’t obviously follow. But perhaps the extra
control given by the parameters might help.

More Afterthoughts

Albert has a thing that he calls a profile of a formula.
This idea of parametric interpretation must be something to do with cylin-

drification.

3.33 Smash for Albert

Albert: this is how i encountered the smash function in NF—always in connec-
tion with infinite cardinals.

We don’t expect to be able to define α∗ β for arbitrary cardinals α and β.
However we would expect to be able to do it if α is 2γ and β is 2δ for some γ
and δ.

We want to define 2α ∗2β to be 2α·β. (D)
Prima facie we have a problem because there might be lots of cardinals δ

s.t. 2δ = 2α so it might matter which of the δs we put into the definiens of
(D). But it doesn’t! Suppose 2δ = 2α. Then

2δ·β = (2δ)β = (2α)β = 2α ∗2β.

My reason for interest in this operation (and its higher congenenors) was
this.
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Consider a sequence of cardinals α0, α1, α2 . . . where α+1 = 2α , and α0
is Dedekind-infinite. The αs get better behaved as the subscripts get bigger.

We have:
α0 + 1 = α0;
α1 + α1 = α1;
α2 · α2 = α2;
and then
α3 ∗ α3 = α3.
(This last is beco’s

α3 ∗ α3 = 2α2 ·α2 = 2α2 = α3.)

and so on, getting nicer and nicer equations (using operations that we have
no notations for!).

We even get (α3)α2 = (2α2)α2 = 2α2 ·α2 = 2α2 = α3.
Why might this matter? The point is that, in NF (+ Counting), there are

cardinals (|V| is one) that, for every (concrete) n ∈ IN, can be seen as αn in a
sequence like the above. The hope is that this will enforce on these cardinals
good behaviour of the kind that will contradict the known refutation of AC for
large cardinals.

There may be a crunch point to be found along these lines, but i’ve never
found one.

A new refutation of AC in NF

GC is the principle that i call “Group Choice” since it is the version of AC that
is need to prove that, in a full symmetruic group, permutations of the same cycle
type (sometimes called conformal) are conjugate. So GC is the principle that
every set of countable sets has a selection function. This is not usual countable
choice, which says that every countable family of sets has a choice function.

The proof is made of several jigsaw pieces, some of them quite old.

If there is an antimorphism then AC2 fails.
All cycles of an antimorphism are even or infinite;
If we have AC for set of finite sets then any two permutations of the
same cycle type are conjugate;
If we can find a permutation τ s.t. τ and jτ · c (c is complementa-
tion) are conjugate then there is a permutation model containing an
antimorphism.

The missing piece, which i have only just computed, is the relation between
the cycle types of jτ and jτ ·c. The cycle type of jτ constrains the cycle type of
jτ · c very closely. What we are after is a permutation τ such that τ and jτ · c
are conjugate.

First we consider even cycles in jτ. We consider them in pairs, in that—for
any —we consider the cycle of  and the cycle of c() together. These two
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cycles might be the same, of course, and in those circumstances there is nothing
to do.

[oops—what happens if there is a single jτ-cycle {, c()}. . . ? For the
moment let’s suppose that no jτ-cycle contains both  and c().]

Let  be a member of a 2n cycle under jτ. Then c(n) belongs to a 2n
cycle, and these two 2n-cycles are conjugated by c. Colour all the elements of
the cycle of  red and all the elements of the cycle of c() blue. Then these
4n inhabitants of these two jτ cycles belong to two jτ ·c cycles; and both these
two jτ · c are of course of size 2n and they consiste of alternating red and blue
elements. Thus a pair of even jτ-cycles (and all such even cycles come to us in
pairs as indicated above) gives rise to a pair of even cycles in jτ · c. No other
brace of cycles is involved in this construction at all. The treatment of infinite
cycles is similar.

Thus if all cycles in jτ were even or infinite then jτ and jτ · c would have
the same cycle type. So we need to consider odd cycles in jτ.

Odd cycles, indeed, come in braces8 in the same way even permutations do:
the (2n + 1)-cycle containing  and the (2n + 1)-cycle containing c(). As
before, these two cycles are conjugated by c. As before colour everything in
one cycle red and everything in the other cycle blue. Then there is a single
jτ · c-cycle of size 4n + 2 wherein the blue and red points alternate.

So as long as no jτ-cycle contains both  and c() we can conclude that
jτ · c has no odd cycles. The idea is now that jτ · c and τ have the same cycle
type and will therefore be conjugate by GC and we will obtain an antimorphism.

For this to work we need τ to have no odd cycles, and jτ must have the
largest possible number of 2n-cycles for each n, so that when we add new even
cycles by stitching together the odd cycles in jτ we do not increase the number
of 2n-cycles and thereby preclude conjugacy with τ.

OK. What happens if some jτ-cycle contains both  and c() for some ?
Observe that if τk“ = c() then τk“c() =  so the cycle containing  and
c() is of size 2k and is even. So don’t have to worry about the possibility of
odd cycles ever containing  and c().

For example if there is  = τ“(V\) we are in big trouble, so that cannot be
allowed to happen. Unfortunately if all τ-cycles are even then AC2 will produce
such an .

But we might be able to recover something. Consider the family of partition
of V into pairs that lack transversals. Think of such a partition as an involution
τ. Then jτ · c is another partition of V into pairs. Does it lack transversals?
The mirage on the horizon is the thought of a Bowler-maximal partition of this
kind. The set of such partitions/involutions is upward-closed in Bowler’s order.

Need to check whether or not this operation is monotone...
Sse τ ≤ σ in virtue of ƒ : V ,→ V. Thus {{ƒ (), ƒ (y)} : {, y} ∈ τ} ⊆ σ.

We want {{, jτ · c()} :  ⊆ V} ≤ {{, jσ · c()} :  ⊆ V} in virtue of
(presumably!) jƒ .

8Is this word too old-fashioned? Brace of pistols, of partridges. . . ?
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So we want

{{ƒ“, ƒ“(V \ τ“)} :  ⊆ V} ⊆ {{,V \ σ“} :  ⊆ V}
So we want ƒ“(V \ τ“) = ,V \ σ“ƒ“
and there is no way that is going to be true. So the operation is not mono-

tone.

But there still remains the question of whether or not there is a Bowler-
maximal partition into pairs that lacks a transversal. Is there a candidate?
Consider the set { :  6= c“}. It splits naturally into pairs {, c“}. It
would be nice if this was somehow a partition-int-pairs that was most likely
to lack a transversal. But! This is an immediate consequence of Nathan’s
demonstration that jc is a universal involution.

This could enable us to constrain the complexity of AC2. AC2 holds iff there
is a choice function on {{, c“} :  ∈ V}
(∃T)(∀)( 6= c“→  ∈ T ←→ c“ 6∈ T)
c(y) ∈  is . . . both (∀)( = c(y)→ ∈ ) and (∃)( = c(y)∧ ∈

) and  = c(y) is ∀ so c(y) ∈  is . . . both ∀∃ and ∃∀
Now  6= c“ is (∃y)(c(y) 6∈ ) which is ∃∀
How many quantifiers? I think it’s going to be four whatever happens.

Anyway! The fact that jc is Bowler-maximal (“universal”) means that its
restriction to the set of things not fixed by jc can be copied over to V to give us
a maximal (“universal”) involution without either fixed points or transversals.
This is beco’s { :  6= c“}—and, for that matter—{ :  = c“} is of
size |V|). Let’s call this involution c (to recall complement). Then jc · c is an
involution without fixed points. It remains to show that it lacks transversals
and is maximal. That sounds possible, but it would involve a great deal of
computation beco’s the definition of c is so convoluted.

This is progress of a sort. Bowler’s work shows that there is a definable
partition of V into pairs with the property that if it has a choice function then
all sets of pairs have choice functions.

3.34 Someone should write this up

We know what the TSTn are. How strong are they? It seems that (and the origi-
nal text on this seems to be McNaughton) that TSTn+1—or perhaps TSTn+2—
proves the consistency of TSTn. Truth definitions. I am a bit worried about
this. Plain vanilla TST (thought of as TSTω in this setting) is equiconsis-
tent with PA. How can we fit in infinitely many theories between TST2 and
TSTω. Perhaps we need infinity for these truth definitions to work? I have
never thought about the details of a consistency proof for TSTn in TSTk with
k >> n. I want to get straight the role of AxInf in this.

There is a related issue in need of clarification, not least because the simi-
larities can cause confusion (they confused me all right!). We can restrict any
TSTn by restricting the degree of impredicativity allowed in the comprehension
scheme. Randall has persuaded me that this hierachy collapses, and the reason
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is as follows. For any ϕ whatever existence of {ιk() : ϕ()} is a predicative
axiom for k suff large. Then one repeatedly applies the axiom of sumset.

The task of writing this up is one i should public-spiritedly take up. I am
less busy than the two of you and i am in lockdown! I must say i am not looking
forward to processing McNaughton. The notation is 70 years old and and it’s
not an easy read.

Any suggestions welcome.
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Chapter 4

Is NF stratified-tight?

I am having difficulty with the idea that a theory might be tight. In my idiolect,
the only non-literal meaning ‘tight’ has is drunk as in

Cockney bus conductor, as bus is starting, to standing fe-
male passenger

“ ‘old tight, Lady!”

Standing female passenger (indignantly)

“ ‘Ooo are you a-callin’ of an old tight lady?!”

(recounted to me by my great-aunt Poppy, a Londoner)

A theory is tight iff any two synonymous extensions of it are identical. In
saying that two theories are synonymous I mean that any model of either can be
turned into a model of the other in a definable way, and the two transformations
are mutually inverse up to logical equivalence. Boolean rings/boolean algebras;
partial orders/strict partial orders, that kind of thing. I think this is also called
bi-interpretability.

Situations where two models of a theory T have the same carrier set are
familiar to us from the (admittedly rather special) situation of Rieger-Bernays
permutation models in set theory. They were first dreamt up to prove the
independence of the axiom of foundation from ZF(C), but the bulk of the ap-
plications have come in an NF context. This is beco’s the R-B construction
preserves stratifiable formulæ and is therefore a very natural device to use on
models of NF.

If τ is a definable permutation and has the further property that in Vτ

there is a definable “return” permutation σ such that (Vτ)σ is isomorphic to
V then Th(V) and Th(Vτ) are synonymous, but may not be identical. If we
start with a model containing no Quine atoms and let τ is the transposition
(∅,{∅}) then there is such a definable “return” permutation σ and we have
precisely the situation described1 so NF is not tight. However the two theories

1It is possible to write this out in exact detail—and that would be a good thing to do—but
there is no call for it here and now.

93
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disagree only on unstratified expressions, so—altho’ this is a counterexample
to NF being tight—it’s not a counterexample to NF being what one might call
stratified-tight. NF is in fact stratified-tight, as we shall soon show. In fact
every extension of NF is stratified-tight.

However, before we can give the proof, we need the rather recondite model-
theoretic device of stratimorphism, which we will now define.

Any structure M = 〈M,∈〉 for L(∈,=) can give rise to a structure for
L(TST) by the simple device of making multiple copies of it of the form M×{}
for each  ∈ IN, and defining a membership relation on the resulting L(TST)-
structure by declaring—for each n— that 〈, n〉 ∈ 〈y, n + 1〉 iff M |=  ∈ y.
We then say that two L(∈,=)-structures M1 and M2 for are stratimorphic
if the two L(TST)-structures obtained as above are isomorphic. Stratimor-
phic structures agree on their stratifiable formulæ. Stratimorphism is related to
elementary-equivalence-for-stratifiable-formulæ rather the way in which isomor-
phism is related to elementary equivalence, and the reader can probably guess
the statement of an analogue of a theorem of Keisler’s: M1 and M2 agree on
stratifiable sentences iff they have stratimorphic ultrapowers. We don’t need it,
so we won’t prove it. The thing we do need—namely that any two stratimorphic
L(∈,=) structures satisfy the same stratifiable formulæ—is obvious.

We are now in a position to state and prove

THEOREM 3 Let T be an extension of . Suppose M1 = 〈V,∈1〉 and M2 =
〈V,∈2〉 are two models of SF with the same carrier set, and that their theories
are synonymous, in the sense that  ∈1 y is equivalent to a stratifiable formula
E1(, y) in L(∈2,=) and  ∈2 y is equivalent to a stratifiable formula E2(, y)
in L(∈1,=).

Then 〈V,∈1〉 and 〈V,∈2〉 satisfy the same stratifiable sentences.

(For the moment I know how to prove it only when E1 and E2 are stratifiable,
but I suspect it is true anyway. The proof of the stratified version runs as
follows.)
Proof:

Let M1 = 〈V,∈1〉 and M2 = 〈V,∈2〉 be as in the statement of the theorem.
We shall show them to be stratimorphic, so we need a family 〈ƒ :  ∈ IN〉 of
permutations of V satisfying, for each n ∈ IN, (∀, y)( ∈1 y ←→ ƒn() ∈2
ƒn+1(y)).

Naturally ƒ0—the bijection between the two 0th levels—is the identity. For
the recursion to succeed it is important—for set-existence reasons—that the
ƒ should have definitions that are stratified. What about ƒ1? To what must
the stratimorphism send an element 1 of level 1 of M1? It has a handful of
members-in-the-sense-of-∈1. We must send it to that element of M2 that has
precisely those members . . . in the sense of ∈2. But this is easy. By assumption
‘y ∈1 ’ is a stratifiable expression of L(∈2,=), and so its extension is a set by
stratifiable comprehension in 〈V,∈2〉, and by the enhancement (the ∃! quantifier
instead of the ∃ quantifier) it is unique. Higher levels are analogous. Notice
that we need ∈1 to be equivalent to a stratified expression of L(∈2,=),
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COROLLARY 2 Every theory extending NF is stratified-tight.

However this exploited the fact that ‘y ∈1 ’ is a stratifiable expression of
L(∈2,=) and ‘y ∈2 ’ is a stratifiable expression of L(∈1,=). What happens
if we drop this assumption? Do we gain any extra generality? It seems highly
implausible that there should be an unstratified expression E1(, y) in L(∈
,=) such that NF proves that 〈V, E1〉 |= NF. This would require that any
weakly stratified formula ϕ(, ~z) when rewritten with E instead of ∈ should be
sufficiently well-behaved for its extension to be a set.

Let’s pursue this. If there is even one such expression there will be lots, co’s
we can compose such a relation with any permutation to get another. Here’s
another thing that might be helpful. If E is such an expression then ¬E is
another so we could start by asking for the E of minimal logical complexity and
then assuming that, once it’s in PNF, the leading quantifier is existential; or (if
we prefer) that it is universal.

Well, we still have that the two theories are synonymous, which is to say
that if we rewrite ‘E1(, y)’ by replacing all occurrences of ‘∈2’ in it by ‘E1’
then the result is an expression of L(∈1,=) which is equivalent to ‘ ∈1 y’.
The hope is that this fact alone will compel E1(, y) and E2(, y) to both be
stratified.

One might be able to show that E1 and E2 are each equivalent to a strati-
fiable formul with a parameter. . . possibly something as banal as 〈, y〉 ∈ E, so
the the graph of E is a set

Some thoughts:

I hope to be able to sort out the business of the interpretations being strat-
ified in the fullness of time.

For the moment let’s turn our attention to tightness in general, to other tight
theories. I have the feeling that tightness is something to do with second-order
categoricity.

Must M1 and M2 agree on invariant sentences too?
Presumably every (stratified) extension of a (stratified-)tight theory is

(stratified-)tight? Every invariant extension of an (invariant)-tight theory is
(invariant-)tight?

Failures of stratification are located at edges not vertices
But perhaps the real point is not that NF is stratified-tight, but that it is

not tight, and o invariant extension of it can be tight.
On Fri, May 7, 2021 at 9:10 PM Thomas Forster ¡tf@dpmms.cam.ac.uk¿

wrote:
Dear Ali,
I hope you will forgive me asking questions that seem rather vague, but i

hope at least that they will be easy to answer.
Many years ago Richard Kaye said to me that no-one would ever find a

Church-Oswald style proof of Con(NF). I now understand Church-Oswald con-
struction better than i did then, and Tim Button has now confirmed my long-
held suspicion that the basic version of CUS is synonymous with ZF. I now feel
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very strongly that this is nothing more than a standard effect of the CO con-
struction, and theories with models obtained by CO constructions from models
of a theory T will be synonymous with T. I hope that someone will prove an
omnibus lemma to this effect. In the light of this, i am reading Kaye’s conjecture
to be that NF is not synonymous with any theory of wellfounded sets. This is -
or would be - significant, since it gives flesh to the idea that the conception of
set behind NF really is different from the conception of set behind ZF.

It now seems to me that tightness might be a way of proving this conjecture.
It is easy to see that no stratified extension of NF can be tight (even tho’ many
of them will probably be stratified-tight). This is beco’s NF + “there is a unique
Quine atom” and NF + “there are no Quine atoms” are synonymous but distinct
theories. And the same goes for any stratified extension of NF, since all we use
is the Rieger-Bernays permutation construction. Ali assures me that tightness
is preserved by synonymy. So no stratified extension of NF is synonymous with
any tight theory.

So my question is: is there an omnibus theorem/lemma of some kind that
shows that lots of theories-of-wellfounded sets are tight..? Is the axiom of foun-
dation helpful in proving tightness? Any such omnibus lemma would prove a
version of Kaye’s conjecture.

Any thoughts?
On May 8 2021, Ali Enayat wrote:
Hello Thomas,
You asked:
“So my question is: is there an omnibus theorem/lemma of some kind that

shows that lots of theories-of-wellfounded sets are tight..? Is the axiom of foun-
dation helpful in proving tightness? Any such omnibus lemma would prove a
version of Kaye’s conjecture.”

The best result I know of is that ZF (and all its extensions) are tight, and
I conjectured at the end of my paper that no proper subtheory of ZF is tight,
because the proof of tightness of ZF (I am saying *the* proof, since all known
proofs are minor variations of each other) uses all of the axioms (including
foundation) of ZF to succeed. So your conjecture that NF is not synonymous
with some theory of well-founded sets is a special case of my conjecture that
no proper subtheory of ZF is tight, since NF is finitely axiomatizable, and
finite axiomatizability is preserved by bi-interpretations (and in particular by
synonymies). Indeed, I do not know of any finitely axiomatizable tight theory,
and suspect that there are none, at least if they are also sequential, i.e., have
a coding device for handling finite (in the sense of the theory) sequences of
objects.

An interesting proper subtheory of ZF that we do not have a proof of failure
of tightness is Zermelo + Ranks (where Ranks says that the universe can be
written as the union of sets Vα, as α ranges in the ordinals). What’s attractive
about Z + Ranks is that its second order counterpart is categorical, in the sense
that models of its second order counterpart are of the form Vα, for some limit
ordinal α (this was proved by Uzquiano, in a paper in the Bulletin of Symbolic
Logic, 1999).
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One more note: Hamkins and Freire in their recent JSL paper show that
Zermelo set theory is not tight (using Mathias’ technology of building models
of Zermelo set theory), but their models of Zermelo do not satisfy Ranks. They
also show that ZFC \{power set} is not tight. I had observed, in my paper,
that ZF \{Foundation} and ZF \{Extensionality} are not tight.

All the best,
Ali

Ali,
Thanks v much for prompt and informative reply. We do seem to be getting

somewhere. At the very least we have the special case:
No stratified (indeed: no *invariant*) extension of NF is synonymous with

any extension of ZF.
which certainly has the flavour we want. I shall read your email v carefully

before i shoot my mouth off again. As i say, we seem to be getting somewhere!
v best wishes
Thomas

On reflection perhaps the connection with Kaye’s conjecture is not so close
after all. Yes, CO constructions give you synonymy results but they give you
synonymy results with systems that have Beschränkheitsaxiome (think about
the appearance of ¬Inf in Kaye-Wong) and these Beschränkheitsaxiome are
likely to be unstratified.

Facts that may be connected. No stratified (indeed invariant) extension of
NF proves Counting. That might mean that no stratified extension of NF is as
strong as ZF. Tho’ NF + Counting is invariant. Also there may be a connection
between Ali’s “ranks” axiom and the fact that AxCount≤ is equivalent to a
version of “ranks” being true in a permutation model.

It now seems to me that the point about the CO construction is that when T
is a theory with a CO model then T and {ϕ : T ` ϕWF} are synonymous. This is
beco’s the wellfounded part of the CO model is an isomorphic copy of the original
wellfounded structure. It raises the question: what is the relation between NF
and the theory of wellfounded sets in NF? Are they synonymous? Presumably
not, since NF proves infinity, and the theory of wellfounded sets in NF does not,
and (presumably?) no theory that proves infinity can be synonymous with one
that doesn’t. . . ? So that’s a straw in the wind.

Perhaps worth spelling out why. It is consistent with NF that there should be
a natural number n with 2Tn < n. Any model with such an n has a permutation
model with a finite fat set, and in any such model every wellfounded set is finite.
So the wellfounded sets in this model do not model infinity (might be an idea
to spell this out in gory detail!) So {ϕ : NF ` ϕWF} does not prove infinity,
and therefore cannot be synonymous with NF. This argument doesn’t work for
arbitrary invariant extensions of NF, since it fails for NF + Counting. But the
conclusion might be true for other reasons. A straw in the wind, as i say.

Ali says that every theory synonymous with a tight theory is tight; ZF is
tight, CUS is synonymous with CUS, so CUS is tight. So CUS + “∃! Quine
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atom” and CUS + “¬∃ Quine atom” cannot be synonymous. So the R-B
permutation doesn’t work for CUS. It would be nice to spell out how this failure
happens.

I now feel that there is a new way of thinking of the special nature of CO
constructions. The theory of a CO model is synonymous with the theory of
its wellfounded part. But there are other fragments one could use instead of
‘wellfounded’. There is the theory of the BFEXTS, what Adrian calls its lune.
Time to look again (in an NF context) at the theory of the relational types of
extensional APGs. Does it obey extensionality?

4.0.1 Other tight Theories

PA

Albert and Harvey have shown that PA is tight. Let me see if i can reconstruct
how they did it. My guess is that it starts with the usual story about why are
not any two models of PA isomorphic? Suppose M1 and M2 are two models of
PA. I define an injection ƒ from M1 into M2 by sending the zero 01 of M1 to
the zero 02 of M2, after which i procede by recursion inside M1. To what does
ƒ send S1() (the successor of  in the sense of M1)? Well, obviously to S2 of
whatever ƒ sent  to. Why does this not wrap things up completely, and show
that my recursively defined map ƒ is total? Because we have yet to prove (by
induction on M1) that ƒ is total. Why is this not completely straightforward?
Because the thing we are trying to prove isn’t couched entirely in L(M1); it
makes reference to S2, a gadget to which M1 has no access and can’t prove
inductions about. The assertion “If ƒ () is defined so is ƒ (S1()” is not an
assertion inside L(∈1,=). However! if each of M1 and M2 are definable in
terms of the other then M1 does have access to S2 and the recursion succeeds.

Thus if the operations of M2 can be defined in M1 then the bijection we are
trying to define is defined on the whole of M1. And the other way round too: if
the operations of M1 can be defined in M2 then the bijection we are trying to
define coming from the other direction is defined similarly on the whole of M2.

ZF

It occurs to me that the proof that ZF is tight must procede along the same
lines. If you have two models of ZF with the same carrier set and their theories
are synonymous then you define an isomorphism between them by ∈-recursion.
Suppose 〈V,∈1〉 and 〈V,∈2〉 are two models of ZF with the same carrier set
where each of ∈1 and ∈2 is definable in terms of the other. Then we define an
isomorphism ƒ between the two structures by ∈-recursion. What is ƒ () to be?
Obviously it must be that y s.t. (∀z)(z ∈1  ←→ ƒ (z) ∈2 y) . . . which had
better be a set by replacement. Why is it a set?

Look at the material in COmodels.tex and axiomsofsettheory.tex
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CUS

And similarly also for the basic version of Church’s Universal Set theory—the
version of CUS without j-cardinals but instead with the Beschränkheitsaxiom
(∀)(low()∨ low(V \ )). This is the system that Tim Button calls BLT.
The proof involves a wellfounded recursion, just as the proofs for ZF and PA
do. In this case the relation on which the recursion is done is the wellfounded
relation  E y defined by  E y iff ( ∈ y←→ low(y). Or—rather—on the two
E relations, one for each model. This is another notch on the cane where i am
collecting proofs by induction on this E relation.

The tightness of BLT follows from a combination of the tightness of ZF,
the synonymy of BLT and ZF, and the fact that synonymy preserves tightness;
however it is possible to give a direct proof.

4.0.2 Other stuff to fit in

Every permutation model of a wellfounded model of ZF is an end-extension.
Can that be used to prove Kaye’s Conjecture that NF has no CO-models

(which i take to mean that NF is not synonymous with any theory of wellfounded
sets

4.0.3 Do Tight theories form a Filter?

Supose T is tight, and S ⊇ T. Suppose T+ϕ and T+ψ are synonymous. Hmm
perhaps not.

Suppose T1 and T2 are tight, and that (T1∩T2)∪{ψ} and (T1∩T2)∪{ϕ}
are synonymous, in the sense that any model of one can be turned in to a model
of the other by internally definable means. We want to show that (T1∩T2)∪{ψ}
and (T1∩T2)∪{ϕ} are the same theory. Now every model of T1∩T2 is either
a model of T1 or a model of T2. So every model of (T1 ∩ T2)∪ {ϕ} is either a
model of T1 ∪ {ϕ} or a model of T2 ∪ {ϕ}. We want to show that T1 ∪ {ψ}
and T1∪{ϕ} are synonymous, as are T2∪{ψ} and T2∪{ϕ}. So, take a model
of T1 ∪ {ϕ} and do to it our magic that turns models of (T1 ∩ T2) ∪ {ph}
into models of (T1∩T2)∪{ps}. (The model of T1∪{ϕ} is certainly a model
of (T1 ∩ T2)∪ {ϕ}). What we want is to get a model of T1 ∪ {ps}. However
there is nothing to say that we don’t instead get a model of T2 ∪ {ps}. That
would obey the letter of the law.

Ali Enayat sez that the intersection of two tight theories need not be tight.
Tennenbaum’s theorem has something to say about two models of PA in-

habiting the one carrier set. There might be something useful one could say
about the connection with tightness.

So, picking up on that.. the stratified-tightness of NF would correspond to
the fact that higher-order TST is categorical in every power.... That is to say:
for each cardinal κ there is a unique model of TST whose base level is of power
κ and where the power set operation is honest. (Randall and i have always
called these the natural models of TST)
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But perhaps that is too easy, and there is less to it than meets the eye. But
it is a very good fit.
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Chapter 5

A Paper based on an Idea
of John Bell’s

Bell, John L. Frege’s Theorem in a Constructive Setting. J. Symbolic Logic 64
(1999), no. 2, 486–488.

[It doesn’t work, but there’s still something here to be understood]

Bell’s bright idea concerns classifiers for equinumerosity. The key idea is to
mimic the construction of von Neumann ordinals. Obtain  ∪ {y} from  by
adding a y that you know cannot be in . If you have foundation y can be
taken to be . If you do it that way you get von Neumann ordinals.

We will obtain a proof that if |NC| ≤ T2|V| then we have an implementation
of HA. This will go on in iNF.

We will obtain a new proof that not every wellordering is the size of a set of
singletons.

Can we do anything with BFEXTs?

Also in iNF we can argue that if N , the equipollence classes of the N-finite
sets, is the same size as a subset of ι2“V then we have an implementation of
HA.

This might even give us a new proof of the axiom of infinity in NF! If infinity
fails, then all cardinals are comparable. So either |N | ≤ T ∈|V | or |N | ≥ T ∈|V |.
The first one gives infinity. Does the second..?

Can we show, in NF, that if |N | ≥ T ∈|V | then V is infinite??

It will tell us something about the power of IO

Here’s how to do it. If  is inductively finite, then |ι2“| = |P()/ ∼ |
where ∼ is equinumerosity.

Suppose Infinity fails. Then every set is finite. If  is inductively finite, then
|ι2“| + 1 = |P()/ ∼ | where ∼ is equinumerosity. Or you could write it as

|ι2“| = |P( \ {})/ ∼ |

where ∼ is equinumerosity.
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Take  to be V. Then we get ι2“V is equinumerous with (V \{V})/ ∼, aka
NC minus |V|

or—in this case—IN.
Now if INis the same size as a set of singletons of singletons there is a type-

lowering classifier  for equinumerosity taking singletons as values. Now we
consider the inductively defined family containing ∅ and closed under  7→
 ∪ {()}. All members of this family are distinct and it goes on for ever,
contradicting ¬ Infinity.

This can’t work: you’d be able to prove that no set is finite!

5.1 A letter to John Bell in 2005

Dear John,
I’ve just been reading your rather nice JSL article1 about how there is an

implementation of constructive (Heyting) arithmetic as long as there is a a set X
with a map  : P(X)→ X satisfying  ∼ y ⇐⇒ () = (y). I was provoked
into reading it by Sergei Tupailo, who has been visiting me so we can talk about
constructive NF (aka INF). One of the things we discussed was whether or not
INF interprets Heyting arithmetic. (My money is on it not interpreting HA,
despite your paper—of which more later).

I should have read your paper ages ago, but I’m a lazy reader. And it took
me only about 5 minutes once I got round to it. (”When all else fails, read
the manual”) Why did I deprive myself of this pleasure? I’d like to be able to
say that it’s the same as the reason why I have managed even now to put off
listening to half of the late Beethoven quartets. A number of things strike me
about it:

What did Frege actually say?

I have only just now realised that you don’t need the assumption that X fails
to be finite. I had been confusing this in my mind with the fact that that:

A: if you have a set X that is not inductively finite then you have an
implementation of the natural numbers, as a subset of the quotient
of P(X) under equipollence.

I’ve known this fact for years. It matters to NF people like me, beco’s once
you’ve established that V is not finite then the quotient under equipollence (let
me write ∼ for equipollence henceforth) is an implementation of IN. Since I am
now interested in constructive NF I naturally want to check whether or not this
works in a constructive context.

Your fact is quite different from this. The point is that if |X| = n, where n
is inductively finite, then the subsets of X come in n + 1 different sizes, which

1Bell, John L. Frege’s Theorem in a Constructive Setting. J. Symbolic Logic 64 (1999),
no. 2, 486–488. https://projecteuclid.org/euclid.jsl/1183745790...



5.1. A LETTER TO JOHN BELL IN 2005 105

has the effect that if you insist that the cardinals be be members of X then
X cannot be finite, and must indeed be dekind-infinite The question that now
occurs to me is the following (and it probably sounds silly):

Q: Was Frege really insisting that  has to take values in X? Or
was it A that he had in mind?

A theorem of Tarski’s

In the constructive context the insistence that the range of  should be a subset
of X (which is what distinguishes your assertion from A) is critical—tho’ not
in the classical context, as witness A above. Let p be an assertion with an
intermediate truth value and set X to be { :  = 1 ∧ p}. Then X is not
Kfinite but still doesn’t give rise to an implementation of IN. But then there is
no  taking values in X.

Your idea is that you implement zero as the empty set; thereafter, whenever
 implements a natural number,  ∪ {()} implements n + 1. The point is
that—because  sends things of different sizes to different values—you know
that () cannot be a member of . This ensures that all the implemented
natural numbers are not only Kfinite but “Nfinite”: that is to say, Kfinite and
discrete, which is what you need to get them to model Heyting arithmetic. It’s
very nice!

You may not be aware that this is precisely the same trick used by Tarski
to prove that no set can be the same size as the set of its wellordered subsets. I
haven’t got the reference, but I liked the theorem so much that I pasted it into
my commonplace book:

THEOREM 4 No X can be the same size as the set of its wellordered subsets.

Proof:
Let 〈,⊆〉 be a downward-closed sub-poset of P(X) closed under insertion.

(That is to say, if  ∈  and y ∈ X then  ∪ {y} ∈ .) Let π be a bijection
X→ . We will exhibit a wellordered subset of X that is not in .

Consider the following inductively defined family of elements of , called X .

� The empty set is in X

� If y is in X so is y ∪ {π−1{ ∈ y :  6∈ π()}}.

� If I is a subset of X wellordered by ⊆, then
⋃

I ∈ X , as long as I ⊆ .

We want to know that y ∪ {π−1{ ∈ y :  6∈ π()}} is distinct from y.
Let { ∈ y :  6∈ π()} be  for short. Suppose π−1() is in y. Then we have
(subst π−1() for )

π−1() ∈ ←→ π−1() 6∈ π(π−1())
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This is Crabbé’s paradox. Therefore y 6= y ∪ {π−1{ ∈ y :  6∈ π()}} as
desired.

By induction, every member of X is wellorderable, and X itself is wellordered
by inclusion. Now

⋃

X is wellordered, being a union of a nested set of
wellordered sets. It therefore follows that

⋃

X is not in , for otherwise
⋃

X ∪ {π−1{ ∈
⋃

X :  6∈ π()}} would be in  ∩ X and would be big-
ger. So there is a wellordered subset of X that is not in .

The point is that in both cases you add the singleton of something that you
know cannot be in the set.

An NF issue

Crucial to your trick is the constraint that the function sending  to ∪{()}
should be a set—since you propose to take the closure of the singleton of the
empty set under it. In the context you are considering this doesn’t matter, but
I am interested in using this trick in a stratified context, and this is clearly a
recipe for trouble here. The version of your theorem for a stratified context
takes as its assumption not a map  whose range is a subset of X but a function
 : P(X) → {{} :  ∈ X} (such that () = (y) iff || = |y| as before).
Then the operation sending  to ∪() is just the ticket: () is a singleton
and ‘ ∪ ()’ is a homogeneous term.

In the NF case the obvious candidate for X is V itself. V clearly satisfies
your condition on the nose: take () to be {y :  ∼ y}. However, in this
case () is one type higher than  so the graph of the function sending  to
 ∪ {()} isn’t a set. What we want is a function  that sends every set to
a singleton, and sends sets of the same size to the same singleton. If we didn’t
need singletons then we could (as noted) send  to {y :  ∼ y}. What we need
to get thence to where we want to be is a principle that every partition of V is
the same size as a set of singletons, which is a nontrivial choice principle. I’m
pretty certain this cannot be a theorem of NF (nor a fortiori of INF) tho’ I’m
pretty sure it’s consistent with NF.

What delights me about this is the way in which once you put this in a
stratified context the reliance on a weak choice principle is brought out into the
open. It seems also to be connected to the fact that altho’ ZF with collection
weakened to hold for stratified formulæ only is (I think!) weaker than ZF it
becomes as strong once one adds an axiom saying that every set is the same
size as a set of singletons.

As I say, I’ve been provoked into looking at your delightful little paper by
thinking about how this works in NF (constructive NF).

I am pretty sure that the extent to which your argument (in a stratified
context) relies on the choice principle is enough to ensure that it won’t work in
NF.
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Reviewing this in 2021

We write ‘∼’ for equinumerosity.
Let’s cross our fingers behind our backs and hope that NC, which is {{y :

y ∼ } :  ∈ V}, is the same size as a set ι2“C of sets of singletons.
Then we have homogeneous maps

{} 7→ || 7→ {{c}}

whence we obtain a map

 : V → ι“C

which is a classifier for equinumerosity. That is to say, we have a set function
 that is a classifier for equinumerosity and all its values are singletons. We
can use this to give an implementation of IN in a manner very reminiscent of
the construction of the von Neumann ordinals.

0 =: ∅; S(n) =: n ∪ (n)

Now consider the inductively defined set that contains ∅ and is closed under
 7→  ∪ (). We want this to be an implementation of IN. For this we need
that () is never a subset of . We have high hopes of this, beco’s what
() is depends solely on || and the members of this sequence keep on getting
bigger, so the things that we add are always different.

Naturally we do an induction. The tricky part is to choose the right thing
to prove by induction.

I think we want to say that  is Nfinite and doesn’t map onto any proper
superset of itself. (That bit follows from being Nfinite). Everything below  is
Nfinite and doesn’t map onto any proper superset of itself, so it doesn’t map
onto , and so ( is distinct from every (y) for y below .

(∅) is not s subset of ∅.
Sse () is not a subset of . We seek reassurance that ( ∪ ()) is

not a subset of  ∪ (). Here we need that fact that  is a classifier for
equinumerosity. By induction hypothesis () is not a subset of ; so  and
∪() are different sizes, and () 6= (∪()). This is going to be messy.

Actually you need to strengthen the induction hypothesis to “ is not the
same size as any proper superset of itself”

Let’s do the same for ordinals, and in a classical setting. Suppose  is a
classifer for isomorphisms of ordernesting that sends ordernestings of wellorder-
ings to double singletons. What is the next ordernesting after o? It must be
o ∪ {(
⋃

o) ∪ (o)} which is why we want (o) to be a double singleton.
Then we surely get a contradiction!?
Or perhaps we think of worders as sets of ordered pairs, in which case the

move is from R to R∪ (dom(R))× (R) which requires only that (R) be the
same type as R and that it should be a singleton.

Presumably we can do the same to give lower bounds on the size of the set
of all relational types of BFEXTs
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5.2 Digression on The Axiom of Counting

Do we expect || = |{m :m< ||}| when  is finite??
Do we expect || = |ι“| when  is finite?

These questions are equivalent in NF but they are radically different ques-
tions.Ã°ÂÂÂ

Consider the two assertions:

1. (∀n ∈ IN)(n = |{m :m< n}|);

2. (∀)( finite → || = |ι“|).

These two are usually assumed to be equivalent, and both are known in the
NF literature as the Axiom of Counting, the name given to (1) by Rosser in [?].

However these two are actually completely distinct assertions: the first comes
from the typing that comes with implementations, and the second is purely set-
theoretic. It’s probably worth minuting the following:

THEOREM 5
For any (stratified) implementation of natural numbers let the two vertical bars
denote the natural-number-of function; let k be the type difference (type-of
‘||’)− (type-of ‘’) in that implementation and let IN(k) be the corresponding
collection of implemented natural numbers, so that

(∀m ∈ IN(k))(|{n : n < m}| =m)

is then the axiom of counting.
(Observe that any such implementation of cardinal-of will be setlike even if

it is not locally a set.) Then

1. If k = −1 then the axiom of counting is a theorem of NF;

2. In all other cases the axiom of counting is equivalent to “Every (induc-
tively) finite set is strongly cantorian”.

(In this section we take an implementation of arithmetic to be a structure
for the language of arithmetic PLUS a natural-number-of function which is
assumed to be setlike but not assumed to be locally a set.

There is a further subtlety in that the T function on natural numbers—
thought of as a permutation of V—is not setlike, but thought of as a permutation
of IN it is.)
Proof:

1. k = −1. In this case the type of ‘|{n : n < m}|’ is one less than the type
of ‘{n : n < m}’ which in turn is one greater than the type of ‘m’. One
greater? Yes; as long as ‘ = |y|’ is stratified the relation < on cardinals
will be homogeneous. So ‘|{n : n < m}|’ and ‘m’ have the same type.
So the assertion (∀m ∈ IN(−1))(|{n : n < m}| = m) is stratified and
can be proved by mathematical induction.
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2. k 6= −1. For any implementation IN(k) the assertion

|ιk+1“| = |{m ∈ IN :m< ||}|

is stratified and can therefore be proved by induction on ||. That we get
anyway; the axiom of counting now tells us that

|| = |{m ∈ IN :m< ||}|

so we conclude that || = |ιk+1“|. ∗∗

(Notice that in the case k = −1 the axiom of counting gives us no ex-
ploitable information.) Now if  were properly bigger (or properly smaller)
than ι“ then, for each concrete j, ιj“ would be properly bigger (or prop-
erly smaller—whichever it is) than ιj+1“ so—by transitivity of—< we
would establish that  was properly bigger (or smaller, mutatis mutandis)
than ιk+1“. But we have just shown—above, at ∗∗—that this cannot
happen. So  and ι“ are the same size. That is to say that  is cantorian.

However the claim was that  was strongly cantorian, so there is still
work to be done. If every finite set is cantorian then Specker’s T function
restricted to IN is the identity, so the relation {〈{n}, Tn〉 : n ∈ IN}—
which is a set, being the denotation of a closed stratified set abstract—is
precisely ι�IN, which is to say that IN is strongly cantorian. But any subset
of a strongly cantorian set is strongly cantorian, and every inductively
finite set can be embedded into IN2 so every finite set is strongly cantorian.

There are many ways of implementing natural-number-of with a stratifi-
able formula—at least in NF(U).3 To each such implementation we can associate
a concrete integer k which is the difference (type-of ‘y’) − (type-of ‘’) in
‘y = ||’. In fact:

THEOREM 6
For every concrete integer k there is an implementation of natural-number-of
making ‘y = ||’ stratified with (type-of ‘y’) − (type-of ‘’) = k.

Proof:
For k = 1 there is the natural and obvious implementation that declares

|| to be []∼, the equipollence class of —the set of all things that are the
same size as . For k ≥ 1 we take || to be ιk−1([]∼). (This works for all
cardinals, not just for natural numbers).

For k < 1 we have to do a bit of work, and although the measures we use
will not work for arbitrary cardinals they do work for naturals. We need the

2This needs AxInf
3I seem to remember that there is no way of implementing natural-number-of with a

stratifiable parameter-free formula in ZF(C).
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fact that there is a closed stratified set abstract without parameters that points
to a wellordering of length precisely ω. The obvious example is the usual Frege-
Russell implementation of IN as equipollence classes, which we have just used
above with k ≥ 1. However it is probably worth emphasising that we don’t
have to use the Frege-Russell IN here; whenever we have a definable injective
total function ƒ where V \ ƒ“V is nonempty, with a definable  6∈ ƒ“V, then

⋂

{A :  ∈ A∧ ƒ“A ⊆ A}

will do just as well. The usual definition of IN as a set abstract is merely a case
in point. (We have already noted that there is no such set abstract in Zermelo
or ZF!) Let’s use the usual IN-as-the-set-of-equipollence-classes.

Consider {ιk(n) : n ∈ IN}. It is denoted by a closed set abstract so it
is clearly a set in NF, and it has an obvious canonical wellorder to length ω.
For every inductively finite set  there is a unique initial segment  of this
wellordering equipollent to it, and the function that assigns  to that initial

segment is a set. We conclude that the function  7→
⋃k  is an implementation

of natural-number-of that lowers types by k.

Here is another proof. We can take || to be [y]∼ for any y such that
ιk“y ∼ . (Here ∼ is equipollence as before.) This gives us a natural-number-
of  that is k − 1 types lower than . For us a natural-number-of  that is
k + 1 types higher than  take || to be [ ιk“]∼.

Notice that the same does not go for ordinal-of, because if it did we would
get the Burali-Forti paradox. It seems to be open whether or not one can have
a cardinal-of function that lowers types. We can have an implementation of
ordinal-of that lowers types if IO holds. . . specifically iff every wellordered set
is the same size as a set of singletons. (This is related to the fact that there is
no type-lowering implementation of pairing. Is it also related to the fact that
WE - like P - is not entirely finitary..?)



Chapter 6

Permutation Models

This is a terrible jumble.

Nathan’s property of a universal involution. Anything conjugate to a uni-
versal involution is universal? Every universal involution is fexible? Every
permutation is a product of universal involutions?

6.1 The di Giorgi Picture

Work in your favourite formal metatheory (ZF(C) . . . whatever). We will use
the Di Giorgi picture of models of set theory. A model of Set theory is of course
a carrier set (always infinite in this context) A (for Atoms), decorated with a
binary relation to obtain a structure M = 〈A,∈〉 |= NF. What is distinctive
about the Di Giorgi picture is that it thinks of the binary relation ∈ of the
model as arising from an injection i : A ,→ P(A). The binary relation that
decorates A is {〈, b〉 :  ∈ i(b)}. (The ‘∈’ here is of course the membership
relation of our Favourite Formal Metatheory, and the P is the power set in the
sense of our Favourite Formal Metatheory.) Either way we call the resulting
model ‘M’. Perhaps we should write the injection with a subscript: iM . . . ? Or
attach the subscript to the letter ‘M’ since the injection determines the model.
I think the most satisfactory practice is to denote the model corresponding to
an injection i as ‘M’ and to denote the injection corresponding to a model M as
‘i’, so that we regard ‘i’ and ‘M’ as reserved letters. We can scatter subscripts
about to dissolve ambiguities ad lib..

111
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A

P(A)

iM

It is long-standing practice to use lower case Greek letters to denote per-
mutations of A that are sets of the models M. Of late Nathan has had the
habit of using lower-case Roman letters to denote elements of Symm(A), and
equipping those letters with superscripts, so that ‘sM’ denotes that object in
M (aka element of A) such that i(sM) is the graph of the permutation s of
A, and i can well believe that we will need that usage too. Accordingly i shall
systematise notation by using lower case Roman letters ‘p’ ‘s’ ‘t’. . . for arbitrary
permutations of A, and the corresponding lower-case Greek letters (‘π’, ‘σ’, ‘τ’
. . . ) for permutations that are sets of M. Notice that when we write ‘arbitrary
permutation of A’ we always mean a permutation of A that is a set from the
point of view of the FFM—our Favourite Formal Metatheory.

I am going to reserve the letter ‘i’ (decorated from time to time with suitable
subscripts) to range over injections A ,→ P(A). And of course we reserve the
letter ‘A’ to denote the set of atoms.

There is a natural action of Symm(A) on A ,→ P(A), the set of injections
from A into P(A). A permutation s ∈ Symm(A) sends i to (js)−1 · i · s. It is
natural to describe (js)−1 · i · s and i as conjugate.

REMARK 12 Conjugate injections give rise to isomorphic di Giorgi models.

 ∈ (js)−1 · i · s(y) iff s() ∈ i(s(y)).

which says that s is an isomorphism between M(js)−1 ·i·s(y) and Mi.

Notice that this doesn’t rely on s being i-setlike.We haven’t defined ‘setlike’
yet This means that in what follows when we talk about (di Giorgi) models and

injections we are speaking of them only up to conjugacy.
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6.1.1 Internal Permutations

When M is a model arising from an injection i : A ,→ P(A) in this style, and
s is a permutation of A, there is the possibility that (the graph of) s is coded
inside M. In these circumstances we say that s is internal and we write ‘Ms’
(or perhaps ‘σ’) for the member of A that M believes to be the graph1 of s.

The class of Internal permutations is of interest to us for various obvious
reasons. Also of interest is the larger class of setlike permutations (of/for M),
which (or: whose graphs) might not be sets of M but which nevertheless behave
rather like sets of M. They are the subject of the section which now follows.

6.2 Setlike Permutations

[fit this in at the correct spot. Is (Mσ)τ the same as Mσ·τ? If it is then we
have a simpler proof that if-you-can’t-do-it-with-involutions-then-you-can’t-do-
it-at-all.]

The blue dots inhabiting the ellipse on the right in the picture above are
subsets of A that are values of the injection iM : A ,→ P(A). Any permutation
p of A lifts in an obvious way to a permutation j(p) of P(A). Whenever we have
an injection i in mind we are interested in permutations p such that jp maps
i“A into itself. This feature is related to the possibility that the permutation
p obeys replacement in M. We will say p is setlike for a model M iff it obeys
replacement for M. (A proper definition will be given later) The obvious snappy
way to capture this motivation in the present context is to say that p is setlike
(wrt i) iff jp is in the setwise stabiliser of i“A. However this smuggles in a non-
trivial assumption. The setwise stabiliser of i“A is a group, so it is closed under
inverse, and if p is setlike in this sense, so is p−1. However—returning to the
original motivation—it is far from clear that if M is closed under p-images then
it is also closed under p−1-images. So we have to decide whether we want the
(original) well-motivated but perhaps not very well-behaved “one-sided” defi-
nition of setlike or the—better behaved but less well-motivated—“two-sided”
definition. For the moment I am going to use the two-sided definition; con-
sideration of the possibilities surrounding the one-sided definition—and of the
(remote) possibility that the two definitions might actually be equivalent—will
be relegated to an appendix.

Let p be such a permutation; [This assumption is not essential to what
follows but the development is much better motivated when it holds.] Then jp
is defined on the whole of i“A and its restriction is therefore a permutation of
i“A. This means it can be copied downstairs to a permutation i−1 · jp · i of A.
[Notice that here we are using a Roman letter ‘p’ because we are not assuming
that the permutation in play is a set of M.]

DEFINITION 3
When i−1 · jp · i is total we will call it the derivative of p, and write it ‘Di(p)’.

1Thank you, Nathan, for this notation!
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It, in turn, might have a derivative (or it might not, of course). If the nth
derivative exists (= is total) we say that p is n-setlikei;

If all derivatives exist we say p is setlikei.

We will omit the subscript when i is clear from context.
From the point of view of the model M arising from i the derivative of an

internal permutation σ is (the permutation which it believes to be) jσ.

‘Setlike’ is a weaker condition on a permutation than ‘internal’. Every ∈-
automorphism of a model of any set theory (and not just NF) must be setlike,
but it is easy (think: Ehrenfeucht-Mostowski) to cook up models with external
automorphisms that are not internal (sets of the model). Of course with second-
order theories such as second-order Zermelo every setlike permutation is locally
a set, in the sense that its restriction to any set is a set. I might provide a proof
of this fact (tho’ it could be left as an exercise for the reader) but in any case
our chief concern here is with di Giorgi models of NF rather than of theories of
wellfounded sets.

However there remains the question of whether or not there can be definable
setlike permutations that are not internal.

It is easy to see that the function Di sending a permutation p to its derivative
is injective, even if merely partial. Any fixed point for Di is i-setlike of course,
but it is more than that: it is an automorphism of the model arising from i.
Indeed the converse is true too. A permutation of A is an ∈-automorphism of
M iff it is a fixed point for Di. [It occurs to me to wonder about permutations
p such that, for all n, p is Dn

i
of something. Does such a p have a derivative?

However that is for later; see the second appendix to this chapter, section 6.9]

REMARK 13 Di is a group homomorphism.

Proof:
It clearly fixes 11; for multiplication we compute

Di(s) ·Di(t) =

i−1 · js · i · i−1 · jt · i =

i−1 · js · jt · i =

i−1 · j(s · t) · i =
Di(s · t)

This works beco’s if js and jt are in the setwise stabiliser of i“A then so is
j(s · t) because the setwise stabiliser is (of course) closed under composition,
and j is a group homomorphism

Inverse is similar:
Di(s−1) = i−1 · j(s−1) · i and that’s OK beco’s s is in the setwise stabiliser

and that is a group (closed under inverse) so the RHS of the equation is de-
fined.. [This relies on our using the two-sided definition of setlike, and marks
a place where the forthcoming development for one-sided setlike permutations
will deviate.]
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Notice that we are not claiming that D is a homomorphism defined on every-
thing in InternalM, let alone Symm(A)! However it is a homomorphism from
the group Setlikei1 of permutations that are 1-setlike from the point of view of
M (or i). And at this stage I am not proposing to reserve any special font for
variables ranging over setlike permutations.

We will be interested in the group Symm(A) of all permutations of A, but
also (and mainly) in two subgroups of it, both related to the model M. One
group is the group of setlike permutations as defined above—the set of permu-
tations s for which Di is defined. The other is the (presumably much smaller)
group of those permutations of A that are encoded as sets of the model M.
Let us call these two groups Setlikei and Internali. (It would probably make
as much sense to have a ‘M’ superscript as to have the i superscript—which
suggests that the notation is not optimal—but we will in any case omit the
superscript when i and M are clear from context). Recall that M is a model of
NF, and the axioms of NF promise us that the collection of all permutations of
V is a set (a group indeed); and there are plenty of definable set abstracts that
define permutations, so this definition is not vacuous.

Recall at this juncture Henson’s subscript notation σn, which we can invoke
when σ is i-setlike:

s1 = s; s+1 = Di(s) · s.

A bit of housekeeping. . . .
s is n + 1-setlike wrt i iff Dn

i
(s) is 1-setlike wrt i.

or do i mean “Di(s) is n-setlike wrt i”. . . ?
(Or both!)
best write this out.

We are going to need a notation for the groups of permutations that are
n-setlike wrt M. Shall we write “Setlikei

n
” for this group? Could also write

“SetlikeM
n

” for this group?
We note that

LEMMA 2 Internal�Setlike.

Proof:
NF proves that the image of a set in a function is a set so, for any M |=

NF, if (the graph of) s is a set of M then s is clearly setlike. So InternalM

is certainly a subgroup of SetlikeM; it remains to be shown that it is a normal
subgroup.

Let s be an M-setlike permutation and τ a permutation-internal-to-M. We
want sτs−1 to be a permutation internal to M. Since s is setlike we know that
s“τ is a set of M. Is this any good? It isn’t quite what we want, but it is a
step in the right direction. If s is setlike, so is jn(s) for any n. So jn(s) of (the
graph of) τ is a set; now—for suitable n depending on our choise of pairing
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function—jn(s) of (the graph of) τ is τs. This gives us the normality we seek.
Need to rephrase this using
the D derivative notation

Actually we want to say
InternalM �SetlikeM

n
for each concrete n.

Lemma 2 actually shows that Internali is a normal subgroup of all of the
Setlikei

n
and that later groups are normal subgroups of earlier subgroups, but

that none of them are normal subgroups of Symm(A). For a start, Setlikei1 is the

setwise stabiliser of i“A which is of course not a normal subgroup of Symm(A).
Sort this out

REMARK 14 For every injection i : A ,→ P(A), the set Setlikei of permuta-
tions of A that are i-setlike form a group.

Proof:
We will prove by induction on ‘n’ that, for all i, the set of permutations that

are n-setlike wrt i is a group, and later members of the sequence are subgroups
of earlier members. The set Setlikei of permutations of A that are i-setlike is
the intersection of this nested sequence of groups and is therefore a group.

Base case: n = 1
For all i, the set of permutations that are 1-setlike wrt i is—by definition—the
setwise stabiliser of i“A which is of course a group.

Induction step

Suppose the collection of permutations that are n-setlike wrt i is a group.

Closed under inverse

First we show that the collection of permutations that are (n+ 1)-setlike wrt i
is closed under inverse.

s is (n + 1)-setlike wrt i

iff j(i−1 · j(Dn
i
(s)) · i) is in the setwise stabiliser of i“A

iff (j(i−1 · j(Dn
i
(s)) · i))−1is in the setwise stabiliser of i“A.

Now

j(i−1 · j(Dn
i
(s)) · i)−1 =

j(i−1 · (j(Dn
i
(s)))−1 · i)=

j(i−1 · j((Dn
i
(s))−1) · i)=

j(i−1 · j((Dn
i
(s−1))) · i)

which is therefore in the setwise stabiliser of i“A, which is to say that
(Dn

i
(s))−1 is 1-setlike, which is to say that s−1 is (n + 1)-setlike.
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Closed under composition

s and t are both (n+ 1)-setlike wrt i iff j(i−1 · j(Dn
i
(s))) and j(i−1 · j(Dn

i
(t)))

are both in the setwise stabiliser of i“A.
So: assume that they are, and deduce that s · t is in the setwise stabiliser of

i“A. We get

j(i−1 · j(Dn
i
(s)) · i) · j(i−1 · j(Dn

i
(t)) · i)

is in the setwise stabiliser of i“A, since the stabiliser is closed under composition.
The displayed expression rearranges to

j(i−1 · j(Dn
i
(s)) · i · i−1 · j(Dn

i
(t)) · i)

then to

j(i−1 · j(Dn
i
(s)) · j(Dn

i
(t)) · i)

and

j(i−1 · j((Dn
i
(s)) · (Dn

i
(t))) · i)

and finally

j(i−1 · j((Dn
i
(s · t)) · i))

so this last object is in the setwise stabiliser of i“A . . . which is to say that s · t
is (n + 1)-setlike wrt i as desired.

This still needs to be thor-
oughly checked and titivatedWe have used nothing beyond the facts that Di and j are group homomor-

phisms. In particular we have not assumed that M |= NF—even tho’ that is the
motivation for this investigation. In fact we have made no assumptions about
the theory of the model M at all: all this is going on in complete generality
in our Favourite Formal Metatheory. That will change when we start proving
theorems about the group Internal of permutations internal to M. Then we will
be assuming that M |= NF or something similar. After all, if a permutation of
the carrier set of a model of a set theory is a set of the model then we clearly
aren’t in Kansas any more i mean ZF.

Interestingly I know nothing about the cardinality of these groups. The
cardinality of Internal is of course bounded by |A|, and—reasoning inside M—
it’s not hard to see that |Internal| = |V|. At least if M |= NF! As far as |Setlike|
goes, that’s anyone’s guess.

In checking whether or not a permutation σ is setlike for an injection i we
ask only about the range i“A of i. Thus, for any s at all, since i and i ·s have the
same range they see the same 1-setlike permutations. Unfortunately this seems
not to establish that they see the same setlike permutations. However i think all
the groups of permutations involved are conjugate copies of one another. We’d
better check that. . .
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From an injection i : A ,→ P(A) we can obtain a sequence of injections
in : A ,→ Pn(A) using j in the obvious way. One gets a definition precisely
analogous to Henson’s. Do we get: “s is n-setlike wrt M iff jns is in the setwise
stabiliser of in“A”?Should prove this!

It is standard in NF studies that members of Setlike give rise to Rieger-
Bernays permutation models. If M |= NF, and s ∈ SetlikeM, then there is a
model notated ‘Ms’ which is also a model of NF and which agrees with M on
stratifiable sentences2

Given any model Ms obtained in this way we can form two groups Internals

and Setlikes in the same way as Internal and Setlike arise from M. This gives
rise to a family of four questions:

“For M |= NF, and s a (setlike/internal) permutation of M, does
Ms have the same (setlike/internal) permutations as M?”

Life would be very simple simple if the answers to all four were ‘yes’ !

LEMMA 3 Fix i; then (∀s ∈ Internal)(Internals = Internal).

Proof:
Let s be a permutation of A, and π a permutation of A that is a set of M.

We will show that s is a set of M iff it is a set of Mπ. The key new idea is to
expand the language by giving a name to every atom in . Suppose s is a set
of M. By Henson’s lemma Mπ |= “s is a permutation of V and s() = b” iff
M |= “πn(s) is a permutation of V and πn(s)() = b”. Now every element of
A is named in both M and Mπ, so what this is telling us is that πn(s) is that
element of Mπ which codes the graph of s. In fact πn is a partial map A* A
which, for any internal permutation s, sends the atom coding s in M to the
atom coding s in Vπ. Since πn is a permutation it has an inverse, and gives a
bijection between the atoms representing internal permutations in M and the
atoms representing the same permutations in Mπ.

This proof exploits the fact that π is a set of M, so it cannot be straightfor-
wardly repurposed to prove any of the other. However, i think the following is
safe:

2Indeed the setlike condition on permutations is more-or-less what is needed for the per-
mutation model Ms to be a model of NF. I say ‘more-or-less’ rather than ‘exactly’ because
the exact condition is the slightly weaker “one-sided” definition which we discarded earlier.
This might yet come back to haunt us. The “one-sided” definition of setlike doesn’t tell us
that the setlike permutations form a group, merely a semigroup with a unit and cancellation.
For all that we know that the inverse of a setlike permutation of finite order is a setlike per-
mutation, so all we would need in order to not have to worry about the difference between
one-sided and two-sided selike would be an analogue of Bowler-Forster to the effect that every
(one-sided) setlike pemutation is a product of involutions. Must check to see whether the
proof of Bowler-Forster can be repurposed!
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REMARK 15 Fix i; then (∀s ∈ Setlike)(Setlikes = Setlike).

Proof:
Let M be a model of NF, and s, t two permutations of A that are setlike for

M. We want to show that t is setlike for Ms. Let  be a set of Ms; we want
t“ to be a set of Ms. Now t“ (in the sense of Ms) is {t(y) : y ∈ s()}, and
this is of course a set of Ms, being t“(s(), since t is 1-setlike for M. So t is
1-setlike for Ms. n-setlike is analogous.

Actually we have to be careful here, for two reasons:
(A) All this shows is that if t is setlike for M then it is setlike for Ms as

long as s is setlike for M. It doesn’t show the converse (and thereby provide
a ‘yes’ answer). So in principle permutation models could acquire new setlike
permutations, unlikely tho’ that probably sounds. We should plug that gap. Of
course we could plug it by showing that setlike permutations can be undone. . . .
That is to say, we desire a proof that relation (ii) of the next section should be
symmetrical.

(B) We need to emphasise that this proof works for both the one-sided and
the two-sided definitions of setlike.

6.3 Permutation Models

We have several relations that might hold between two models M and N. . .

(i) N =Mσ for σ an internal permutation of M;
(ii) N =Mσ for σ a setlike permutation of M;
(i)′ N =Mσ for σ a definable internal permutation of M;
(ii)′ N =Mσ for σ a definable setlike permutation of M.

These relations are all going to crop up as accessibility relations for Kripke
structures for families of di Giorgi models. We have to check which of them are
equivalence relations and which aren’t. They are all reflexive. I think we now
know that (i) is a equivalence relation and that (ii)′ is a quasiorder but not an
equivalence relation. We will prove both these facts below. It is clear that (i)′

is transitive for at least some definitions of definable, for example the definition
that says that σ is definable iff “ ∈ σ(y)” is equivalent to a suitable formula in
L(∈,=). However, as Nathan has showed, if we take ‘definable’ to mean “fixed
by all internal automorphisms”, then it isn’t symmetrical. That is theorem 8
below.

THEOREM 7 The relation—(i) above—that holds between two models M and
N of NF when N =Mσ for σ an internal permutation of M is an equivalence
relation.

Proof:
It’s obviously reflexive. We need to check transitivity and symmetry.
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Transitivity

(∀σ, π∃τ, μ)(μ : Vτ ' (Vσ)π)

so μ() ∈ τ · μ(y) iff ( ∈ σ(y))π
so μ() ∈ τ · μ(y) iff πn() ∈ (πn+2(σ)(πn+1(y))

Now reletter ‘πn()’ as ‘’ and ‘πn(y)’ as ‘y’ getting

so μ · (πn)−1() ∈ τ · μ · (πn)−1(y)) iff  ∈ (πn+2(σ)((jn+1π)(y))

Doctor the LHS to
 ∈ j(μ · (πn)−1)−1 · τ · μ · (πn)−1(y))
 ∈ j(πn) · (jμ)−1 · τ · μ · (πn)−1(y))
giving

j(πn) · (jμ)−1 · τ · μ · (πn)−1 = πn+2(σ) · (jn+1(π))

whence—well!
Let’s pin our hopes on being able to take μ to be the identity. Then we get

j(πn) · τ · (πn)−1 = πn+2(σ) · jn+1(π)

but now we can identify τ:

τ = (jπn)−1 · πn+2(σ) · jn+1(π) · πn
which i think is

τ = (jπn)−1 · πn+2(σ) · πn+1

Symmetry

(∀σ∃τ)(∀y)((Vσ |=  ∈ τ(y))←→  ∈ y)

(∀σ∃τ)(∀y)((σn() ∈ (σn+2(τ)) ·σn+1(y))←→ σn() ∈ (σn+1) ·σ−1(y))

We can reletter ‘σn()’ as ‘’ to get

(∀σ∃τ)(∀y)(( ∈ (σn+2(τ)) · σn+1(y))←→  ∈ (σn+1) · σ−1(y))

and we then invoke extensionality to get

(∀σ∃τ)(σn+2(τ) · σn+1 = (σn+1) · σ−1)

so we want σn+2(τ) to be

σn+1 · σ−1 · (σn+1)−1
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which is to say we want τ to be

(σn+2)−1(σn+1 · σ−1 · (σn+1)−1)

which can surely be simplified further. Expand σ−1n+2 to

σ−1 · j(σ−1) · j2(σ−1) · · · jn+2(σ−1)

and reflect that jn+2(σ−1)(t) = tσ for suitably large n.
More to do here

Thanks to work of Nathan’s we now know that

THEOREM 8 (Bowler)
(i)′ is transitive and reflexive but not symmetrical.

Proof:
Bowler showed that, for any M |= NF, there is t ∈ Internal that conjugates

jc and j2c. (c is the complementation function). Hitherto the only known
proof of this fact used AC2—which prevents the permutation obtained from
being definable3. Bowler’s permutation is definable in M. Mt believes there is
a nontrivial (internal) ∈-automorphism (which used to be jc and is therefore an
involution). Bowler shows that t is not definable in Mt. The text which follows
is edited from an email of his.

“We showed in lemma 3 that if N is a permutation model derived from M
then SetlikeN = SetlikeM.

Now the setup is that, according to M, there are permutations π and σ
such that σ 6= j(σ) but π · σ = j(σ) · π. [aside: σ is jc and π is the clever
permutation found by Nathan that conjugates jc and j2c.] Let s, t and p be
the elements of SetlikeM with sM = σ, tM = j(σ) and pM = π. Thus p · s =
t · p and s 6= t. Let N be the model Mπ. Then it is not hard to check that s is
an automorphism of N since, for any  and y, we have

(1) N |= s() ∈ s(y) iff (beco’s N =Mπ)
(2) M |= s() ∈ π(s(y)) iff (beco’s s is called σ when it is living in M);
(3) M |= σ() ∈ π(σ(y)) iff (beco’s π · σ = jσ · π)
(4) M |= σ() ∈ j(σ)(π(y)) iff (beco’s σ is a permutation)
(5) M |=  ∈ π(y) iff (beco’s N =Mπ)
(6) N |=  ∈ y.

It follows that N believes that sN is an automorphism. Looking at things
this way, it isn’t hard to find the ‘return’ permutation; it is simply (p−1)N. Our
aim now is to show that this return permutation is not a definable element of N.
Since N believes that (p−1)N is the inverse of pN, it suffices to show that pN

3Use of AC2 is in any case bad practice in NF since AC—tho’ admittedly not yet AC2—is
known to be inconsistent with NF.
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is not definable in N. We will do this by exhibiting an automorphism of N for
which it is not a fixed point. So we need to understand how permutations act
on elements coding permutations. The key identity, which is not hard to check,
is that if ρ and τ are permutations then j3(ρ)(τ) = ρ · τ · (ρ−1); here I am
assuming that permutations are encoded as sets of Wiener-Kuratowski pairs, in
the usual way. This means that, according to N, j3((sN)−1)(pN) = (sN)−1.

pN · sN = (s−1 · p · s)N = (s−1 · t · p)N 6= pN,

since s 6= t. Thus pN is moved by the permutation given in N as j3((sN)−1),
and N believes that this permutation is an automorphism since it believes that
sN is an automorphism. Thus pN cannot be definable in N.”

Not sure about (ii)′, but i think i am now ready to claim (ii).

THEOREM 9 Recall that the relation ((ii) above) is the relation that holds
between two di Giorgi structures M and N when N is Ms for some permutation
of A that is setlike for M. We claim that (ii) is symmetrical.

Proof:
We first have to show that if s is setlike for M then s−1 is setlike for Ms.

Secondly we would have to show that s−1 (which gives us a permutation model
once we have established that s−1 is setlike for Ms—if indeed we have) not
only gives us a permutation model but takes us back to M. Let’s grind out the
first. Suppose s is 1-setlike for M. Is s−1 1-setlike for Ms? Let  be a set of
Ms. We want the collection of things that are s−1 of things in  to be a set of
Ms. So we need there to be y s.t., for all z, z ∈ s(y) iff z is s−1() for some
 ∈ s(). So we want s(y) to be {z : s(z) ∈ s()}, and that set abstract is
certainly a set beco’s s−1 is setlike. So it looks OK.

Better check 2-setlike too!
Does s−1 take us back to M? We want Ms |=  ∈ s−1(y) iff M |=  ∈ y.

This appears to be completely straightforward. Ms |=  ∈ s−1(y) becomes
either M |=  ∈ s · s−1(y) or M |=  ∈ s−1 · s(y) (and i’m not sure which!)
but either way it simplifies to M |=  ∈ y. Which is what we want.

If this is correct (and it seems to be!) then it means that all permutations
can be undone—even those that aren’t setlike. But, if it is correct, how can i
have missed it all these years?

(ii)′ (definable setlike permutations) might turn out to be degenerate. Any
definable setlike permutation is going to be internal isn’t it? I don’t think we can
have a setlike permutation that is definable by an unstratifiable expression but
not by any stratifiable expression. I think there is a discussion of that possibility
in these notes somewhere . . . p. 122. Very well: lemma 3 tells us that all
permutation models of a given model (even using permutations that are merely
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setlike rather than actually internal) have the same internal permutations. (The
question of whether or not they all see the same group of internal automorphisms
is an old one which we will discuss below). Do they have the same setlike
permutations? It seems not: the groups of permutations that one finds are not
all the same, but at least they are all conjugate copies of one another. We are
going to need the back of an envelope.

First a potentially useful observation:

REMARK 16
For all i, s and t, if Di(s) is defined then so is Di·t(s), and it is equal to
t−1 ·Di(s) · t.

Proof:
If Di(s) is defined it is beco’s js is in the setwise stabiliser of i“A; if Di·t(s)

is defined it is beco’s js is in the setwise stabiliser of (i · t)“A . . . which last
is the same as the setwise stabiliser of i“A, since—for any permutation t of A
whatever—i“A = (i · t)“A

So If Di(s) is defined so is Di·t(s). That is to say, if s is 1-setlike wrt i then
it is 1-setlike wrt i · t for any permutation t. So whether s is 1-setlike wrt i or
not depends only on the range of i..

Now for the conjugacy observation . . . . Di(s) is i−1 · js · i and Di·t(s) is
(i · t)−1 · js · i · t,

so Di·t(s) is

(i · t)−1 · i ·Di(s) · i−1 · i · t

which simplifies to
t−1 ·Di(s) · t.

And we have not assumed that t is i-setlike!

Fix t (not assumed to be i-setlike for the moment. . . )
s is 1-setlike wrt i iff
s is 1-setlike wrt i · t

s is 2-setlike wrt i iff
(i · t)−1 · js · i · t
(which is)
t−1 · i−1 · js · i · t
is 1-setlike wrt i.

s is 3-setlike wrt i iff
(i · t)−1 · j((i · t)−1 · js · i · t) · i · t.
is 1-setlike wrt i.
This is
t−1 · i−1 · j(t−1 · i−1 · js · i · t) · i · t
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Now js · i = i ·Di(s) so we can rewrite the underlined part to get
t−1 · i−1 · j(t−1 · i−1 · i ·Di(s) · t) · i · t
which becomes
t−1 · i−1 · j(t−1 ·Di(s) · t) · i · t
and we want this to be 1-setlike wrt i.
gulp. I Have no idea what was going on here.

Recall that if s is setlike so are all the sn. More generally, if s is n-setlike
then sn is 1-setlike.

To prove that relation (ii) above is symmetrical one would reason as follows
(with fingers crossed!). Let M be a model of NF, and s a permutation setlike
for M. Then, by remark 15, s is also setlike for Ms. Does that mean that s−1,

too, is setlike for Ms? Presumably. If so, we can jump into (Ms)s
−1

(whatever
that means!) which ought to be M.

But there’s many a slip twixt cup and lip.

Fix an injection i and let s be i-setlike. We ask whether any permutation
that is setlike wrt i is also setlike wrt i · s. Since i · s and i have the same range
anything that is 1-setlike wrt one is 1-setlike wrt the other.

Suppose t is setlike wrt i; is it going to be setlike wrt i · s? Now t is a
2-setlike permutation wrt i · s iff j(σ−1 · i−1 · jt · i · s) is in the setwise stabiliser
of (i ·s)“A. But the setwise stabiliser of (i ·s)“A = the setwise stabiliser of i“A.
Observe that j(s−1 · i−1 · jt · i · s) is the result of conjugating j(i−1 · jt · i) by
js, and j(i−1 · jt · i) is in the setwise stabiliser of i“A. So we need the setwise
stabiliser of i“A to be closed under conjugation by js whenever s is setlike wrt
i. is that true?

OK, let s and t be setlike; we want to show that Vs and Vt can see each
other.

That means that, if we place ourselves inside Vs we can see a permutation
π such that, for all  and y, Vs |=  ∈ π(y) iff  ∈ t(y).

[hang on: do we mean setlike or internal???]
This is equivalent to

(∀y)(sn() ∈ sn+2(π) · (sn+1(y))←→  ∈ t(y))

and then

(∀, y)( ∈ (jsn)−1sn+2(π) · (sn+1(y))←→  ∈ t(y))
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giving
(∀y)(jsn)−1sn+2(π) · (sn+1(y)) = t(y))

by extensionality and then

(jsn)−1 · sn+2(π) · (sn+1) = t

Compose both sides on the L with jsn to get

sn+2(π) · (sn+1) = jsn · t

and then compose both sides with (sn)−1 on the R to get

sn+2(π) = jsn · t · (sn+1)−1

whatever that means. Check this
π = (sn+2)−1(jsn)t(sn+1)
I’ve got the ns jumbled up a bit but the idea is roughly right.
And i think the same idea works even in the other setting where we consider

setlike permutations rather than internal permutations.

6.3.1 A Digression on Setlike Permutations

Quite which subgroups of Symm(A) can turn up as the group Setlikei of per-
mutations of A that are i-setlike for some i is not entirely clear to me at this
stage. Certainly Symm(A) itself can be such a group: take i to be a bijection
between A and Pℵ0(A); every permutation of A is i-setlike for this i. But of
course the model that results is not a model of NF. It might help readers who
are not familiar with the di Giorgi presentation to say a bit about what it does
model. ZF \ Inf + ¬Inf perhaps. Does it obey TC? Clearly you can’t expect
foundation.

The concept of setlike permutation has two motivations. We are seeing one
of them here, but there is another—and it is more general, in that it motivates
a definition of setlike function not just setlike permutation. In NF or Zermelo
any function that is (locally) a set obeys replacement. However, there might be
functions that are not sets (even locally) but nevertheless still obey replacement.
Such functions (too) are said to be 1-setlike. Thus: a function that obeys
replacement is 1-setlike, and a function that, when lifted (once) still obeys
replacement is 2-setlike, and so on up. There is no reason to suppose that
the inverse of a function that obeys replacement in this way (even supposing
such an inverse to be defined) will analogously obey replacement. But what
does one want to say about a permutation that is k-setlike in this sense? If
you lift a 2-setlike permutation once you get a 1-setlike permutation . . . ? The
key word here is permutation. If you want the lift of a permutation to be an
actual permutation then you need its inverse to be setlike in the same sense; see
earlier concerns about the difference between one-sided and two-sided setlike
permutations. And do we need the lift of a k-setlike permutation to be a
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(k − 1)-setlike permutation? Yes, because we are looking for the appropriate
generalisation of sethood that enable one to prove the lemmas of Coret, Boffa
and Henson about eliminating from twisted stratified formulæ all the variables-
over-permutations that have been used to twist them.

REMARK 17 (NF)
Let t be the permutation λ.(if  ∈ IN then T else ).

(i) t is 1-setlike;
(ii) The assertion that t is 2-setlike implies the axiom of counting.

Proof:
(i) Evidently t is a permutation of A. Also t“ is always a set. This is

because  = ( ∩ IN) ∪ ( \ IN). And clearly t“(A ∪ B) = t“A ∪ τ“B. So
t“ = T“( ∩ IN) ∪ ( \ IN).

So t is 1-setlike.

(ii) The assertion that t is 2-setlike is that the following is always a set:

t“ = {T“(y ∩ IN) ∪ (y \ IN) : y ∈ }.

Write ‘T ()’ for t“ aka {T“(y ∩ IN) ∪ (y \ IN) : y ∈ }. (Notice that
although we are cheekily notating T as a function we cannot expect its graph
to be a set.)

Set X = {{Tn,{n}} : n ∈ IN}; X is a set. Whack it with T . If y ∈ X then
y is {Tn,{n}} for some natural number n. T“(y ∩ IN) = {T2n} and y \ IN
is {{n}}, so we put {T2n} ∪ {{n}} (which is {T2n,{n}}) into T (X). So
T (X) = {{T2n,{n}} : n ∈ IN}, and that will give us T �IN and the axiom of
counting.

For the other direction of (ii) reflect that the axiom of counting is equivalent
to the assertion that t is the identity function, which is obviously 2-setlike.

(This is reminding me of the discussion around SCU.)

But there should be proper class permutations which str(NFC) proves to be
setlike and which give rise to permutation models of NFC. It would be nice to
have some examples.

But are there any. . . ?
Observe that ι is a setlike function that is not a set. Any stratifiable in-

homogenous function will do the same. But of course there are no stratifiable
(inhomogeneous) permutations duh! Any such entity would force V to be can-
torian. Can there be a setlike permutation that is not a set? Of course, as
Randall says, all automorphisms are setlike, and it’s not hard to cook up mod-
els of NF with non-trivial automorphisms that are not sets. But then those
setlike permutations are not definable. It doesn’t seem to be out of the question
that there could be a highly unstratified formula with two free variables that
defines a permutation that is setlike. It would be good to either find such a
formula, or prove that there is none.
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Consider the greatest fixed point for A 7→ ι“A. It’s the collection of all 
s.t. (∃A)( ∈ A∧ A ⊆ ι“A). Perfectly satisfactory unstratifiable property that
probably doesn’t determine a set. Abbr to F. Now consider the permutation
that swaps everything in F with its complement. Is that setlike? More generally,
if F is an unstratifiable formula with a single free variable we can consider the
product
∏

F(,V \ ) that swap every F-thing with its complement and fixes
everything else. That has a chance of being setlike but not a set.

But i digress!

6.4 Automorphisms

At some point we are going to have to start thinking about ∈-automorphisms
of di Giorgi models. Automorphism both internal and external. Do V and Vσ

have the same external automorphism group when σ is a set of V? Or when σ
is setlike? Remark 12 is surely relevant here.

Think about the subgroup of Symm(A) consisting of those permutations
of A that M thinks are ∈-automorphisms; in fact do this for all permutation
models N. There is no reason to suppose that these groups are all the same
group. But they might be conjugate copies.

P(A)A

A P(A)

π j(π)

i1

i2

If this diagram commutes we have

i2(y) = π“(i1(π(y)) which gives
(∀)( ∈ i2(y)←→  ∈ π“(i1(π(y))))which gives
(∀)( ∈ i2(y)←→ π() ∈ i1(π(y))) (with a few -1 exponents thrown in)

making π an isomorphism between the two models arising from i1 and from i2.
That’s fine, but we are interested in weaker conditions on the diagram.

There are further families of subgroups of Setlike and Internal that will excite
our interest.

Any model Ms in the extended family obtained from i and a permutation
s ∈ Setlike may or may not admit (∈)-automorphisms. These automorphisms
may or may not be sets of Ms. And they may or may not be definable. Observe
however that any ∈-automorphism of any structure Ms whatever is perforce
setlike.

Thus we are led to consider, for each s ∈ Setlike,
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(i) The group of external ∈-automorphisms of Ms;
(ii) The group of internal ∈-automorphisms of Ms;
(iii) The group of definable internal ∈-automorphisms of Ms;
(iv) The group of definable internal permutations of Ms.

(i)–(iii) may of course all be empty.
There is also, for each s ∈ Setlike, the collection of internal permuta-

tions of Ms that are definable in Ms . . . in the sense of being fixed by all
∈-automorphisms. This, too, is a perfectly respectable subgroup of Internal.
This in turn has a subgroup consisting of those internal permutations that are
fixed by all internal automorphisms.

It is natural to wonder whether or not we get analogues of lemma 3. Forget
di Giorgi models for a moment. Symm(V) acts on itself simply in virtue of
the target being a set, the same way it acts on V, as a permutation group. Of
course it also acts on itself by conjugation. Interestingly its action on itself by
conjugation is the same as the action of its subgroup jn“Symm(V) on Symm(V),
for some small n. This is another way of saying that, for some small n depending
on how we implement permutations, jnt(π) = πt. It’s an application of Coret’s
lemma. If we use Wiener-Kuratowski pairs then n = 3.

So: the thought is that when we appear to be applying permutations to
permutations as in the discussion above (for which the substrates have to be
objects of the model) me might in fact be merely conjugating them—in which
case they don’t have to be sets.

But somehow we have to think of the permutations not of the elements of
the models but of the elements of A.

But of course once we do (σn+2)−1 to σn+1 · σ−1 · (σn+1)−1 to obtain
(σn+2)−1(((σn+1) · σ−1) · (σn+1)−1) the result might not be a permutation!
That doesn’t matter, co’s it’s only meant to be a sleeper for a permutation:
something that becomes a permutation in Vσ . (Aside: i think it’s a corollary
of a result in my monograph that every object is a sleeper for a permutation in
some model or other. Something to do with Fine’s principle.)

This proof seems to depend on the fact that the permutations we are using
are sets of the models concerned. (It doesn’t look as if they will morph into
proofs that the relation that holds between a model M of NF and another model
N of NF when N =Ms for s a setlike permutation of M is an equivalence re-
lation.) This is because—on the face of it at least—some of the permutations
appear as arguments to other permutations, and of course you can be an ar-
gument to a permutation unless you are a set of the model. But is this really
true? Are we really applying π to σ or are we in fact only commuting σ with
jnπ for some n?

By lemma 3, M and Mσ have the same internal permutations. By assump-
tion σ is a set of M so it is also a set of Mσ . The collection Internal of internal
permutations is of course a group and is closed under inverse, so Mσ houses
σ−1 as well. The claim is that this manifestation—in Mσ—of σ−1 is the return
permutation that we seek. The idea is that, if, according to our FFM, s (aka
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‘σ’) is a permutation of A and is encoded (in M) by some atom in M then,
in the permutation model Mσ , there will be an atom that encodes s−1; Mσ

believes that atom to be a permutation, and another atom that encodes the
converse of that permutation, and that second atom is believed by Mσ to be
the “return” permutation that we seek.

6.5 Setlike, internal, and now definable

Permutation models modulo setlike permutations have the same internal per-
mutations but do they have the same definable permutations? We care greatly
about definable permutations because we are looking for a theorem that says
something along the lines of: if σ ∈ Internal then Th(M) and Th(Mσ) are
synonymous. If we are to answer questions like this we need a robust concept
of ‘definable’. There are at least four candidate definitions.

(i) A set is definable iff it is the unique thing which is ϕ for some ϕ;
(ii) A set is definable iff it is fixed by all ∈-automorphisms;
(iii)A set is definable iff it is fixed by all internal ∈-automorphisms;
(iv) A set is definable iff it n-symmetric for some n.

I think (i) → (ii) → (iii) → (iv). The only complication is that we want ϕ to
be stratifiable in (i).

All these definitions seem to allow for the possibility that everything should
be definable. Certainly if there is no nonidentity internal ∈-automorphism then
everything is definable in sense (iii). Definition (i) invites to wonder about sets
uniquely identified by unstratifiable formulæ.

It turns out that there are plenty of examples of internal permutations π that
are definable in V but are not definable in Vπ. This is slightly surprising but it
is very important. Randall points out the simple case of adding a single Quine
atom by means of the transposition τ = (∅,{∅}). τ is of course definable—in
all of our above senses. In Vτ the old empty set has become a Quine atom,
which we can call ‘q’. We then needed the transposition (q,∅) to get back
to square one. This is certainly going to be definable (in sense (i) at any rate)
as long as q is the sole Quine atom, but if there are lots of Quine atoms then
there may be no way of identifying in Vτ that Quine atom that arose from the
empty set of the model with which we started. Does it matter? Won’t any
old Quine atom do? Perhaps, but perhaps not: the Quine atoms might not be
indiscernible. Of course this isn’t a proof that τ is an example, but it is a straw
in the wind.

Randall suggests another example: Henson’s permutation

χ =
∏

α∈NO
(Tα,{α}) that gives a proper class of Quine atoms might not

be definable in the model it gives rise to—at least not in the sense of being
the denotation of a closed set abstract. I think Holmes is correct. In fact χ is
probably worth a brief digression . . .
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In Henson’s model Vχ, T“NO has become a set S that is a set of of sin-
gletons, in fact of singletonsn for all concrete n. It even contains lots of Quine
atoms—a proper class of them in fact—since every old cantorian ordinal has
become a Quine atom in S. (Indeed that was the point Henson was making,
that there can be a proper class of Quine atoms4.) In fact it is a fixed point
for  7→ the set of subsets of  of-size-1-at-most. Since it contains a proper
class of Quine atoms—and a lot of big ordinals—it’s clearly not the least fixed
point (tho’ it might be the least fixed point present in the model in which case
it would be definable in sense (i)). Nor can it be relied upon to be the greatest
fixed point, since it won’t contain any of the Quine atoms that may have been
present in the original model. All such Quine atoms would remain Quine atoms
in Vχ and would have to belong to the gfp. Even if it is the gfp or the lfp—and is
therefore denoted by a closed term—that doesn’t make it definable in the strong
sense (iv) of being symmetric (indeed it is demonstrably not symmetric) tho’ it
will be fixed by every ∈-automorphism, thereby revealing itself to be definable in
senses (ii) and (iii). It is wellordered. (This is beco’s Vχ believes S is wordered
iff V believes χn(T“NO) is wellordered.) Now h fixes NO (by construction of
χ) and the higher lifts of χ preserve the property of being wellordered—beco’s
higher lifts always do.) The permutation χ exists in Vχ as well of course; what
does it do? It remains an involution, and it bijects old ordinals (= [some] new
singletons) with . . . with what?

[thinking aloud] The “return” permutation has to kill off precisely those
singletons that arose from the ordinals in T“NO. Is there a first-order way in
Vχ of detecting those singletons? And, even if there is, how do we turn them
back into ordinals? Looks a hopeless task.

That was suggestive, but it is not an unequivocal illustration. Nevertheless
one is to be had. Recent work of Nathan Bowler’s provides us with a pair of
permutation models that do not have the same internal ∈-automorphisms. This
is a side-effect of a proof that every model of NF has a permutation model that
contains in internal ∈-automorphism. I wrote this up in stratificationmodn.pdf.

Must permutation models have the same internal ∈-automorphisms?

Thanks to Nathan Bowler we know that every model of NF has a permutation
model containing an (internal) ∈-automorphism, but at this stage we do not
know whether or not NF has any models without ∈-automorphisms. What we
do know is that if M |= NF contains an (internal) ∈-automorphism, then all its
permutation models arising from definable internal permutations also contain
an (internal) ∈-automorphism. (I proved this decades ago and i have been
waiting for it to come to life ever since.) Actually we can show slightly more.
First some definitions. CJ0(Jn) is the centraliser of Jn (the group of all those

4A word is in order at this point. Every cantorian ordinal in V becomes a Quine atom in
S. The collection of cantorian ordinals is a proper class, so the collection of Quine atoms in S
is a proper class. That doesn’t by itself imply that the collection of Quine atoms is a proper
class, but if it were a set, then its intersection with S would be a set, and we have just shown
that it is a proper class.
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permutations that are jn of something) in J0, aka Symm(V), the full symmetric
group on the universe; it is the group of those permutations of V that commute
with everything in jn“Symm(V); CJ0(Jn) contains inter alia all permutations
definable by formulæ using only n levels. At(V) is the group of all internal
∈-automorphisms.

REMARK 18
For every M, for every concrete n, and for every setlike p that is in the cen-
traliser of the group of permutations of the carrier set M of M that M believes
to be jn of something, Aut(M) is a subgroup of Aut(Mp).

Proof:
Let s be an element of InternalM s.t. M thinks that sM is an ∈-

automorphism. We write ‘σ’ for ‘sM’ to keep things readable. Then

M |= (jσ)−1 · σ = 11.

Multiply both sides on the right by π

M |= (jσ)−1 · σπ = π.

If M believes that π is definable-in-M in the sense of commuting with all ∈-
automorphisms of M we can swap the underlined bits to get

(jσ)−1 · π · σ = π.

which says that σ is an ∈-automorphism of Vπ.
The only conditions on π that we needed were that it should be internal and

commute with any automorphism σ.

[in other words, for every internal σ satisfying a quite weak definability con-
dition every internal automorphism of M is also an internal automorphism of
Mσ . Moral: you can’t kill off internal automorphisms with definable permuta-
tions. So we shouldn’t expect to find a definable internal permutation σ s.t. we
can prove that Mσ contains no internal automorphisms. ]

6.6 Undoing Permutations October 2018

The definable permutation that becomes undefinable in the permutation model
to which it gives rise is one that is provided by ideas of Nathan. Nathan’s key
idea is that of an embedding of permutations. We say that ƒ is an embedding
from a permutation π of a set X to a permutation σ of a set Y if ƒ is an injection
X ,→ Y such that ƒ (π()) = σ(ƒ ()). If there is such an ƒ we say π ≤ σ. In
practice we will only be interested in the simple situation where X = Y = V
and indeed only in the case where all permutations concerned are involutions.
A permutation π is a universal involution if (∀σ)(σ2 = 11→ σ ≤ π). We need
a few key facts.
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(i) There is a Cantor-Bernstein theorem for ≤, in the sense that
σ ≤ π ≤ σ implies that σ and π are conjugate;

(ii) π ≤ σ→ j(π) ≤ j(σ)
(iii) Nathan has a proof that j(c) is a universal involution.

The instance of the Cantor-Bernstein–style theorem that we want is the one
that says that, since jc ≤ j2c and j2c ≤ c then jc and j2c are conjugate. Since
we can exhibit definable injections in virtue of which jc ≤ j2c and j2c ≤ jc
then we trade on the fact that the proof of the Cantor-Bernstein–style theorem
is effective enuff for the permutation that conjugates jc and j2c to be definable.
It might be an idea to spell this out.

To keeps things short i am not planning to prove any of these, and i s’pose i
should flag the possibility of a mistake even at this early stage. Anyway! putting
these together we can argue that j2(c), too, is a universal involution, and that
therefore j(c) and j2(c) are conjugate. It’s actually quite easy to show that
j(c) and j2(c) are conjugate if we are allowed to use AC for pairs; the key move
is to do it without using AC. The Cantor-Bernstein–style theorem to which we
appeal can be proved using Knaster-Tarski, which will tell us that, whenever
σ ≤ π ≤ σ, then there is a permutation that conjugates them, and there is
a complete lattice of such permutations, so there will be a bottom element
of that lattice, and that bottom element will be definable—and definable by
a sgratifiable expression. We next combine this with the old fact that if π
conjugates σ to j(σ) then, in Vπ, σ has become an ∈-automorphism.

OK, so what we have so far is the fact (if i have got this right) that NF proves
the existence of a definable permutation such that the induced permutation
model contains an ∈-automorphism.

We now need two more facts:

(iv) any (internal) permutation can be undone, and

(v) If V contains an ∈-automorphism and π is a definable permuta-
tion then Vπ contains an ∈-automorphism.

H I A T U S

It might be worth thinking about what Nathan’s automorphism actually
does. What properties does it inherit from jc and j2c? Does it—for example—
commute with everything in J3, as c, jc and j2c all do? And another thing—let’s
call it ‘ν’ for Nathan.

While we are about it we might as well give a proof in similar style of the
fact that if M |= NF, and M has an internal permutation σ, and Mσ has an
internal permutation τ, then there is an internal permutation π in M s.t. Mπ

is isomorphic to the permutation model obtained from Mσ by means of τ.
We also want the analogous result for setlike permutations: let M |= NF,

and let s be an M-setlike permutation, and t is an Ms-setlike permutation, then
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there is an M-setlike permutation p s.t. Mp is isomorphic to the permutation
model obtained from Ms by means of t.

These should both be routine hand-calculations.

An email from Nathan wherein he explains ‘return’ permutations

with some interjection/comments from your humble correspondent.
“Hi Thomas,
To help to think about this a little, it is useful to have a point of view in

which the collection of permutations we are considering is given independently
of the permutation model we use(1). So, given a model M = (V,∈) of NF, let’s
define SM to be the set of all (external) permutations p of V which are coded by
some element pM of M. It is clear that SM is a group and that it is isomorphic
to the group of things that M believes to be permutations. It is also clear that
if N is a permutation model derived from M then SN = SM.

Notes on the above

Vτ |= “s is a permutation” iff V |= τn(s) is a permutation for suitable small
concrete n. So τn is a bijection between (those members of A that are) permu-
tations in Vτ and (those members of A that are) permutations in V.

Can it really be that easy??
So it seems that all permutation models see the same group elements and

they agree on group multiplication (and inverse?) No reason to suppose they
agree on the second-order theory.

Is this true? “There is a first-order theory of a group, expanded to have a
name for every element. In every permutation model the symmetric group on
the universe is a model of this theory”

This much is clear: the stratified theory of Symm(V) is the same in all
permutation models.

6.7 Permutations and Synonymy

Given that permutations can be undone, the moral of this seems to be that,
whenever σ is an NF-definable permutation with the property that σ−1 is de-
finable in Mσ , then Th(M) and Th(Mσ) are synonymous. Beco’s of the Pétry-
Henson-Forster lemma, which says that all unstratified formulæ can be tweaked
by permutation models, this ought to mean something like: NF is synonymous
with any unstratified extension of it. But of course that’s not true beco’s there
are unstratified extensions (Axiom of counting) that prove Con(NF), so we
haven’t stated it properly. And there is also the point that, even among the
formulæ whose truth-values can be changed by permutations, not all can be
changed by definable permutations σ whose inverses remain definable in Mσ .
But if we sort that out we will be in a position to prove that whenever ϕ is an
unstratified formula of a special kind, then NF and NF+ ϕ are synonymous.
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And that, of course, will be music to my ears, since it is another riff on the
theme that all of mathematics is stratified.

There is probably quite a lot to be said about how and when it can happen,
for M |= NF, and π setlike, that Th(M) and Th(Mπ) come to be synonymous.

Here’s a simple formulation (Mangere airport sunday 12/i/20) that, culpably,
i have never found before. If σ is a definable permutation (in the strong sense of
being captured by a homogeneous formula of L(∈,=)) we have an interpretation
from {ϕ : NF ` ϕσ} into NF, but that gives us no guarantee that there will
be an interpretation in the other direction, let alone an interpretation that is
inverse to the first interpretation. One needs special conditions on σ. Of course
if σ is a definable permutation of M then there is an interpretation of Th(M)
into Th(Mσ). It is true that there is a permutation taking us back to M but
that permutation won’t give rise to an interpretation unless it is definable. But
if it is definable, are the two interpretations mutually inverse?

So, there is a question. Suppose σ is a definable permutation s.t. Vσ believes
there is a definable permutation undoing σ, are Th(V) and Th(Vσ) synony-
mous?

And again. Let T be a sensible set theory all of whose axioms are stratifiable
(any stratifiable extension of KF will do, i think). Express T in the language of
set theory with an extra constant, c. Consider the two theories:

T1 = T + (∀)( 6∈ c), and
T2 = T + (∀)( ∈ c←→  = c).

REMARK 19
T1 and T2 are synonymous in the sense that any model of one can be turned
into a model of the other, and the two transformations are mutually inverse.

Proof:
[tidy this up: Start with a model of T1 and use the transposition (c,{c})

to obtain a model of T2; start with a model of T2 and use the transposition
(c,∅) to obtain a model of T1]

Fix a set M with a designated element c and a binary relation ∈1 s.t.
〈M, c,∈1〉 |= T1. We interpret T2 into T1 by means of the transposition
t = (∅,{∅}) as usual, so we have a binary relation ∈2 s.t. 〈M, c,∈2〉 |= T2.

 ∈2 y iff
(y = c∧  = c).∨ .(y = {c}∧  ∈1 c).∨ .(y 6= c∧ y 6= {c}∧  ∈1 y)

where the singletons are to be written out using ∈1. The definiens simplifies to

(y = c∧  = c).∨ .(y 6= c∧ y 6= {c}∧  ∈1 y)
and then (using y 6= {c} iff (∃z)(z ∈1 y←→ z 6= c)) to

(y = c∧  = c) ∨ (y 6= c∧ (∃z)(z ∈1 y←→ z 6= c)∧  ∈1 y)
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and then to

 = y = c ∨ (y 6= c∧ (∃z)(z ∈1 y←→ z 6= c)∧  ∈1 y)

Now we define ∈1 in terms of ∈2 by:

• If y is the Quine atom according to ∈2 then y was the empty set
originally so  6∈1 y;

• if y is empty according to ∈2 then it was the singleton of the
empty set originally so  ∈ y←→  = c ;

• if y is neither the Quine atom nor empty then  ∈1 y←→  ∈2 y.

Thus we get

 ∈1 y iff (∀z)(z ∈2 y←→ z = y)∧⊥
∨ (∀z)(z 6∈ y)∧  = c ∨
(∃z)(z 6∈2 y←→ z = y)∧ (∃z)(z ∈2 y)∧  ∈2 y.

which of course simplifies to

 ∈1 y iff (∀z)(z 6∈2 y)∧  = c ∨
(∃z)(z 6∈2 y←→ z = y)∧ (∃z)(z ∈2 y)∧  ∈2 y

or (on one line)

 ∈1 y ←→ (∀z)(z 6∈2 y)∧ = c)∨((∃z)(z 6∈2 y←→ z = y)∧(∃z)(z ∈2 y)∧ ∈2 y)

If we expand this definiens performing the substitutions
 = y = c.∨ .(y 6= c∧ (∃)( ∈1 y←→ 6= c)∧  ∈1 y /  ∈2 y
and
z = y = c.∨ .(y 6= c∧ (∃)( ∈1 y←→ 6= c)∧ z ∈1 y / z ∈2 y
we obtain

((∀z)(¬(z = y = c.∨.(y 6= c∧(∃)( ∈1 y←→ 6= c)∧z ∈1 y)∧ = c)∨((∃z)(z = y = c.∨.(y 6= c∧(∃)( ∈1 y←→ 6= c)∧z ∈1 y←→ z 6= y)∧(∃z)(z = y = c.∨.(y 6= c∧(∃)( ∈1 y←→ 6= c)∧z ∈1 y)∧( = y = c.∨.(y 6= c∧(∃)( ∈1 y←→ 6= c)∧ ∈1 y)))))))

Now simplify that! (to ‘ ∈1 y’, one hopes)

Actually it might make for easier reading if we have TWO constant symbols
in the language, ‘c’ and ‘d’. In T1 they are ∅ and {∅} respectively and in T2
they are a Quine atom and the empty set respectively.

So instead we claim:
Let T be a sensible set theory all of whose axioms are stratifiable (any

stratifiable extension of KF will do, i think). Express T in the language of set
theory with two extra constants, c and d. Consider the two theories:

T1 = T + (∀)( 6∈ c)∧ d = {c}, and
T2 = T + c = {c}∧ (∀)( 6∈ d).
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REMARK 20
T1 and T2 are synonymous in the sense that any model of one can be turned
into a model of the other, and the two transformations are mutually inverse.

Then we define ∈2 in terms of ∈1 by

 ∈2 y iff (y = c∧  = c)∨ (d 6= y 6= c∧  ∈1 y)

and we define ∈1 in terms of ∈2 by

 ∈1 y iff (y = d∧  = c)∨ (d 6= y 6= c∧  ∈2 y)

Then we get (substituting the first into the second)

 ∈1 y iff (y = d∧ = c)∨ (d 6= y 6= c∧ ((y = c∧ = c)∨ (d 6=
y 6= c∧  ∈1 y)))

Let’s simplify this. Make the substitutions p/(y = d); q/( = c); r/(y = c)
to make things readable.

(p∧ q)∨ (¬p∧¬r ∧ ((r ∧ q)∨ (¬p∧¬r ∧  ∈1 y)))

Let’s put it into DNF.
We tackle the second disjunct and distribute ¬p∧¬r over (r∧q)∨ (¬p∧

¬r ∧  ∈1 y)
to obtain

(¬p∧¬r ∧ r ∧ q)∨ (¬p∧¬r ∧¬p∧¬r ∧  ∈1 y)

which is (restoring the disjunct p∨ q

(p∧ q)∨ (¬p∧¬r ∧  ∈1 y)

(p∧ q)∨ (¬p∧¬r ∧  ∈1 y)

which implies

q∨ (¬r ∧  ∈1 y)

some error in calculation there...
which does indeed simplify to  ∈1 y. (Given that p∧ r is not possible)

So i’d bet good money that it works for my original T1 and T2 as well.

Mind you, the difficulty of this calculation shows that it’s not going to be
easy demonstrating that theories arising from permutations are synonymous.

However i think the following is true:
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THEOREM 10
Suppose σ is a definable permutation, so that ‘ ∈ σ(y)’ is NF-equivalent to a
stratifiable formula with just the two free variables ‘’ and ‘y’.

Then {ϕ : NF ` ϕσ} is interpretable into NF.

Suppose further that σ−1 is definable in Vσ (in the sense that ‘ ∈ y’ is NF-
equivalent to a stratifiable formula in L(=,∈σ) with just the two free variables
‘’ and ‘y’).

Then NF and {ϕ : NF ` ϕσ} are synonymous.

The point is that if σ−1 is definable in Vσ then each of ∈ and ∈σ are
definable in terms of the other, so that if you substitute the definition of ∈ in
terms of ∈σ into the definition of ∈σ in terms of ∈ you get a tautology. (and
the other way round).

6.8 Appendix 1

This section is the repository of notes for the discussion of whether or not two-
sided setlike is the same as one-sided setlike.

Of course the two definitions are equivalent for permutations of finite order,
since the one-sided setlike permutations are closed under composition and the
inverse of a permutation of finite order is simply a power of it. However permu-
tations of infinite order have the potential to force us to choose which definition
we want. Nevertheless there is a ray of hope. It is true that we can prove that
any permutation is a product of two involutions but that proof uses AC and
there is no reason to suppose that two involution one obtains are nice in any
way, and presumably won’t be setlike. There is also a result of Bowler-Forster5

that says that if X× X is the same size as X (|X| is “idemmultiple”) then every
permutation of X is a product of involutions, and that proof is slightly more
effective. It doesn’t use AC for example, tho’ the assumption that |X| is idem-
multiple is nontrivial. It may be that one way or another we will be able to
show that the two definitions are equivalent6. At some point i am going to have
to see whether or not the two definitions are equivalent and (if they aren’t)
rewrite—and duplicate—the treatment to encompass the one-sided definition
as well. For the moment I am going to use the two-sided definition to keep
things simple7.

The collection of permutations that are one-sided setlike (or indeed, n-setlike
for any concrete n) for M are a (two-sided) cancellative semigroup with a (two-
sided) unit—hereafter a CSU. Since groups are CSUs it makes sense to say that
the one-sided n-setlike permutations are a sub-CSU of Symm(A). We also have
a good notion of a normal sub-CSU of a CSU.

5“Normal Subgroups of Infinite Symmetric Groups, with an Application to Stratified Set
Theory”. Journal of Symbolic Logic 74 (2009) pp 17–26.

6I am being reminded here of the fact that the inverse of a primitive recursive permutation
of IN might not be primitive recursive. But perhaps that parallel is unduly fanciful.

7I am not looking forward to having to explain how the group of internal permutations is
a normal subgroup of a cancellative subsemigroup of the full symmetric group on A.
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Worth noting that external automorphisms are setlike in the two-sided sense.
This is beco’s the inverse of an automorphism is another automorphism. Sup-
pose s satisfies M |= (∀y)( ∈ y ←→ s() ∈ s(y)). Specialising ‘’ to
‘s−1()’ and ‘y’ to ‘s−1(y)’ we obtain M |= (∀y)(s−1() ∈ s−1(y) ←→
 ∈ y) which says that s−1 is an ∈-automorphism of M.

It’s worth noting that the di Giorgi picture works equally well for class
theories. The domain of the model of the class theory is of course P(A). We
say X ∈ Y if i−1(X) ∈ Y. Everything in P(A) is a class; a set is something in
the range of i. Actually . . . we could rewrite all the preceding material in an ML
context in this spirit . . . .

Let’s apply this to ML. We say a class-function is setlike in the two senses as
above. Both definitions sit very well in the language of ML. The question is: are
they the same? When you put it like that it seems highly implausible. Can one
use Bowler-Forster to show that every class function that is one-sided setlike
is a product of involutions that are one-sided (and therefore two-sided) setlike?
Notice that the assumptions of Bowler-Forster are automatically satisfied, since
|V×V| = |V|. Notice, also, that we don’t need the decomposition of an arbitrary
one-sided–setlike permutation to be into involutions; for our purposes finite
order will suffice. Must look at the proof closely!

Write this up for Asaf

Asaf,

Here is a problem that has been bothering me of late. It has an AC angle
so might be of interest to you. It has its roots in the study of Rieger-Bernays
permutation models in an NF context - you know them from a ZF context - they
are how you prove the independence of foundation from the other axioms of ZF:
you use the transposition that swaps the empty set and its singleton. In NF
we generally use permutations that are sets of the model, but we can actually
use a slightly more general class: the class of those (class) permutations σ that
obey replacement, in the sense that the image σ“ of any set of the model is
another set of the model, and also {σ“y : y ∈ } and so on down. We say
such a permutation is setlike. Clearly the setlike permutations are closed under
composition but are they closed under inverse? Not clear at all. So here is a
version of this puzzle for a ZF-iste context:

Consider Zermelo set theory expressed in the language of GB, so it’s basically
GB minus the replacement axiom saying that the image of a set in a class
function is a set. Then we say a class function is setlike iff it obeys replacement.
The question then is: if a class permutation is setlike must its inverse be setlike
too?

The reason why this might be of interest to you is that the inverse of a setlike
permutation *of finite order* is setlike. And (this is the AC connection) with AC
every permutation is a product of two involutions. So every setlike permutation
is a product of two involutions... but are those involutions setlike...?
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6.9 Appendix 2

]
Such a permutation is, for each concrete n, jn of something that is n-setlike.

So it preseves the shape of the ∈-diagram of the transitive closure of any of its
arguments.

sse ƒ = jg, and g is setlike. we want ƒ“. We can form g“
⋃

 and thence
P(g“
⋃

), and we expect ƒ“ to be a subset of it.
But none of this helps.
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Chapter 7

Quine Pairs and Sequences

Cardinals of large finite rank satisfy ever-strengthening identities like α = α+1,
α = α + α, α = α · α, and so on. Each such equation is telling you that if A is
a set s.t. |A| = α then A is the same size as some cardinal ideal in P(A). This
should be made precise.

Adam says that the stream corresponding to a finite set (thought of as a
stream, as head::tail is eventually constant, and indeed eventually constantly
the empty set!

If you decode {IN} as a k-tuple you get 〈∅∅ · · ·{IN}〉. So if you dedcode
it as an infinite stream you get the stream of emptyset sets!. But you get that
also be decoding ∅.

Must write out a proof!!

7.1 Some material from November 2016

Which i had entirely forgotten about until Adam reminded me!

This topic has for years been anchored at the bottom of my list of
things-to-look-into-one-day, and I’m grateful to Adam for making
me think about it now. Not before time(!) And timeliness trumps1

content, so i shall be brief.

Quine has two “theta” functions which he uses to define a type-level pair.

θ0() = ( \ IN) ∪ {n + 1 : n ∈ IN ∩ }

θ1() = θ0() ∪ {0}.

1A little timely ha! joke there. . .
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The type-level Quine pair 〈, y〉 is now θ0“ ∪ θ1“y.

We generalise Quine’s θ functions . . .

θ(α, ) = ( \NO) ∪ {α + 1 + β : β ∈ } ∪ {β : β < α}

Observe that, in this definition, the two arguments are of different types: ‘’
is one type higher than ‘α’

The intention behind this definition is that we should be able to use it to
define in a type-level way not just ordered pairs but sequences of arbitrary
ordinal length. If these new theta functions are to serve their purpose they had
better be injective. This could mean one of two things:

(i) If i am given y and α, can i recover  s.t. θ(α, ) = y?

(ii) If i am given y, can i recover  and α s.t. θ(α, ) = y?

Pro tem. let us write ‘θα’ for λ.θ(α, ). (I don’t like the subscript nota-
tion, for reasons that i may or may not get round to explaining).

Suppose y is a value of θα. It has members that are not ordinals: we leave
them alone. What can we say about those members γ of y that are ordinals?
We can say at least that γ 6= α, and that α is the least ordinal not in y. This
means that if i am given y i can detect whether it is a value of θ. Unless NO ⊆ y
[and we will return to this later] there will be some ordinals not in y. If α is the
least such then we know y = θ(α, ) for some . Can we recover ? Yes. Given
any ordinal γ ∈ y, we know that γ − (α + 1) must have been in  . . . beco’s
if γ − (α + 1) was in  then (by definition of θ) we put α + 1 + γ − (α + 1),
and this is precisely γ—by uniqueness of ordinal subtraction. So if y = θ(α, )
then we can recover  as (y \NO) ∪ {γ − (α + 1) : α < γ ∈ y}.

So does this mean we can, in a type-level way, and for an arbitrary set X,
encode sequences from X of arbitrary length? Obviously this theta function
was set up with this in mind. Suppose we have a set S such that, for each
α, θ−1

α
“S ∈ X, then clearly S encodes an X-sequence of length . . .Ω1. This is

because Ω1 is the length of the ordinals as a wellordered set. Of course there are
wellorderings longer than the ordinals, so we can’t encode sequences of arbitrary
length. Frankly i am quite surprised that we can do this for quite large—indeed
noncantorian—α, and that the endeavour doesn’t crash at ωω—or even earlier
for that matter. It’s worth noting that the formula (∀α)(θ−1

α
“S ∈ X)—saying

that S is such a sequence—is not merely stratified but ‘S’ has type one higher
than ‘X’ . . . as one would expect: sequence from X are the same type as X itself.

So if y is θ(α, ) one can recover α and . Annoyingly not every y is of
the form θ(α, ). I think i am correct in saying that the y that are not of this
form are precisely the supersets of NO, and it is easy to check that there are
|V| of them. Does this matter? I’m not sure.

We defined the new suite of theta functions using ordinals. But of course any
wellordering whatever will do. And (tho’ we tend not to harp on the fact) there
are wellorderings longer than 〈NO,<NO〉. I think the conclusion is that, for any
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wellordering whatever, we can set up a system of Quine-style theta functions
that will enable us to define sets of sequences indexed by that wellordering. It’s
natural to wonder about senses in which these tupling systems cohere. There
can’t be any of course, but the failure might be illuminating.
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Chapter 8

Ultrafilters

8.1 Models in the Ultrafilters

I’ve tho’rt about this, on and off, over many years. Time to get it straight.
It’s an old and very fertile observation of the late Maurice Boffa that principal

ultrafilters preserve ∈, in the sense that  ∈ y ←→ B() ∈ B(y) . . . where we
are writing ‘B()’ (for obvious reasons) for {y :  ∈ y}.

This means that if we take the set B“V of all principal ultrafilters (and it
is a set, according to NF) and equip it with ∈ we obtain a model for NF that
is an isomorphic copy of the model we are working in. Let us write this model
with a fraktur ‘B’: B = 〈B“V,∈〉.

The obvious first thought is that one might add stuff to B“V, so that one
considers B“V ∪ X for suitable X and hope to obtain thereby a new model.
The thought may be obvious, but the line of enquiry that it suggests has never
been pursued. It’s high time to try it. One can start by minuting the following
elementary—and rather discouraging—observation.

REMARK 21
If  is a new object adjoined to B, then it has the same (old) members as the
(old) object B({y : B(y) ∈ }).

So if B′ ⊃ B is a model of extensionality then there are no ∈-minimal new
elements.

This means that (for example) we cannot add new sets of naturals, nor can
we add new wellfounded sets. This is rather like the situation with ultrapowers1

Indeed B is complete in the sense that if X ⊆ B“V is a class of B then it is
already a set of B. It’s coded in B by B(B−1“X). If B(z) is an element of B
with B(z) ∈ X then z ∈ B−1“X, whence B(z) ∈ B(B−1“X).

1Let M be a model of set theory, and Mκ/U an ultrapower. For ƒ ∈ Mκ/U consider
{ ∈ M : Mκ/U |= K ∈ ƒ}. This is { ∈ M : {α < κ : Kα ∈ ƒ (α)} ∈ U} which is
{ ∈ M : {α < κ : Kα ∈ ƒ (α)} ∈ U} = { ∈ M : {α < κ :  ∈ ƒ (α)} ∈ U} =??, which is a
member of M he says hopefully. So if ƒ is a set of old elements it is itself an old element.
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This doesn’t mean that we can’t extend B, but it does give us another way
of saying that we cannot add any new subsets.

If we want the inclusion embedding into the new model to be nice then that
places constraints on the objects we can add. The following fact tidies things
up nicely.

REMARK 22 An extension B′ of B preserves the boolean operations iff ev-
erything in B′ \B is a nonprincipal ultrafilter.

Proof:

If the extension is to preserve the boolean operations, and ∅ and V,
then B() and B(V \ ) (which are complements in B) will have to remain
complements in B′. So, if y is a new element, we will have to insist on
y ∈ B() ←→ y 6∈ B(V \ ), which is to say  ∈ y ←→ (V \ ) 6∈ y. If
B(∅) is to remain empty then we must have y 6∈ B(∅) so ∅ 6∈ y. And these
implications can clearly be reversed,

We want ⊆B′=⊆B. Suppose B |= B() ⊆ B(b). This is simply to say
 ⊆ b. If B′ |= B() ⊆ B(b) is to be true then we have to have y ∈ B()→ y ∈
B(b), which is  ∈ y→ b ∈ y. That is to say, (∀b)( ⊆ b→  ∈ y→ b ∈ y).
This is the final item in the criteria for y to be an ultrafilter.

In fact we can strengthen “preserves the Boolean operations” to “preserves
all the NF0 operations”. It is a simple matter to verify that if the only things
we are adding are ultrafilters then singletons remain singletons and values of B
remain values of B.

I don’t know how restrictive that is, but it certainly concentrates the mind.
And it directs our attention to the Prime Ideal Theorem. It invites us to think
of any model of NF obtained in this way as a subset of the Stone-Čech com-
pactification βV of V. If B′ is an extension of B that preserves the Boolean
algebra structure then the carrier set of B′ is a subset of βV. Is there a nice
topological characterisation of those subsets of βV that are models of NF?

Worth getting out of the way is the fact that 〈βV,∈〉 is not going to be a
model of NF—in fact it’s not even a model of extensionality . . . at least not if we
have BPI. Consider: βV has the finite intersection property and can be extended
to an ultrafilter in lots of different ways. But any ultrafilter that extends βV
will have to be the universal set of the model 〈βV,∈〉.

As part of the project to understand what the ultrafilters get up to it
might be an idea to see if there is anything one can say about the theory
of the model 〈βV,∈〉. Here the Prime ideal theorem comes in handy, be-
cause it enables one to find witnesses to comprehension axioms. For example,
〈βV,∈〉 |= (∀)(∃y)(∀z)(z ∈ y←→  ∈ z). How so? Piece of cake. Let U be
any ultrafilter at all, and consider {V : U ∈ V ∧ (V \ U) 6∈ V}. This collection
has the fip (check this!) and so can be extended to an ultrafilter, which is the
witness to the ‘∃y’ that we need.
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A more general question: which comprehension axioms does 〈βV,∈〉 satisfy?
(It’s never going to satisfy extensionality!) I’m guessing it’s going to be a model
of SF.

To prove this one would need the following:

Let A be a set. Then (βV ∩ A) ∪ {V \ U : U 6∈ A} has fip.

Equivalently:

Sse A ⊆ βV; then (∃U ∈ βV)(U ∩ βV = A).

This sounds as if it ought to be true (and for a long time i thought it was
true, and something like it may yet turn out to be true) and it would be a
consequence of the assertion that the subalgebra of the boolean algebra P2(X)
generated by βX is free. Now this is simply not true (altho’ the subalgebra
of the boolean algebra P2(X) generated by the principal ultrafilters in βX is
free—that much is easy to prove). Here’s why: let U1 and U2 be two ultrafilters.
Extend U1 ∩U2 to a third ultrafilter (using BPI) and take the complement, the
ideal I. Then the intersection of {U1,U2,I} is empty, contradicting freeness.

But i bet something like that is true, and will be enuff to show that 〈βV,∈〉 |=
SF.

I asked Imre, and got this reply:

Dear Thomas,

Sorry, lost your email (and then found it again).

Yes, the ultrafilters do generate a free BA.

To show this, enough to show that any n of them generate a free BA.
So let’s take U1, ...,Un as our ultrafilters, and form all 2n ‘atoms’
from them, by which I mean things like U21 ∩ U2 ∩ Uc3 etc.

Claim: these are non-empty and disjoint.

(Then we are done, as we thus get all 22
n

unions being distinct.

Disjoint is obvious, as any two differ in some place like: one uses U3
and the other uses Uc3.

Non-empty: we just need to check that, given distinct ultrafilters
U ,V . . . there is a set that belongs to U and to V but not to W or
to X . (Can’t be bothered to write it ot for general finite collections
as bored of subscripts.)

Choose a set A that belongs to U not W (possible as U and W are
distinct) so they differ at some set A, (and if A is in W \ U then we
take Ac instead). And a set B that belongs to U \ X . Then A ∩ B
belongs to U but to neither of W or X . Do the same for V, and take
the union of the two resulting sets.

Best wishes, Imre



148 CHAPTER 8. ULTRAFILTERS

Now That isn’t true, or it resembles something false—i think i didn’t ask
Imre the right question.

Meanwhile let’s try to prove something alone the lines that, for all U ∈ βV,
U∩βV is open. Park for the moment the case where U has no members that are
ultrafilters, and consider

⋂

(U ∩βV). This set is nonempty (it must contain V)
and it must have fip since it is a subset of an ultrafilter. So it can be extended
to an ultrafilter (using BPI) and in fact it can be extended to lots of them. Let
V be such an ultrafilter. Since U is ultra, it must contain either V or V \ V.
It cannot contain V \ V—because that is disjoint from

⋂

(U ∩ βV)—so it must
contain V.

That was nice, but what have we just proved..?
We want to show that, for every V ∈ U , there is a basis element containing

V and included in U .

8.2 Coda

(i) Recall the ways in which local versions of B() turn up in the definition of
supercompact cardinals.

(ii) Consider an extension of the model B. Some elements of B acquire new
elements (V(B) for example) and some don’t. (This reminds me of the genesis of
a normal ultrafilter when you have an elementary embedding). Do the elements
of B that do not acquire any new members form an ideal? Presumably. Suppose
U ∈ B(∪y). Then ∪y ∈ U , whence  ∈ U∨y ∈ U (since U is ultra) whence
U ∈ B()∨ U ∈ B(y), but of course we don’t get the corresponding infinitary
result. No old singleton can acquire new members: Suppose U ∈ B({}). Then
{} ∈ U which means that U was not nonprincipal.

So: let B′ be an extension of B obtained by adding nonprincipal ultrafilters.
Each element of the extension defines an ultrafilter on B. Yes, but it’s not
informative. Chiz.

8.3 How Many Nonprincipal Ultrafilters?

Clearly there are precisely T2|V| principal ultrafilters, and precisely T |V| prin-
cipal filters, so at least T |V| filters. How can there not be more ultrafilters?? A
perfect tree has more branches than nodes, doesn’t it? Doesn’t it?! Particularly
if we have BPI?!

But of course it’s nonprincipal filters we care about. How many are there?
Well, at least T of the size of any MAD family. If we have BPI then the
Fréchet filter can be extended to a uf in lots of incompatible ways. Add distinct
members of a MAD family and obtain distinct ultrafilters. Any MAD family
F is a surjective image of βV, beco’s no nonprincipal uf can contain more than
one member of F .

The set of transversals for {{,V \ } :  ∈ V} is of size |V|. Fix an
ultrafilter U . Each transversal t can be paired off with t ∩ U .
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In ZFC we know that a set of size κ has 22
κ

ultrafilters on it, at least if κ
is infinite. For k ∈ IN a k sized set has precisely k (well, strictly speaking T2k)
ultrafilters co’s they’re all principal. Is there a diagonal argument one can run
in the infinite case to show that there must be more than κ ultrafilters? What
if k is horrendously amorphous? It’s not looking hopeful.

If there are any nonprincipal ultrafilters at all, then how many? Well, if U is a
nonprincipal ultrafilter and π any permutation, then (j2π)(U) is a nonprincipal
ultrafilter, but that only gives us T2|V| of them. One would have hoped for
more than that.

It would be nice to have a diagonal argument to show that |βX| > ||. Such
an argument would work only if  is infinite! Perhaps it would need something
like a bijection ←→  × .

It occurs to me that one might be able to refute BPI in NF. The strategy is
roughly as follows. Assume BPI in the form that every family of sets with the
finite intersection property (fip) can be extended to an ultrafilter (on V; we are
considering the boolean algebra of the universe). Consider the family A ∪ {A}
where A is the set of all prime ideals. If A ∪ {A} has fip then, by BPI, we
can extend it to an ultrafilter U . U contains all prime ideals and therefore no
ultrafilters and in particular it doesn’t contain itself. But we also have A ∈ U
by construction, and U ⊃ A and U is closed under ⊃ so U ∈ U after all.

So we have to show that A ∪ {A} has fip; we want:

“every finite intersection of prime ideals contains a prime ideal”.

We are allowed to use BPI of course. If A were just the set of principal
prime ideals it’d be a doddle. A finite intersection of principal prime ideals is
the power set of some cofinite set and every cofinite set extends a [principal!]
prime ideal (obvious, but prove it2); but a finite intersection of nonprincipal
prime ideals is. . . ?

But that’s not going to work. We can even build a single prime ideal that
contains no prime ideals, never mind a finite family that share no prime ideal as
member: just build an ultrafilter that contains all prime ideals. The collection
of all prime ideals has the fip beco’s every ideal contains ∅.

A pity: it seemed such a promising idea.

I’m still not giving up

Probably need to delete this, up to **
Start with the Stone space S1 of all ultrafilters on V. It’s compact and

Hausdorff. How big is it? Clearly at least T2|V|, simply beco’s of the principal
ultrafilters. Is it going to be any bigger if we have BPI? I sense some calculations
coming up. . .

2P() ∩ P(y) = P( ∩ y); a principal prime ideal is P(V \ {}) for some , so a finite
intersection of principal prime ideals is P(V \) for some finite , and that is a set of cofinite
sets. Given a cofinite set V \  we seek  s.t.  ∩ {y :  6∈ y} = ∅, and we can find such an 
as long as
⋂

 6= V.
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Consider the partition  = {{,V \ } :  ∈ V} of all complementary
pairs. An ultrafilter is a special kind of transversal for . Unfortunately there
are |V| transversals, as follows. We want to send each ultrafilter U to {p ∈  :
∅ ∈ p∩ U}, which is a subset of ; || = T |V| and this map is type-raising so
the argument has to be {U}. But this tells us only that the set of ultrafilters
injects into V, and that is hardly news. It might be that we can identify an
ultrafilter with subsets of  of some very special kind but i don’t fancy our
chances.

[Let X be any set: Does B“X ∪ B‘‘(V \ X) ∪ FN have the fip? If so, BPI
will tell us that it can be extended to an ultrafilter. We inserted FIN to ensure
that that ultrafilter would be nonprincipal.]

I’m starting to think that the number of ultrafilters on V is T2|V| come
what may: BPI or no BPI.

Anyway, consider next the space S2 of all ultrafilters on S1. S1 is compact
and Hausdorff so every uf in S2 has a unique point of convergence. This gives
us a map S2 → S1. Is it onto? I bet it is. Let T be a compact Hausdorff space,
and  ∈ T . Then  is a point of convergence of any ultrafilter generated by the
set of open neighborhoods of . But S2 is—literally—a subset of S1. Is the
surjection cts? Yes, obviously.

Sse ƒ : P(X) → βX. It would be nice to show that ƒ is not onto. Consider
{A ⊆ X : A 6∈ ƒ (A)}. Does it have the fip? If it does, extend it to an ultrafilter
U . Suppose further that U = ƒ (A) for some A. If A 6∈ U = ƒ (A) then A ∈ U by
construction of U ; so A ∈ U . . . but there doesn’t seem to be anything going in
the other direction.

Perhaps we could do some tidying. Sse ƒ : P(X) → βX as before. Sse, for
some A ⊆ X we have both A 6∈ ƒ (A) and (X \ A) 6∈ ƒ (X \ A). Then modify
ƒ to ƒ ′ that sends A to ƒ (X \ A) and sends X \ A to ƒ (A). We now have
A ∈ ƒ ′(A) and X \ A ∈ ƒ ′(X \ A). (Values of ƒ are ultrafilters, remember).
Do this simultaneously for all such A. Reletter ‘ƒ ′’ to ‘ƒ ’. We now have that
A 6∈ ƒ (A)→ (X \ A) ∈ ƒ (X \ A).

Now fix  ∈ X. Consider those A s.t. A 6∈ ƒ (A) and (X \ A) ∈ ƒ (X \ A). If
 ∈ A leave ƒ alone; if  ∈ (X \ A) then swap the two values of ƒ to get ƒ ′. We
now have A ∈ ƒ ′(A) iff A ∈ ƒ (X \ A). But ƒ (X \ A) is an ultrafilter that (by
hypothesis) contains X \ A . . . and therefore does not contain A! We also want
(X \ A) ∈ ƒ ′(X \ A). This is the same as (X \ A) ∈ ƒ (A). But A 6∈ ƒ (A) and
ƒ (A) is an ultrafilter so (X \ A) ∈ ƒ (A) as desired.

This ruse has ensured that we now have ƒ ′ with the same range as ƒ , and so ƒ ′

is surjective iff ƒ was. But now the subsets of X that are in {A ⊆ X : A 6∈ ƒ ′(A)}
all contain , so {A ⊆ X : A 6∈ ƒ ′(A)} has the fip! But it’s still the case, as
i observed three paras ago, that there doesn’t seem to be anything one can do
with A ∈ U . So near and yet so far!

[Not sure that this helps, but. . . ] It is certainly true that, for any finite
set of nonprincipal ultrafilters, one can find a selection set whose values are
pairwise almost disjoint. So by compactness (so BPI should do it) there is a
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choice function on βV whose range is an almost-disjoint family. But we don’t
really know how big this a-d family is.

We want to show that BPI implies that there are more than T2|V| ultrafil-
ters. This is not a specifically NF style problem, so let’s cast it in a form that
people like Asaf might like.

“Can we show, using only BPI, that |βX| > |X|?”

Since V is idemmultiple, let us allow ourselves the extra assumption that X
is idemmultiple.

An almost-disjoint family of subsets of X (“AD family”) is an antichain wrt
the relation A ⊆<ℵ0 B which says that |A \ B| ∈ IN.

We record the useful fact that—assuming BPI—we can map βX onto any
almost-disjoint family D of subsets of X. Every infinite subset of X belongs to
an nonprincipal ultrafilter on X. (BPI gives us this, beco’s the cofinite filter ∪
any singleton of an infinite set has fip.) If A and B are almost disjoint (A \ B
and B \ A both finite) then no nonprincipal uf can contain both of them. The
map βX→→ D is obtained as follows. Distinguish one member d of D. Send all
principal ultrafilters to d. For U a nonprincipal ultrafilter that meets D, send
it to the unique member of D ∩ U . If it doesn’t meet D, send it to d.

We want to prove |X| 6≥∗ |βX|. Since βX maps onto any AD family of
subsets of X it will be sufficient to find even one AD family D of subsets of X
s.t. X does not map onto D.

Exploit the fact that X is idemmultiple, using the fact that P(X × X) has
much more structure than P(X) and is the same size! Does the set of wellorder-
ings of subsets of X constitute an AD family of subsets of X? There is a version
of Hartogs’ lemma that says ℵ(|X|) ≤∗ |P(X× X)|, so can we find an AD fam-
ily of size ℵ(|X|). . . ? No; two wellorderings of subsets of X might have infinite
intersection, but think of PERs! (Not equivalence relations beco’s [the graphs
of] any two equivalence relations have infinite intersection, namely 11�X). There
seems no reason to suppose that we can’t have large ADs of subsets of X × X
consisting entirely of PERs of X. But of course PERS correspond canonically
to partitions. But this reminds us that if X is idemmultiple we can embed (X)
(the set of partitions of X) into P(X) and it should be easy to find large families
F of partitions of X with the property that, for p, p′ ∈ F, p∧p′ has only finite
pieces.

But before we get onto partitions, a few comments about wellorderings.
The reference to Hartogs’ lemma is not as crazy as it sounds. Wellorderings are
WQOs, and the intersection of (the graphs of) two WQOs on the one carrier
set is another WQO on that carrier set, so the intersection of two wellorderings
of an infinite set X is a WQO on an infinite set and must be infinite. So it’s
not going to work. But what if we think of wellorderings as ordernestings? Or
perhaps we should be thinking of ordernestings of prewellorderings? Trouble is,
the ordernestings are of higher type.

Let us say that a partition is fine iff all its pieces are finite.
1 ∧2 is of course the partition {p1 ∩ p2 : p1 ∈ 1 ∧ p2 ∈ 2} \ {∅}.
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Let us say that two partitions 1 and 2 are (mutually) orthogonal iff
1 ∧2 is fine.

We are looking for large families of pairwise mutually orthogonal partitions
of X. Specifically we hope to find one that X cannot be mapped onto.

Let us write 1⊗2 for {p1× p2 : p1 ∈ 1∧p2 ∈ 2}. Thus, if 1 and
π2 are partitions of X, 1 ⊗ 2 is a partition of X × X.

The plan is to exploit the fact that |X| is idemmultiple.
Of course if 1, 2 are fine partitions of X then 1 ⊗ 2 is a fine partition

of X × X.
Here’s a thought that might lead somewhere. If 1 and 2 are fine partitions

of X, then the two partitions 1⊗{X} and {X}⊗2 are orthogonal partitions
of X × X.

Might we be able to show that a mutually orthogonal family can be closed
under ⊗ and still be mutually orthogonal?

But maybe it’s simplest to continue thinking in terms of P(X × X) and AD
families of PERs therein.

Eric Wofsey writes

Recall the usual proof of |βX| = 222
|X|

using AC. To sketch the argument,
you replace X with the set Y of pairs 〈A, S〉 where A is a finite subset of X and
S is a finite set of finite subsets of X. Then, you explicitly construct a family

of 22
|X|

pairwise incompatible filters on Y, and extend them each to ultrafilters.

This gives 22
|X|

different ultrafilters on Y, and hence on X since |X| = |Y |.
.
So, how much of this can we rescue assuming only BPI and |X|2 = |X| ?

First, we still have |X| = |Y |. To prove this, note that we can totally order X by
BPI, and so from |X|2 = |X| we can obtain a family of injections [X]n → X for
each finite n. Also, |X|2 = |X| implies ℵ0 ≤ |X| so |X| ·ℵ0 ≤ |X|2 = |X|. Thus
|X| ≤ [X]<ω ≤ |X| ·ℵ0 = |X|, and so |Y | = |[X]<ω[[X]<ω]<ω| = |X|2 = |X|.

Now, using BPI, we can extend each of our filters on Y to an ultrafilter, but
we can’t necessarily do this for all of the filters simultaneously to get a family of

22
|X|

ultrafilters on Y. However, we still do get a surjection βY →→ P(P(X)), by
sending each ultrafilter to the unique filter in our family it contains (or to some
constant value if it does not contain any of our filters). By Cantor’s theorem
this proves that P(X) does not surject onto βY, and so neither does X. Since
we know that |X| ≤ |βY | = |βX| via the principal ultrafilters, this shows that
|βX| > |X|.

https://math.stackexchange.com/questions/2999390/

how-many-ultrafilters-there-are-in-an-infinite-space

8.4 Choice Functions on Ultrafilters on V

Noam made me think about ultrafilters, by making the point that you can
use a nonprincipal ultrafilter on IN to prove Ramsey’s theorem. I immediately
thought: consider the NF context, and ultrafilters on V.

https://math.stackexchange.com/questions/2999390/how-many-ultrafilters-there-are-in-an-infinite-space
https://math.stackexchange.com/questions/2999390/how-many-ultrafilters-there-are-in-an-infinite-space
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Can there be a choice function on an ultrafilter? Or would that wellorder
the universe? I think a choice function on a principal uf would wellorder V.

REMARK 23 An ultrafilter on V supports a choice function iff it contains a
wellorderable set.

Proof: L → R

Suppose ƒ is a choice function on U , we keep on picking members, taking
intersections at limits, building a set W, until the intersection X\W is no longer
in U . (This W is a legitimate inductively defined set: we do not need ordinals).
We might wellorder X by this process, in which case U contains a wellorderable
set as desired. If not, then X \W has fallen out of U . Then (X \W) ∪W ∈ U ,
so—by ultraness of U—we have (X \W ∈ U or W ∈ U . By assumption we do
not have the first, so we must have W ∈ U . But W is wellorderable.

R → L

Suppose W ∈ U is wellorderable. Equip it with a wellordering. Everything
in U meets W. So, for each A ∈ U , pick the first element of A ∩ U .

We do need the ultra-ness condition: the Fréchet filter of cofinite sets clearly
contains no wellorderable sets, but it has a choice function anyway. This is
beco’s of the more general observation that if 〈X,<X〉 is a wellordering then
there is a choice function on

P
(X); from A ∈

P
(X) pick the <X-first element of

it. And every cofinite set meets IN.

8.4.1 The Rudin-Keisler Ordering

U1 ≤RK U2 iff (∃ƒ : X→ X)(U1 = {ƒ−1“Y : Y ∈ U2})
The literature doesn’t seem to require ƒ to be either injective or surjective.

However, we do assume that it is total, so that ƒ−1“X = X. It is alleged that,
for all ƒ : X → X and U , {ƒ−1“Y : Y ∈ U) is an ultrafilter on X iff U is. And,
yes, Ramsey ultrafilters are R-K minimal.

COROLLARY 3 If U1 ≤RK U2 and U1 supports a choice function then so does
U2.

Proof:

Suppose U1 = {ƒ−1“Y : Y ∈ U2}) and that there is a choice function on
U1. Consider an arbitrary Y ∈ U2. What do we pick from it? Well, we can pick
 from ƒ−1“Y by assumption on U1, so ƒ () will be our pick from Y. So: if
U1 ≤RK U2 and U1 admits a choice function so does U2. Of course: a surjective
image of a wellorderable set is wellorderable.



154 CHAPTER 8. ULTRAFILTERS

8.5 Ultrapowers of 〈V,∈〉 in NF(U)

Annoying observation of Randall’s [25/vi/18]

Working in NF(U), consider ultrapowers of the universe. There is no reason
to suppose that an ultrapower is a model for the existence of singletons. After
all, what is the singleton of [ƒ ] to be? It would have to be [ ι · ƒ ]!.

But this can’t be right. There is always  Loś’s theorem . Isn’t there? For
ƒ : IN→ V we can always consider {〈Tn,{}〉 : 〈n, 〉 ∈ }. This is a perfectly
respectable function IN→ V. I suppose it all comes down to whether or not the
ultrafilter is closed under jT.

This certainly needs to be tidied up.



Chapter 9

Numerals and λ-calculus in
the Quine Systems

. . . in the form of some worked exercises that i set for myself.

Beeson’s pdf on the interpretation of Heyting Arithmetic in iNF.

Let me come in at a tangent. . .

Specker showed us that the axiom of infinity (“there is an infinite set”)
is a theorem of NF. Or one could put it another way: NF interprets Peano
Arithmetic. The proof is famously rebarbative and i am fond of saying that
nobody really understands it. It is true that there are some hardened NFistes
who can present this proof on a blackboard at the drop of a hat, but it’s still
the case that they (i mean we) don’t really feel that we know why it’s true. Is
there perhaps a more illuminating proof?

Enter Michael Beeson, with the very interesting suggestion that one could
profitably look at Church numbers in the Quine systems. Now, this suggestion
of Beeson’s was made not in a context of finding a new proof of Specker’s
result, but in a context of people promoting the question: is iNF consistent?
(mainly me, admittedly. . . Beeson says I have been asking him about Con(iNF)
every year for 20 years, and i fear he is right; i hope i haven’t been too much
of a bore about it). And (and this is the question here) does iNF interpret
Heyting Arithmetic? Beeson says ‘yes’. Now, if—as Beeson suggests—we can
use Church numbers to interpret Heyting Arithmetic in iNF, then we can use
the same constructions to interpret PA in NF. That proof should be much easier
to assemble than Beeson’s constructive edifice, because it doesn’t require us to
make all the steps constructive. Interestingly Beeson’s current proof contains no
reasoning about the cardinality of the universe or its tree. (As indicated above,
such reasoning is essential to Specker’s proof.) If his proof for iNF works, then
it will also work for NF, and we would have a novel proof of the axiom of infinity
in NF. That would be very good news indeed.

It’s important to bear in mind that Church numbers and the Frege numbers
(equipollence classes of finite sets) are good at very different things. Easy to
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show that Church successor is total, and easy to show that Frege successor is
injective, but the remaining two combinations the other way round are non-
trivial. Again, Frege exponentiation raises types; Church exponentiation lowers
them. That makes the two settings look very different and kindles hope that an
approach using Church numbers might illuminate by providing a different take.

However, one discouraging feature is the fact that Specker’s proof involves
reasoning about infinite cardinals—specifically |V|—and there is no good notion
of an infinite Church number. So, prima facie, we would expect a proof using
Church numbers to look very different from the proof we know. Doesn’t mean
there isn’t one, of course . . . and it does make such a proof a very enticing
prospect.

Beeson’s proof kills two birds with one stone (or do i mean: rides two horses?)
The two horses/birds are

(i) a proof of the axiom of infinity inside NF that uses Church numbers and
is not just a rephrasing of Specker’s proof, and

(ii) a constructive treatment of (i) that resolves the question of whether iNF
is weak—tf’s view—or strong (enough to interpret Heyting Arithmetic)—which
is Holmes’ view.

There is an important fact that we need to keep in mind as a continual
reality-check. Since—as we know—NFU does not prove the axiom of infinity,
it follows that any proof of the axiom of infinity in NF or iNF must appeal to
the axiom that all empty sets are identical (this being what we have to add to
NFU to get NF). It is clear where this assumption is used in the original proof
of Specker’s that uses cardinal trees (the presence of lots of distinct empty sets
would sabotage the equation |V| = 2T |V| on which the construction relies) and
accordingly it is clear how it comes that this proof doesn’t work in NFU. If
Beeson’s new proof is correct then there will be somewhere in it an essential use
of this assumption, and i cannot find one. And i don’t think that is because i
haven’t looked hard enough; i think it’s because there isn’t one. And the reason
why there isn’t one is that there isn’t (as far as i can see) anywhere that Beeson’s
proof strategy would require it.

With a view to killing bird/horse number (i) i think it would be helpful to
the reader if Beeson could extract from the 47 pages of his ms a classical version
of the proof. It would be much easier to follow (Specker’s original article is only
three pages long!), it would be much easier to scan for the error that i believe it
harbours, it would be accessible to readers who are not familiar with constructive
scruples, and—finally, if it works—it would be of independent interest. Such an
extraction would also separate the two questions

() whether or not Beeson’s proof strategy is inherently sound from

(b) whether his treatment of it is constructively correct.

In principle there is the possibility of () being true while (b) is false. Given
Beeson’s known expertise in constructive logic this sounds unlikely, but—as
emphasised— is of considerable interest even if b is wrong. And—in any
case—breaking up the project into parts will make it more digestible. Such a
document would certainly be read with closer and more optimistic interest than
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was the original.
The best outcome would be that:
(i) Beeson’s proof is correct, and the classical version is a proof in NF that

there is an infinite set,
(ii) and that this proof is essentially different from Specker’s; and
(iii) the constructive version shows that iNF interprets Heyting Arithmetic

and is strong.
However i fear that the actual situation is that there is a mistake in Beeson’s

proof (it doesn’t use the assumption that there is only one empty set); that iNF
is weak (and does not interpret Heyting Arithmetic) and that Specker’s proof
of AxInf in NF is in some sense the only one.

It has to be essentially different from Specker’s proof beco’s Specker’s proof
apparently doesn’t enable us to interpret Heyting Arithmetic in iNF. OTOH
it has to use E: “all empty sets are identical”; and altho’ it is easy to see how
Specker’s proof makes essential use of E, it is hard to see how a proof that
reasons solely about natural numbers can exploit it.

If Beeson’s proof is correct we have some surprising and rather gratifying
developments. (i) We have a new proof of infinity inside NF that does not reason
about the cardinality of V;

(ii) We have an interpretation of Heyting Arithmetic inside iNF.
The above is a picture of what things looked like in 2020.

I think the situation is that Beeson has indeed provided an interpretation of
HA into . . . iNF + an extra axiom which is probably equivalent to the axiom of
counting. He’s even proved it in LEAN. It’s reassuring, but it is hardly a giant
leap for Mankind.

I was greatly struck by this thought and—altho’ i no longer think it offers
the quick fix to proving infinity in iNF that i at first hoped—it pointed to a
lacuna in my understanding of these matters that the discipline of writing these
notes might help to fill.

These notes have benefitted greatly from conversations with Randall Holmes,
Michael Beeson and Albert Visser. They have also benefitted from lockdown at
375 Mutiny Road.

This text is not being offered as a piece of original work, rather as (as i say
above) a folio of worked exercises that are good for the writer (Maurice always
used to say “Mais, Thomas—il faut l’écrire”) and may be a useful resource, a
source of summaries, for people who want to work on this stuff. I’m sure much
of this has been/is being duplicated by others even as we speak, but it is all my
own work [except where o/w indicated] so please give generously.

9.1 Stuff to be put in the right place

Can we exploit somehow the set-theoretic structure of Cnumbers in NF? Let us
write ‘t()’ for the transitive closure of .
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If n is a Cnumber then t(n) is the union of all powers of n; it would be nice
to recover from this an expression for the set of all powers of n.

If n is a Cnumber then t ◦ n (We can’t really write ‘t · n’ beco’s that would
look too much like Cnumber multiplication) is the function λƒ .t(nƒ ), which
sends ƒ to the union of all the mƒ for m a multiple of n:

⋃

{mƒ : n|m}. It
would be nice to recover from this an expression for the union of all the multiples
of n, and even an expression for the set of all multiples of n.

Good question.
Maybe not, but it does give us a homogeneous way of saying “n is a

power of m”, namely t(n) ⊆ t(m). This is noteworthy beco’s the obvious
(implementation-insensitive) way: ‘(∃k)(n = km)’ is not homogeneous. Note
that we cannot prove the equivalence of these two by induction beco’s

(∀nm)(t(m) ⊆ t(m)←→ (∃k)(n = km))

isn’t stratified. We’ll have to sprinkle a few ‘T’s around.

We can do something similar with “n is a multiple of m” which is
but
this time there are no complications, because both formulæ
t ◦ n is the function λƒ .t(nƒ ), which is the union of all multiples of n.

(We can’t really write ‘t · n’ beco’s that would look too much like Cnumber
multiplication).

are stratified:

(∀nm)({t ◦  :  ∈ n} ⊆ {t ◦  :  ∈m}←→ (∃k)(n = k ·m))

It would probably be a useful exercise to prove this by induction.

The inductively defined bijection between INc and IN is very useful for
(among other things) showing that INc is a discrete set, which is not o/w obvi-
ous(!)

Using Church numbers as cardinals

We write CN|X| for the Church number of a finite set X/

CN|∅| = 0CN

CN|X ∪ {}| = succCN|X|

. . . as long as  6∈ X
next we have to show that this definition is legitimate, since a finite set

X can be obtained and X′ t {} in lots of different ways. We prove that all
decompositions give the same number by induction he says gaily. Gulp. True
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if X is empty. Sse true for X. Is it true for X ∪ {}? We seem to need the
induction hypothesis not just for X but for (X ∪ {}) \ {y} for all y. Perhaps
we can exploit trichotomy somehow . . . or find a clever induction . . .

With Cnumbers [Church numerals] one knows that every number has a suc-
cessor, but the classifier function  7→ cardinal-of- does not have a cute defi-
nition and it is not clear that it is total. With Fnumerals [usual Frege numeral,
equipollence classes] it’s the other way round: “cardinal-of” is cute and well-
behaved but proving that every natural has a successor is problematic—and
indeed still open in the constructive case.

With Cnumbers (but not with Fnumerals) one has a problem showing that
the successor function is injective. Perhaps one should display this information
in the form of a table.

And another thing. . . the cardinal-of function with Cnumbers needs to be
thought about very hard. Presumably we want it to be homogeneous. I think
we want to prove by induction in iNF that every Nfinite set admits permutations
with precisely one cycle. OK. And we also want it to be the case that Tk of
the cardinal number of that set (for some suitable k, depending on our pairing
function) applied to any such permutation gives 11. What happens now if there
is a dense Nfinite set V. This set has a Cnumber. , say. What becomes of the
successor of that Cnumber?

Albert points out that every Cnumber ≥ 2 is succ of something other than
a Cnumber! [probably worth spelling out why this is so] Beware!

For a long time the task of implementing arithmetic in NF by using equipol-
lence classes of finite sets was held up by the necessity of proving that every
natural number has a succcessor. This was solved by Specker—at great cost,
and the scars are still visible. The situation with Church numerals is quite dif-
ferent. It is obvious that every Church natural number has a successor. So, the
world being the imperfect place it is, one expects things to go wrong somewhere
else. Let us see.

I don’t know why it has taken me so long to see this. The equivalence
relation on functions V → V of being-conjugated-by-a-permutation-of-V (which
is roughly the same as the relation of having the same cycle type, but not quite)
is, for each n, a congruence relation for the operation, well the Cnumber n.

To be more precise we say ƒ ∼ g iff (∃π)(π a permutation of V ∧ ƒ =
{〈π(), π(y)〉 : 〈, y〉 ∈ g}) Thus one could think of the Cnumbers as acting

not on functions V → V but on conjugacy classes of such functions.
That will make things m-u-c-h easier.
Well, no it won’t, actually. Co’s it’s not a congruence relation for composi-

tion! [must illustrate that it is not a congruence relation for composition. Easy:
remember that with a minimum of AC every permutation is the product of two
involutions without fixed points.] However, the definition of T is slightly easier.

This is reminding me of the fact that to find a fundamental sequence for a
ctbl ordinal you need to reason about an actual worder of that order type.
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Albert describes the Cnumbers of NFU or iNF as being like the letter ‘ρ’: a
stick followed by a loop. We need to get a handle (joke!) on the size of these
things. Here is a potentially useful thought.

A Cnumber is—whatever else it is—a function, so you can restrict it to a
subset of its domain. There are two ways of restricting Cnumbers that will be
useful to us here.

(i) Restrict each Cnumber to the set of surjections V →→ V;

(ii) Restrict each Cnumber to the set of all permutations of V.

These may be the same of course. The interesting possibility is that in iNF
we fail to prove infinity, so we can’t prove that they are different. But we might
be unable to prove they are the same. Gives us a dangerous interesting space
to explore.

Notice that both these restrictions give us structures that do not support a
T function.

Anyway these two ways of restricting Cnumbers give us two succ-
homomorphisms onto the two (sets of) restricted Cnumbers. I think they respect
plus too. The image under the first kind of restricting (the more drastic one)
looks either like Z or a loop. Notice that the fact that we have a homomorphism
from INc onto this structure tells us immediately (or is trying to tell us, through
the constructive fog) that the circumference of Albert’s loop is a multiple of the
circumference of the homomorphic image.

In both cases we want to know the n such that the homomorphism is n-to-
one.

The loop is a well-defined object of iNF. We define succ on INc and observe
that the definition is homogeneous so the graph is a set. Then we define X as
the intersection of all sets containing INc and closed under A 7→ succ“A. Then
X is a set, and so, too, is

⋂

X—which is the loop. Beeson calls it L.
Now what sort of structure does L have under succ? We want it to be a

simple loop. In principle INc equipped with succ is a tree and L contains those
elements that have rank ≥ ω. (Unranked is rank ∞, which is greater than ω).
Can we be sure that L contains no elements of rank ω? Yes, beco’ then the set
of elements of lower rank contains 0 and is closed under succ.

We would like L to be empty. So does INc \ L contain 0 and is it closed
under succ? Perhaps not. But beware. If it isn’t closed under succ (and the
best guess is that it isn’t) that doesn’t mean it has a last element.

We want to show that everything is L is succ of something in L.

9.2 Notation

Let’s have a symbol for the set of Church numerals (“Cnumbers” to their
friends): INc. I use the word ‘succ’ to denote Church successor. Of course
there is also successor on the usual (Frege) numerals (“Fnumerals”) as well and
i will use fraktur for the F-objects . . . ‘f’ for ‘fraktur’ and for ‘F’rege, geddit??
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So succ will be successor for Frege naturals . . . . In circumstances where one
wants to make clear that it is the usual—Frege—numerals (the equinumerosity
classes) that one means one can write ‘INf’

For the moment we will assume that our pairs are Wiener-Kuratowski, since
these (unlike Quine pairs) work not only in NF but also in NFU, NFI and iNF.
W-K pairing and unpairing is constructive. I am endebted to Randall and PTJ
for pointing this out to me: the first component of p is

⋂⋂

p; the second
component is the unique thing that belongs to only one member of p

9.2.1 The Exercises

(i) Define the set INc of Cnumbers and the arithmetic operations on it,
and establish which have graphs that are sets.

(ii) Inductively define the maximal partial bijection between INf and INc and
establish what its domain and range are.

(iii) Define succ and prec on INc, and ascertain whether they are
total, injective, surjective, mutually inverse etc . . .

(iv) Define the obvious partial order ≤Nc . Loops?

(v) Sort out the cardinality classifier whose values are the Cnumbers.

(vi) Prove commutativity of mult and plus and distributivity. Tho’ that is
probably routine.

(vii) Define T on INc.

9.3 Implementing the arithmétic Operations,
Church-style

We start with successor. We can define succ as λn.λƒ .λ.ƒ ((nƒ )). It is
evident that ‘m = succ n’ is stratified with ‘’ of lowest type, ‘ƒ ’ three types
higher than ‘’ (our pairs are W-K, remember) and ‘n’ and ‘m’ are three types
higher still. Observe that ‘m = succ n’ is homogeneous; it has only two free
variables: succ is not a variable but a defined term. The precise numerical
value of the difference in levels between succ and ‘n’ andm‘m’ is in some sense
not part of mathematics, tho’ the fact that it is greater than 0 emphatically is
part of mathematics.

Albert points out that every Cnumber from 2 onward is succ of something
other than a Cnumber. Of course these other things of which it is successor
tend not to be Cnumbers, but it’s a thing worth keeping in mind, particularly
when we start trying to show that succ is injective . . . we will mean injective
on Cnumbers.
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Next we define INc as the intersection of all sets containing K (which is
what the Cnumber 0 turns out to be) and closed under Church successor:

{ : (∀y)((0 ∈ y∧ succ“Y ⊆ Y)→  ∈ Y)}

This is a stratified set abstract, and so it is an axiom of iNF that it denotes a
set. I think this is actually an axiom also of Crabb/’e’s NFI [?], and this is true
also of the axiom giving the set INf of all Frege naturals1.

9.3.1 Addition, Multiplication and Exponentiation

One has to be careful here: plus and mult are homogeneous in the sense that
there are homogenous formulæ Plus(n,m, k) and Mult(n,m, k) that say that
k = n +m and that k = n ·m respectively:

‘Plus(n,m,λƒ .λ.(nƒ )(mƒ))’

is stratified with ‘’ of lowest type, ‘ƒ ’ three types higher than ‘’ and ‘n’
and ‘m’ are three types higher still. Mult is similar: mult n m = λƒ .n(mƒ )
giving

‘Mult(n,m,λƒ .n(mƒ ))’

However, if we want the graphs of the two functions INC × INC → INC to
actually be sets then we have to have Quine ordered pairs. (Of course there
is no way of getting the graphs of the curried versions to be sets). This won’t
make much difference, but it’s probably worth bearing in mind, even if only to
curb one’s enthusiasm. I shall use the words ‘plus’ and ‘mult’ to denote the
curried functions . . . and use the curried versions to conform with standard λ
practice.

Given the inductive definition of INc it is routine to prove that it is closed
under plus and mult.

Church exponentiation is a stratified operation but it is not homogeneous.
(It is function application and therefore gives its two arguments different types,
the difference depending on our choice of pairing function. That difference is

1What is NFI?
Randall says (in his article on how the set theoretic programme of Quine succeeded but

nobody noticed)

“The other extensional fragment of interest is NFI, the version of NF with [. . . ]
extensionality and with a version of stratified comprehension which is restricted
to those instances in which no type is assigned to a variable which is higher than
the type which would be assigned to the set being constructed. This corresponds
to a restriction on the impredicative formation of sets in TST. If the additional
restriction is imposed that variables of the same type as the set being constructed
must be parameters (must not be bound), we obtain the theory NFP (predicative
NF).”

So it’s worth keeping in mind the possibility/desirability of our definitions working also in
iNF and NFI.



9.3. IMPLEMENTING THE ARITHMÉTIC OPERATIONS, CHURCH-STYLE163

never zero). How significant is this fact? [and why has it taken me until April
Fools’ Day 2019 to see it?!] Perhaps one wants to connect this with the fact
that there seems to be no synthetic definition of later Doner-Tarski operations.

There are other operations we need to think about: predecessor and—since
we are doing NF—the T function.

Naturally you want n succ 0 to be n, and classically it is, of course, but it’s
six types lower (if i’ve counted right) so it must be T−6n. More on that later.
For the moment we’d better prove that

LEMMA 4 Every Cnumber is of the form n succ 0 and every object of that
form is a Cnumber.

Proof:

First we check that n succ 0 really is a Cnumber. (Really this ought to be
trivial, in that INc is defined as the succ-closure of {0}.)

True when n = 0.
So suppose true for n, which is to say n succ 0 ∈ INc. Then

(succ n) succ 0 = succ (n succ 0). Now (the RHS) n succ 0 is in INc by
induction hypothesis, and INc is closed under succ by construction, so the LHS
is also in INc, and we are done.

The other direction states that for all m in INc, there is n s.t. m = n succ 0
We procede by induction on ‘m’.

No problem with m = 0.

So suppose m = n succ 0. We want (succ n) succ 0 to β-reduce (or some-
how rearrange) to succ m.

Now succ n is λƒ .ƒ ◦ (nƒ ), so, putting this in for ‘succ n’ in

‘(succ n) succ 0’

we get

(λƒ .ƒ ◦ (nƒ )n) succ 0

and then, substituting succ for ƒ ,

(succ ) ◦ (n succ) 0)

which is

succ (n succ 0),

and (n succ 0) is m so we get

succ m

as desired.

So this function is total and surjective all right; the problem is that it
mightn’t be injective.

I am now very struck by the thought that the following seems to be a per-
fectly respectable set:
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{〈n, ι6(n succ 0)〉 : n ∈ INC}

and this is a bijection between INc and ι6“INc. (I hope that 6 is the correct
number. Mutatis mutandis). This is pretty cool, but don’t get carried away:
T2α = α doesn’t obviously imply α = Tα unless α is (for example) a natural
number.

However it does give a simple proof that |INf| 6= |INc| unless things look very

very nice. This is beco’s unless things look very nice we don’t have T6|INf| =
|INf|. Doesn’t T6|INf| = |INf| imply the axiom of infinity?

� We can inductively define the maximal bijection between initial segs of
INf and INc.

� Also we can send each Cnumber n to the Fnumber of the set of Cnumbers
m s.t. n is in the succ-closure of {m}

� You can relate an Fnumeral n to any Cnumber m s.t. m succ 0 = n.

All these things are trying to be bijections between INf and INc.

Another thing you can do is to send a Cnumber n to ι6(n succ 0).
We need to look very closely at predecessor functions for Cnumbers.

Predecessor

Say pipeline 〈n,m〉 = 〈m, succ m〉.
Then pred n = fst (n pipeline 〈0,0〉).
We need to define pairing and unpairing:

pair:= λyƒ .ƒy
fst:= λp.p true

snd:= λp.p false

nil:= λ.true

But pred is not homogeneous (tho’ it is stratified).

Wikipædia supplies another definition of pred:

λn.λƒ .λ.n (λg.λh.h (g ƒ )) (λ.) (λ.)

but i haven’t got my head round it yet.

What the above discussion shows is that succ−1 is single-valued when re-
stricted to numerals that are T6 of something. It doesn’t show that every
Cnumber has a predecessor.

Should get that down to: T of something.

There doesn’t seem to be a straightforward implementation of pred for
Church numerals in NF that is homogeneous, tho’ I can see how do one us-
ing T. So let’s get a definition of T.
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9.3.2 The T-function for Church Numbers

Lemma 4 tells us that the function n 7→ n succ 0 is total and surjective2.
Clearly n succ 0 is T−2n. However one wants to be sure that this definition of
T has the right behaviour. We expect that, for all n and all ƒ ,

(Tn)(jƒ ) = j(nƒ ).

This is because “ƒ composed with itself n times is g” is a stratified expression,
so we are in with a chance of proving

(∀n)(∀ƒ )(∀g)(“ƒ composed with itself n times is g” iff “jƒ com-
posed with itself Tn times is jg”).

So, if the pair 〈ƒ , g〉 belongs to the Cnumber n, we want Tn to be the
Cnumber that houses 〈jƒ , jg〉. The Cnumber we want is of course {〈jƒ , jg〉 :
〈ƒ , g〉 ∈ n} (a thing one might sensibly notate ‘nj’). This thing isn’t a Cnumber
of course—beco’s it is defined only on things in the range of j—but is it at least
included in a unique Cnumber? And can it happen that n 6=m but nevertheless
nj and mj correspond to the same Cnumber?

It would be nice if it didn’t, but don’t hold your breath; as Randall puts
it “functions of the form j(ƒ ) do not exhibit all possible cycle lengths; so the
Church numerals limited to functions of this form “cycle” sooner than expected,
as it were.” What Randall is alluding to is the fact that (for example) a per-
mutation jσ must be of order Tn for some n.

I think we can at least show that nj is not included in more than one Cnum-
ber. The argument goes as follows. Suppose the pair 〈ƒ , g〉 belongs to both of
two distinct Cnumbers n and p. That is telling us that ƒn = ƒp. However, if
ƒp = ƒn then we can compute from n and p a k s.t. ƒ k is idempotent. But this
tells us that there is a k s.t. for every ƒ , ƒ k is idempotent. But actually that
might be true. Oops. work to do here ☠

So: n 7→ T−2n is total and defined everywhere. Does that really suffice to
show that T−1 is defined everywhere? Gulp. And anyway, just what exactly is
this function that we have shown to be defined everywhere? Is this operation
that i have so airily called ‘T−2’ really the inverse of the operation defined
earlier that i called (with some justification) ‘T’? This needs to be proved!! work to do here ☠

Actually i am guessing that these two operations cannot straightforwardly
be proved to be mutually inverse, since T being a bijection INc ←→ INc (even
if its graph is a class, which of course it is, prima facie) is, i think, enough to
prove AxInf.

For consider: we will want the equality T2n succ 0 = n and we will have
trouble proving it beco’s at this stage we know how to apply T2n only to things
that are j2 of something.

2Tho’ of course it doesn’t tell us that its graph is a set.
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9.3.3 Verifying that the Definitions work

Show that the two definitions of the order relation are equivalent.

(i) n ≤1 m iff (∃k)(plus n k =m)

(ii) n ≤2 m if every succ-closed set containing n also contains m.

(ii) → (i). Fix n. We then prove by induction on ‘m’ that n ≤1 plus n m.

For (i) → (ii), suppose plus n k = m. We wish to show n ≤2 m. I think
we do this by induction on ‘k’.work to do here ☠

plus and mult

I mentioned above that we ought to prove that INc is closed under plus and
mult.

plus:
We first show that plus obeys the obvious recursion:

plus n (succ m) = succ(plus n m).

We now fix n and prove by induction on ‘m’ that
(∀m ∈ INf)((plus n m) ∈ INf), as follows. True for m = 0. Suppose true for
m. Then, as we have just proved, plus n (succ m) = succ(plus n m) and
we know the RHS to be in INc by induction hypothesis and the fact that INc is
closed under succ.

I am assuming mult will be analogous.work to do here ☠
Perhaps i am making a fuss about nothing. Perhaps all this could be proved

by β-manipulations of the appropriate λ-terms, but in situations where i am
not confident that i understand everything i want stuff written out.

LEMMA 5 succ : INc→ INc has no fixed point.

Proof:
The obvious function to think of is complementation: comp:  7→ V \ .

(Thank you Randall). The thought is that n and succ n must disagree on
comp, and therefore be distinct. Suppose per impossibile that n = succ n.
Then n comp = succ n comp. Now, for any  whatever,

succ n comp  = V \ (n comp )

so n = succ n is impossible, beco’s nothing is equal to its own complement.

Notice that this proof is constructive.
I think it shows that succ cannot have any odd cycles, since it should be

possible to show 2n succ comp = comp2 by induction. We know constructively
that comp2 is idempotent, so comp cannot have any odd cycles. This should
show that the “loop” cannot be of odd length.
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This doesn’t by itself prove that succ cannot have even cycles, but it does
give us hope.

Suppose n = m succ n, where m is odd. Then
n comp2  = m succ n comp2 . errr . . .
is impossible, beco’s nothing is

The key fact wot we exploited is that comp has no fixed points. Suppose ƒ2

has no fixed points, then we can argue that 2 succ has no fixed points. Suppose
n = 2 succ n; then

n ƒ = 2 succ n ƒ

n ƒ  = 2 succ n ƒ 

n ƒ  = ƒ2(n ƒ )

contradicting the assumption that ƒ2 has no fixed point.
So: to exclude the possibility of a loop, we need, for each n, a function ƒ

such that nƒ has no fixed points. How likely does that sound?
then

LEMMA 6 0 is not succ of anything.

Proof:
This is Beeson’s proof.
Suppose per impossibile that succ n = 0. By lemma 5 we have n 6= 0. Let

 and b be two distinct sets, and consider applying the two things succ n and
0 to separately to K, and then applying the result to b. We get

succ n (K) b = 

but

0 (K) b = b

Notice that this relies on being able to apply the fraudulent candidate for
predecessor of 0 to things that are emphatically not permutations. If we consider
the restrictions of Cnumbers to permutations (of V) we get a very different
picture.

The bit i’m dreading is showing that Church succ is injective. This seems
to be the only thing still left to do. How do you do it?

There sure as hell is going to be a problem proving that succ is injective
beco’s we know this doesn’t work in NFU. And i have absolutely no idea how
this can fail to work in NFU while nevertheless (presumably?) working in NF.
You are going to have to use extensionality . . . on empty sets!!. work to do here ☠

Must investigate the obvious isomorphism between the Church numerals and
the equipollence naturals. It’s the ⊆-least set of ordered pairs containing the
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ordered pair of the two zeroes and closed under the operation “If you find 〈, y〉
put in the pair 〈succ , S(y)〉 as long as S(y) is defined”. This is a well-defined
kosher set of ordered pairs.

Does it use up all of one or the other? Or are there unpaired members
on both sides? This should remind the student of the proof that the natural
numbers are second-order categorical.☠

In iNF the h-u-g-e difference between Cnumbers and Fnumerals is that suc-
cessor is total on Cnumbers even if it isn’t on Fnumerals. OTOH it is clearly
injective on Fnumerals even if it isn’t on Cnumbers. Notice that we can easily
define a stratified formula that says that n belongs to a loop, namely n belongs
to the succ closure of the singleton of succ n. The relation “m belongs to the
succ-closure of {n}” wants to be a genuine partial order (i.e., antisymmetric)
but it can’t be relied on to be. One thing at least does work, and that is that
the collection of Cnumbers that do not belong to a loop form a set. My guess
is that that set is iso to INf, the set of Fnumerals.

If we are to prove that the Cnumbers of iNF give us an implementation of
Heyting Arithmetic then at some point we are going to have exploit the fact
that we are doing set theory, and get our hands grubby working on the sets
that implement these gadgets. I suspect it might be an idea to think about
boolean combinations of Cnumbers, or at least intersections and differences.
The intersection of all Cnumbers is the singleton of the restriction of the identity
relation to the set of all function. I’m guessing that successor distributes over
binary intersection.

9.3.4 Digression on The Axiom of Counting
Lifted from philmatbok.tex

The reader may be bothered by the circumstance (not remarked on in any detail
above!) that |INC| = T6|INC| or something similar, where the index might not
be 6 . . . it could be 2 if our pairs are Quine pairs. There is something to think
about here, and it cannot be avoided altogether. I insert here some notes on this
subject from elsewhere—a digression, indeed. This material may be reprocessed
into something more obviously directly relevant.

Consider the two assertions:

1. (∀n ∈ INf)(n = |{m :m< n}|);

2. (∀)( finite → || = |ι“|).

These two are usually assumed to be equivalent, and both are known in the
NF literature as the Axiom of Counting, the name given to (1) by Rosser in [?].

However these two are actually completely distinct assertions: the first comes
from the typing that comes with implementations, and the second is purely set-
theoretic. It’s probably worth minuting the following:
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THEOREM 11
For any (stratified) implementation of natural numbers let the two vertical
bars denote the natural-number-of function; let k be the type difference
(type-of ‘||’) − (type-of ‘’) in that implementation and let IN(k) be the cor-
responding collection of implemented natural numbers, so that

(∀m ∈ IN(k))(|{n : n < m}| =m)

is then the axiom of counting.
(Observe that any such implementation of cardinal-of will be setlike even if

it is not locally a set.) Then

1. If k = −1 then the axiom of counting is a theorem of NF;

2. In all other cases the axiom of counting is equivalent to “Every (induc-
tively) finite set is strongly cantorian”.

(In this section we take an implementation of arithmetic to be a structure
for the language of arithmetic PLUS a natural-number-of function which is
assumed to be setlike but not assumed to be locally a set.

There is a further subtlety in that the T function on natural numbers—
thought of as a permutation of V—is not setlike, but thought of as a permutation
of IN it is. There is a detailed discussion of this in another file but i cannot for
the life of me remember which.)
Proof:

Case k = −1.
In this case the type of ‘|{n : n < m}|’ is one less than the type of ‘{n : n <

m}’ which in turn is one greater than the type of ‘m’. One greater? Yes; as
long as ‘ = |y|’ is stratified the relation < on cardinals will be homogeneous.
So ‘|{n : n < m}|’ and ‘m’ have the same type. So the assertion (∀m ∈
IN(−1))(|{n : n < m}| = m) is stratified and can be proved by mathematical
induction.

Case k 6= −1.
For any implementation IN(k) the assertion

|ιk+1“| = |{m ∈ IN :m< ||}|

is stratified and can therefore be proved by induction on ||. That we get
anyway; the axiom of counting now tells us that

|| = |{m ∈ IN :m< ||}|

so we conclude that || = |ιk+1“|. ∗∗
(Notice that in the case k = −1 the axiom of counting gives us no exploitable

information.) Now if  were properly bigger (or properly smaller) than ι“
then, for each concrete j, ιj“ would be properly bigger (or properly smaller—
whichever it is) than ιj+1“ so—by transitivity of—< we would establish that
 was properly bigger (or smaller, mutatis mutandis) than ιk+1“. But we
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have just shown—above, at ∗∗—that this cannot happen. So  and ι“ are
the same size. That is to say that  is cantorian.

However the claim was that  was strongly cantorian, so there is still work
to be done. If every finite set is cantorian then Specker’s T function restricted
to IN is the identity, so the relation {〈{n}, Tn〉 : n ∈ IN}—which is a set, being
the denotation of a closed stratified set abstract—is precisely ι�IN, which is to
say that IN is strongly cantorian. But any subset of a strongly cantorian set is
strongly cantorian, and every inductively finite set can be embedded into IN3 so
every finite set is strongly cantorian.

There are many ways of implementing natural-number-of with a stratifi-
able formula—at least in NF(U).4 To each such implementation we can associate
a concrete integer k which is the difference (type-of ‘y’) − (type-of ‘’) in
‘y = ||’. In fact:

THEOREM 12
For every concrete integer k there is an implementation of natural-number-of
making ‘y = ||’ stratified with
(type-of ‘y’) − (type-of ‘’) = k.

Proof:
For k = 1 there is the natural and obvious implementation that declares

|| to be []∼, the equipollence class of —the set of all things that are the
same size as . For k ≥ 1 we take || to be ιk−1([]∼). (This works for all
cardinals, not just for natural numbers).

For k < 1 we have to do a bit of work, and although the measures we use
will not work for arbitrary cardinals they do work for naturals. We need the
fact that there is a closed stratified set abstract without parameters that points
to a wellordering of length precisely ω. The obvious example is the usual Frege-
Russell implementation of IN as equipollence classes, which we have just used
above with k ≥ 1. However it is probably worth emphasising that we don’t
have to use the Frege-Russell IN here; whenever we have a definable injective
total function ƒ where V \ ƒ“V is nonempty, with a definable  6∈ ƒ“V, then

⋂

{A :  ∈ A∧ ƒ“A ⊆ A}

will do just as well. The usual definition of IN as a set abstract is merely a case
in point. (We have already noted that there is no such set abstract in Zermelo
or ZF!) Let’s use the usual IN-as-the-set-of-equipollence-classes.

Consider {ιk(n) : n ∈ IN}. It is denoted by a closed set abstract so it
is clearly a set in NF, and it has an obvious canonical wellorder to length ω.
For every inductively finite set  there is a unique initial segment  of this
wellordering equipollent to it, and the function that assigns  to that initial

3This needs AxInf
4I seem to remember that there is no way of implementing natural-number-of with a

stratifiable parameter-free formula in ZF(C).
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segment is a set. We conclude that the function  7→
⋃k  is an implementation

of natural-number-of that lowers types by k.

Here is another proof. We can take || to be [y]∼ for any y such that
ιk“y ∼ . (Here ∼ is equipollence as before.) This gives us a natural-number-
of  that is k − 1 types lower than . For us a natural-number-of  that is
k + 1 types higher than  take || to be [ ιk“]∼.

Notice that the same does not go for ordinal-of, because if it did we would
get the Burali-Forti paradox. It seems to be open whether or not one can have
a cardinal-of function that lowers types. We can have an implementation of
ordinal-of that lowers types if IO holds. . . specifically iff every wellordered set
is the same size as a set of singletons. (This is related to the fact that there is
no type-lowering implementation of pairing. Is it also related to the fact that
WE - like P - is not entirely finitary..?)

9.4 Typed lambda calculus

It could be argued that this material belongs in a separate chapter as—until
recently—it did.

9.4.1 A Question of Adam Lewicki’s

Adam Lewicki reminds me that there seems nowhere to be a proof that |V →
V| = |V|. Clearly all we need to do is inject V into V → V. Send X to

λ. if  ∈ X then  else V \ 

7/v/2017

I don’t know why i hadn’t thought of this earlier, but Adam Lewicki has,
and has made me think about it. Using Quine pairs every set is a set of ordered
pairs, so the function that takes  and y and returns “y is well-defined and
total—and homogeneous! What kind of algebra do we get? The operation
clearly has a left-unit, which is just the identity relation, {〈, 〉 :  = }.
What about K and S? We don’t get K—we don’t even get K for any  that
isn’t a singleton . . . and presumably not S either. What do we get? Have you
thought about this?

It’s quite disgraceful that i have known about Quine pairs and about lambda
calculus for years and have never thought about this algebra. How can i show
my face in public?

What is V“? Presumably it is V unless  is empty. “V?
There is the set {〈〈, y〉, ( × y)〉 : , y ∈ V}. That does something nice.

One obvious question is: “what kind of combinatorial completeness does this
algebra have?’
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That is, for what functions ƒ : V → V can we find  s.t (∀y)(ƒ (y) = “y).
Hardly any!

What is K? Presumably V ×  . . . (or × V depending on which way you
write down your functions). It doesn’t return  on being given the mpty func-
tion, which is a bummer. Do we really have to leave out the empty function??
How annoying. I can start to see why Adam L wants to use ∅ as a failure

flag.
The algebra supports all sorts of operations: anything you can define on

functions, really. Inverse, composition, transitive closures . . . . The algebra is
closed under all these operations, but of course that doesn’t mean that they are
internalised in the combinatorial completeness sense. The algebra’s Inverse is
the function {〈〈, y〉, 〈y, 〉〉 : , y ∈ V}. Then Inverse“R is just R−1.

Notice there are |V|-many elements of this algebra but only T |V| functions
to which they can correspond, so extensionality fails badly.

Older material on the same topic

First we prove that V and V → V are the same size.

For a first try, let’s send each set  to that function which sends everything
in  to itself, and everything else to Λ, the empty set.

F: Input ; output λy.if y ∈  then y else Λ.

We can recover  from F() as long as ∅ 6∈  and V \  has at least two
elements. In particular, if there are |V| things that are of size |V| (not containing
∅) and whose complements are of size |V|, then we’re OK.

If ∅ 6∈  then × V satisfies this. There are |V| things not containing Λ, so
there are, in fact, |V| things that are of size |V| (not containing Λ) and whose
complements are of size |V| as desired.

F restricted to these things is 1−1. (F−1() = F“\{∅}) so there are |V|
functions from V into V.

The trouble now is that the K combinator cannot be a set. If it were, then
λ.(V × {}) would be a set and so would ι. Presumably S can’t be a set
either, tho’ i can’t see such a cute proof offhand. The only combinators that
ought to be sets in NF are those of (polymorphic) type α→ α.A certain amount of reinven-

tion of the wheel going on
here

Some of this belongs in CHNF.tex

9.4.2 How easy is it to interpret typed set theory in the
typed λ-calculus?

This is related to the question of ascertaining the relative strengths of things
like HOL and simply typed set theory.

If we can decide on elements 0 and 1 at each type, then we can regard a
model of this λ-calculus as an extension of a model of TZT: we restrict attention
to the hereditarily two-valued functions. (A hereditarily 2-valued function is an
ƒ such that range(ƒ ) = {0,1} and ∀y.ƒ ‘y = 1→ y hereditarily 2-valued.) This
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is o.k. when we have atomic types, for we can take 0 and 1 at the atomic types to
be whatever they are, and then procede to define 1β→α and 0β→α by recursion.
This is slightly more delicate than one might think, since we want 1α and 0α
to be hereditarily two-valued. The definition of 0β→α as λβ.0α is perfectly
satisfactory but 1β→α has to be λβ. hereditarily-two-valued()→ 1α�0α.

It is not clear how to do this when there are no atomic types to start the
recursion, but a compactness argument will probably save the day.

To complete the interpretation we will need to have, for each type α → β,
and each type γ, a λ-term Fαβγ: (α → β) → γ such that, for any t : α → β,
Ft = 1γ iff t is hereditarily two-valued and = 0γ otherwise. Presumably this
can be done but not uniformly.

9.4.3 A Conversation with Adam Lewicki on 15/ix/19

We are using Quine pairs, so every set is a set of ordered pairs.
Thus to every set  there corresponds the function y 7→ “y. This is a

rather nice function: ⊆-continuous and determined entirely by what it does to
singletons. That is, if i know “{y} for all y then i know the function and i know
. If we write X for this function we find that, for all y, X (y) =

⋃

z∈y X ({z}).
Now think about this function  7→ λy.“y. This is  7→ {〈, y〉 :  =

“y}. As long as we are using Quine pairs ‘ = “y’ is homogeneous so the
the function  7→ λy.“y lifts types by 1. So there are T |V| functions that are
“image functions” of this kind.

We’d better perform the sanity check of verifying that  7→ λy.“y injective
Next we need to know that every function that satisfies this continuity prop-

erty is j of something. [But of course that’s not true!] So X is j(X) for some X.
Observe that, in the displayed formula below, all the things between the arrows
are of the same level:

{} 7→(1) X 7→(2) {X}

Let’s consider arrow (1). X contains ordered pairs 〈y, “y〉 and so is one
type higher than y which is the same type as , so it’s on the same level as {}.
We need to check that distinct s give rise to distinct X . That is easily done by
considering an ordered pair 〈,〉 in the symmetric difference 1 XOR y and
considering what 1 and 2 do to  (or  if you are writing your ordered pairs
the other way round).

Arrow (2) is a bit more work.
Sadly it’s not true that any ⊆-cts function that is determined by its values

on singleton inputs is j of something. Let ƒ be such a function then it is j of
that function that sends  to

⋃

ƒ ({}). But ƒ ({} might not be a singleton.
Bugger.

So the attempt to prove that there are |V| total functions fails. It might be
true anyway of course. . .

Is it the case that any ⊆-smooth function is y 7→ “y for some ? That
looks a lot more plausible. Suppose ƒ (y) =

⋃

z∈y ƒ ({z}). Then consider  =
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{〈,〉 : ∈ y∧  ∈ ƒ ({z})}.

9.5 Arithmetic in NFU

A message from Ali Enayat

1. Δ0 + Exp + B1 holds provably in the strongly cantorian natural num-
bers, provably in Jensen’s NFU (I learnt this from Solovay, and the proof
is fairly straightforward). The same goes for NF.

2. Jensen’s NFU + (¬Inf) is equiconsistent with Δ0 + Exp (provably in
PA). This is essentially due to Jensen. Solovay in 2002 proved that this
equiconsistency is provable in Δ0 + Supexp, but not in |Det0 + exp.

3. Δ0 + Exp + B1 does not interpret Jensen’s NFU (Solovay, 2002).

4. Provably in PA, Holmes’ NFU is equiconsistent with Mac Lane Set Theory,
Mac Lane set theory is obtained from Zermelo set theory by weakening
the scheme of separation to Δ0 formulæ. (Jensen for one direction and
Hinnion for the other).

5. Also, As shown by Hinnion (and fine-tuned by Holmes), there is an *in-
terpretation* of ZFC Powerset in Holmes’ NFU (the interpretation is
well-named: the Zermelian tower). Now, since ZFC Powerset interprets
PA (indeed it even interprets second order arithmetic), *this show in an-
swer to your question that NFU does indeed interpret PA*.

6. Finally, regarding Randall’s guess that Δ0 + exp is precisely what NFU
knows about s.c. natural numbers: perhaps Randall meant to include
B1, but besides that, I SUSPECT (but details have to be checked)
that the strongly cantorian natural numbers are isomorphic to a cut of
natural numbers of the aforementioned Zermelian tower interpretation of
ZFC Powerset in NFU. If this is right, then Con(PA) would hold in s.c.
natural numbers.

7. Moreover, one of the fascinating facts unearthed by Solovay in his emails
was that there is an arithmetical sentence that holds in the s.c. natural
numbers of all models of Jensen’s NFU (even the ones satisfying ¬Inf)
that is not provable in Δ0 + exp + B1 (the proof is complicated, and
involves his method of shorterning cuts).

Another message

1. The reason behind B1 holding in the strongly cantorian natural numbers
is that the strongly Cantorian natural numbers form an initial segment of
natural numbers without a last element (i.e., a “cut”) that is closed under
addition and multiplication in a model of NFU/NF. If this initial segment
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is a *proper* initial segment of the natural numbers of the ambient model,
then it satisfies B1 by fact that any cut of a model of  − Δ0 (Induction
for Δ0 formulae) that is closed under plus and times satisfies B1 (so
here we need the fact that NFU can prove that the set of natural numbers
satisfies Δ0 induction).

On the other hand, if every natural number is strongly cantorian, then they
satisfy PA (I think this is due to Rosser). I will add that it is a joint result
of myself and Solovay (from around 2002) that the theory (Jensen’s NFU)
+ (¬Inf) + “every cantorian set is strongly cantorian” is equiconsistent
with PA (and indeed this extension of Jensen’s NFU interprets ACA0).

2. Albert asked if Jensen’s NFU is not finitely axiomatizable. The answer
is that Jensen’s NFU is finitely axiomaizable for the same reason that
Quine’s NF is (Thomas and Randall: please correct me if I am wrong
since it has been a while since I last thought about this topic).

Also: I will try to dig up Solovay’s example of an arithmetical sentence
not provable in Δ0 + exp + B1 that holds in the strongly Cantorian
natural numbers of every model of NFU.

Yet another message

Dear Friends,
I contacted Solovay to receive his permission to share some of his emails

relating to “NFU and arithmetic”. Below you will find three such.
Please note that what Solovay refers to as S is “Jensen’s NFU: + negation of

infinity, Exp is Δ0 + the exponential function is total, and Supexp is Δ0 + the
superexponential function is total. Also he uses SC for the model of arithmetic
consisting of the strongly cantorian numbers in a model of S.

Another key point to keep in mind (which I will try to elaborate in future
emails) is that within a meta-theory that can “do basic model theory”, the
following two statements are equivalent for a countable model M of Δ0 + Exp
+ B1.

(1) There is a model of S whose strongly cantorian numbers are isomorphic
to M.

(2) There is an end extension N of M such that N satisfies Δ0, and N \M
contains an element c in which Supexp(c) exists.

By the way, (1) → (2) does not need the countabliity of M and is due to
Solovay (based on an analysis of Jensen’s construction). (2) → (1) arose from
the joint work of Solovay and myself.

All the best,
Ali
Ali,
This series of letters will just be a first pass over the proof omitting various

technicalities.
My first goal will be to describe the formula “J3() exists”. But before that

I have to introduce some of my “private notation”.
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1. We define the function of two variables e(n, ) thus:

e(0, ) = ;

e(n + 1, ) = 2e(n,).

And we define the stack-of-twos function J thus:

J(n) = e(n,0).

It is a basic [but non-trivial] fact about weak subsystems of arithmetic
that there is a Δ0 formula that [provably in Δ0] “adequately” expresses
“y = 2”. I believe that this result is presented in detail in the treatise
of Hajek and Pudlak on the metamathematics of PA.

Once one has this under one’s belt, it is relatively easy to find Δ0 pred-
icates expressing “y = J()” or “y = J(J(J()))”. [Of course, if one can
handle one J one can handle 3.]

2. One other minor technical point. In elementary texts [such as Kleene’s
“Intro. to Metamathematics”] one takes the “numeral” for n [n ∈ ω] to
consist of n succesor symbols followed by the symbol for 0. But I prefer to
use a more efficient notation where the numeral for n has length roughly
proprotional to log n. Thus since 6 = 2∗2+2, I would take the numeral
for 6 to be:

+SS0SS0SS0

[Various things are slurred over here: Polish notation; Smullyan notation
for digits. The details are not important for this outline and are carefully
spelled out in my paper “Injecting Inconsistencies ...”.]

3. We start our construction with a non-standard model M of PA. Let n be
a non-standard element of M fixed for this discussion.

We are going to construct a sentence [of non-standard length] that ex-
presses “J3(n) exists” and we need to be a little pedantic in its construc-
tion.

Let num(n) denote the closed term of length O(log n) which we have
previously alluded to as the numeral for n.

Let θ(, y) be the [standard] Δ0 forumula that expresses “y = J3()” as
discussed previously.

Then the sentence we want is:

(∃, y)(θ(, y)∧  = nm(n)).

Now consider the theory T = Exp + “J3(n) exists”.

M is a model of T + Con(T).

We now apply the techniques of my paper on “Injecting inconsistencies
... ” to M, T. The result is a model N of T which agrees with M on
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the integers ≤ n, and which thinks there is a proof of 0 = 1 in T of
length at most e(1, n). N will think that there is a slightly larger proof
of “J3(n) does not exist” in Exp. Certainly this second proof will have
length < e(2, n).

The model N1 that will instantiate our theorem will be an initial segment
of N. Precisely, this model will consist of those elements of N which are
less than e(k, n) for some standard k.

It is evident that N1 is a model of Exp. It is perhaps not quite evident
that N1 thinks Con(Exp). This will follow from the facts that N1 is an
initial segment of N and that N thinks that J3(n) exists. But I will take
up that point in the next installment of this letter.

[snip]
Ali,
If I haven’t got N and N1 confused, the situation [in part] is as follows. N is

a model of Exp; n is a non-standard element of N;N thinks that J3(n) exists.
N1 is the initial segment of N consisting of all elements of N that are less

than e(k, n) for stome standard k.
It is evident that N1 is a model of Exp. Our goal is to show that N1 thinks

that Con(Exp).
[Although it plays no role in my proof, I could show, if I wanted that N itself

thinks that Exp is inconsistent.]
We first reduce the proof to the following lemma. We shall then discuss the

proof of the lemma but I shall not, in this pass, prove it in all detail.
The lemma that follows can be proved in Exp:
Lemma 1: Let π be a proof of 0=1 in Exp of length m. Then J2(4m + 1)

does not exist.
Some remarks.

1. I could improve this to J2(m). The 4m + 1 is an artefact of my rely-
ing on the presentation of Herbrand’s thm. in the paper of Paris and
Dimitracopulous.

2. The lemma is a slight sharpening of the fact that Superexp proves
Con(Exp).

From the lemma the fact that N1 is a model of Con(Exp) follows easily.
Indeed, if π is a proof of length < e(k, n) where k is standard, we have
but to observe that J2(4e(k, n) + 1) < J3(n). This follows from the fact
that

3. e(k, n) + 1 < e(k + 1, n) < J(n), which is evident, since n is non-
standard.

I am going to save my discussion of the proof of the lemma to the next install-
ment. I’m not sure if I will get that installment written before I leave Edinburgh
[on Saturday morning]. It is currently Thursday night.
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I remark that so far, the proof has had nothing to do with S. Of course,
S will appear presently. The crucial lemma that I need about S is that the
following fact is provable in Exp.

For a certain standard integer m0, we have: if m ≥ m0, then there is a
proof in S that J3(m) exists and is Cantorian whose length is less than 2m.
[It’s actually O(m2) in length where the constant implicit in the O(.) notation
is again some specific standard integer.]

******************************************

A counterexample

This example is a little involved. it also relies on a theorem of Pudlak which
I hope I’m recalling correctly. [The theorem in question should be in the paper
of Pudlak which you emailed to me.]

Theorem: There is a sentence  such that:

(1)  holds in the model SC of any model of S.

(2) There is a model of Exp + B1 + not-.

Here we go. I need the formulas n that I constructed in my letter “Reasoning
in S: III”.

 will assert: “There is no proof of 0 = 1 in Exp whose Godel number lies
in 1000”.

I need the following result. With “some standard k” rather than 1000, I
should prove it in a letter to you in a couple of days.

Lemma 1: Exp proves : If n is the Godel number of a proof of 0 = 1 in Exp
then J2(e(1000, n)) does not exist.

[It’s certainly true with k = 1000; alternatively you can replace references
to 1000, 2000 in what follows by references to k and k′ where k and k′ are
standard and k′ >> k >> 0.]

Let’s first prove “ holds in SC” in S. Well, if not let n be as given by the
negation of . Then e(1000, n) lies in SC0 . So J(e(1000, n)) exists in SC.

By the main result of my first two letters on S, J2(e(1000, n)) exists in
AC. But this contradicts Lemma 1 since AC is a model of Exp.

**************************************************************************

The construction of a model of Exp + B1 + ¬ will be more difficult.

Working in Exp we define a cut ∗ as follows:

If 0 is closed under Exp, then ∗ is the set of y such that J(y) is in 0; if 0
is not closed under Exp, ∗ is just 0.

We define a series of cuts ∗
n

from ∗ much as we defined the n from 0.

We now invoke a theorem of Pudlak: There is a model M0 of Exp and an
integer n such that:

(1) n lies in the cut ∗2000.

(2) n is the Godel number of a proof of 0 = 1 in Exp.

Claim 1: In M0, 0 is not all of M0.

Proof: If it were, M0 would be a model of SuperExp; but this contradicts
property (2) of n.

Claim 2: In M0, 0 is not closed under Exp.
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Suppose it is. Then e(1000, n) is in ∗ and since 0 is closed under Exp,
J(e(1000, n)) ∈ 0. Hence, by the definition of 0, J2(e(1000, n)) exists. But
this gives a contradiction via Lemma 1 and property (2) of n.

Claim 3: 1 is a proper subcut of 0.
This follows immediately from Claim 2.
Define an initial segment of M0, call it M1, as follows:
 is in M1 if there is a y ∈ 1 such that  < J(y).
It is immediate that M1 is a model of Exp. By claim 3, M1 is a proper

initial segment of M0. So M1 |= B1.
It is clear that 0 as computed in M1 is just 1 as computed in M0.
It follows [using the explicit definitions of the j’s as given in a recent letter]

that j as computed in M1 is just j+1 as computed in M0.
In particular, M1 thinks that there is a proof of 0 = 1 from Exp in its 1000.
************************************************************************
So what S knows about SC is not just Exp + B1. Perhaps the correct

answer is close at hand; perhaps not.
–Bob
On Oct 9 2019, Visser, A. (Albert) wrote:
Dear Ali,
Your question takes me back to the early years of this millennium , when

I was intensely corresponding with Solovay about NFU. In order to order to
answer your question let first point out that NFU is used in the literature for
two related theories, one much weaker than the other:

A. Jensen’s NFU (as in his 1968 Synthese paper on the subject) is the result
of weakening Quine’s NF by weakening the axiom of extensionality so as to allow
urelements. In contrast to NF in which the axiom of infinity (Inf from now on)
is provable, Jensen’s NFU is demonstrably indecisive about Inf (as noted by
Jensen). So we get two natural consistent extensions of NFU, namely NFU +
Inf, and NFU + Inf.

B. Holmes’s NFU, on the other hand, is a natural extension of Jensen’s NFU
that includes Inf, as well as a type-level-pairing function.

Ah. I did not realise this.
This is a summary of what I know about “arithmetic” and NFU (with the

proviso that it has been about a decade since I last worked on the subject).
1. Δ0 + Exp + B1 holds provably in the strongly cantorian natural

numbers, provably in Jensen’s NFU (I learnt this from Solovay, and the proof
is fairly straightforward). The same goes for NF.

The union of T+A already understood that it should contain Δ0+Exp.
Q1: The B1 is since there is a cantorian number above the strong cantorian

ones?
2. Jensen’s NFU + (¬Inf) is equiconsistent with Δ0 + Exp (provably

in PA). This is essentially due to Jensen. Solovay in 2002 proved that this
equiconsistency is provable in Δ0 + Supexp, but not in Δ0 + exp.

Ah.
Q2: Is the cutfree equiconsistency provable in EA? [One of Ali’s answers

below shows that it does not.]
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Q3: If I am not mistaken Δ0 + Supexp proves the consistency of Δ0 +
Exp, so it must also prove the consistency of NFUj + ¬nƒ . Right?

Q4: Is it not true that NFUj + ¬nƒ should interpret PA: on the canto-
rian numbers, plus and times work, so if Cantorian successor is total, then
we have PA on the Cantorian numbers (since the interpretation is stratified).
If that is so then NFUj+ inf proves con(NFUj) on the Cantorian numbers
and hence on the strongly Cantorian numbers. Then, by G2, NFUj+inf `
consc(NFUj+inconsc(NFUj)). So NFUj+inf ` consc(NFUj+¬nƒ ). Hence, by
the interpretation existence lemma, NFUj+inf interprets NFUj+ ¬inf. Since,
also NFUj+¬inf interprets NFUj+¬inf, we find, using a disjunctive interpre-
tation, that NFUj interprets NFUj + ¬inf. So NFUj is mutually interpretable
with NFUj+¬inf. This argument is undoubtedly verifiable in Δ0+Exp.

But does inf indeed imply that Cantorian successor is total? If not, a version
of the argument should work with inf replaced by inf plus the existence of
Holmes’ pairing function.

Q5: It should be true that NFUj is not finitely axiomatizable, right?
3. Δ0 + Exp + B1 does not interpret Jensen’s NFU (Solovay, 2002).
That answers Q2.
Q6: Does it locally or even model interpret it?
If it locally interprets it, then Δ0 + Exp+ cutfreecon(Δ0 + Exp) interprets

NFUj. Of course that is a stronger theory.
4. Provably in PA, Holmes’ NFU is equiconsistent with Mac Lane Set The-

ory, Mac Lane set theory is obtained from Zermelo set theory by weakening the
scheme of separation to Δ0 formulae. (Jensen for one direction and Hinnion for
the other).

5. Also, As shown by Hinnion (and fine-tuned by Holmes), there is an
interpretation of ZFC \ Powerset in Holmes’ NFU (the interpretation is well-
named: the Zermelian tower). Now, since ZFC \ Powerset interprets PA (indeed
it even interprets second order arithmetic), this show in answer to your question
that NFU does indeed interpret PA.

6 Finally, regarding Randall’s guess that Δ0 + exp is precisely what NFU
knows about s.c. natural numbers: perhaps Randall meant to include B1, but
besides that, I SUSPECT (but details have to be checked) that the strongly
cantorian natural numbers are isomorphic to a cut of natural numbers of the
aforementioned Zermelian tower interpretation of ZFC \ Powerset in NFU. If
this is right, then Con(PA) would hold in s.c. natural numbers.

Nice.
7. Moreover, one of the fascinating facts unearthed by Solovay in his emails

was that there is an arithmetical sentence that holds in the s.c. natural numbers
of all models of Jensen’s NFU (even the ones satisfying Inf) that is not provable
in Δ0 + exp + B1 (the proof is complicated, and involves his method of
shorterning cuts).

I do not know whether I already collected enough knowledge to guess what
that sentence is.

Best wishes,
Albert



Chapter 10

Models in the Ordinals

LEMMA 7 If 〈M,∈〉 is an initial segment of a nonstandard model of Z+V = L,
with an endomorphism T, and for some fixed initial ordinal Ω > TΩ then the
T-fixed points below Ω give rise to a model of Z.

Proof:
We shall assume that sets can be identified with ordinals so that we can

concern ourselves only with ordinals. The least member of a fixed set must also
be fixed, so the fixed sets satisfy extensionality (even though a fixed set may
have some members that are not fixed). Indeed we can show that the fixed
ordinals are an elementary substructure of the ordinals for which Tn is defined
for all n ∈ Z. If α is an initial ordinal that is fixed, then clearly the next initial
ordinal after α is likewise fixed, so the fixed sets will be a model for power set.
The fixed sets certainly satisfy the axiom of infinity since ω is fixed. Sumset is
straightforward. What is not at all obvious is that the fixed sets are a model
of aussonderung. We want to show that if  is a fixed set (a set coded by a
fixed ordinal), then  ∩ {y : Ψ(, y)} is fixed (coded by a fixed ordinal) even
if Ψ contains quantifiers restricted to fixed sets (ordinals). Why might this be
true? The obvious problem is that T is not part of the language in which we
have aussonderung, so we have to show that occurrences of T can be removed
from Ψ.

Let us say Ψ is good if the statement

y = Ty ∈  ∧  = T ∧ ~z = T~z ∧ Ψ(y, ~z)

is equivalent to

y = Ty ∈  ∧  = T ∧ ~z = T~z ∧ Ψ′(y, ~z)

for some ΔLey0 formula Ψ′ in which all parameters (including those possibly
not appearing in Ψ) are fixed. The significance of good formulæ is as follows.
Suppose Ψ(y, ~z) is good and that  = T and ~z = T~z. Then {y ∈  :
Ψ′(y, ~z)}, which is a set of the model (is coded by an ordinal), has the same
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fixed members as {y ∈  : Ψ(y, ~z)} (though we know nothing about its unfixed
members). This is sufficient to verify this instance of aussonderung in the model
of fixed sets, for {y ∈  : Ψ′(y, ~z)} is fixed (since all its parameters are fixed)
and therefore will be in the model we are interested in: the model of fixed sets.
Its (possibly aberrant) unfixed members do not concern us.

We want to show by induction that all formulæ are good. Evidently any

ΔLey0 formula Ψ with all parameters fixed is good, and to show that all formulæ
are good it will suffice to deal with negation and ∃.

Negation
¬Ψ is good if Ψ is. This is because the statement p ∧ q ∧ r ∧ ¬s is

p∧ q∧ r ∧¬(p∧ q∧ r ∧ s). Accordingly

y = Ty ∈ ∧  = T∧ ~z = T~z∧¬Ψ(y, ~z)

is equivalent to

¬(y = Ty ∈ ∧ = T∧ ~z = T~z∧Ψ(y, ~z))∧y = Ty ∈ ∧ = T∧ ~z = T~z

which is

¬(y = Ty ∈ ∧ = T∧ ~z = T~z∧Ψ′(y, ~z))∧y = Ty ∈ ∧ = T∧ ~z = T~z

for some suitable Ψ′ by induction hypothesis, which is equivalent to

y = Ty ∈ ∧  = T∧ ~z = T~z∧¬Ψ′(y, ~z).

Existential Quantification

Consider

y = Ty ∈ ∧  = T∧ ~z = T~z∧ (∃ = T)Ψ(y, ~z,).

where Ψ is good. We can take the existential quantifier outside to get

(∃ = T)(y = Ty ∈ ∧  = T∧ ~z = T~z∧Ψ(y, ~z,))

and since Ψ is good this is

(∃ = T)(y = Ty ∈ ∧  = T∧ ~z = T~z∧Ψ′(y, ~z,))

for some ΔLey0 formula Ψ′ in which all parameters (including those possibly
not appearing in Ψ) are fixed. Take the existential quantifier inside again:

y = Ty ∈ ∧  = T∧ ~z = T~z∧ (∃ = T)Ψ′(y, ~z,)

Now, for any , y, ~z that are all fixed, the set X of witnesses to the existential
quantifier is closed under T and T−1 in the sense that if it contains α, it contains
Tα, and conversely1. Consider the minimal element (‘κ’ for the nonce) of X.

1. . . though not necessarily in the sense that if it contains α it must contain T−1α, for that
might not exist.
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κ ≤ Tκ by minimality but, since κ ≤ Tκ, T−1κ is defined and so κ ≤ T−1κ;
whence κ = Tκ, so at least some of these  are fixed. There is also an upper
bound on how far we have to look to find these witnesses. Consider the sup of
the ordinals ′ that for some y′ ∈  are minimal such that Ψ′(y′, ~z,′). We
want to be sure that this sup is fixed, or at least has a fixed ordinal above it.

Since Ψ′ is ΔLey0 we can be sure that the first ′ such that Ψ′(y′, ~z,′) will

be in Lα+ , where  and ~z are all in Lα.2 That means that each minimal ′

is dominated by a fixed ordinal. Now either this ordinal is the same for all of
them (which is what we want) or it is not. If it is not, then the set of such ′

(and it is a set) is cofinal in the fixed ordinals, and therefore the set of ordinals
dominated by a fixed ordinal is a set. This is impossible, for otherwise we would
be able to prove by induction that all ordinals are dominated by fixed ordinals.
Therefore we are in the first case, and the sup of the ordinals ′ that for some
y′ ∈  are minimal such that Ψ′(y′, ~z,′) is either fixed or is dominated by
a fixed ordinal; so we can introduce the notation ‘ζ(, ~z)’ for a fixed ordinal
that bounds the ordinals ′ that, for some y′ ∈ , are minimal such that
Ψ′(y′, ~z,′). Since the least witness must be fixed, we can drop the condition
 = T and since witnesses must appear below ζ(, ~z) if they appear at all,

we can add the bound < ζ(, ~z) to make the formula ΔLey0 again, getting

y = Ty ∈ ∧  = T∧ ~z = T~z∧ (∃ < ζ(, ~z))Ψ′(y, ~z,)

which is ΔLey0 , and all parameters are fixed.

10.0.1 Making the ordinals look like L

LEMMA 8 There is a relation E definable on NO so that 〈NO,E〉 |= V = L.

Proof. We will mimic Gödel’s construction inside NO. Since the Gödel con-
struction of L also builds a bijection between V and On, one can copy over
the ∈ relation on L onto On, or better still, construct a “membership” relation
on On itself and never bother to construct L at all. This is what we will do
here. Order the set of all triples 〈α, β, 〉, with α, β ∈ NO, 0 ≤  ≤ 8 in the
order-type of 〈NO,≤〉, so that no triple appears earlier than any of its com-
ponents. There is a standard construction that will eventually do this for us.
Consider the canonical map used to show that if 〈X,R〉 is a wellordering of
order-type α ≥ ω, then X × X can be wellordered naturally to order-type α.
We use it to wellorder NO × NO in the order-type of the ordinals. Evidently
each pair of ordinals comes later than its components. We repeat the trick twice
to get a wellordering of NO3 × {0,1,2,3,4,5,6,7,8} as desired. There is
now a function g defined on NO so that (∀α ∈ NO)(g(α) is a triple whose
components are all less than α). This much is standard. Note that g and the
corresponding projection functions are all definable and will therefore commute
with any auto- or endo- morphisms of NO. This will be important later. We
can now define a relation E between ordinals by recursion as follows:

2I am endebted to James Cummings for untangling my thoughts on this matter.
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1. (∀α ∈ NO)¬(αE0).

2. If the third component of g(α) is 0, then set δ E α iff δ < α.

3. If g(α) is 〈β, γ,1〉, then set δ E α iff δ E β∨ δ E γ;

4. If g(α) is 〈β, γ,2〉, then set δ E α iff there are ζ and η such that δ = 〈ζ, η〉
in the sense of 〈NO, E〉 and δ E β and η E ζ;

5. If g(α) is 〈β, γ,3〉, then set δ E α iff δ E β ∧¬(δ E γ);

6. If g(α) is 〈β, γ,4〉, then set δ E α iff there are ζ and η such that δ = 〈ζ, η〉
in the sense of 〈NO, E〉 and δ E β and η E γ;

7. If g(α) is 〈β, γ,5〉, then set δ E α iff δ E β and, for some η, the ordered
pair 〈η, δ〉 (in the sense of 〈NO, E〉) E γ;

8. If g(α) is 〈β, γ,6〉, then set δ E α iff ∃ηζ δ = 〈η, ζ〉 (in the sense of
〈NO, E〉)∧ δ E β∧ 〈ζ, η〉 (in the sense of 〈NO, E〉) E γ;

9. If g(α) is 〈β, γ,7〉, then set δ E α iff ∃ηζχ δ = 〈η, ζ, χ〉 (in the sense of
〈NO, E〉) and δ E β and 〈η, χ, ζ〉 (in the sense of 〈NO, E〉) E γ;

10. If g(α) is 〈β, γ,8〉, then set δ E α iff ∃ηζχ δ = 〈η, ζ, χ〉 (in the sense of
〈NO, E〉) and δ E β and 〈χ, η, ζ〉 (in the sense of 〈NO, E〉) Eγ.

[HOLE Pittsburgh march 2003: I’m not entirely happy about this. What
do we do if one of the components of g(α) turns out to be α itself? And are
we not supposed, every now and then, to set δ E α if δ < α?]

In the standard construction (from which these clauses are of course copied
wholesale) the fact that one might construct the same set several times is of
no matter. Here it means that we have to remove duplicate ordinals by a
recursive collapsing construction. If you have a pile of ordinals that have the
same members-in-the-sense-of E , discard all but the first, and cause it to E
all the ordinals that the discarded ordinals were E-members of. Since, for any
ordinal, there comes some stage beyond which do not alter what its “members”
are, this can be defined by a legitimate recursion. When this has finished, we
have a definable set of ordinals, and a definable relation on it. We can now
recursively collapse this set of ordinals so that E is defined on all ordinals (with
the same caveat) so that we have, in effect, merely pulled back (via the standard
enumeration) onto the ordinals the membership relation of L.

10.0.2 Nonstandard Models of Z + V = L
The hot topic now is, when can we show that this E relation on the bottom
level gives rise to a model of Z? Well, if we know that there is no last initial
ordinal i would guess that the answer is “yes” (tho’ i can imagine it would be
hard work proving it). I would guess also that if X is any initial segment of NO
(even a class) containing no last initial ordinal then 〈X, E〉 |= Z. Assuming that
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this is all we have to do in order to obtain models of Z, we next consider how
to obtain such classes.

Let us now think about T again. It embeds the ordinals of one level onto an
initial segment of the ordinals of the next. But all these ordinals at higher types
are supposed to be ordinals too. Therefore we might expect there to be models
of this structure where the ordinals at higher types reappear in NO. Let us call
these models special. To be precise, a special model is one where the ordinals
of any higher level are simply (externally isomorphic to) an initial segment of
NO. But we always have T which is an isomorphism between the ordinals of one
level and an initial segment of the ordinals of the next level. In a special model
therefore, T will manifest itself as an endomorphism of NO. That is to say, in a
special model there will be an initial segment of NO that is an isomorphic copy
of it. That is all we know about the endomorphism.

Presumably it is not too hard to find special models of nOA. In NF however
there is a particularly simple special model, and it is simply the natural one
built up from the set of all (Russell-Whitehead) ordinals as NO.

In fact all we are really interested in is finding a nonstandard model of nOA
where NO is (externally) isomorphic to an initial segment of itself and no initial
ordinal fixed by the isomorphism is the last initial ordinal. Such a model has3

all the features we need to prove Con(NF)→ Con(Z). Suppose we have such a
model of nOA with an endomorphism π as above. π obviously fixes all definable
things (like ω, ω1 and so on.) and commutes with definable relations like E .
Now consider the collection of those ordinals which have an ordinal above them
that is fixed by π4. Once we equip this class (for it is never a set of the model!)
with the appropriate restriction of E is the result a model of Z?

Claim: yes!!!

Secret Agenda

I have been assuming that what we start with as urelemente is the set of all
ordinals, and that this is much the same as starting with V and ignoring the bits
we don’t want. This second way you get exactly the same ordinals at each type
and T is an injection. It is not entirely clear what happens if you do literally
what i say. We need to compare Ω and ℵ‘(2TΩ). Henson has a theorem on
this.

It looks as if—if this strategy is likely to work at all—all we will need is
the ambiguity scheme for ordinal arithmetic. Now isn’t all arithmetic ΔP

1 or

something nice? And isn’t Amb(P
1 ) relatively consistent wrt TST? So if this

worked we could do it relative to TST, so it doesn’t work . . .

message from Adrian Consider the following model, using ideas of
McAloon: start in ZF+V=L; add for each n in a set A to be
determined a Cohen subset of ℵn; (where that will mean a non-
constructible subset every initial segment of which is constructible);

3A brave prediction!
4Or possibly the collection of fixed ordinals—who cares which?
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so that A will be definable in the resulting model; rig it so that 0
is not in A (so no new reals are added in a straightforward way)
but so that A is not constructible; look at the things constructible
before ℵω from the sequence of Cohen subsets; then this looks like a
plausible model in which comprehension fails: plausible means every
initial segment of the model is jolly nice, but at ℵω a new subset
of ω becomes definable, and it won’t have time to exist before the
model closes off, ha ha.

I don’t know what this shows, but it suggests that there is a real
difficulty about proving full Z holds without being able to take a
step after ℵω.

I’ll also have a go at the following: let ζ be the least ordinal such
that Lζ |= MacLane. Now fatten it like mad in a non-AC way to
get all of Zermelo to hold.

Kemeny has written to say his thesis was never published. I wonder
if by chance there is a copy in Cambridge. It was called type theory
versus set theory.

Adrian



Chapter 11

The Full Symmetric Group
on V

What can we say about the first-order theory of J0, in NF or TZT? One might
think that all infinite symmetric groups are elementarily equivalent, but it’s
quite easy to show that this is not true. Consider the following. (According to
my notes Adrian Mathias pointed this out to me. It may be trivial but it is
missable!). The key is the fact that there is only one cycle of S over Z. Let π
be a permutation of Z that commutes with S. Then

 < π()←→ (S < π(S))

(by commutativity) so (∀)( < π()) ∨ (∀)(π() < ) so π is not an
involution.

So the symmetric group on a countably infinite set satisfies

(∃σ)(∀τ)(τ2 = 1→ στ 6= τσ) (***)

But in a symmetric group G on an uncountable set every element τ com-
mutes with at least one involution. (My scribbles attribute this to Peter
Kropholler, but it’s presumably folklore). If G is the full symmetric group
on an uncountably infinite set, then—by the pigeonhole principle—τ must have
two cycles the same size. Then just let π be a bijection between these two cycles
that fixes everything else.

Let’s have a proper proper proof of this, and without using AC. We seek a
simple condition on X that implies that any permutation of X has two cycles
of the same size. The obvious condition is: Every partition of X into countable
pieces is uncountable. This is because the partition of X into cycles is a partition
into countable pieces, and if the set of pieces is uncountable there is no injection
into IN, so the function y 7→ |y| from cycles to IN cannot be injective, so there
are two cycles the same size.

I think the condition we want is “|X| ≥ ℵ2”. No set of size ℵ2 can be a
countable union of countable sets. So the partition into cycles is uncountable

187
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and there must be two cycles the same size. We may be able to refine this
further but there is no great need.

Therefore the symmetric group on IN is not elementarily equivalent
to the symmetric group on IR.

What about finite symmetric groups? Or rather—more to the point—full
symmetric groups on sets of finite beth numbers (co’s those are the sizes of the
levels)

Consider the symmetric group on a set X with |X| = 2m, m ∈ IN. Split
X = X1tX2 with |X1| =m−1 and |X2| =m+1. Let σ be a permutation with
two cycles, an m− 1 cycle that gobbles up X1 and an m+ 1 cycle that gobbles
up X2. σ does not commute with any involution. That is beco’s both cycles
are odd (and altho’ even cycles can commute with a “complement” involution
this does not work for an odd cycle) and the cycles are of different sizes so they
cannot be swapped by an involution.

So certainly in any finitely generated model of TST the symmetric group at
levels 1 and above satisfies ***.

Let M |= TZT. If M |= Infinity then it certainly believes that every level
is of size at least ℵ2 (By Sierpinksi-Hartogs’) and therefore every level refutes
***. If M 6|= Infinity then it believes that any level is of finite even size, and
therefore believes ***.

So we have ambiguity for ***. But the question remains whether or not the
theory of the symmetric group at any level is ambiguous.

Things to tie together
Nathan’s poset and sups of subsets of it
Nathan’s result that there are so few normal subgroups should give us a

cute presentation of the old result of mine that if {σ : ϕσ} is nonempty then
it meets every normal generating subset.

Practically every conjugacy class generates the whole group. If n · |supp(σ)|
for every n ∈ IN is small then [σ] can’t generate the whole group, but that’s
probably the only situation in which it doesn’t. Perhaps the theorem is that if
{σ : ϕσ} is nonempty then it meets every [σ] s.t.

⋃

τ∈[σ]
supp(τ) = V

Then we need to tie in all the group theory that crops up in the attempt to
obtain a strongly extensional model of TZT by OT.

If σ is a permutation then j(σ) has lots of fixed points. σ partitions V
into cycles, each of which is countable, so it partitions V into countable pieces.
There can’t be too few of them. Every union of (any subset of) these pieces is
a fixed point for j(σ). It might be an idea to do some actual calculation.

Dunedin mon 17/vii/2017 I seem to be cracking up
The result of Nathan’s and mine that every orbit of a point in a model of

TZT is either a singleton or is infinite relies on the symmetric group on an
infinite set having no normal subgroups of finite index. But in the finite case
that doesn’t hold: the alternating subgroup is normal and of index 2. So let us
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consider a model of TST with finite bottom level, and find ourselves an element
of level n whose orbit has two elements. This ought to be easy but i am getting
confused.

tuesday morning. Let’s have another look. We are looking for two things
A and B such that even permutations fix them and odd permutations swap
them. This is actually the same as saying that they are exchanged by each
single transposition! Now that sounds like something one can get one’s teeth
into.

The hope is that we can prove that this can’t happen. Well, actually it can,
co’s level 0 could have precisely two atoms  and b with {} =

⋃n A and
{b} =
⋃n B.

Now if A and B are such a pair so are A \ B and B \ A so without loss of
generality A ∩ B = ∅.

We need to think also about which atoms (things of level 0) are in
⋃n A and

⋃n B. Suppose  is in
⋃n A but y is not. Consider the transposition (, y).

This sends A to B and therefore must send
⋃n A to
⋃n B. So
⋃n B must be

⋃n A \ {} ∪ {y}. Clearly both
⋃n A and
⋃n B must contain all atoms.

Suppose  6= y and both are in
⋃n A. Swap them, you get

⋃n B, so they’re
both in
⋃n B. So. if |
⋃n A| ≥ 2, then

⋃n A =
⋃n B.

OK, so
⋃n A is the whole of the bottom level. Some light dawns. Consider

the equivalence relation on total orders of level 0 that makes two total orders
equivalent if you can take one to the other by means of an even permutation, and
think about the partition into equivalence classes. The partition is a definable
set and is therefore symmetric, which is to say that its singleton is an orbit of
the full symmetric group. It is also a union of orbits of the alternating group.
How many orbits? That depends on whether or not level 0 is finite. If it is finite
then it is a single orbit with two elements. Observe that neither of these two
elements is symmetric/definable.

You might think, Dear Reader, that we can cast this entirely in terms of
permutations instead of total orders since (in the finite case) they are in 1-
1 correspondence. Perhaps the two-element orbit is the set of cosets of the
alternating group. . . ? No, beco’s the two cosets are definable. The bijection
between the set of total orders and the symmetric group is not natural.

The point about total orders in this context is that every total order of a
finite set is rigid, and that they are all pairwise isomorphic.

Nothing mysterious about any of that, really.

Suppose |[]n| = κ. Then there is an action of Jn on a set of size κ and there-
fore a group homomorphism to a subgroup of Symm([]n). |Symm([]n)| ≤
2κ

2
, so this subgroup is of size 2κ

2
at most. So Jn has a normal subgroup of

index at most 2κ
2
.

I think there is a unique maximal normal subgroup of J0 and that is the
subgroup of small support, where a set is small as long as it doesn’t map onto
V. We need to know the index of this subgroup. How many cosets are there?
Two permutations will belong to different cosets—will be dissimilar—if the set
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of arguments on which they differ is not small. How large can a set of pairwise

dissimilar permutations be? Well, for each , consider B; it’s a power set
algebra. Consider the complementation of the power set algebra. These local
complementations are all pairwise dissimilar and there are at least T2|V| of
them.

But we can probably do better than that. Let’s build a family of pairwise
dissimilar permutations all of which are subsets of the complementation permu-
tation. In fact, let’s make them all disjoint. Let’s have a prime ideal, so we can
think of each of these permutations π as an element p of the ideal: it swaps
members of p with their complements and fixes everything else. Let the prime
ideal be P(V \{∅}). We can split V \{∅} into T |V|-many things each of size
V, so we can certainly find T |V|-many pairwise dissimilar permutations. But
this still gives us only T2|V| cosets. As i say, we should be able to do better.

Here’s another. Fix a permutation π of small support. We can make T |V|
disjoint copies of V: V×{} for each  ∈ V. π acts on V×{V} by acting on the
first components. This gives us a set of T |V| pairwise dissimilar permutations. If
we can find a family F all uniformly of size |V| of sets whose pairwise intersection
is small then we can have a set of pairwise dissimilar permutations of size |V|.

11.1 Some remarks on permutations and bijec-
tions

This section will need to be rewritten to take account of Henrard’s trick:
In this section we will prove a lemma telling us under what circumstances

two sets are 1-equivalent, and show that given a modest amount of AC, we
can characterise equinumerosity without using any ordered-pair function. At
present this is a curiosity and, as such, could be skipped. It may turn out to
be useful (see the remarks that close this section). Consider the following four
relations:

1.  ∼1 y←→df (∃π ∈ J0)π“ = y.

2.  ≈ y←→df there is a partition P of Δy into pairs such that each pair
in P meets both  and y.

3. || = |y|

4.  and y are J0-equidecomposable (with n pieces) (written  ∼J0 y since
we usually ignore the n as long as it is finite) if

(a) y can be partitioned into y1....yn, and n elements g1 . . . gn of J0
can be found such that  is the union of the g“y, and

(b) y can be built similarly from a partition of .

In particular, 1-equivalence is J0-equidecomposability with one piece. We
shall see that the other three can be expressed in terms of ≈, which does not
make any mention of ordered pairs.
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Let GC be (group choice: as in Forster [1987a]) be the axiom saying that
sets of finite-or-countable sets have selection functions.

REMARK 24 (GC)
∀y( ∼1 y←→ ∃z( ≈ z ≈ y)).

Proof.
‘ ∼1 y’ makes the assertion that there is a permutation π of V so that

π“ = y. Now GC implies that every permutation is a product of two involu-
tions, as follows. Given a permutation τ we construct two involutions σ and π
such that τ = σ ·τ cyclewise. We think of any infinite τ-cycle as a copy of Z, by
choosing an element  “to be” 0 (using GC). The restriction of π to this cycle is
λ.(−) (to be explicit: send  to the unique z such that (∃n ∈ Z)(τn‘z =)
and τn‘ = ), and the restriction of σ is λ.(1 − ). (The notation ‘τn’ is
legitimate because it can be defined uniformly for all n ∈ IN by recursion on
the integers since functional composition is homogeneous.) For an n-cycle we
do the same mod n. So ∃z such that πσπ2 = σ2 = 1 ∧ π“ = z ∧ σ“z = y.
But obviously  ≈  iff ∃π ∈ J0 such that π“ =  ∧ π2 = 1. The remark
follows immediately.

Next we show that we can express equinumerosity in terms of 1-equivalence.
It will turn out that || = |y| ←→  and y are J0-equidecomposable with at
most two pieces. That  ∼J0 y implies || = |y| is obvious. The converse is
easy to prove for equinumerous , y whose complements are also equinumerous,
but the result is of some interest in its own right as it enables us to make use
of Lemma ??. Indeed, if || = |y| and |V \ | = |V \ y|, then  and y are
J0-equidecomposable with one piece, that is to say, they are 1-equivalent.

PROPOSITION 2 If |X| = |Y |, and |V \ X| = |V \ Y |, then there is a permu-
tation of V mapping X onto Y.

Proof: Simply take the union of the two bijections considered as sets of ordered
pairs. They are disjoint, total, and onto.

Duh! Richard Kaye pointed out this obvious fact to me. It’s probably worth
noticing that there is a nice generalisation. Muggins here had missed it of course.

For each n we can show that for all n-tuples ~ and ~b there is a permutation
π of V s.t., for each  ≤ n, π“ = b iff each of the 2n boolean combinations
of the s is the same size as the corresponding boolean combination of the bs.
(Equally obvious!)

REMARK 25 For all  and y || = |y| iff  and y are J0-equidecomposable
using two pieces.

Proof:
The right-to-left implication is a consequence of the Schröder-Bernstein the-

orem. (All the standard proofs work in NF since everything is stratified and
there is no need for AC.) We now do the converse. Let  and y be of size m and
have complements of sizes p and q respectively. Proposition 2 deals with the
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case where p = q. To show  and y are J0-equidecomposable using two pieces
in the remaining case, we need to show that a set of size m can be split into two
sets of size m1 and m2 such that m1 + p = m1 + q and m2 + p = m2 + q.
If we can do this, then

 is the disjoint union of 1 and 2 with |1| =m1 and |2| =m2

y is the disjoint union of y1 and y2 with |y1| =m1 and |y2| =m2

and 1 is mapped onto y1 by a permutation that we construct by noting that
|1| = |y1| and that |V \ 1| = |2| + |V \ | so |V \ 1| = m2 + p. Also
|V \y1| = |y2|+ |V \y| so |V \y1| =m2+ q, which equals m2+ p. 2 will be
mapped onto y2 similarly. To find m1 and m2, we need a theorem of Tarski’s,
which we have proved elsewhere in these notes: theorem 24

If m + p = m + q then there are n, p1 and q1 such that p = n + p1,
q = n + q1, and m =m + p1 =m + q1.

In the case we are considering, m, p, and q are as in the hypothesis of the
statement of this remark. The desired m1 and m2 can be found as follows:

m1 =m

m2 = ℵ0 · (p1 + q1).

We need to verify that m1+p =m1+q, m2+p =m2+q, and m1+m2 =m.
We know m absorbs p1 and q1 so m1+p =m1+q since they are both equal to
m+n. Also m absorbs p1+q1, so it absorbs ℵ0·(p1+q1). Thus m1+m2 =m
as desired. To verify m2 + p =m2 + q we expand and rearrange, noting that
(∀)(ℵ0 ·  +  = ℵ0 · ).

11.2 Digression on nonprincipal ultrafilters

Might there be a symmetric nonprincipal ultrafilter on V? One’s first tho’rt
is: obviously not. However, the more i think about it the less chance i see of
refuting it. An n-symmetric nonprincipal ultrafilter on V corresponds naturally
to a non-principal ultrafilter on the set of all n-equivalence classes. Why should
there not be such a thing?

There is a family of generalisations of the last section that i haven’t proved
or even formulated yet, but which we might need when tackling the question of
whether or not there might be a symmetric nonprincipal ultrafilter on V. Let
us say that  ≤Jn y iff  can be partitioned into finitely many pieces which,
once translated by elements of Jn, give rise to some pieces of a partition of y.
 ∼J0 y iff etc ect. What we have just proved is that  ∼J1 y iff || = |y|.

Now suppose U is an n-symmetric ultrafilter, that  ∈ U and  ≤Jn y. If
we split  into finitely many pieces one of them must be in U , since U is ultra.
So ′ ⊆  ∈ U . Then its translation under anything in Jn is also in U , so any
superset of that is too, so y ∈ U .
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If we can find  s.t.  and V \  are ∼Jn equivalent then any n-symm
ultrafilter containing one must contain the other and we get a contradiction.
Now we can easily enuff find  s.t.  and V \ are the same size. Can we find 
s.t.  and V \ are 1-equivalent? No, beco’s one of the two pieces must contain
∅ and there is no way of moving ∅. However that argument doesn’t scupper
the endeavour to chop V \ {V,∅} into two pieces that are 1-equivalent. How
does this generalise? Presumably if we delete from V all cardinal numbers, plus
V and ∅ plus {V} plus {∅} then we can chop that into two pieces that are 2-
equivalent. And so on. So what are we doing? We first cut off the set of those
things that are n-symmetric, and then chop the rest into two ∼Jn equivalent
halves. Any symmetric ultrafilter must contain precisely one of these three. It
can’t contain either of the last two beco’s it would have to contain the other, so
it contains the first.

Conclusion: one element of an n-symmetric ultrafilter on V is the set of
n − 1-symmetric sets. And in fact the converse is true. If U is an ultrafilter
on (say) the set of 2-symmetric sets, then it is 4-symmetric (say) and the set
of supersets of its members is likewise 4-symmetric and is an ultrafilter on V.
Therefore no contradiction—so far at least!

One obvious thing to try is: what is the least n such that there is an n-
symmetric nonprincipal ultrafilter on V? Notice that if U is an ultrafilter on
P(X), then
⋂

“U is a filter on X. Two things to check

1. Upward closed. Sse
⋃

A ∈
⋃

“U and
⋃

A ⊆ B ⊆ X. A ∪ ι“(B \
⋃

A) is
now a member of U .

2. Closed under finite intersection. Sse A,B ∈ U . We want
⋃

A ∩
⋃

B ∈
⋃

“U . We know
⋃

(A ∩ B) ⊆
⋃

A and
⋃

(A ∩ B) ⊆
⋃

B so we have
⋃

(A∩B) ⊆ (
⋃

A∩
⋃

B). So
⋃

A∩
⋃

B is at least a superset of something
in
⋃

“U . But
⋃

“U is closed under superset as above, so we are done.

Notice that if U is n-symmetric, then
⋃

“U is (n− 1)-symmetric. However
there is no reason to suppose that

⋃

“U is ultra. It will be if ι“V ∈ U but that’s
not much help, beco’s although it will ensure that

⋃

“U is ultra, it won’t ensure
that ι“V ∈
⋃

“U .

Notice that F = { : |(V \ )| 6≥∗ |V|} is a filter, and it’s 2-symmetric.
How can
⋃

“F possibly be a filter too?? It would have to be 1-symmetric! But
there is a 1-symmetric filter on V, namely {V}. So we seem to have proved, if
V \  cannot be mapped onto V, then

⋃

 = V. But we know that anyway: if
V \ cannot be mapped onto V, then V \ cannot extend any B(y), so  must
meet every B(y).

Can we show that
⋃

“U is never ultra?

Sse F is a filter on V, and X ∈ F. Why not say {y : (B(y) ∩ X) ∈ F} is
a typical element of the new filter? It’s too crude. Either B(y) ∈ F—in which
case y belongs to all new elements, or it doesn’t—in which case y belongs to
none. We could try: “put y into the new set obtained from X if B(y)∩ is
F-stationary” but that probably won’t fare much better.
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To get a feel for this, try the filter of cofinite sets. Then say, for X a cofinite
set, X′ := {y : |B(y) ∩ X| 6∈ IN}. But then X′ = V so it’s trivial.

THEOREM 13 (NF + GC)

(∀y)(|| = |y| ←→ (∃12y1y2z1z2)(( = 1t2∧y = y1ty2∧1 ≈ z1 ≈ y1∧ 2 ≈ z2 ≈ y2)).

Proof. The right-hand side is simply the assertion that  and y are J0-equi-
decomposable with two pieces, with ‘ ∼1 y’ replaced by their equivalents
using the preceding remarks.

That is to say ‘|| = |y|’ is equivalent (assuming GC) to a 3-stratified
2-formula. We have to be cautious in drawing conclusions about the exis-
tence of (Frege/Russell−Whitehead) cardinals in NF3 + GC since some of
the proofs above may not be reproducible in NF3 + GC. Although the
(Frege/Russell−Whitehead) 0, 1, 2, . . . are all sets in NF3, in general cardi-
nal numbers do not seem to be provably sets in NF3. It suggests, curiously,
that the addition of a small amount of choice (GC) to NF3 may make it much
easier to conduct cardinal arithmetic.

The group of all (inner) ∈-automorphisms is certainly a subgroup of J∞ =
⋂

n<ω Jn. J∞ contains all fixed points of j (if there are any) and therefore all
automorphisms of 〈V,∈〉.

What do we know about J∞? There is no reason to suppose that it is
nontrivial, nor that if it is nontrivial it should be a set. If it is a set it is
cantorian. We know it is the nested intersection of ω symmetric groups, but
this does not tell us a great deal. We know that it has an external automorphism
(j) which we would wish had a fixed point. (would a finite cycle under j be any
good? Perhaps not!) For reasons which will emerge below it would be nice if it
had nontrivial centre.

We know rather more about the J∞ of a saturated model of NF + GC. In
such a model it is certainly nontrivial and we know exactly the cycle types of
all its elements and can even show (tho’ perhaps we need AxCount for this)
that the external automorphism j of J∞ is locally represented by a conjugacy
relation. That is to say, for all σ in J∞ there is τ in J∞ s.t. τ−1στ = j‘σ.
Chocks away.

Let 〈V,∈〉 be a saturated model, so J∞ is not trivial. Consider permutations
τ, j‘τ. Now we can show in any case that

� if τ has infinite cycles, j‘τ has cycles of all sizes

� if τ has cycles of arbitrarily large finite sizes, then j‘τ has infinite cycles

� if σ has only (bounded) finite cycles whose lengths are in  ⊂ IN then jn‘σ
eventually has cycles of all sizes that divide LCM().

These can be shown by fairly elementary arguments, and should be enough
to classify the cycle types of things in J∞ completely.

Claim:

∀σ for all sufficiently large n jn‘σ does either 1 or 2:
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1. It has |V| n-cycles for all n ≤ ℵ0 (and some Z-cycles);

2. For some k ∈ IN it has |V| n-cycles for all n that divide k (and
no infinite cycles).

In fact jn‘σ is eventually of type (1) above iff there is no finite bound on the
length of finite cycles under σ.

This will involve a fair amount of hard work. We have to use some sort
of pigeon-hole principle. The idea is that for at least one n the number of
things residing in n-cycles under σ is |V|. It looks as if we need to assume
that V is not the disjoint union of ℵ0 smaller sets, but all we actually need
is for this to be eventually true of jn‘σ. We sketch where to go from here.
(Is there a generalisation of Bernstein’s lemma (using GC) which says that if
α = αℵ0 = ∈Nβ then either some β ≥ α or all β ≥∗ α? That would
probably do) GC is essential for what follows.

� If there are |V| infinite cycles then pretty soon there are |V| cycles of any
length.

� Whatever happens there will very soon be |V| fixed points.

� If σ has |V| fixed points and some n-cycles then jk ‘σ (with k fairly small)
will have |V| n-cycles. Use ordered pairs of things of order n and fixed
points.

� Eventually jn‘τ will have T |V| n-cycles if it has any at all.

Eventually we should prove:

(∀τ)(∃m)(∀n > m)(jn‘τ and jn+1‘τ have the same cycle type)

and GC then gives us

(∀τ)(∃m)(∀n > m)(jn‘τ and jn+1‘τ are conjugate in J0)

so in particular for τ ∈ J∞ τ and j‘τ are conjugate in J0. Now consider the
general case of σ, τ ∈ J∞ conjugate in J0. (∀n < ω), σ, τ are jn‘something in
J∞ so we can argue that j−n‘σ and j−n‘τ are conjugated by something γ ∈ J0.
(We have this beco’s GC implies that two things in J0 of the same cycle type are
conjugate) so σ and τ are conjugated by jn‘γ ∈ Jn. Therefore, by saturation of
J∞ they are conjugated by something in J∞. That is to say,

(∀τ ∈ J∞)(∃σ ∈ J∞)(στσ−1 = j‘τ)

This is very pretty: we know the cycle types of all members of J∞ and we
know that any two elements of J∞ with the same cycle type are conjugated by
something in J∞. Of course what we are really after is showing if possible that
J∞ contains a fixed point for j. So what we really want is to swap the quantifiers
around in the above to get:
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∃σ ∈ J∞ ∀τ ∈ J∞ στσ−1 = j‘τ

for then this σ must be an ∈-automorphism of V.
Proof:
Suppose there were such a σ. Then for any τ ∈ J∞

σ · τ · σ−1 = j‘τ

so in particular

σ · σ · σ−1 = j‘σ

so σ is an ∈-automorphism of V.
In fact it will be sufficient for our purposes that j have a non-trivial fixed

point, because the fixed point would also be an ∈-automorphism of V.
then we would have a theorem:

THEOREM 14 NF+ AxCount +GC ` ∃ ∈-automorphism of V

The proof would go like this: Work inside a saturated model of NF+ Ax-
Count +GC. J∞ is a proper class of this model. j is an automorphism of it, and
J∞ is such that all automorphisms are inner. Then throw away the model.

Presumably this won’t work beco’s J∞ is a saturated group and any saturated
group has too many automorphisms for them all to be inner. We could try the
other extreme: add axioms to make J∞ (when nontrivial) into a group for which
all automorphisms are inner. Then there will be an ∈-automorphism of V as
before.

It will be sufficient for J∞ to have non-trivial centre. For then let τ belong
to the centre. Let σ conjugate τ and j‘τ. But τσ = τ since τ is in the centre,
so τ is an automorphism. We can show that in Vσ everything in J∞ is an
automorphism. For

( ∈ J∞)τ

iff
( ∈ J0,  ∈ J1 . . .  ∈ Jn)τ

Now ( ∈ Jn)τ is just (τn+k ‘ ∈ Jn) is  ∈ Jn.
But presumably it is obvious that J∞ has trivial centre, by some compactness

argument . . .

11.2.1 Some more random tho’rts on ∈-automorphisms,
from May 2008, in the form of a letter to Nathan
Bowler

We are working in NF.
We start with two observations about ∈-automorphisms.

1. π is an ∈-automorphism iff π = j(π);
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2. If σπσ−1 = j(π) then, in the permutation model Vσ , π has become an
∈-automorphism.

What must the cycle type be of an ∈-automorphism? As far as i can see,
everything we know about the cycle types of ∈-automorphisms follow from the
fact that every ∈-automorphism is j of something.

If π is an ∈-automorphism then either π is of finite order—n, say—in which
case for each m|n it has |V|-many things belonging to m-cycles; or it is of
infinite order, in which case it has it has |V|-many things belonging to m-cycles
for every m ≤ ℵ0. This seems to be all we can say—and (as i say) it seems
to follow merely from the fact that every ∈-automorphism is in J2. (I think i
do mean J2 not J1: suppose σ is a permutation with cycles of all even orders.
Then j(π) has cycles of all even orders plus infinite cycles, and it isn’t until
j2π—which has cycles of all orders—that things settle down.

Thus it seems that every cycle type of a permutation in J2 can be the cycle
type of an ∈-automorphism. (The cycle type of a permutation is how many
cycles you have of each size). With a little bit of AC (the version i call ‘GC’) cycle
types are the same as conjugacy classes. So certainly if i show you a cycle-type-
aka-conjugacy-class of a member of J2 you can cook up a permutation model in
which that conjugacy class contains an ∈-automorphism. (The example i gave
above, of a π with cycles of all even lengths, gives us a j(π) with a cycle type
that cannot be the cycle type of an ∈-automorphism. This is why it has to be
J2 not J1.)

Can we do this for all J2 conjugacy classes simultaneously? That is to
say, might there be a permutation model in which there are so many ∈-
automorphisms that every conjugacy class of elements of J1 contains an ∈-
automorphism? Might it be that for all π ∈ J1, π and j(π) are conjugate? This
question turns out to be related to the question: how many conjugacy classes
(wrt J0) are there of elements of J1? This is an instance of a general class of
questions for which i have no feel beco’s nobody ever taught me group the-
ory: for G a subgroup of J0 how many conjugacy classes (wrt J0) can G have?
It’s pretty clear that there are lots of conjugacy classes (wrt J0) of elements
of J0—as you say it’s like “the number of cardinals”. I suspect it’s a delicate
calculation to ascertain precisely how many conjugacy classes (wrt J0) there are
of elements—even of of J0 (computing the size of quotients is hard of course)
but i’m going to have a crack at it anyway (at some point!).

The key observation now is that every set of ∈-automorphisms is strongly
cantorian! So if every conjugacy class of elements of J1 contains an ∈-
automorphism it follows that the collection of such conjugacy classes will be
strongly cantorian! Is this absurd? Might this number actually be finite? Or
a sensible ZF-style number like 2ℵ0 or the least strong inaccessible? If it can,
then we have only the second example of something i have been seeking for a
long time: a sensible small number emerging as the answer to a question about
big NF-style sets. And even if that isn’t a sensible number, it might nevertheless
be the case that if we make n large enough then the cardinality of the set of
conjugacy classes (wrt J0) of elements of Jn might be sensible.
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. . . but isn’t this easy? Surely, assuming GC, there are precisely ℵ0 conju-
gacy classes of J2 in J0—for the reasons given above. We described them!

So, assuming GC, the collection of things that are possible automorphisms
is actually a set, and a big set at that. However we can prove that every set of
actual-automorphisms is strongly cantorian.

Can we find a permutation model in which there is a proper class of ∈-
automorphisms? Ward Henson had this clever permutation that gave a proper
class of Quine atoms:

∏

α∈NO(Tα,{α}). The point is that  is a Quine atom
in Vπ iff π() = {}, and for this permutation that happens iff  is a cantorian
ordinal. What about ∈-automorphisms in Vπ?  is an ∈-automorphism in Vπ

iff π−1 ·  · π = j. So we would be looking for a permutation π such that
π−1 ·  · π = j happens iff  is a cantorian ordinal. This is of course absurd,
but it might point us in the right direction. It would work equally well if  were
a permutation of the form j(Tα,{α}). Can we cook up a permutation that,
for all α ∈ NO, conjugates j(Tα,{α}) with j2(Tα,{α})?

Let us write ‘πα’ for ‘j(Tα,{α})’ And let σ be a permutation such that

(∀α ∈ NO)(σ−1πασ = j(πα)).

But when you put it like that there seems no reason at all why that might
work.

11.2.2 A later thought, october 2017
This is worth writing out
properly It sounds as if everything in J2 has the right kind of cycle type to be an auto-

morphism. That is to say (since conjugacy is a congruence relation for j) every
congruence class of J2 is fixed by the function [τ] 7→ [ jτ]. But that means that
J2 has only a strongly cantorian set of congruence classes!

Dodgy Characteristic Subgroups

We can show that whenever G is a subgroup of H all the cosets of G are the
same size even if they are not uniformly the same size. So if G�H then H is a
union of [H : G] things all of size |G|. So where we have three groups G�H� 
we have a not-completely trivial relation between [  : H], [H : G] and [  : G].
For example [H : G] ≤∗ [  : G] and [  : H] ≤∗ [  : G]. It should be possible
to show that all these groups are of size |V| so we shouldn’t get toooo excited.

H I A T U S

11.2.3 Yet Another thing to sort out

This could yet be useful. Let S∗ be the group generated by
{π : |{y : π(y) = y}| ≥∗ |V|}. This group may be larger than S.But what was S?

Let τ be any old permutation, let AtB be a partition of V into two strictly
smaller pieces. Then the permutation π we have constructed is a bijection
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between a subset of A and a subset of B. That is to say it is a permutationBut what was π?
whose support is twice the size of a subset of A, and is therefore smaller than V.
So the complement of its support maps onto V, by Bernstein’s lemma, making
it an S∗ permutation. So τ was in S∗ too.

Brief sanity/reality check: Is S∗ a characteristic subgroup, and normal?
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Chapter 12

Antimorphisms, a Jumble

We assume familiarity with Rieger-Bernays permutation models and Ehren-
feucht games.

DEFINITION 4
Let us call an antimorphism of order two a polarity.

A Boffa atom is an  = B(). (B() is {y :  ∈ y}.) Hereafter Boffa

atoms are batoms. B is of course V \ B().
c is the complementation permutation: c() = V \ .
11 is the identity element of the symmetric group on the universe.
A moiety is a set the same size as its complement.

We start with some banal observations, whose proofs we leave to the reader.

LEMMA 9

1. σ is an automorphism if σ = jσ; it is an antimorphism if σ = jσ · c (or
equivalently σ = c · jσ, beco’s c commutes with jτ for all permutations τ.)

2. AC2 implies that two involutions that fix the same number of things and
move the same number of things are conjugate.

3. Vπ |= σ is an antimorphism iff πσπ−1 = c · jσ

4. If σ is an antimorphism then σ2 is an automorphism.

5. If σ is an automorphism and n = Tn then σn is an automorphism.

6. If σ = jσ and σ is of order n then n = Tn.

7. No antimorphism can have a fixed point.

8. The composition of an automorphism and an antimorphism is an anti-
morphism;

201
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9. The composition of an antimorphism and an antimorphism is an auto-
morphism;

10. The inverse of an antimorphism is an antimorphism; the inverse of an
automorphism is an automorphism.

11. If σn = 11 then (jσ)Tn = 11 and vice versa, so every automorphism has
cantorian order.

12. If σ is an antimorphism, σ2 is an automorphism and has cantorian order,
n, say. So the order of σ must be either n or 2n. Either way it is
cantorian.

13. If σ is an automorphism and n = Tn then σn is also an automorphism.

14. Let σ be an antimorphism—of order n—and 2k be the largest power of 2
dividing the order of σ. Then 2k is cantorian (being the largest power of

2 dividing a cantorian number). So σ2
k

is an automorphism and σn/2
k

is an antimorphism, in fact a polarity.

These are left as exercises for the reader.

12.1 Introductory Patter

12.1.1 First Impressions of an Antimorphism

We noted above that σ is an antimorphism iff σ = c · ȷσ.
This by itself is sufficient information to compute what σ does to all well-

founded sets: just set σ() =: V \ σ“. This immediately gives σ(∅) = V and
σ(V) = ∅, and lots more by recursion. Observe that this recursion defines the
restriction to wellfounded sets uniquely, so that any two antimorphisms agree
on wellfounded sets, and their restriction is a polarity. Some more data points:

σ({∅}) = V \ {V}
σ({V}) = V \ {∅}
σ({∅, V}) = V \ {V,∅}
σ({{∅}}) = V \ {V \ {V}}

REMARK 26 Any two antimorphisms agree on all wellfounded sets.

Proof: Let σ and τ be two antimorphisms. ‘(∀)(σ() = τ())’ is stratified
so { : σ() = τ()} is a set. All we have to do is show that it extends its
own power set (is fat as we say). Then

σ() = V \ {σ(y) : y ∈ } = V \ {τ(y) : y ∈ } = τ().



12.1. INTRODUCTORY PATTER 203

12.1.2 The Duality Scheme

Let ϕ̂ for ϕ a formula in the language of set theory be the result of replacing
‘∈’ by ‘ 6∈’ throughout in ϕ. The question is whether or not the scheme of
biconditionals ϕ←→ ϕ̂ is consistent relative to NF.

We’ve known for a long time that the stratified instances of this scheme
are actually provable. This is because ϕ̂ is just ϕc (which is stratified iff ϕ is
stratified) and of course stratified sentences are invariant.

By a remark of Specker’s (with a correction by Chad Brown) a finite con-

junction of biconditionals ϕ ←→ ϕ̂ is logically equivalent to another such bi-
conditional.

By general model-theoretic nonsense if we have a model of NF satisfying the
duality scheme then we can find a model with an external antimorphism.

But what about an internal antimorphism? One that is a set of the model?
One would expect to be able to prove by induction on n that if σ is an

antimorphism then σn is an antimorphism if n is odd and an automorphism
if n is even. However the induction is unstratified and cannot be performed.
Nevertheless we can do the following:

PROPOSITION 3

1. If σ is an automorphism then the order of σ is infinite or a cantorian
natural;

2. If σ is an antimorphism then the order of σ is infinite or is a cantorian
natural;

3. If σ is an antimorphism then the order of σ is infinite or is even.

Proof:

1. If σ is of order n then jσ is of order Tn.

2. If σ is an antimorphism then σ2 is an automorphism and has cantorian
order, n say. Then the order of σ must be n or n/2. Either way it’s
cantorian (or infinite).

3. Let σ be an antimorphism, and suppose σ2n+1 = 11. Then

c =1 cT2n+1 =2 (jσ)T2n+1 · cT2n+1 =3 (jσ · c)T2n+1 =4 σT2n+1

1 holds because c is an involution; 2 holds because jσT2n+1 = 11; 3 holds
because c commutes with j of anything; 4 holds because σ = jσ · c.

So σT2n+1 = c whereas σ2n+1 = 11. Clearly T2n + 1 6= 2n + 1.
But we know by (2) that the order of an antimorphism must be cantorian.
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12.1.3 Permutation Methods: getting embroiled with
AC2

Can we get antimorphisms by permutation methods? It’s simple enough to get
a permutation model containing a (non-trivial) ∈-automorphism, at least if we
have AC2: all we have to do is find a permutation π such that π and jπ are
conjugate. We need a bit of choice to show that any two permutations with the
same cycle type are conjugate. (Choice for arbitrary sets of (finite-or)-countable
sets.) It’s easy to find an involution π such that π and jπ have the same cycle
type (= fix the same number of things and move the same number of things, in
this case all four of these sets are moieties) and we need AC2 to make π and jπ
conjugate.

But antimorphisms? To obtain an antimorphism in a permutation model we
need to find a permutation σ which is conjugate to j(σ)·c. To keep things simple
let us for the moment assume that we are trying to obtain an antimorphism of
order 2, a polarity. That way we should need only AC2, not the more general
form. But we run up against the fact that we cannot use AC2 because it implies
that there are no antimorphisms! We’d better have a proof of this fact.

PROPOSITION 4 AC2 implies that there are no antimorphisms.

Proof: We noted above that no antimorphism can have a fixed point. (Is the
fixed point a member of itself or not?) Now suppose that σ is an antimorphism
of order 2. It has no fixed points, so the set of its cycles is a partition of V
into pairs. Use AC2 to pick a transversal for this partition. This transversal is
obviously going to be fixed by jσ · c. . . which is σ!

What happens if we drop the condition that σ be an involution? If we are
to work the same trick we would need to know that every σ-cycle is even.

Let σ be an antimorphism of order 2n. The σ-cycles partition V as before,
and they are all even. Each σ-cycle splits naturally into two σ2 cycles. Use
AC2 to pick, for each σ-cycle, one of the two σ2-cycles. Take the union of all
the chosen σ2-cycles. This will be a fixed point for σ as before.

I claim in the preceding paragraph that every σ-cycle is even. We’d better
prove it. (It’s surprisingly tricky). We need a lemma: if σ is an automorphism
then the least odd number that is the length of a σ-cycle is cantorian. Suppose
 belongs to an odd σ-cycle of minimal length, T2n + 1, say. What about
the members of ? The lengths of the cycles to which they belong must divide
2n+ 1: the largest they can be is 2n+ 1 itself. So T2n+ 1 ≤ 2n+ 1. For the
other direction consider as before an  belonging to an odd σ-cycle of minimal
length, 2n+ 1. What is the length of the cycle to which {} belongs? It must
be T2n + 1, so 2n + 1 ≤ T2n + 1. So T2n + 1 = 2n + 1.

Now suppose per impossibile that σ is an antimorphism with some cycles
of odd length. Then σ2 is an automorphism with cycles of odd length. Indeed
these two families of odd cycles are in 1-1 correspondence. This establishes that
the least length of an odd σ-cycle is cantorian.

Finally we have to show that σ cannot have any odd cycles of cantorian
length. For all  and y, (∀n)( ∈ y ←→ σ2n+1() 6∈ (jσ)T2n+1(y)) by
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induction on n. Suppose  belongs to a σ-cycle of odd length. So, in particular,
 ∈  ←→ σ2n+1() 6∈ (jσ · c)T2n+1(). But σ = jσ · c and if n = Tn and
 = σ2n+1() we can simplify further to  ∈ ←→  6∈ .

So no antimorphism has any odd cycles. So (recapitulating from above) if σ
is an antimorphism each σ-cycle splits naturally into two σ2 cycles. Use AC2
to pick, for each σ-cycle, one of the two σ2-cycles. Take the union of all the
chosen σ2-cycles. This will be a fixed point for σ as before.

At all events we have got to get straight the status of AC2.

PROPOSITION 5 The following are equivalent:

1. Every set of disjoint pairs has a choice function;

2. Every set of pairs has a choice function;

3. Every partition of V into pairs has a choice function;

4. Whenever we partition V into pairs the two partitions are conjugate.

(2) → (1), (2) → (3), (2) → (4) and are immediate.

We will prove

(1) → (2); (3) ←→ (1); (4) ←→ (2).

(1) → (2)
Let P be a set of pairs. We desire a choice function for it, but we know only

(1)—not (2). Nathan Bowler has found an injection  from the set of pairs into
the set of singletons: ({, y}) = {( × y)Δ(y × )}. The set

{p × (p) : p ∈ P}

is a family of disjoint pairs and therefore, by (1), has a choice function, ƒ . We
can recover a choice function ƒ∗ for P by ƒ∗(p) =: fst(ƒ (p × (p)).

(3) ←→ (1).
If we are given a set of pairs we can make disjoint copies of it by the trick we

used above. In fact—by using an  whose range is a moiety of singletons—we
can ensure that the sumset

⋃

P of the disjoint family P of pairs we construct
by this method has a complement that is the same size as V. The complement
V \
⋃

P therefore has a partition P′ into pairs. Then P ∪ P′ is a partition of V
into pairs. Any selection set for this partition will give us a choice function for
the partition we started with.

(2) → (4)
Suppose 1 and 2 are two partitions of V into pairs. By AC2 we have

a selection set S for 1 and 1 is obviously a bijection between S and V \ S.
So |S| = |V| and |1| = T |V|. We argue for 2 similarly of course. So there
is a bijection π between 1 and 2. For each p ∈ 1 there are precisely two
bijections between p and π(p) and we use AC2 to pick one. The union of all
such chosen bijections is a permutation conjugating 1 and 2.
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(4) → (2)
Assume (4). If  is a partition of V into pairs then by (4) it will be conjugate

to the partition {{,V \} :  ∈ V}. That is to say, there is a permutation π
of V such that, for all p ∈ , π“p is a pair {,V \}. But clearly the partition
{{,V \ } :  ∈ V} has a choice function ƒ (“pick the element that contains
∅”) so the choice function for P that we want is p 7→ π−1(ƒ (π“p)).

I’m not yet convinced that we cannot add to this list the following weakening
of (4):

(5) Whenever we partition V into pairs we get the same number of pairs.
This needs thinking about.
It may even be the case that AC2 is equivalent to the assertion that there a

very few conjugacy classes of partitions of V into pairs. I think this can probably
be obtained as a consequence of Bowler-Forster.

DEFINITION 5
An involution with no fixed points and no transversal set is bad.

Observe that, by proposition 5, the existence of bad involutions is precisely
equivalent to ¬AC2

Bad involutions turn up in connection with antimorphisms.
Proposition 4 tells us that if τ is a polarity then τ is a bad involution.

Evidently τ is an antimorphism iff τ = c · j(τ). If an antimorphism τ is an
involution then any transversal set for τ will be a fixed point for it. Antimor-
phisms cannot have fixed points so any polarity must be—at the very least—a
bad involution.

What are the prospects for a permutation model containing a polarity? Evi-
dently it is necessary and sufficient to find a bad involution τ and a permutation
σ so that τσ = c · j(τ); then, in Vσ , τ has become a polarity.

So we

(i) need a bad involution τ such that
(ii) τ · jσ is also a bad involution, and—what’s more—
(iii) τ · jσ is conjugate to τ.

Aren’t there a few ‘c’s miss-
ing? (i) happens precisely if AC2 fails. I can’t see how to arrange for (ii), and

achieving (iii) would seem to rely on some principle like: all bad involutions are
conjugate, which sounds rather choice-like and sits ill with ¬AC2.

We might find the following observation useful:

REMARK 27 If π is an involution then c · j(π) lacks fixpoints iff π is bad.

12.2 Existence of antimorphisms is independent

REMARK 28 (Mathias)
If NF is consistent the existence of polarities is independent of NF.
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Proof: This is because if  is a Boffa atom and π is a polarity then a contradic-
tion follows: we have π() ∈  iff π() ∈ B() iff  ∈ π() iff π() 6∈ π2()
iff π() 6∈ .

This connection between antimorphisms and Boffa atoms is a foretaste of
things to come.

We needed a Boffa atom, but that comes free. It is easy to show that every
model of NF has a permutation model containing a Boffa atom. In fact the
original construction of Hinnion-Pétry can be refined to give

LEMMA 10 For any concrete n and any symmetric relation R on n things
and any model M of NF, M has a permutation model containing n Boffa atoms
such that the membership relation among them is isomorphic to R.

Proof: For example, let’s arrange for two self-membered batoms 1 and 2 and
a single non-self-membered Boffa atom b which is related to 1 but not to 2.
We start by finding three sets 1, 2 and b such that 1 ∈ 1, 2 ∈ 2, b 6∈ b,
1 6∈ b, b 6∈ 1, 2 ∈ b and b ∈ 2. (In general, we find finitely many things,
self-membered or not, ad libitum, such that ∈ among them is symmetrical.)
This we can do by the technique used in the proof that every countable binary
structure embeds in the term model for NFO. The permutation π we want is
(1, B(1))(2, B(2))(b,B(b)). (In general we swap each chosen object 
with B().)

It remains to check that 1, 2 and b are batoms.

(∀)( ∈ 1 ←→ 1 ∈ )π

is

(∀)( ∈ π(1)←→ 1 ∈ π())

(∀)( ∈ B(1)←→ 1 ∈ π())

(∀)(1 ∈ ←→ 1 ∈ π())

This is OK if  is fixed. If  is 1 or 2 or b then π() = B() and the
RHS becomes  ∈ 1. But we arranged for ∈�{1, 2, b} to be symmetrical.
If  is B(1) or B(2) or B(b) then π() = B−1() and the biconditional
becomes

1 ∈ B(c)←→ 1 ∈ c

which is all right because we arranged for ∈�{1, 2, b} to be symmetrical. What is this ‘c’
The proof for 2 and b is exactly the same.

By compactness we can arrange for infinitely many.
Let’s just recall that we can kill off Boffa atoms . . .

REMARK 29 No stratified extension of NF proves the existence of Boffa
atoms.
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Proof: Suppose not, so there is at least one Boffa atom. Let τ be the product
∏

(B(), V \ B()) of all transpositions swapping B() with V \ B(). (This
is well-defined since nothing can be both a value of B and the complement of a
value of B.)

(There is no Boffa atom)τ is ∀∃y( ∈ τ(y)←→ y 6∈ τ()). We have two
cases to consider:

(i) If  = τ(), then take y to be a Boffa atom. τ(y) = V \ y so  ∈
τ(y)←→ y 6∈ τ() becomes  6∈ y←→ y 6∈  which is  ∈ y←→ y ∈  which
is true, because y is a Boffa atom.

(ii) If  6= τ(), then either (i)  is a value of B, in which case take y to be
∅ (making both halves of the biconditional false) or (ii) it is V \B(z) for some
z. In this case take y to be {z}. We then have τ(y) = y. The left hand side
of the biconditional is  ∈ {z}, that is V \ B(z) = z, which is impossible (ask
z ∈ z?). The right hand side is {z} 6∈ B(z), which is false.

It would be nice to give a permutation model that didn’t rely on the presence
of a Boffa atom in the base model. . . . . We needed it for the case  = τ(),
when we have to find y such that  ∈ τ(y) ←→ y 6∈ . Now if  is fixed,
then it sure as hell isn’t a Boffa atom, so there will certainly be things y s.t.
 ∈ y←→ y 6∈ , witnesses to the fact that  is not a Boffa atom. All we need
is for one of these witnesses to be fixed. (“One drop would save my soul” says
Faustus). But why should there be even one fixed witness?

I can’t help suspecting that the difficulty we have in showing that every
model of NF has a permutation model lacking Boffa atoms is of a piece with the
difficulties we have in proving the consistency of the various Barwise approxi-
mants below. It is of course to be expected that it would be easier to find a
permutation model containing a Boffa atom than to find a model lacking them
altogether, just as it’s easier to add a Quine atom than it is to get rid of them.
(The ∃∀ sentence is easier to prove consistent than the ∀∃ one.)

12.3 TZT

(We can even use Ehrenfeucht games to give a proof that Rieger-Bernays permu-
tation models preserve stratified formulæ—by reasoning about stratimorphisms.
It might be worth while spelling this out)

So the biconditional scheme is a theorem scheme of TZT. So it’s a theorem
scheme of TZT+ Ambiguity. Now we appeal to general model-theoretic non-
sense to claim that there must be a suitably saturated model of TZT+ Amb +
duality and this will be both iso to its dual and iso to its shift (both these by
back-and-forth constructions); will this give us a model of NF with an exter-
nal antimorphism? The general-model-theoretic-nonsense argument says that
TZT+ Amb will have a model M that has a tsau τ and an antimorphism α.
Because α is an antimorphism we must have

(∀y)( ∈ τ(y)←→ α() 6∈ α(τ(y))) (12.1)
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whatever τ is. However if this antimorphism σ is to give rise to an antimorphism
of the model M/τ of NF that results by quotienting M out by τ we must have:

(∀y)( ∈ τ(y)←→ α() 6∈ τ(α(y))) (12.2)

because we want α to be an antimorphism for the relation  ∈ τ(y) and (12.2)
is the formula that asserts this.

(12.1) and (12.2) are not equivalent unless τ and α commute—which they
mightn’t.

Might we not be able, on being given a suitably-saturated model of TZT+
Ambiguity, to construct the tsau τ and the antimorphism α by two interleaved
back-and-forth constructions so that they commute? Let’s try . . .

Let M be a suitably-saturated model of TZT. It is elementarily equivalent
to its dual, so—by a standard back-and-forth construction—it has an antimor-
phism, which we shall write ‘α’. Without loss of generality we can assume that
α is in fact an involution. Although this asumption is not strictly neccessary
for what follows, it does make life a bit easier. We now embark on a second
back-and-forth construction—of a tsau, which we will write ‘τ’. At each step—
be it a ‘back’ step or a ‘forth’ step—where we are considering an argument ,
once we have determined what τ() is to be we also thereby determine what
τ(α()) is to be, since it is α(τ()); we have just determined τ() and we
knew what α did to this object before we embarked on this second back-and-
forth construction. (Had we not insisted that α be an involution we would have
had a larger cycle to consider at this stage).

Even if this doesn’t work the effort will not be entirely wasted. For the
suitably-saturated model will surely have a type-shifting antimorphism. Let me
write this type-shifting antimorphism ‘τ’ as before. Then τ2 will be a tsau that
lifts levels by two rather than by one. Tsaus that lift by two levels not by one
give rise to quotients in the same way that tsaus-that-raise-levels-by-one give
rise to models of NF. Each such tsau gives a two-sorted structure: a pair of
set-theoretic structures U1 and U2 where elements of U1 find their members
among the elements of U2 and where elements of U2 find their members among
the elements of U1. The details: suppose σ is a tsau that lifts levels by two. The
quotient structure has two lobes: levels yin and yang. The membership relation
between level yin and level yang is the old membership relation between levels
0 and 1; the membership relation between level yang and level yin is 1 ∈ y0
iff 1 ∈ σ(y0).

If the tsau-that-lifts-levels-by-two is τ2 where τ is an antimorphism that
lifts levels by one then τ survives as an antimorphism of the two-lobed structure
(since τ and τ2 will commute!), and τ is an antimorphism that swaps elements
between the lobes.

This bilobate structure is merely the simplest example of a family of (conjec-
tured) structures. The scheme ϕ ←→ ϕk (The exponent ‘k’ means that there
are k ‘+’ signs) has a corresponding notion of glissant model and a correspond-
ing quotient, which is a typed structure where the type indices are integers mod
k. We don’t know that there are any such structures, because the consistency
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question for the scheme ϕ ←→ ϕk seems to be as hard as the ordinary ambi-
guity scheme1. However, let’s go back to theorem ?? and consider the proof
method in the context where we have a model M of the version of type theory-
with-levels-indexed-by-integers-mod-k and we are playing an Ehrenfeucht game
of length n between M and its dual, with n << k. This is just like the situation
in theorem ??. The situation is rather more complex when n is comparable in
size to k, and this needs more discussion.

12.4 Barwise Approximants

Barwise has a cute theorem about Henkin quantifiers, and i am interested in
applying it to the assertion

(∀y1)(∃1)
(∀y2)(∃2)

∧

,j≤2





y ∈ j ←→  6∈ yj
 ∈ j ←→ y 6∈ yj
y = j ←→  = yj



 (ϕ2)

which says that there is an (external) polarity.2 It generates an infinite
family of approximants, and the deal is that if you can arrange for all the
approximants to be true, then all the first-order consequences of the existence
of an antimorphism of order two are true too.

The nth approximant is

(∀y1∃1) . . . (∀yn∃n)
∧

,j≤n





y ∈ j ←→  6∈ yj
 ∈ j ←→ y 6∈ yj
y = j ←→  = yj



 (12.3)

DEFINITION 6 An is the nth approximant

We need additionally the list approximants. These are like the approximants
above except that each ∀ variable is replaced by a list of variables and its
corresponding ∃ variable is replaced by a list of the same length. Thus, for
example, the first list approximant is

(∀y1 . . . yn)(∃1 . . . n)
∧

,j≤n





y ∈ j ←→  6∈ yj
 ∈ j ←→ y 6∈ yj
y = j ←→  = yj



 (12.4)

and the second is

1Annoyingly the question is open, and likely to remain so until we solve the consistency
problem for NF. The only obvious way of getting a crowbar between them would be to prove
in NF the consistency of the theory of the bilobate structure, and that doesn’t sound plausible.

2I know of no proof that if there is an antimorphism there is a polarity.
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(∀y1 . . . yn)(∃1 . . . n)(∀yn+1 . . . yn+m)(∃n+1 . . . n+m)
∧

,j≤n+m





y ∈ j ←→  6∈ yj
 ∈ j ←→ y 6∈ yj
y = j ←→  = yj





(12.5)
or perhaps

(∀y1 . . . yn1)(∃1 . . . n1)(∀yn1+1 . . . yn2)(∃n1+1 . . . n2)
∧

,j≤n2





y ∈ j ←→  6∈ yj
 ∈ j ←→ y 6∈ yj
y = j ←→  = yj





(12.6)
What is the relation between the scheme of approximants and the duality

scheme? Usual model-theoretic nonsense shows that every model of the duality
scheme is elementarily equivalent to one with an antimorphism (possibly exter-
nal) and similarly every model of the scheme of approximants is elementarily
equivalent to one with an antimorphism (again, possibly external). This means
that the schemes are equivalent. So every member of either scheme can be de-
duced from finitely many of the other axioms. I see no obvious way of finding
these proofs . . .

I think it works something like this. We want to deduce ϕ∗ from ϕ. ϕ has,
say, 10 alternations, so we assume that version of the 10th list approximant that
has the appropriate number of variables in each block. Player ∀ (say) starts
with a tuple. We can pretend that he started by playing the image of the tuple
in the function whose existence the 10th approximant alleges. ∃ replies with a
tuple. Very well, let ∃ reply with the image in this function of the tuple that ∃
replied to originally.

There is a theorem about NFO with this sort of flavour, but, as we shall see,
it goes only a very small part of the way.

THEOREM 15

Let R be an arbitrary definable binary relation on a set Y.
Then, for each m,

NFO ` (∀y1∃1) . . . (∀ym∃m)(〈Y,R〉 ' 〈X,∈〉).

Proof: (X and Y are of course the set of things pointed to by the  variables
and the y variables respectively.)

The proof is lifted from my book. I include it here only beco’s the proof is
an example of technique we will need to refine later. We must distinguish this
from the much easier (∀y1 . . . ym) . . . (∃1 . . . m)(〈Y,R〉 ' 〈X,∈〉). To prove
the formula we want we need to be able to construct an embedding  from 〈Y,R〉
into the term model for NFO in such a way that our choice of (yk) depends
only on y1 . . . yk−1 and our choices of (y1) . . . (yk−1).
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We will need an infinite supply of distinct  ∈  and distinct y 6∈ y, and
such a supply can easily be found with the help of the B function. Let the nth
left object be Bn(V) and the nth right object be Bn(Λ). All left objects are
self-membered and no right objects are.

We start by setting (y1) to be the first left or right object according to
whether or not y1 R y1. At later stages n we have to construct (yn) as an
NFO term. Let On be the 2nth left object, if yn R yn, or right object if not.
Then (yn) will be obtained from On by adding and removing only finitely many
things.

We have four sets to consider:

A: {(yk) : k < n ∧ yk R yn}
B: {(yk) : k < n ∧ ¬(yk R yn)}
C: {(yk) : k < n ∧ yn R yk}
D: {(yk) : k < n ∧ ¬(yn R yk)}.

(yn) must extend A, be disjoint from B, belong to everything in C, and to
nothing in D. So our first approximation is (On \ B) ∪ A. For each (yk) ∈ C
we want (yn) ∈ (yk). Now (yn) ∈ Ok ←→ B−1(Ok) ∈ (yn), so we can
determine the truth value of ‘(yn) ∈ Ok ’ (at least) by putting {B−1(Ok)}
into (yn) or not. It will follow from

(∀n ∈ IN)(∀k < n)((yn) ∈ (yk)←→ (yn) ∈ Ok)

that this actually determines the truth value of ‘(yn) ∈ (yk)’ as well. Consider
a notion of rank of NFO terms as the depth of nested occurrences of ‘B’. To
get (yk) from Ok we remove and add only odd rank items 6= (y) or any (yj)
with j < k: neither can affect (yn).

There are various consequences of this which are germane to this context
of Barwise approximations, and which are worth noting even tho’ they have no
direct bearing on duality and antimorphisms.

REMARK 30 NFO ` (∀y1∃1) . . . (∀yn∃n) . . . (〈Y,∈〉 ' 〈X, 6∈〉)

(where Y is of course the set of things denoted by the y variables and X is the
set of things denoted by the  variables) and by Barwise’s stuff on approximants
this is enuff to give the relative consistency of

(∀y)( ∈ y←→ ƒ () 6∈ ƒ (y))

In fact the same strategy will prove, for any definable permutation π,

(∀y1∃1) . . . (∀yn∃n) . . . (
∧

,j<ω

(y ∈π yj ←→  ∈ j)∧(
∧

,j<ω

(y = yj ←→  = j))

which will be enuff to give a model of NF into which one can embed all its
permutation models (mod definable permutations)
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Indeed it will show that the first-order consequences of the following is a
theorem scheme of NFO: every definable binary structure can be isomorphically
embedded into 〈V,∈〉:

COROLLARY 4 Every first-order consequence of

(∀π)((∀y )(∃ )(∀y′)(∃′) )(y ∈ π(y
′)←→  ∈ π())

is already a theorem of NF.

There are three features that we want in order to get all the approximants
true, and sadly the term-model-for-NFO-construction has only one of them.

� First we must be able to alternate quantifiers, so that the choice of 
depends only on j and yj for j < . This feature is delivered by the
term-model-for-NFO-construction. It is the alternating condition. The
next two features that we want are features that the term-model-for-NFO-
construction doesn’t give.

� Altho’ the term-model-for-NFO-construction deals with formulæ like  ∈
j ←→ y 6∈ yj it doesn’t deal with clauses like  ∈ yj ←→ y 6∈ j. We
want clauses like y ∈ j ←→  6∈ yj. These clauses are the mixing
condition.

Suppose (and here we are considering the possibility that y1 might be a
vector) ∀ tosses a handful of y’s into the ring. ∃ must reply with some ’s,
and she can do this by means of the term-model-for-NFO construction.
But this disregards some facts about the ~y’s. y1 ∪ y2 might be V, for
example, in which case we will have to arrange that y 6∈ (1 ∩ 2). Or
maybe the union of all the ~y’s is cofinite. That would be very nasty!

� The second problem is that we want clauses for the involutive condition:
 = yj ←→ y = j. It is true that all we really need is an invertibility
condition, but the weaker form is ridiculously complicated and in any case
it is absurd to suppose that there are antimorphisms but that none of them
are polarities. (I know i haven’t proved that if there is an antimorphism
there is an antimorphism that is a polarity but really! . . . !)

12.4.1 Implications between the approximants

DEFINITION 7 anti(y, ) is (y ∈ y←→  6∈ )∧ ( ∈ y←→ y 6∈ )

What do we need to deduce A2 from A1? The second says not only that for
all y1 there is an 1 such that anti(1, y1) but also that for any y2 there is
an 2 such that burble. Now the first part of this is precisely the content of A1
, so all we need over and above in order to deduce A2 is the (∀∗∃1!) formula
that says that for all y1 and 1 such that anti(1, y1) and for all y2 there is
2 such that burble.
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So A2 is a consequence of A1 and a ∀∗∃∗ sentence. Similarly in general
An+1 follows from An and a ∀∗∃1 sentence.

This sounds nice, but the ∀∗∃∗ sentences are not those featuring in conjec-
ture 1, which are ∀1∃∗! and in any case these ∀∗∃∗ sentences are actually
refutable!.

Let’s start by looking at the formula which will enable us to deduce A2 from
A1.3 It says

(∀y11)(anti(y1, 1)→ (∀y2)(∃2)(anti(2, y2)∧
∧

 6=j≤2
( ∈ yj ←→ y 6∈ j))

It’s surprisingly easy to find a counterexample to this. Set y1 := Λ and
1 := B(Λ) ∪ {Λ}. This gives anti(y1, 1). Then instantiate y2 := {V}.
Then y2 6∈ 1 whence 2 ∈ y1 but y1 is empty.

(Notice that the other thing one might think of in this meccano connection,
using the list version of A1 with three y vbls and three  vbls doesn’t help
either.)

This is a reflection of the fact that if y1 is Λ then 1 has to be V and vice
versa. Actually this isn’t anything to do with V and Λ being 1-symmetrical,
beco’s it works just as well if you take {Λ} and B({Λ}) ∪ {{Λ}}.

The first approximant

The first approximant is (∀y)(∃)(( ∈ y←→ y 6∈ )∧ (y ∈ y←→  6∈ )))
(Notice that there is no bite in the involutive condition in this case!)
Observe that every model of NF has a permutation model in which the first

approximant fails:

(∃y)(∀)(( ∈ y←→ y ∈ )∨ (y ∈ y←→  ∈ )))

is the negation of the first approximant and we can make it true by adding
a Boffa atom, which will be a witness to the ‘∃y’. Observe the connection with
rem 28: you can’t have both Boffa atoms and polarities.

We can use lemma 10 to find a permutation model of the first approx-
imant. Let there be two batoms  and b with  ∈  and b 6∈ b and set
π = (,V \ )(b,V \ b).

REMARK 31 The first approximant is true in Vπ.

Proof:
We want (∀y)(∃)(( ∈ π(y)←→ y 6∈ π())∧(y ∈ π(y)←→  6∈ π()))
If y is fixed let  be  or b depending on whether we want  ∈ π() or not.

Of course there may well be lots of fixed witnesses to y not being a batom and
any of them will do too.

3I suppose—if were going to get into this—that we should call this ‘A1’ by analogy with
the notation for Meccano sets: the Meccano set 1 is the set that contains precisely the parts
in set 2 that aren’t in set 1.
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If y is  we seek  s.t.

 ∈ V \ ←→  6∈ π() ∧  ∈ π()

i.e.,  6∈  ←→  6∈ π(). Any fixed self-membered  will do. Analogously, if
y is b then any fixed non-self-membered set will do.

If y is V \  we seek  s.t.

 ∈ ←→ V \  6∈ π() ∧  ∈ π()

This becomes V \  ∈ π()←→  6∈  and  ∈ π().  := V \ {} will do.

If y is V \ b we seek  such that

V \ b ∈ π()←→  6∈ b ∧ b ∈ π(V \ b)←→  ∈ π()

which becomes V \ b ∈ π()←→ b 6∈  and  6∈ π().  := {V \ b} will do.

That wasn’t too awful. One of the reasons why it wasn’t too awful
was the emptiness of the involutive condition in this case. However there
is a list version of the first approximant, which is obtained from the nth
approximant by replacing the quantifier prefix ‘(∀y1∃1) . . . (∀yn∃n)’ by
‘(∀y1 . . . yn)(∃1 . . . n)’. It of course does have an involutive condition! I
don’t see any way of meeting the involutive condition but the mixing condition
should be doable.

[While we still have this model in mind it mihght be worth checking that
the second approximant fails in it. I don’t suppose anybody thought that the
first appropximant implied the second but it can do no harm to prove it.]

So what we need is a finite collection A of sets {1 . . . n} such that any
binary relation on a set of size two embeds into 〈A,∈〉, and the permutation we
want will probably be something like

∏

∈A(,V \ ). A brief meditation on
the technique that proved the term-model-of-NFO result will reassure us that
we can certainly do this for binary relations on domains of size 2 and indeed
on domains of size n for any n and even on all n by compactness. But even
tho’ this will take us slightly further than the term-model-for-NFO-construction
that we started with (it meets the mixing conditions after all) it doesn’t meet
the involutive condition, and that is the killer.

(Actually we might be able to meet the involutive condition trivially by the
simple device of ensuring that no y is ever chosen to be an j)

But even that still needs to be done. We have to worry about the cases when
some of the y are moved.

One slightly annoying feature of this relative consistency proof is that we
seem to need to start with a model containing Boffa atoms. Also we never need
to use anything that isn’t an involution, and in this case i have a hunch that
one can make do with a subset of the complementation involution. Let’s try
this. We seek a property ϕ such that the involution that swaps things that are
ϕ with their complements does the trick.
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(∀y)(∃)((y ∈ π(y)←→  6∈ π())∧ ( ∈ π(y)←→ y 6∈ π()))

Now y ∈ π(y) is just y ∈ y←→ ¬ϕ(y) so we get four universal-existentials
out of this

(∀y)(ϕ(y)∧y ∈ y.→ (∃)(ϕ()∧ 6∈ ∧( 6∈ y←→ y ∈ ))∨(∃)(¬ϕ()∧ ∈ ∧( ∈ y←→ y ∈ )

(∀y)(ϕ(y)∧y 6∈ y.→ (∃)(ϕ()∧ ∈ ∧( 6∈ y←→ y ∈ ))∨(∃)(¬ϕ()∧ 6∈ ∧( ∈ y←→ y ∈ )

(∀y)(¬ϕ(y)∧y ∈ y.→ (∃)(ϕ()∧ ∈ ∧( ∈ y←→ y ∈ ))∨(∃)(¬ϕ()∧ 6∈ ∧( ∈ y←→ y 6∈ )

(∀y)(¬ϕ(y)∧y 6∈ y.→ (∃)(ϕ()∧ 6∈ ∧( ∈ y←→ y ∈ ))∨(∃)(¬ϕ()∧ ∈ ∧( ∈ y←→ y 6∈ )

For example one could try ϕ()←→ (∀z)(z ∈ ←→ V \ z ∈ ). Then the
first two formulæ go thru’ taking  to be V \ y.

12.4.2 The second approximant

The first nontrivial case seems to be the second approximant.

(∀y1∃1)(∀y2∃2)

(1 ∈ 1 ←→ y1 6∈ y1)
(1 ∈ 2 ←→ y1 6∈ y2)
(2 ∈ 1 ←→ y2 6∈ y1)
(2 ∈ 2 ←→ y2 6∈ y2)

with mixing conditions

(y1 ∈ 1 ←→ 1 6∈ y1)
(y1 ∈ 2 ←→ 1 6∈ y2)
(y2 ∈ 1 ←→ 2 6∈ y1)
(y2 ∈ 2 ←→ 2 6∈ y2)

and the involutive condition

(y1 = 2 ←→ 1 = y2)
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Let us say y is nice1 if (∃)(anti(y, )). (That is to say, if player ∃ can stay
alive for one move at least.) There is a corresponding notion of nice2, which
says that player ∃ can stay alive for two moves. And so on. But there is a slight
niggle. Not even one set can be nice2 unless every set is nice1. So perhaps the
correct definition of nice2(y) should be:

(∃)(anti(, y) ∧ (∀y1)((∃2)(anti(y2, 2)) →
(∃2)(anti(y2, 2)∧ the usual conditions

. . . and so on!
Suppose every set is nice: every set has a dual: (∀y)(∃)(anti(y, )).

Can we get a new skolem function sending sets to duals by lifting a skolem
function in the obvious way? A second-degree dual for y is going to be an 
that is the complement of a set of duals for members of y. That is to say, every
′ ∈ y has a dual that is not in . But this is almost exactly what the second
approximant says. Actually the second approximant is a bit worse, because it
says that the skolem function for the first pair of quantifiers must agree with
the skolem function for the second pair, which is a bit hard!

One step from the first to the second is this. Suppose there is a subset R
of the graph of anti which is symmetrical and extensional. (Should be easy
to show that no such set can be the extension of a stratified formula) The idea
is then that λ.(V \ R“) is a skolem function for the first pair of quantifiers
in the second approximant. One problem with this is that it won’t respect
complementation. Another is that there doesn’t seem to be any reason why we
should expect anti(V \ R“, ).

The Obvious Permutation

But perhaps in general the obvious permutation to use is

π =
∏

∈V
(B,B)

We use this in a model where we have as many Boffa atoms as we want, using
lemma 10.

Consider the first approximant:

(∀y∃)(y ∈ y←→  6∈ )∧ ( ∈ y←→ y 6∈ ))

This gives

(∀y∃)((y ∈ π(y)←→  6∈ π())∧ ( ∈ π(y)←→ y 6∈ π()))

1. y is moved

Consider first the case where y is Bz.
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We seek  such that (Bz ∈ Bz ←→  6∈ π()) ∧ ( ∈ Bz ←→ Bz 6∈
π()))

which becomes

(Bz 6∈ Bz←→  6∈ π())∧ ( 6∈ Bz←→ Bz 6∈ π()))
and then

(z 6∈ z←→  6∈ π())∧ (z 6∈ ←→ Bz 6∈ π()))
or

(z ∈ z←→  ∈ π())∧ (z ∈ ←→ Bz ∈ π())).

If y is Bz we analogously end up looking for  such that

(z ∈ z←→  ∈ π())∧ (z ∈ ←→ Bz 6∈ π())).
In either case if B(z) were fixed it would be an ideal candidate for ‘’,
but it isn’t. However if we modify it trivially, say to B(z) ∪ {Λ} or to
B(z) ∪ {, b} we get something that works for both cases.4

2. y is fixed

We seek  such that:

(y ∈ y←→  6∈ π())∧ ( ∈ y←→ y 6∈ π()).
This is where we use the fact that the base model has countably many
batoms. We have two batoms  and b with  ∈  and b 6∈ b. If y ∈ y
we take  to be ; if y 6∈ y we take  to be b.

[HOLE Should insert here a proof that we can do this for the list version of
the first approximant].

This is what to do for the list version of the first approximant. Start with a
model containing all the boffa atoms of all possible flavours (the “Tutti Frutti”
model). The permutation will swap Boffa atoms with their complements and
fix everything else. Then, on being given an n-tuple ~y, we assign to each y a
boffa atom of the correct flavour. This doesn’t quite take care of the  ∈ yj
conditions, so we might have to adjust by adding and taking away a few things
from the Boffa atoms in the manner of the proof of my result about the term
model of NFO. But this means that we have to swap with their complements
not only all Boffa atoms but all things whose symm diff from a boffa atom is
finite.

We still have to think about what happens if one of the ~y that we picked up
is one of these things that are moved.

Can we do the same for the second approximant? The difficulty comes with
witnesses to the ‘’s with later subscripts. We can always find an  satisfying
 ∈ 2 or not: that’s easy, because we can usually take s to be batoms or
things closely resembling them. The problem concerns membership conditions

4Do we have to worry about z being a batom?
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like  ∈ y1. What happens if y1 is something nasty like a countable set
containing all self-membered batoms?

It may well be that tweaking this model will give us a model for some of the
list versions of the first approximant, but that isn’t enuff.

A technique like this will prove the consistency of the list version of the first
approximant, beco’s we can always go back and tweak our choice of s if need
be. A sort of priority construction. . .

There is an added complication. We are given a hatful of instances of the
y variables. The witnesses for the  variables that we want must satisfy the
obvious atomic conditions, but there are some ∀ conditions as well. Suppose
the union of the ys is V. Then none of the ys can belong to the intersection of
all the s. So any ∀ condition satisifed by the y vbls will give rise to a condition
on the  vbls. We’ve just seen one example. Another will arise from things like
y = B(yj), or from yj being a singleton, or a pair. In fact, we might need to
take into account the whole NFO-visible strux of the y objects.

The point is that a kind of rippling adjustment in the spirit of my NFO
construction is not guaranteed to work, beco’s of the ∀ conditions.

Conjoin all these conditions together, and put the result into DNF. We must
try to make one disjunct true.

Let R(y, ) abbreviate (y ∈ y←→  6∈ )∧ ( ∈ y←→ y 6∈ ).
The first approximant is (∀y∃)(R(y, )).
Let’s think about a weaker version of the second approximant:

(∀y∃)(R(y, )∧(∀y′∃′)(R(y′, ′)∧(y = y′ ←→  = ′)∧(y′ = ←→ ′ = y)))

To verify this it will be enuff (given the first approximant) for R to be
extensional and symmetrical. It’s clearly symmetrical, by elementary logic.
But extensional?

12.5 Some more recent tho’rts on Ehrenfeucht
games for duality

Consider an Ehrenfeucht game played on a model M of NF and its dual.
Unequal makes a move in one of these, and Equal must reply with a move
in the other, satisfying the obvious duality condition

(∀y)(∃)( ∈ ←→ y 6∈ y)

No mixing conditions, beco’s  and y belong in different structures. This
assertion that Equal can survive one move is actually a theorem of NF. Indeed
it is even a theorem of NF that Equal can survive one move even if Unequal
plays a tuple of things for his first move. After all, all she has to do is find a
tuple of things whose ∈-structure is the complement of the ∈-structure enjoyed



220 CHAPTER 12. ANTIMORPHISMS, A JUMBLE

by the tuple presented by Unequal, and we know that every finite structure can
be embedded in the term model of NF0. However things are very different once
Unequal moves again, even if he’s only playing single sets not tuples of sets.
It’s not difficult to see that the best way for him to twist the knife is to make
his second move in the structure that Equal has just moved in. After all, if M
contains a Quine atom but no Quine antiatom his obvious first move is to play
a Quine atom, and poor Equal has to find a Quine antiatom. Of course she
can’t do that, and Unequal then goes in for the kill with a witness to the fact
that her choice is not a Quine antiatom. I don’t see how he can force a win
in two moves by moving in the same structure as he played in first time. So,
although he can (legally) move in either structure, he’d be crazy not to reply in
the structure she has just played in:

(∀y)(∃)(( ∈ ←→ y 6∈ y)∧ (∀y′∃′)
∧





′ ∈ ′ ←→ y′ 6∈ y′
′ ∈ y←→ y 6∈ ′
y′ ∈ ←→  6∈ y′



 (ϕ4)

I suspect that this formula is true in any model with no Quine atoms, no
Quine antiatoms, no Boffa atoms and no Boffa antiatoms.

12.6 Internal Antimorphisms in Models of NF3?

We can assert, using only three types, that there is a bad involution. By propo-
sition 5 the existence of a bad involution is equivalent to ¬AC2 so let’s start
with a model of TT3 + ¬AC2. It will contain a bad involution τ (which will
be an element of the top level), and let’s suppose that the model satisfies the
saturation condition that every element that has infinitely many atoms below
it is the join of two such elements that are disjoint.

So my question is, if we perform our back-and-forth construction (of the
tsau) with sufficient care, can we ensure that τ is a polarity of the quotient
model of NF3?

Now how does this work? Any two countable atomic boolean algebras are iso
as long as the quotient of each over the Fréchet ideal is atomless. The quotients
are iso by a back-and-forth argument and we can extend the isomorphism to
the original algebras.

Be that as it may, we still have to find a model of TST3 which has a bad
involution whose lift is also bad. I think the following FM construction will
work. Let A0 be a countable set of atoms, and let π be a partition of A0 into
pairs. Every subset of π can be thought of as an involution and the power set
of π is in fact a group—G, to give it a name. Let A be our bottom level, and
let level 1 be the set of those subsets of A that are fixed by G. . . which is to
say those subsets of A that are sumsets of subsets of π. (there are uncountably
many of them, so we will have to throw some away. Find a countable atomic
subalgebra B of P(IN) and retain only those subsets of A0 that are union of a
B-subset of π . . . )
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The difficulty i’m having is finding something that is both an FM model of
NF3 AND is countable....

12.6.1 Self-dual formulæ

DEFINITION 8
A formula is self-dual if it is logically equivalent to its own dual: ϕ←→ bϕ.

REMARK 32 A propositional formula ϕ is self-dual iff there is ψ such that ϕ
is equivalent to ψ←→ bψ.

Proof: Start by expressing ϕ in disjunctive normal form. Since ϕ is self-dual
the set of disjuncts that comprise it (each disjunct is a conjunction of literals)
is closed under the dual operation and there will be an even number of them.
(No consistent disjunct can be self-dual, after all!) There will also be an even
number of conjunctions of literals that do not comprise ϕ, and that set too is
closed under the dual operation. This splits the set of conjunctions of literals
that comprise ¬ϕ into a set of pairs of conjunctions of literals, where each pair
contains a conjunction of literals and its dual. Pick one conjunction from each
pair, and form the disjunction of all the conjunctions you have chosen. Call this

ψ and think about ψ←→ bψ. ψ and bψ cannot be simultaneously true, but they
can be simultaneously false, and when they are, ϕ holds.

For 10 more marks Say something about how many ways there are of doing
this

This reminds me a bit of the proof that two permutations of the same cycle
type are conjugated by an involution.

COROLLARY 5 (Specker, (“Dualität”)
For any involutive automorphism of a (propositional) language the conjunc-

tion of finitely many biconditionals between a formula and its dual is equivalent
to another such biconditional.

Proof: This is beco’s the conjunction of finitely many such biconditionals is
self-dual.

There is a problem about incorporating ‘=’ into this treatment but i think it
can be got round. A much bigger problem is quantification. After all, anything

of the form ψ ←→ bψ is going to be Δ2 if ψ is 1 so it would tell us that no
(strictly) 1 thing can be self-dual. For example (∃)(∀y)( ∈ y←→ y ∈ ) is

self-dual but i defy anyone to find ψ such that it is equivalent to ψ←→ bψ. Isn’t
it true that a formula is prenex normal form is self-dual as long as its matrix is
self-dual? And conversely—every self-dual formula, once put into normal form,
has a self-dual matrix?

There are other phenomena like this. If ϕ is necessary then ϕ ←→ 2ϕ
is logically true: is every necessary thing of the form ϕ ←→ 2ϕ? Similarly
invariance....
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Let’s try a simple example

B : (∀)(∃y)( ∈ y∧ y 6∈  ∨  6∈ y∧ y ∈ )

Assume B and let σ be a permutation in the centraliser of J1 (the set of
all permutations that are j of something). We will prove Bσ by UG. Let  be
arbitrary. Two cases

1. σ() = .

2. σ() 6= 

A conversation with Nathan

tf:

Suppose σ is a flexible permutation, and it lives on a moiety M. Then we can
copy it over to a permutation living on V \M, because there is an involution π
mapping M onto V \M. I now think of σ as a digraph. How do i move along an
edge of σ? Well, i can move over into V \M by π (which is a good involution).
Then i come back to M by means of the involution that swaps each  in ths
support of the copied version of σ (that lives in V \M) with σ(π()).

Nathan:

Call this second involution τ. Then for  in the support of σ, τ(π()) =
σ(π(π())) = σ(), which is a good sign. However, τ · π also moves some
other stuff. Let  be in the support of the copied version of σ. So π() is in
the support of σ. What does τ do to π()? Well, consider y = π(σ−1(π())).
y is also in the support of the copied version of σ, and so τ swaps y with
σ(π(y)) = π(). That is, τ(π()) = y, so τ · π does not equal σ, which fixes
.

Indeed, with sufficient lack of choice there cannot be a way to represent
every permutation as a product of two involutions. Suppose that there is some
permutation σ consisting of one cycle Cn of each finite odd size n, where there
is no choice function on those cycles. Suppose further (for a contradiction)
that σ = τ · π, where τ and π are involutions. Then τ · σ · τ = π · τ = σ−1,
so τ conjugates σ to σ−1. In particular, τ takes fixed points of σ to fixed
points of σ and elements of Cn to elements of Cn for each n. Identifying Cn
with the integers modulo n, with the action of σ being addition of 1, we get
π( + 1) = π() − 1, for any , so that by induction π() +  is constant
on Cn. Say it takes the value k. Then  = π() iff  = k −  iff 2 = k iff
 = k/2 modulo n. As n is odd, there is a unique solution of this equation
modulo n. That is, π fixes precisely one element of Cn for each n. This gives a
choice function on the Cn, which is the desired contradiction.



12.6. INTERNAL ANTIMORPHISMS IN MODELS OF NF3? 223

tf:

Ah, i think i see . . . The point is that τ · π is not σ but the union of σ and its
copy in V \M.

Nathan:

Exactly so. But this is certainly progress. Suppose now that we have some
permutation σ, supported on a moiety, that we want to represent as a product
of involutions. By the argument you suggested, we can get the permutation σ′

consisting of countably many copies of σ and countably many copies of σ−1:
σ′ is a product of two involutions. Then composing σ′ with the conjugate of
σ′ which cancels all the copies of σ−1 and all but one of the copies of σ, we get
σ as a product of four involutions (this was my original argument, but not the
argument in the paper).

tf:

OK, am i right? I think i have reconstructed your thought-processes... Tell
me...

Nathan:

Well, this isn’t what I was thinking of, but it does work, and (with a little
tweaking) shows that every flexible permutation is a product of at most 4 good
involutions. Let’s say we have some flexible permutation σ. Identify V with
V × Z, where Z is the set of integers, and let π be the permutation which
moves each copy of the universe up one place: 〈,m〉 7→ 〈,m + 1〉. Let τ
be the permutation which moves almost everything down one place: 〈,m〉 7→
〈,m − 1〉 unless m = 1, and 〈,1〉 7→ 〈σ(),0〉. Then τ and π are both
products of Z-cycles-with-distinguished-elements, so that each of τ and π is a
product of two good involutions. σ is conjugate to τ · π, so is a product of 4
good involutions.

I think we can delete from here to ***
Some light can be shed on the orders of antimorphisms by reflecting on

the fact that if σ is an antimorphism then σ2 is an automorphism: σ is an
automorphism iff σ = jσ.

For any n, if σ has a cycle of order n then jσ has a cycle of order Tn (take
singletons). Also if jσ has a cycle of length Tn then for every factor m of Tn
it has a cycle of length m.

We know that jσ commutes with c and that c is an involution so jσ · c is
also of order Tn. So if σ = jσ · c is of order n then n = Tn.

The idea is that no antimorphism can have odd order, since an odd power
of an antimorphism is another antimorphism. But this cannot be proved by
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induction. However we can prove that no antimorphism can have cantorian odd
order.

Suppose

σ = jτ · c
σ2n+1= (jτ · c)2n+1

= (jτ)2n+1) · c2n+1
= j(τT2n+1) · c2n+1
= j(τT2n+1) · c

So, in particular, if σ = jσ · c, then σ2n+1 = j(σT2n+1) · c.
Let’s look at this very closely.
We first prove by induction on n that j(σn) = (jσ)Tn No doubt you will be

asking: “Where does the ‘T’ come from?”
Consider the three-place expression R(σ, τ, n) that says “τ = σn”. This

is stratified. ‘τ’ and ‘σ’ clearly have the same type. What is the type of ‘n’?
Actually it doesn’t matter; all that matters is that it can be determined from
the types of ‘τ’ and ‘σ’ . This means that

(∀σ, τ)(∀n)(R(σ, τ, n)←→ R(jσ, jτ, Tn))(A)

is stratified and we have a chance of proving it by induction on ‘n’. This
means that if σ = jσ (so that σ is an automorphism, then the order of σ is
cantorian. Now if σ is instead an antimorphism, then σ2 is an automorphism,
and its order is cantorian. So every antimorphism has cantorian order.

Now suppose that σ is an antimorphism of order 2n + 1. First we show
that σ2n is an automorphism. Well, σ2 is an automorphism, and if τ is an
automorphism, and n = Tn then τn is also an automorphism. So σ2n is an
automorphism. The product of an automorphism and an antimorphism is an
antimorphism, so σ2n+1 is an antimorphism and is therefore not the identity.

However we are going to need something even stronger, namely that no
antimorphism can have an odd cycle. Observe that for all , y, τ and n,

 ∈ y←→ σn() ∈ (jσTn(y))

 ∈ y←→ σ2n+1() ∈ (jσT2n+1(y))

Let σ be an antimorphism, and  belong to a σ-cycle of

***

12.6.2 Can we construct an antimorphism by permuta-
tions?

This should probably be in
stratificationmodn.tex Fix two elements  and b—it doesn’t matter what they are. They divide the

universe into a pair of moieties: B()ΔB(b) (which we will call ‘X’) and its
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complement (which we will call ‘Y’). Let σ be the permutation that fixes  if
it either contains both  and b or contains neither. If  contains one but not
the other swap it with V \ . Then σ fixes a moiety and moves a moiety.

σ =:
∏

∈B()ΔB(y)
(,V \ )

. . . and therefore so also does jσ. Let’s check this: σ has a moiety of fixed
points and a moiety of things that it moves. We want the same to hold for j(σ).
Every set of σ-fixed points is a j(σ)-fixed point, so everything in P(Y) is fixed
by j(σ). We also need j(σ) to move |V| things. For any nonempty y ⊆ Y clearly
y ∪ {{}} is moved by j(σ). So there are at least as many things moved by
j(σ) as there are subsets of Y, namely |V|.

To complete the house of cards we need jσ · c to fix a moiety and move a
moiety, and this is where things come unstuck. We can say this much: jσ fixes
|V| things, and no set is equal to its complement, so jσ ·c moves |V| things. . . but
how many things does it fix? Well, this is the same as asking: how many sets 
are there such that σ“ = V \? And the answer to that is: none, beco’s some
sets are fixed by σ, and each of those fixed sets must belong to  or to V \ 
and cannot be moved from one to the other by σ!

Evidently we weren’t clever enough—or not lucky enough. It might be worth
trying harder to find an involution π such that π and jπ · c are conjugate. If
we succeed then we refute AC2, and the failure might be instructive.
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Chapter 13

Boise Diary August 2014:
Notes on Conversations
with Randall

The intermediate goal is to construct cardinal trees of infinite rank. What does
a cardinal tree of infinite rank look like? It has a top element, and branches
downwards, and all paths are finite. What would be nice would be to find
some preëxisting trees of this kind, and perhaps use these trees—with their
structure—as scaffolding on which to build a cardinal tree of infinite rank.

The obvious source for trees of this kind is ordinals. Fix an ordinal λ and
consider finite sets of ordinals below λ. For two such finite sets s and t we say
s < t if t ⊆ s and every member of s \ t is below every element of t. Let us
reserve the symbol ‘<’ for the order relation of this tree.

So, let us consider that done: λ is given, and we are going to construct an
FM model containing a cardinal whose tree is isomorphic to the tree of finite
sets of ordinals below λ. The idea is to define a cardinal-valued function τ from
the tree. τ must of course satisfy the condition τ(t \ {min(t)}) = 2τ(t) for all
finite sets t of ordinals below λ.

Coming up with such a function τ is not completely straightforward, as the
reader can surely believe. We know that the existence of a cardinal of infinite
rank contradicts choice so we are going to have to use FM models [in the first
instance at least] and that means atoms. To each finite set t of ordinals below
λ w are going to associate a parent set and a clan. The parent set is just
that, a set. Each member of the parent set points to a litter, and a litter is a
set of atoms. All litters are the same size seen from outside, and that size is a
fixed aleph, always called κ. (This κ has nothing to do with λ by the way.) The
parent sets (in contrast to the litters) are emphatically not all the same size.
(The litters are not all the same size from the point of view of the FM model).
The clan associated with a finite set t of ordinals is the union of all the litters
pointed to by the parent set associated with t. In the FM model the litters will

227
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be κ-amorphous, so the clans will be unions of κ-many κ-amorphous sets. This
will mean that the clans do not have terribly many subsets [in the FM model]
so the power set of a clan will be a fairly impoverished object. Double power
sets of clans will, as we shall see, contain a lot of infomation.

So far, in the endeavour to construct our function τ defined on finite sets
of ordinals below λ we have [so far!] two auxilliary functions: parent-set and
clan. I haven’t yet told you what the group or the normal filter are, i know; be
patient.

I haven’t yet said anything about how the functions clan and parent-set

are to be defined, but there is clearly going to have to be some sort of recursion
going on. The first thing to note is that we are going to insist that

DEFINITION 9 For every t, the parent-set associated with t must extend [a
copy of] the clan associated with t \ {min(t)}.

In fact we are going to be doing a lot of deletion-of-minimum-elements, so
let us write t \ {min(t)} as t′, and t2 is the result of deleting the two bottom
elements. . . and so on. The quoted text is of course not yet a definition, but
it is a constraint that our definition will have to meet. Observe that the clan

associated with a t maps onto the parent-set associated with t (and may
indeed be a lot bigger than it) so this looks as if, as you walk own the tree, the
parent-set associated with each node get bigger and bigger.

We reflected earlier that τ must satisfy the condition τ(t\{min(t)}) = 2τ(t)
for all finite sets t of ordinals below λ. The tricky part is of course that a finite
set s can be t′ for more than one t! We are going to need some tricks.

Here is a very useful elementary observation. Suppose A ⊂ parent-set(t).
Consider an  ∈ A, and the set A of all the subsets of clan that are the same
size as  in the sense of the FM model (whose parameters we have not yet
specified!!) Observe that A is a set of the FM model (it is definable, after
all) and  was an arbitrary element of parent-set(t). So what we have just
described is an injection from P(A) into P2(clan(t)). Let us record this fact

REMARK 33 “Injectivity”
There is an injection from P(parent-set(t)) into P2(clan(t)).

The effect of the definition and the remark is that the iterated power sets of
the clans associated with finite sets t will have concealed within them copies
of the clans associated with the various truncations tn of t, and of course τ
associates larger cardinals to those truncations than it does to t.

Now we are in a position to start defining τ. We start with what Randall
calls “base clans”. These are the clans corresponding to finite sets t that have
0 as a member. Clearly τ of such a finite set is going to be an endpoint of the
cardinal tree we are trying to build. We stipulate

DEFINITION 10 When 0 ∈ t we stipulate τ(t) = 22
|clan(t)|

.
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Now comes the bit i don’t yet understand. We intend to ensure that
τ(t) = |P +2(clan(t))| for every t with 0 ∈ t.
To this end we will want parent-set(t) to be something the same size as

clan(t′) ∪
⋃

0∈s<t
P |s|−|t|+1(clan(s))

and this looks as if it could be [part of] a recursive declaration of clan [the
recusion seems to be on < but we have to tweak things so that t′ is arlier han
t] but there is actually some circularity involved.

Let us consider a simple case. Suppose t is {2}. Then the ss over which we
have to take the union are {0,2} and {0,1,2}. That is to say, clan({2})
must be the same size as

clan(∅) ∪P3(clan({0,1,2})) ∪P2(clan({0,2})).

We haven’t yet defined clan(∅) (it is actually going to be a union of κ-many
κ-amorphous sets of atoms) but that’s not where the problem lies.

Observe that, by injectivity, P2(clan({0,2})) has a subset the same size
as P(parent-set({2})). So it would seem that we have to have access to
parent-set({2}) and we are back where we started.

Don’t understand this yet . . . !
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Chapter 14

Leftovers from the Boffa
festschrift paper

There are various loose ends to be tidied up.

� There is the game G∗
X

played like GX only player I wins if it ever comes
to an end (as opposed to being the last player!). There is a dual version
in which II is trying to get it to end.

� Some miscellaneous facts about ⊂∞.

We know that ⊂∞ is a strict partial order. Is it also a complete lattice?
The (easy) answer is: no. Consider the two sequences of n and bn as
above.

0 := ∅; n+1 := {bn}; b0 := V; bn+1 := −{n}

If we were to have ∞ :=
∨

∈N
 and b∞ :=

∧

∈N
b we would have ∞ =

{b∞} and b∞ = −{∞}. This is independent of (for example) NF. (See
Forster [1995] proposition 3.1.5.)

Antimorphisms not monotonic on the ⊂∞. For suppose they were. Then let
σ be an antimorphism. Then

σ‘ < σ‘y

iff
−σ“ < V \ σ“y

iff
σ“y < σ“

iff (several cases! such as)

(∃z ∈ σ“( \ y))(∀ ∈ σ“(y \ ))(z < )
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Now reletter

(∃z ∈ ( \ y))(∀ ∈ (y \ ))((σ−1‘z < σ−1‘)

and invoke monotonicity

(∃z ∈ ( \ y))(∀ ∈ (y \ ))(z < )

which is
y < 

so σ would have to be antimonotonic.
Note that (∀σ)(jn‘σ is an automorphism of 〈V,⊆n〉). So the class of auto-

morphisms of the canonical p.o. is closed under j.
Now consider the CPO V × V ordered by pointwise set inclusion. Let S be

the map λX.〈P(sndX),
P
(fstX)〉 which is an increasing map V × V → V × V.

V × V is clearly chain complete (directed-complete, indeed), and so has a fixed
point for S. The displayed formula tells us that the least such fixed point is the
pair 〈II, I〉. We will need this slightly cumbersome formulation in the proof of
the following theorem which ties together the ∈-game and fixed points for P.

THEOREM 16
(∀ ∈ II)(∀y ∈ I)( ⊂∞ y)

Proof:
There is a simple proof by induction on pseudorank. If y ∈ I and  ∈ II

then there is z ∈ y∩II. This z cannot be in , because  ⊆ I and by induction
hypothesis it precedes everything in . So  ⊂∞ y.

However, some readers might prefer something a bit more general and robust.
Proof:

Suppose P(R) ⊆ R. Suppose A∩B = ∅ and 〈A,B〉 satisfies (∀ ∈ A)(∀y ∈
B)(Ry). Then so does 〈P(B),

P
(A)〉. P(B) ∩

P
(A) = ∅ is easy. Suppose

 ∈ P(B), y ∈
P
(A). Notice that y \  is nonempty because y meets A and

 ⊆ B. Everything in  \ y is in B, and there must be something in y \  that
is in A, so 〈, y〉 ∈ P(R) whence 〈, y〉 ∈ R.

Now consider the CPO P = 〈P,≤P〉 where P is the set of of pairs 〈A,B〉
where (∀ ∈ A)(∀y ∈ B)(Ry), and ≤P is pointwise set inclusion. Let S be
the map λX.〈P(sndX),

P
(fstX〉 which is an increasing map P → P. P is

clearly chain complete (closed under directed unions), and so has a fixed point
for S. But this fixed point for S must be above the least fixed point for S in the
CPO V × V, so by induction we infer that the least fixed point for S, namely
〈II, I〉 satisfies (∀ ∈ II)(∀y ∈ I)(Ry).

Andy Pitts suggested to me that  and y are Forster/Malitz bisimilar iff
there is a bisimulation between the transitive closures TC() and TC(y). This
isn’t quite true. The left-to-right implication is good: if X ∼mn Y then= has
a strategy to stay alive in the game GX=Y for ever. The union of any number
of nondeterministic strategies to do this is another nondeterministic strategy,
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so think about the union of all of them. It’s a bisimulation. But the converse
direction is not good. Consider V and −∅. These have the same transitive

closure but 6=Wins the Malitz game by picking ∅. To state the version of this
aperçu that is true we need the notion of a layered bisimulation.

A layered bisimulation between X and Y is a family of binary relations 'n
⊆
⋃n X ×
⋃n Y such that '+n+1='n. Then

REMARK 34 X ∼mn Y iff there is a layered bisimulation between X and Y.

Proof: Obvious.

14.1 Lifts

I’n beginning to understand this better. Lifts defined using a leading existential
quantifier will preserve irreflexivity and are to be used on strict partial orders;
lifts defined using universal quantifiers preserve reflexivity and are to be used
on quasiorders. Partial orders are a red herring.

14.1.1 Lifts for strict partial orders

Let’s look at some lifts defined using existential quantifiers, and apply them to
strict partial orders.

First there is the ‘obvious’ one:

AP(>)B iff (∃ ∈ A)(∀y ∈ B)( < y)

Clearly if < is irreflexive then P(<) is irreflexive, and if < is transitive
then P(<) is transitive, so it carries strict partial orders to strict partial orders.
It actually—quite separately—preserves asymmetry but (for the moment) we
don’t care.

Only trouble is, P(<) is an incredibly strong relation. Let’s redefine P so as
to get a lift that might be more useful.

AP(>)B iff (∃ ∈ A \ B)(∀y ∈ B \ A)( < y)

Evidently P(<) is always irreflexive. It preserves asymmetry.
Sadly it does not preserve transitivity, as the following example shows.
Define < on the domain {, b, c, d} by  < b and c < d. Then {, c}P(<

){, d} and {, d}P(<){b, d} but not {, c} below {b, d}.1

Despite this we have the following small factoid which may be useful one
day:

Let < be a strict total order, then P(<) is transitive.

1Is this yet another example of the bad behaviour of the set some combinatorists call
‘IN’?—beco’s its graph looks like the letter ‘N’. See Rival, Contemp Maths 65 pp. 263-285.
Actually this thing is not an N but we could add one arm and get an N
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Proof:
Let A, B and C be three sets such that A P(>) B and B P(>) C. That is

to say, there is  ∈ A \ B which < everything in B \ A, and b ∈ B \ C which <
everything in C \B. We seek an  ∈ A \C which < everything in C \A. In fact
it will turn out that this  can always be taken to be  or b. Since  may be
in A \ C or in A ∩ C, and b may be in B \ A or B ∩ A there are four cases to
consider.

 ∈ A \ C ∧ b ∈ B \ A

Then  < b, so  < everything in C \ B and we need only check
that  < everything in (B ∩ C) \ A. But  < everything in B \ A.
So set  to be .

 ∈ A ∩ C ∧ b ∈ B \ A

This case is impossible because b ∈ (B \ A) implies  < b and
 ∈ A ∩ C implies  ∈ (C \ B) whence b < .

 ∈ A \ C ∧ b ∈ B ∩ A

Both  and b are in A \ C in this case so both are candidates for
.  < everything in (B \ A) and b < everything in (C \ B). Since
< is a total order one of them is smaller, and that smaller one is <
everything in (B\A)∪ (C\B) which is certainly a superset of C\A.

 ∈ A ∩ C ∧ b ∈ B ∩ A

b < everything in C \B so in particular b < . But  < everything
in B \ A so b < everything in ((C \ B) ∪ (B \ A)) which is certainly
a superset of C \ A as before, and b ∈ A \ C so we can take  to be
b.

Sadly this really needs the input to be a strict total order.
It might be worth ascertaining what properties P preserves
This suggests that we should use instead the following definition.

DEFINITION 11  P(>) y if there is a finite antichain  ⊆ ( \y) such that
(∀y′ ∈ y \ )(∃′ ∈ )(y′ > ′).

Why an antichain? Well, if it is just a subset then P of a strict partial order
might not be irreflexive. And why finite? This is to ensure that P is monotone.
That is to say, if ≤′ is stronger than ≤ then P(≤′) is stronger than P(≤′).
If we do not require antichains to be finite we might find that X P(≤′) Y in
virtue of some antichain ⊆ Y \ X and we can add ordered pairs to ≤ to get a
relation according to which the antichain is a chain with no least element. If
the antichain is required to be finite this cannot happen.
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LEMMA 11 P is a monotone function from the CPO (chain-complete poset)
of all strict partial orders of the universe (partially ordered by set inclusion) into
itself.

Proof: This new P evidently preserves irreflexivity as before. The only hard
part is to show that it takes transitive relations to transitive relations.

Let > be a transitive relation and let A, B and C be three subsets of Dom(>)
such that A P(>) B and B P(>) C. That is to say, there are antichains  ⊆ A\B
such that everything in (B \ A) > something in , and b ⊆ B \ C such that
everything in (C \ B) > something in b.

We will show that the antichain included in A \C that we need as a witness
to A P(>) C can be taken to be ( \ C) ∪ (b ∩ A). Or rather, it can be taken
to be that antichain obtained from ( \C)∪ (b∩A) by discarding nonminimal
elements.

We’d better start by showing that (\C)∪(b∩A) cannot be empty. Suppose
it were and  ∈ b. Then  is in B \ A and is bigger than something in , y,
say. Then y ∈ C \ B and is bigger than something in b contradicting the fact
that b is an antichain. This argument will be recycled twice in what follows.

Let  be an arbitrary element of C \ A. We will show that  is above
something in ( \ C) ∪ (b ∩ A). There are two cases to consider.

(i)  ∈ C ∩ B. Then it is bigger than something in . If it is bigger than
something in ( \ C) we can stop, so suppose it isn’t. Then it is bigger than
something,  say, that is in  ∩ C. Things in  ∩ C are in C \ B and so must
be bigger than something in b. If  is bigger than something in b ∩ A we can
stop (since this implies that  is bigger than something in b ∩ A), so suppose
 is bigger than something in b \A. Things in b \A are in B \A and therefore
are bigger than something in , so  is bigger than something in . But this is
impossible because  ∈ .

(ii)  ∈ (C \ B). Then it is bigger than something in b. If it is bigger
than something in (b ∩ A) we can stop, so suppose it isn’t. Then it is bigger
than something,  say, that is in b \ A. Things in b \ A are in B \ A and are
bigger than something in . If  is bigger than something in  \C we can stop
(since this implies that  is bigger than something in  \ C) so suppose  is
bigger than something in ∩C. Things in ∩C are in C \B and so are bigger
than something in b, so  is bigger than something in b. But this is impossible
because  ∈ b.

This assures us that we can safely conclude that there is a least fixed point
for P and that it is indeed a strict partial order. (Notice that the collection of
strict partial orders of an arbitrary set is merely a CPO under ⊆ not a complete
lattice—unlike the collection of quasi-orders of an arbitrary set—so there is no
presumption that there will be a unique greatest fixed point.

Let’s just check that the same works for P defined the “right” way round.

DEFINITION 12  P(>) y if there is a finite antichain  ⊆ ( \y) such that
(∀y′ ∈ y \ )(∃′ ∈ )(y′ < ′).
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Only the last occurrence of ‘<’ has been changed.
equivalently
yP(<) if there is a finite antichain  ⊆ ( \ y) such that (∀y′ ∈ y \

)(∃′ ∈ )(y′ < ′).

14.1.2 Lifts of quasiorders

The structure of this section should echo that of section ref, the the obvious ∀∃
lift is well understood, so we procede immediately to

XP(≤)Y ←→ (∀ ∈ X \ Y)(∃y ∈ Y \ X)( ≤ y)

P(≤) is vacuously reflexive: no problem there. Trouble is, it isn’t transitive.
Consider the carrier set {, b, c}, with c ≤ , b ≤  ≤ b. Set Z :=

{}; Y := {b, c}; X := {, c}. Then XP(≤)Y and YP(≤)Z but not XP(≤
)Z.

It is not yet clear to me whether or not this feature relies on this ≤ being a
quasi order and not a partial order.

I think i now have a slightly clearer idea why this finite antichain is a good
idea, to the extent that it is. I think the point is that if 〈Q,≤〉 is a WQO,
then 〈P(Q), P(≤)〉 is one too. When comparing two subsets of Q all we have
to look at is the two (finite!) sets of minimal elements of them. To complete
this explanation i need to establish that if 〈Q,≤〉 is a WQO, then the set of
antichains in Q is WQO by “everything in me ≤ something in you”.

This ought to be easy!
Notice that this operation P is obviously monotone but not obviously increas-

ing, in the sense that we do not expect (the graph of) P(<) to be a superset of
the graph of <. For example if  = {y} and y = {} and we add the ordered
pair 〈, y〉 to a relation R over a domain containing  and y we find that P(R)
contains 〈y, 〉.

antisymmetrical not antisymmetrical

reflexive partial order quasi-order

irreflexive strict partial order ?

The question mark is my way of reminding myself that there isn’t a nice (read
“horn”) property that looks like transitivity with strictness (irreflexivity) and
nontrivial failure of antisymmetry. This is because R(, y) and R(y, ) give
R(, ) by transitivity, contradicting irreflexivity. We would need to assert
that R(, y)∧ R(y, z) implies R(, z) only if  6= z.Perhaps this next bit belongs

in TZTstuff.tex No model of TZT can contain all copies of the set II. (That is to say, it
cannot have II at all types). (This is proved very similarly to the way that we
prove the non-obvious fact that WF cannot be a set at any level of any model of
TZT.) Suppose it does. Think about I at level n. This set is a win for player
II and has rank α, say. Its rank is the sup of the ranks of its members beco’s
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I can choose how long he wants to live. Now think about I two levels up. I is
going to lose this game of course, but he can play {II}, forcing II to pick the
set II at level n so the rank of II at level n+ 2 must be greater. This gives us
a descending sequence of ordinals.

Notice now that if II is present at any level it is present at all later levels,
which is impossible, so there are no levels containing II.

In fact this doesn’t depend on the model being ∈-determinate.
Isn’t the point that if I or II exist at any type then they exist at all types,

and that is impossible, rather in the way that WF if it exists at one level exists
at all levels. I think this is correct: if we have I and II at a given type we can
recover I and II one type down beco’s b and P are injective.

Can we obtain models of strong extensionality by omitting types?

14.1.3 Totally ordering term models

NF2 is the set theory whose axioms are extensionality, existence of {}, V \ 
and  ∪ y. NFO is the set theory whose axioms are extensionality and com-
prehension for stratified quantifier-free formulæ. This is actually the same as
adding to NF2 an axiom (∀)(∃y)(∀z)(z ∈ y ←→  ∈ z). The operation

involved here is notated “B‘”. B is − B‘. We need a notion of rank of
NFO terms.

Rank of ∅ is 0; rank of − t := the rank of t;
rank of t1 ∪ t2 := m(rank of t1, rank of t2);
rank of {t} := (rank of t) + 1.
Those were the NF2 operations. They increase rank only by a finite amount.

Finally we have the characteristic NFO operation.
rank of B‘t := the first limit ordinal > the rank of t.
Another fact we will need is that

REMARK 35 X ⊂α Y ←→ (− Y ⊂α − X).

We now prove by induction on rank that

THEOREM 17 ⊂ω+α (strictly) totally orders NFO terms of rank at most α.

Proof:
We will actually prove something a bit stronger, since the lift we will be

working with here gives a weaker strict order than the P we considered earlier.
We will use the lexicographic lift:

XP(≤)Y iff (∃y ∈ Y \ X)(∀ ∈ X \ Y)(y ≤ ).2

The reasons for our abandoning it originally—namely that it does not always
output transitive relations—do not cause problems in this special context.

We start with a discussion of terms of finite rank. Consider the two sequences
0 := ∅; n+1 := {bn} and b0 := V; bn+1 := −{n}. It is simple to prove

2The quantifiers could be in either order and so could the inequality. Four possibilities!
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by induction on n that the { :  < n} are the first n things and {b :  < n}
the last n things in the poset of NF2 terms ordered by ⊂ω. (The bn don’t
matter, but we will need to make use of the fact that the collection of n is
wellordered by ⊂ω.)

Now we can consider terms of finite rank. The case α = 0 is just ∅ and
V. The remaining cases where α is finite are those with NF2 constructors only.
Suppose we are trying to compare two sets X and Y denoted by terms of rank
at most α. In NF2 every term denotes either a finite object or a cofinite object.
If X and Y are both finite we can compare the least member of X \ Y with the
least member of Y \ X by induction hypothesis; if X and Y are cofinite then
− X and − Y are finite and we can use remark 35 to reduce this case to the
preceding one. The same trick reduces the final case (one of X and Y finite, the
other cofinite) without loss of generality to comparing a cofinite object with a
finite object.

Now we appeal to the fact that the n with n ∈ IN form an initial segment of
V under ⊂ω. Any finite object can contain only finitely many of them and any
cofinite object must contain all but finitely many of them. If the finite object
contains none of the n then it is later than the cofinite object in the sense of
⊂ω. Otherwise compare the bottom n in the cofinite object with the bottom
n in the finite object.

Now for terms of transfinite rank. Assume true for β < α. A directed union
of strict total orders is a total order and P of a strict total order is a total order
so irrespective of whether α is successor or limit ⊂α (restricted to terms of rank
no more than α) is at least transitive. We already know that it is irreflexive so
all that has to be proved is trichotomy.

Consider a couple of NFO terms of rank at most α:
∨

∈

∧

j∈J
t,j and
∨

k∈K

∧

∈L
sk,

where each s and t is B‘r or Br for rs of lower rank.

If
∨

∈

∧

j∈J
t,j ⊂α
∨

k∈K

∧

∈L
sk,

is to be true there is an antichain ⊆ the set on the right (minus the set on the
left) that is below everything in the set on the left (minus the set on the right)
in the sense of ⊂β (with β < α)3. In fact we will even be able to show that
the antichain has only one element, because we are simultaneously proving by
induction that the order is total! Now both the set on the left and the set on
the right have finitely many ⊂β minimal elements. This is because they are a
union of finitely many things each of which is an intersection of things of the

form B‘ and By, and any such intersection has a unique ⊆-minimal member
which will also be the unique ⊂β-minimal member.

So if there is a thing in the set on the right (minus the set on the left) that
is is below everything in the set on the left (minus the set on the right) in the

3Readers who feel that the subscript should be ω + α should remember that if α ≥ ω2

these two ordinals are the same
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sense of ⊂β then it must be one of those minimal elements, and it is enough
to check that it is less than the minimal elements of the set on the left (minus
the set on the right). Now these minimal elements are just finite sets of things
of lower rank. By induction hypothesis all terms of lower rank are ordered by
some ⊂β (with β < α) and so certainly finite sets of them are too. So really
all we have to do is compare the minimal elements of the set on the left (minus
the set on the right) with the minimal elements of the set on the right (minus
the set on the left). There is only a finite set of them and it is totally ordered,
so there is a least one (in the sense of ⊂β).

The alert reader will have noticed that this is not the most general form of
an NFO word. There should be addition and deletion of singletons. But this
makes no difference to the fact that we only need consider a finite basis, which
is the bit that does the work!

As it happens NFO has a model in which every element is the denotation of
a closed term, a term model. This model is unique.

COROLLARY 6 The term model for NFO is totally ordered by the least fixed
point for P

Of course term models can always be totally ordered in canonical ways, but
one does not routinely expect to be able to describe such a total ordering within
the language for which the structure is a model. For some light relief, I shall
write out this formula in fairly primitive notation.

NFO is too weak to manipulate ordered pairs so we will have to represent
strict partial orders as the set of their initial segments. This motivates the
following definitions.

Let Prec(R, , y) (“ precedes y according to R”) abbreviate

(∀z ∈ R)(y ∈ z→  ∈ z)∧  6= y.

Let Refines(R, S) (“R refines S”) abbreviate
(∀y)(Prec(S, , y)→Prec(R, , y)).
Let Prec(R+ , , y) abbreviate

(∃′ ∈ y \ )(∀y′ ∈  \ y)(Prec(R, ′, y′))).

Then finally
 ⊂∞ y is (∀R)(Refines(R,R+)→ Prec(R, , y))
Then in the term model it is true that ⊂∞ is a strict total order.

It would be nice to know whether or not this result extends to theories
stronger than NFO.

What can one say about other fixed points for P? We can invoke a fixed-
point theorem for CPO’s to argue that P must have lots of fixed points—a CPO
of them in fact. One can then invoke Zorn’s lemma to conclude that there are
maximal fixed points. By reasoning in the manner of the standard proof of the
order extension principle from Zorn’s lemma one can deduce that any maximal
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fixed point must be a total order. We now reach a point at which the na¨ive set
theory in which we have been operating will no longer work. Let us assume DC
for the moment, and let 〈X,≤〉 be a total order that is not wellfounded. Take
X′ ⊆ X with no ≤-least element. Use DC to pick two descending sequences
〈n : n ∈ IN〉 and 〈bn : n ∈ IN〉 with bn+1 < n and n+1 < bn. The domains
of these two sequences are a pair of subsets of X which are incomparable under
P(≤). In other words, P of a strict total order R is a strict total order only if
R is a wellorder, and even then P(R) will not be wellfounded. So if DC holds,
no fixed point for P can be a total order. But any maximal fixed point must
be a total order, and Zorn’s lemma tells us that there are some. Therefore the
axiom of choice is false.

The message seems to be that this is the point at which we should start
treating these ideas axiomatically. That should be the scope of another article.

14.2 Lifting quasi-orders: fixed points and more
games

The obvious order on partitions of a set is simply the lift of the identity relation
on the set.

If X is a set that meets P(X), its power set, and ∼ is an equivalence relation
on X, and if ∼+ agrees with ∼ on X ∩P(X) we say that ∼ is a bisimulation.
(Hinnion called them contractions but this usage doesn’t seem to have caught
on.) Typically we will be interested in this only when X ⊆ P(X), which is to
say when X is transitive.

If ≤ is a transitive relation on a domain D define ≤+ on P(D) by X ≤+ Y
by (∃y ∈ Y)(∀ ∈ X)(y ≤ ).

This operation preserves transitivity but apparently not much else.

It is simple to check that the collection of quasi-orders on the universe is
a complete lattice and that + is a continuous increasing function from this
complete lattice into itself. Thus by the Tarski-Knaster theorem there will be
a complete lattice of fixed points. The following is the Aczel-Hintikka game for
these fixed points.

HOLE

Now we are in a position to show that the least bisimulation is indeed the
intersection of a quasi-order and its converse.

THEOREM 18 (∀)(∀y)( ∼mn y←→ ( <o y∧ y <o ))

Proof: L → R

Clearly if  ∼mn y then = has a strategy to win G=y in finitely many
moves. Arthur can use=’s Winning strategy to play in both G≤y and Gy≤.
Since =’s strategy wins in G=y in finitely many moves, Arthur must win
G≤y and Gy≤ in finitely many moves.

R → L
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Now suppose  <o y and y <o . That is to say that Arthur has winning
strategies σ and τ in the open games G≤y and Gy≤. Player= can use these

in G=y as follows. Whatever 6= plays in  (or y),= can reply in y (or )
using τ (or σ). Since she is never at a loss for a reply, she Wins the closed game
G=y.

We note without proof that an analogous result holds for the greatest fixed
points. That is to say, if we define  ∼m y to hold iff=Wins the open game
G=y and  <c y as above then (∀)(∀y)( ∼m y←→ ( <c y∧y <c )).

Might be an idea to check
thisIf R is a binary relation, let R+ be {〈X, Y〉 : (∀ ∈ X)(∃y ∈ Y)(R(, y))}.

I think this ‘+’ notation is due to Hinnion. It takes quasiorders to quasiorders
and the set of all quasiorders is a complete lattice under ⊆ and has lots of fixed
points. The least fixed point corresponds to the game where Arthur wins all
infinite plays and the greatest fixed point corresponds to the game where Bertha
wins all infinite plays.

Say  <o y if Bertha has a Winning strategy for the open game and  <c y
if Bertha has a Winning strategy for the closed game.

I shall use the molecular letter ‘ρβ’ (“ranked below”) to range over fixed
points and prefixed points and postfixed points.

The first point to notice is that if R is reflexive then R+ is a superset of
⊆. The operation is increasing in the sense that R ⊆ S → R+ ⊆ S+ . Suppose
R ⊆ S and R+y. Then for every z ∈  there is  ∈ y R(z,) whence S(z,)
whence R+ ⊆ S+ .

Now for limits. Suppose R∞ =
⋃

∈ R. Clearly, for all  ∈ , R+ ⊆ R∞+ so
⋃

∈ R
+ ⊆ R∞+ . For the converse

R∞
+y iff (∀z ∈ )(∃ ∈ y)(zR∞) iff (∀z ∈ )(∃ ∈ y)(∃)(zR)

so it is not cts at limits. (Presumably this is for the same reason that P is not
continuous.)

REMARK 36 ∈ ⊆ the GFP

Proof: If  ∈ y then (∀z ∈ )(∃ ∈ y)(z ∈ ) . . . and the  is of course 
itself. That is to say ∈⊆ ∈+ : ∈ is a postfixed point

Obvious questions: does ρβ extend ∈? Is it connected? Is it wellfounded?
Is ρβ restricted to wellfounded sets wellfounded? Is it a WQO or a BQO?

There are other way of deriving a rank relation. We could consider sets
containing ∅ and closed under P and

(i) unions or
(ii) directed unions or
(iii) unions of chains.
Then if X is such a set we say ρβy if (∀Y ∈ X)(y ∈ Y →  ∈ Y). For

each of these three we can prove by induction that the least fixed point consists
(for any X ⊇ P(X)), entirely of sets in X. We should also prove that if X is a
prefixed point under the heading (i) (ii) or (iii) then every wellfounded set is in
a member of X.



242CHAPTER 14. LEFTOVERS FROM THE BOFFA FESTSCHRIFT PAPER

We need to check that the LFP and the GFP are nontrivial. The identity
is a postfixed point and the universal relation is a prefixed point. (Incidentally
this shows that the GFP is reflexive) But LFP ⊆ GFP? It is if there is a fixed
point.

REMARK 37 The GFP is transitive

Proof: First we show that ρβ+ ⊆ ρβ∧ ρβ′+ ⊆ ρβ′ → (ρβ ◦ ρβ′)+ ⊆ ρβ ◦ ρβ′.
Suppose 〈X,Z〉 ∈ (ρβ ◦ ρβ′)+ . That is to say, (∀ ∈ X)(∃z ∈ Z)(〈, z〉 ∈
ρβ ◦ ρβ′). This is (∀ ∈ X)(∃z ∈ Z)(∃y)(〈, y〉 ∈ ρβ ∧ 〈y, z〉 ∈ ρβ). or
(∀ ∈ X)(∃y)(〈, y〉 ∈ ρβ∧ (∃z ∈ Z)(〈y, z〉 ∈ ρβ)). Then for this y we have
〈X,{y}〉 ∈ ρβ+ and thence 〈X,{y}〉 ∈ ρβ and 〈{y}, Z〉 ∈ ρβ′+ and thence
〈{y}, Z〉 ∈ ρβ′ which is to say 〈X,Z〉 ∈ ρβ ◦ ρβ′.

Similarly the set of post-fixed points is closed under composition, which
means that the GFP is transitive.

We can prove by ∈-induction that any fixed point is reflexive on wellfounded
sets.

REMARK 38 Any two fixed points agree on wellfounded sets.

Proof: Let ρβ and ρβ′ be fixed points. We will show that for all wellfounded 
and for all y, 〈, y〉 ∈ ρβ iff 〈, y〉 ∈ ρβ′.

We need to show that P({ : (∀y)(〈, y〉 ∈ ρβ ←→ 〈, y〉 ∈ ρβ′)}) ⊆
{ : (∀y)(〈, y〉 ∈ ρβ←→ 〈, y〉 ∈ ρβ′)}.

Let X be a subset of { : (∀y)(〈, y〉 ∈ ρβ ←→ 〈, y〉 ∈ ρβ′)}. Then for
all Y
〈X, Y〉 ∈ ρβ iff

(∀ ∈ X)(∃y ∈ Y)(〈, y〉 ∈ ρβ) which by induction hypothesis is the same
as

(∀ ∈ X)(∃y ∈ Y)(〈, y〉 ∈ ρβ′) which is

〈X, Y〉 ∈ ρβ′
We will also need to show that for all wellfounded y and for all , 〈, y〉 ∈ ρβ

iff 〈, y〉 ∈ ρβ′.
We need to show that P({y : (∀)(〈, y〉 ∈ ρβ←→ 〈, y〉 ∈ ρβ′}) ⊆ {y :

(∀)(〈, y〉 ∈ ρβ←→ 〈, y〉 ∈ ρβ′}.

Let Y be a subset of {y : (∀)(〈, y〉 ∈ ρβ ←→ 〈, y〉 ∈ ρβ′}. Then for
all X
〈X, Y〉 ∈ ρβ iff

(∀ ∈ X)(∃y ∈ Y)(〈, y〉 ∈ ρβ) which by induction hypothesis is the same
as

(∀ ∈ X)(∃y ∈ Y)(〈, y〉 ∈ ρβ′) which is

〈X, Y〉 ∈ ρβ′

REMARK 39 If ρβ+ ⊆ ρβ then

(∀y ∈WF)(∀)(〈, y〉 ∈ ρβ∨ 〈y, 〉 ∈ ρβ)
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Proof:
We prove by ∈-induction on ‘y’ that (∀)(〈, y〉 ∈ ρβ ∨ 〈y, 〉 ∈ ρβ).

Suppose this is true for all members of Y, and let X be an arbitrary set. Then
either everything in Y is ρβ-related to something in X (in which case 〈Y,X〉 ∈
ρβ+ and therefore also in ρβ) or there is something in Y not ρβ-related to
anything in X, in which case, by induction hypothesis, everything in X is ρβ-
related to it, and 〈X, Y〉 ∈ ρβ+ (and therefore in ρβ) follows.

REMARK 40 If ρβ ⊆ ρβ+ and P(X) ⊆ X then (∀y ∈ WF)(∀)(〈, y〉 ∈
ρβ→  ∈ X).

If ρβ ⊆ ρβ+ and P(X) ⊆ X we prove by ∈-induction on ‘y’ that
(∀)(〈, y〉 ∈ ρβ →  ∈ X). Suppose (∀y ∈ Y)(∀)(〈, y〉 ∈ ρβ →  ∈ X)
and 〈X′, Y〉 ∈ ρβ. 〈X′, Y〉 ∈ ρβ gives 〈X′, Y〉 ∈ ρβ+ which is to say
(∀ ∈ X′)(∃y ∈ Y)(〈, y〉 ∈ ρβ). By induction hypothesis this implies that
(∀ ∈ X′)( ∈ X) which is X′ ∈ P(X) but P(X) ⊆ X whence X′ ∈ X as
desired.

COROLLARY 7 If ρβ ⊆ ρβ+ , y ∈WF and  ρβ y then  ∈WF

One obvious conjecture is that if ρβ is a fixed point then  ∈ y→ 〈, y〉 ∈
ρβ.

There is an obvious proof by ∈-induction on ‘’ that (∀y)( ∈ y→ 〈, y〉 ∈
ρβ) but the assertion is unstratified and so the inductive proof is obstructed, at
least in NF.

Suppose ρβ+ ⊆ ρβ and  is an illfounded set such that y ρβ → y ∈WF.
Since  is illfounded it has a member ′ that is illfounded. ¬(′ρβ ) because
everything related to  is wellfounded. Now suppose yρβ′. Then {y}ρβ+
and {y}ρβ (since ρβ+ ⊆ ρβ) and {y} is wellfounded. So y is wellfounded as
well, and ′ is similarly minimal.

Now suppose  is such that G◦F() ⊆ . Then F() ∈ . G◦F(\{F}) ⊆
G ◦ F() ⊆  As before, we want ‘ \ {F}’ on the RHS. So we want

z ∈ G ◦ F( \ {F})→ z 6= F which is to say F 6∈ G ◦ F( \ {F}). But
this follows by monotonicity and injectivity of F and the fact that F( \{F})
is the largest element of G ◦ F( \ {F}).

So G ◦ F( \ {F}) ⊆ ( \ {F}) and  was not minimal.

14.2.1 Fremlin: A transitive ordering on the class of rela-
tions

I extract an idea from a lecture given by T.Forster, 27.9.00.
Definition Let R and S be relations and X0 and Y0 sets. Consider the

following game G(X0, R, Y0, S).
Player A chooses y0 ∈ Y0.
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Player B chooses 0 ∈ X0.
Player A chooses 1 such that (1, 0) ∈ R.
Player B chooses y1 such that (y1, y0) ∈ S.
Player A chooses y2 such that (y2, y1) ∈ S
Player B chooses 2 such that (2, 1) ∈ R
Player A chooses 3 such that (3, 2) ∈ R

and so on. Generally, at the nth move, for n ≥ 3,
if n = 4k, Player B chooses y2k−1 such that (y2k−1, y2k−2) ∈ S,
if n = 4k + 1, Player A chooses y2k such that (y2k , y2k−1) ∈ S,
if n = 4k + 2, Player B chooses 2k such that (2k , 2k−1) ∈ R,
if n = 4k + 3, Player A chooses 2k+1 such that (2k+1, 2k) ∈ R.

If a player cannot move, the other wins; if the game continues for ever, A wins.
Now say that (X0, R) ´ (Y0, S) if A has a winning strategyi in the game

G(X0, R, Y0, S).
Note that because the payoff set for A is closed in VIN, where V is such that

X0 ∪ Y0 ⊆ V and R ∪ S ⊆ V × V, and is given the discrete topology, the game
is determined.

Proposition ´ is transitive.

Proof: Suppose that (X0, R) ´ (Y0, S) and that (Y0, S) ´ (Z0, T). Let σ be
a winning strategy for A in G(X0, R, Y0, S) and τ a winning strategy for A in
G(Y0, S, T, Z0).

Construct a strategy υ for A in G(X0, R, T, Z0) as follows.
A starts by playing z0 ∈ Z0, the first move prescribed by the strategy τ,

and also by playing y0 ∈ Y0, the first move prescribed by σ.
B replies with 0 ∈ X0.
A plays 1 prescribed by the rule σ in the game starting (y0, 0), and y1

prescribed by the rule τ in the game starting (z0, y0).
B plays z1.
A plays z2 prescribed by the rule τ in the game starting (z0, y0, y1, z1),

and y2 prescribed by the rule σ in the game starting (y0, 0, 1, y1).
B plays 2.
A plays 3 prescribed by the rule σ in the game starting

(y0, 0, 1, y1, y2, 2), and y3 prescribed by the rule τ in the game
starting (z0, y0, y1, z1, z2, y2).
Generally,

B plays 2k ,
A plays 2k+1 following the rule σ in the game starting

(y0, 0, 1, . . . , y2k , 2k), and y2k+1 following the rule τ in the game
starting (z0, y0, y1, . . . , z2k , y2k),

B plays z2k+1,
A plays z2k+2 prescribed by the rule τ in the game starting

(z0, y0, . . . , y2k+1, z2k+1), and y2k+2 prescribed by the rule σ in the game
starting (y0, 0, . . . , 2k+1, y2k+1).
Since (if B has played legally) A always has a move, A wins. So (X0, R) ´
(Z0, T).
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Problem Find invariants of relations from which it is easy to decide whether
(X0, R) ´ (Y0, S).

If we define the game G(X0, R) as follows:

A plays 0 ∈ X0,

B plays 2k+1 such that (2k+1, 2k) ∈ R,

A plays 2k+2 such that (2k+2, 2k+1) ∈ R,

with A winning if either B cannot move or the game goes on for ever, then if
B wins G(X0, R) and A wins G(Y0, S), (X0, R) ´ (Y0, S). On the other hand,
even if A wins G(X0, R), it is still possible to have (X0, R) ´ (Y0, S) if A can
win G(Y0, S) sooner.

From fremdh@essex.ac.uk Thu Sep 28 15:04:54 2000

I extracted an idea from your talk and wrote it up in my own preferred
language.

David Fremlin
From t.forster@dpmms.cam.ac.uk Fri Sep 29 15:38:56 2000

Dear David,
Thanks for your note. I think what is going on is that simultaneous displays

of open (or closed) games give rise to quasiorders. With your usual merciless
acuteness you spotted that the fact that this is a game played on ∈ is completely
irrelevant (but this was supposed to be a meeting on sets and games, after all)
which i had been trying to conceal for that reason. I hadn’t reflected on the fact
you draw my attention to, namely that the binary relation in the two games
need not be related in any way at all. What i find so intruiging about game
theory is that one never ever seems - or at least i never feel that i manage -
to reach the appropriate level of generality. With those games of Martin, for
example, it seems to me that he is considering games where the two players
pick elements from a set - as it might be X, and thereby build a play which is
an element of [X]ω. The clever bit is using extra structure on X to put extra
structure on the play, so it isn’t just an ω-string. Where will it all end?

I found myself wondering to what extent this quasiorder is the same, au
fond, as the quasiorder of Conway Games. I don’t think i can pursue that for
the present, as i have to turn this into something for the Boffa festschrift in a
very small number of weeks....

Let’s talk about this some more before too long. I seem to recall you have
dining rights in Churchill - as do i, and very handy to the new building it is too.
Do you come here often?

v best wishes
Thomas

14.3 The Equality Game

This is familiar: just maximal and minimal bisimulations.
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14.3.1 Prologue on Aczel-Hintikka Games

Aczel-Hintikka games are a very pretty way of presenting fixed points. In general
they add nothing of substance to the material they enable one to present, and
this is presumably why Aczel never published the work he did on them in the
early ‘70’s. However they are worth using in this context because there are other
games involved and this makes a game-theoretic treatment of fixed points more
sensible.

Hintikka games

Hintikka games are games played with formulæ amd models. The formulæ are
all built up from atomics and negatomics by means of ∧, ∨, ∀ and ∃ and the
two restricted quantifiers.

I am assuming that the reader knows the usual rules for the Hintikka game
Gϕ. Here we have two extra rules for the restricted quantifiers, which are as
follows. When the players are confronted with (∀ ∈ ) player False picks an
element b of  (if he can, and loses at once if he can’t) and they play G[b/] ;
when the players are confronted with (∃ ∈ ) player True picks an element
b of  (if she can, and loses at once if she can’t) and they play G[b/] .

What Aczel did to Hintikka games

If ϕ belongs to any normal sensible language (i.e., to a language that is a
recursive datatype) the Hintikka game Gϕ is of course a game of finite length.
Interesting things happen, however, if ϕ is a nasty formula of the kind that
Aczel calls a syntactic fixed point.

We start as we mean to go on, with an example that will concern us later.
Suppose # is a formula with two free variables in it, such that when we put ‘X’
and ‘Y’ in for the two free variables in # we obtain

(∀ ∈ X)(∃y)(y ∈ Y∧???))∧ (∀y ∈ Y)(∃)( ∈ X∧???))

where the question marks identify a subformula which is the result of putting
‘’ and ‘y’ in for the two free variables in # and adding a prime to the two
outermost variables bound by restricted quantifiers. It is clear that any formula
satisfying this condition must be infinite and—worse!—must have an illfounded
subformula relation. Nevertheless formulæ that are syntactic fixed points can
have a perfectly intelligible semantics provided by means of the corresponding
Hintikka games.

Let us consider the Hintikka game for this formula. In a play of this game,
False picks a member of X or a member of Y, and True has to reply with
a member of the other. They continue doing this until one of them is unable
to play, and thereby loses. This game was discovered independently by Malitz
many years later, and i do not at present know if he knew if this game could be
seen as arising in this way from Hintikka games. For obvious reasons i prefer to
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call the players “ 6=” and “=” instead of “False” and “True”. Let us notate
this, the Malitz game, “GX=Y”.

This is an illustration of a more general phenomenon. If a relation of interest
comes to us as a fixed point for an operation, so that ψ(, y)←→ (, y) where
ψ occurs as a subformula of , then ψ(, y) gives rise to a syntactic fixed point,
a formula whose subformula relation is illfounded. The Hintikka game for this
formula then gives us a game with the feature that if I (say) has a winning
strategy for it then ψ(, y).

In Forster [1982] I published another set-theoretical game designed to capture
contractions and not surprisingly it turned out to be equivalent. This game is played
as follows. = announces a binary relation which is a subset of  × y whose domain

is  and whose range is y. 6= then picks an ordered pair 〈′, y′〉 in this set and they
play G′=y′ . The first player to be unable to move loses.

This does not tell us who wins an infinite play. Any bisimulation corresponds to a
valuation (a “referee”) awarding each infinite (“disputable”) play of G=y to= or to

6=. (There’s no need for a referee to decide who wins completed plays of finite length!)
The valuation that awards no disputable plays to= corresponds to the least fixed

point, and the valuation that awards all disputable plays to 6= corresponds to the
greatest fixed point. There will in fact be a greatest fixed point because the collection
of equivalence relations on a set is always a complete lattice and + is a strict monotone
function.

REMARK 41 The open (resp. closed) Forster game and the closed (resp. open)
Malitz Game are equivalent.

Proof:

The equivalence is the wrong way round because= moves first in the Forster
game but moves second in the Malitz game. This is a good reason for not retaining
Malitz’s notation.

We sketch a way of turning strategies for= in one game into strategies for=
in the other.

Suppose= Wins the Forster game G=y. Then she Wins the Malitz game as
follows. Because she has a winning strategy in the Forster game G=y, she has a
binary relation R which is a subset of × y whose domain is  and whose range is y.

When 6= plays ′ ∈  or y′ ∈ y, she replies with an R-relative of ′ (or y′ mutatis
mutandis). (What’s a bit of AC between friends?)

Conversely suppose= Wins the Malitz game G=y. Then she Wins the Forster
Game as follows. She has a strategy, and the strategy, initially at least, is a map from
 to y and a map from y to . But this gives her a binary relation R which is a subset
of  × y whose domain is  and whose range is y, which is what she needs to make
her first move in the Forster Game.

Since the Forster games and the Malitz games are equivalent we can concentrate
our treatment on only one of them. Henceforth the game G=y will be the Malitz
game, so that when we speak of the open game G=y we mean the game in which the

player who goes first (namely 6=) wins, if at all, after finitely many moves.
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DEFINITION 13 Let us say  and y are Forster/Malitz bisimilar iff= Wins the
closed game G=y. Let us write this  ∼mn y.

Evidently ∼mn is an equivalence relation. We note that

REMARK 42 ∼mn is the least fixed point for +.

Proof:
Notice that the least fixed point is not the equality, as one might think. Strictly,

it’s not even an equivalence relation at all, but only a PER. If  is a set that is not
wellfounded, so that 〈n : n < ω〉 is a descending ∈-chain (0 =  and (∀n)(n+1 ∈

n)), then player 6= can stave off defeat in G= indefinitely by picking n for his
nth move. Player= certainly cannot do any better than to copy him. That means
that if  is not wellfounded then it is not bisimilar even to itself (according to the
least fixed point). In fact the least fixed point is the identity relation restricted to
wellfounded sets.

Generally Malitz was interested only in the maximal fixed point for +, correspond-

ing to the open game in which 6= has to win in finitely many moves if at all. This
is because in all the usual models of the set theory he was studying this maximal
bisimulation is equality. He points out that= will win the open game GV=V\{V}.

For consider: what can 6= do? He cannot pick something in V \ {V} that isn’t in
V so his only hope is to pick something in V that isn’t in V \ {V}, namely V. But
even if he does pick V, = need only pick V \ {V} and they are back where they
started. Anything else allows= to copy his moves blindfold and, if not actually win
in finitely many moves, at least never lose in finitely many moves, which is enough to
ensure that she can Win the open game. This means that the ordered pair 〈V,−{V}〉
belongs to the greatest fixed point for +.

A moment’s reflection will reveal that this depends only on very general properties
of V and V \ {V}, and that what this reasoning proves is the following

REMARK 43 If  ∈  and (\{}) ∈  then  ∼ (\{}) where ∼ is the greatest
fixed point for +.

A rather bizarre corollary of this now appears in Malitz’s set theory. Even tho’ V
is a set, V \ {V} isn’t! If it existed it would have to be distinct from V. However the
maximal bisimulation is the identity, and V is maximally-bisimilar to V \ {V}.

Malitz noticed that in consequence of this Quine’s NF cannot have a model in which
player= has a Winning strategy in G=y iff  = y. This is an infelicity. The revised
version of Malitz’ identity game, with an eye on an axiom of strong extensionality that
is compatible with Quine’s NF, is the following.

On being presented with  and y, player 6= has two further possibilitiss in addi-
tion to the two possibilities of picking a member of  or a member of y. He now can
pick something that is not in  or something that is not in y. If he picks something
in V \ y,= must reply with something in V \ . In general= cannot distinguish

(merely from observing 6=’s move) whether he has picked something in , or some-
thing in y, so she doesn’t even know what she is supposed to do next, let alone how to

succeed in it. So the rules must specify that 6= has to say “I have picked a member
of ” (or whatever).
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Actually the same holds in the original game. This time there is the additional

problem that= can’t distinguish between 6= picking something in y and something
in V \ .

It becomes clearer what is going on if we go back to Aczel formulæ: again. The
equivalence relation we are interested in is this one: A ∼ B iff (∀)(∃y)( ∼ y∧ ( ∈
A←→ y ∈ B)). or, more symmetrically in ‘A’ and ‘B’:

(∀)(∃y)( ∼ y∧ ( ∈ A←→ y ∈ B)∧ ( ∈ B←→ y ∈ A)).

It looks a bit like one of the Barwise approximants.

Sse X = {, b, c, d}; Y = {c, d, ƒ , g}; Z = {b, d, e, ƒ}.
we desire X ≤ Y ≤ Z but X 6≤ Z.
so we want
 < g∨  < ƒ
b < g∨ b < ƒ
g < e∨ g < b
c < e∨ c < b
and (c 6< e∧ c 6< ƒ ∨  6< e∧  6< ƒ )
So this is the DNF. Each row is a conjunction.
 < gb < gg < ec < ec 6< ec 6< ƒ
 < gb < gg < ec < bc 6< ec 6< ƒ
 < gb < gg < bc < ec 6< ec 6< ƒ
 < gb < gg < bc < bc 6< ec 6< ƒ
 < gb < ƒg < ec < ec 6< ec 6< ƒ
 < gb < ƒg < ec < bc 6< ec 6< ƒ
 < gb < ƒg < bc < ec 6< ec 6< ƒ
 < gb < ƒg < bc < bc 6< ec 6< ƒ
 < ƒb < gg < ec < ec 6< ec 6< ƒ
 < ƒb < gg < ec < bc 6< ec 6< ƒ
 < ƒb < gg < bc < ec 6< ec 6< ƒ
 < ƒb < gg < bc < bc 6< ec 6< ƒ
 < ƒb < ƒg < ec < ec 6< ec 6< ƒ
 < ƒb < ƒg < ec < bc 6< ec 6< ƒ
 < ƒb < ƒg < bc < ec 6< ec 6< ƒ
 < ƒb < ƒg < bc < bc 6< ec 6< ƒ
 < gb < gg < ec < e 6< e 6< ƒ
 < gb < gg < ec < b 6< e 6< ƒ
 < gb < gg < bc < e 6< e 6< ƒ
 < gb < gg < bc < b 6< e 6< ƒ
 < gb < ƒg < ec < e 6< e 6< ƒ
 < gb < ƒg < ec < b 6< e 6< ƒ
 < gb < ƒg < bc < e 6< e 6< ƒ
 < gb < ƒg < bc < b 6< e 6< ƒ
 < ƒb < gg < ec < e 6< e 6< ƒ
 < ƒb < gg < ec < b 6< e 6< ƒ
 < ƒb < gg < bc < e 6< e 6< ƒ
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 < ƒb < gg < bc < b 6< e 6< ƒ
 < ƒb < ƒg < ec < e 6< e 6< ƒ
 < ƒb < ƒg < ec < b 6< e 6< ƒ
 < ƒb < ƒg < bc < e 6< e 6< ƒ
 < ƒb < ƒg < bc < b 6< e 6< ƒ
Now to process them
 < gb < gg < ec < ec 6< ec 6< ƒ imposs ce
 < gb < gg < ec < bc 6< ec 6< ƒ imposs cbge
 < gb < gg < bc < ec 6< ec 6< ƒ imposs ce
 < gb < gg < bc < bc 6< ec 6< ƒ imposs bggb
 < gb < ƒg < ec < ec 6< ec 6< ƒ imposs ce
 < gb < ƒg < ec < bc 6< ec 6< ƒ imposs cbf
 < gb < ƒg < bc < ec 6< ec 6< ƒ imposs ce
 < gb < ƒg < bc < bc 6< ec 6< ƒ imposs cbf
 < ƒb < gg < ec < ec 6< ec 6< ƒ imposs ce
 < ƒb < gg < ec < bc 6< ec 6< ƒ imposs cbge
 < ƒb < gg < bc < ec 6< ec 6< ƒ imposs ce
 < ƒb < gg < bc < bc 6< ec 6< ƒ imposs bggb
 < ƒb < ƒg < ec < ec 6< ec 6< ƒ imposs ce
 < ƒb < ƒg < ec < bc 6< ec 6< ƒ imposs cbf
 < ƒb < ƒg < bc < ec 6< ec 6< ƒ imposs ce
 < ƒb < ƒg < bc < bc 6< ec 6< ƒ imposs cbf
 < gb < gg < ec < e 6< e 6< ƒ imposs age
 < gb < gg < ec < b 6< e 6< ƒ imposs age
 < gb < gg < bc < e 6< e 6< ƒ imposs bggb
 < gb < gg < bc < b 6< e 6< ƒ imposs bggb
 < gb < ƒg < ec < e 6< e 6< ƒ imposs age
 < gb < ƒg < ec < b 6< e 6< ƒ imposs age
 < gb < ƒg < bc < e 6< e 6< ƒ imposs agbf
 < gb < ƒg < bc < b 6< e 6< ƒ imposs agbf
 < ƒb < gg < ec < e 6< e 6< ƒ imposs af
 < ƒb < gg < ec < b 6< e 6< ƒ imposs af
 < ƒb < gg < bc < e 6< e 6< ƒ imposs af
 < ƒb < gg < bc < b 6< e 6< ƒ imposs af
 < ƒb < ƒg < ec < e 6< e 6< ƒ imposs af
 < ƒb < ƒg < ec < b 6< e 6< ƒ imposs af
 < ƒb < ƒg < bc < e 6< e 6< ƒ imposs af
 < ƒb < ƒg < bc < b 6< e 6< ƒ imposs af
the bggb lines are impossible only becos of antisymmetry. If we drop anti-

symmetry, so that ¡ is merely a quasiorder then these become possible counterex-
amples. So perhaps transitivity of the lift holds if the imput is antisymmetrical.
But does it preserve antisymmetry? No, consider two disjoint mutually cofinal
sequences.

We haven’t shown that it takes partial orders to quasiorders but even if we
did it wouldn’t be useful to us beco’s this shows that we can’t expect it to
preserve antisymmetry.



Chapter 15

Arithmetic-with-an-
automorphism and
wellfounded sets in
stratified set theories

DEFINITION 14 We will make frequent use of the following permutation:

α =
∏

n∈N
(Tn,{m :mEn})

where mEn iff the mth bit of n is 1. We will call it ‘α’ for Ackermann.

It is a commonplace in stratified set theories that ι, the singleton function,
is not necessarily a set, even locally, and we let T || = |ι“|.  is finite iff ι“
is finite and in fact T is an automorphism of IN.

Thus  and ι“ do not automatically have the same cardinal, even if  is
finite. If there are finite  such that || 6= |ι“| we have a nontrivial automor-
phism of IN, usually written T. Among assertions about this automorphism the
most obvious to adopt as an axiom is the assertion that it is the identity, and
this is the axiom of counting, identified as important—and named—years ago by
Rosser. It turns out that a weaker assertion, namely that (∀n ∈ IN)(n ≤ Tn)
is equivalent to assertions about the consistency of the existence of particular
countable inductively defined wellfounded sets.

In “Trois résultats concernant les ensembles fortement cantoriens dans les
“New Foundations” de Quine, Comptes Rendues hebdomadaires des séances de
l’Académie des Sciences de Paris série A 279 (1974) pp. 41−4, Roland Hinnion
proved that if the Axiom of counting holds, then there are permutation models
containing severally Vω, the set of von Neumann naturals (hereafter “INvN”)
and the Zermelo naturals (hereafter “INZm”). (Notice that the existence of these
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things is not an obvious consequence of the comprehension scheme of NF.) It is
a reasonable and natural question to ask if Hinnion’s result is best possible: can
the hypothesis can be weakened to the extent that there are converses to any of
these results? The idea is that the (“possible”) existence of things like Vω, INvN,
INZm may turn out to be equivalent to assertions inside arithmetic-with-T. It
is claimed in Forster [1992] that if there is a permutation model in which Vω
is a countable set then AxCount≤ holds. Although this proof is erroneous and
the proposition almost certainly false, converses like this can be proved, and it
is the purpose of this note to prove one. All the necessary background is to be
found in Forster [1995].

All the collections whose potential sethood in permutation models was
proved by Hinnion to follow from the axiom of counting are sets inductively
defined by unstratified inductions. For example, the collection of Zermelo inte-
gers is
⋂

{y : (Λ ∈ y)∧(ι“y ⊆ y)}. There are at least some inductively defined
collections of this kind that cannot be sets at all. To take an example from NF,
if Ω is the length of 〈NO,≤NO〉 (the set of all ordinals wellordered in the obvi-
ous way) then the collection {Ω, TΩ, T2Ω . . .} cannot be a set. Suppose there
were a set that was the intersection of all sets containing Ω and closed under
T. It clearly contains only ordinals, so look at the least ordinal in it, κ, say.
It’s closed under T, so κ ≤ Tκ by minimality. κ = Tκ is not possible (o/w we
could safely delete κ) so κ < Tκ. But then T−1κ exists and is less than κ, and
is therefore not in our set. But if T−1κ is not in our set, we can safely delete κ
from it too.

This sharpens the problem of finding the correct statement of a converse.
This definition is not ΔP

0 , and it will turn out that this is a large part of the
trouble. We will prove the following:

THEOREM 19 The Axiom of Counting is equivalent to the assertion that there
is a permutation π such that Vπ |= (∃)(∀y)(y ∈ ←→ (∀z)(Λ ∈ z∧ ƒ“z ⊆
z→ y ∈ z)) for all functions ƒ such that ‘y = ƒ (~)’ is in ΔP

0 .

Proof:

Right-to-Left

It is actually an old result of Henson’s that any set of Von Neumann ordinals
is strongly cantorian, so if the Von Neumann ω is a set there is an infinite
strongly cantorian set, and this is one version of the axiom of counting. However
we want to deduce the axiom of counting from the existence of the Von Neumann
ω defined as that inductively defined set constructed by closing the singleton of
the empty set under the operation λ.(∪ ι‘). We cannot use Henson’s result
unless we know that everything in this set i have given the inductive definition
of is indeed a Von Neumann ordinal, and that it is infinite.

So suppose
⋂

{X : Λ ∈ X∧ (∀y)(y ∈ X→ y ∪ {y} ∈ X)}

exists.
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Let us write SvN for von Neumann successor, and let INvN be the von Neu-
mann ω. First we note that if P( ⊆  then  contains Λ and is closed under
von Neumann successor, so that our set is wellfounded. Wellfoundedness of INvN
implies that SvN is 1-1, as follows: ∪ι‘ = y∪{y}→  = y∨( ∈ y∧y ∈ ).
The second disjunct contradicts foundation and can be discarded.

The strategy is to show that ∈ and ⊆ agree on INvN.

� First we show (∀y ∈ INvN)(( ⊆ y∧  6= y)→  ∈ y).
Let  be an arbitrary member of INvN. Consider {y ∈ INvN :  ⊆ y∧ 6=
y ∧  6∈ y}. This is a set because the matrix is weakly stratified. This
set must have an ∈-least member, z ∪ ι‘z. So we know the following:

(i)  ⊆ z ∪ ι‘z
(ii)  6= z ∪ ι‘z
(iii)  6∈ z ∪ ι‘z
(iv)  ⊆ z∧  6= z→  ∈ z.

. . . and we want to derive a contradiction from this.

By (i)  ⊆ z unless possibly if  = z, but by (iii) that cannot happen, so
 is a proper subset of z. Therefore  ∈ z by (iv) which contradicts (iii).

� Now for the converse. We want (∀y ∈ INvN)( ∈ y→  ⊆ y). As before
let  be an arbitrary von Neumann integer and y an ∈-minimal object
s.t.  ∈ y∧  6⊆ y. Without loss of generality y = z ∪ ι‘z. As before this
looks unstratified but isn’t, so we have

(i)  ∈ (z ∪ ι‘z)
(ii)  6⊆ (z ∪ ι‘z)
(iii)  ∈ z→  ⊆ z.

By (i) either  ∈ z or  = z. If  ∈ z then by (iii) we have  ⊆ z, so
either way  ⊆ z. This contradicts (ii). Therefore, for INvN, ∈ and ⊆ are
the same.

Next we check that distinct things in INvN have distinct members in INvN.
For suppose two chaps in INvN are distinct. Without loss of generality they
can be taken to be  ∪ ι‘ and y ∪ {y}. If these two chaps have the same
members we infer y ∈ ( ∪ ι‘) and  ∈ (y ∪ {y}). These two conditions are
equivalent to  ∈ y ∨  = y and y ∈  ∨ y =  respectively. By hypothesis
we have to discard the second disjunct, so we have  ∈ y ∈ , contradicting
wellfoundedness.

Now ⊆ restricted to INvN is a set, so ∈ restricted to INvN is a set too. But
if ∈ is a set restricted to  then stcn() follows immediately because we
can send ι‘ to {y ∈ INvN : y ⊆ } which is just , by substitutivity of the
biconditional and extensionality.

ι‘ 7→ {y ∈ INvN : y ⊆ } =
{y ∈ INvN : y ∈ } =
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 ∩ INvN 7→
the unique z ∈ INvN z ∩ INvN
=  ∩ INvN = .
This tells us that SvN is actually a set of ordered pairs. We already

know it is 1-1, so INvN is infinite. So we can conclude that ∃INvN ←→
The Axiom of Counting. But since the antecedent is invariant, we have proved:

�∃INvN ←→ The Axiom of Counting

Left-to-right

It is a simple matter to verify that if we start in a model of NFC, α gives us
a permutation model containing Vω, and this set is clearly strongly cantorian,
so we have all the comprehension that is known to hold for strongly cantorian
sets. This is certainly enough to prove the existence of the Von Neumann ω
and indeed any other inductively defined subset of Vω

Two brief points. (i) Of course if all one wants is a permutation model in
which the Von Neumann ω is a set then it is easier to use Hinnion’s permutation.
(ii) The same ideas will be used to prove the corresponding direction of the next
theorem, and there we have to be more alert.

We will need the following lemma

LEMMA 12 If ƒ : IN → IN is an increasing function that commutes with T
then

(∀n ∈ IN)(n ≤ ƒ ‘Tn)→ AxCount≤ .

Proof: If there is an n > Tn then consider the Tnth member of the sequence
{0, ƒ ‘0, ƒ2‘0, . . . ƒn‘0 . . .}. This will be a counterexample to the antecedent.

THEOREM 20 Let α be the Ackermann permutation. Then AxCount≤ holds
iff Vπ contains all sets inductively defined as the closure of {Λ} under any finite
number of finitary stratified (but not necessarily homogeneous) ΔP

0 operations.1

Proof: Examples of sets defined in this way are INZm, the Zermelo naturals and
Vω (the closure of {Λ} under the operation λy. ∪ {y}).

Right-to-Left

This is in Forster [1995] but we recapitulate for the sake of completeness.
We deduce AxCount≤ from the existence of the set of all finite Vns. Suppose
the collection

⋂

{y : (Λ ∈ y)∧ (P(y) ⊆ y)}

is a set. We’d better have a name for it, X, say. We are going to deduce
AxCount≤ .

1OUCH: do we need the result to be free?
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First we show that X is wellfounded. This is less than blindingly obvious,
because not every  s.t. P() ⊆  is closed under P. However the power set
of any such is, so we can reason as follows. Suppose z ∈ X. P() ⊆ . Then
P((P()) ⊆ P() and Λ ∈ P() so z ∈ P(). But P() ⊆  so z ∈  as
desired.

Next we show that X is totally ordered by ⊆. Let  be ∈-minimal such that
(∃y)( 6⊆ y 6⊆ ), and let y be ∈-minimal such that  6⊆ y 6⊆ . In fact we can
take these to be power sets P() and P(y) and so we have  and y such that
 ⊆ y ∨ y ⊆  (by ∈-minimality) but P() 6⊆ P(y) 6⊆ P() which is clearly
impossible.

Since X is totally ordered by ⊆ we must have (∀)( ⊆ P()∨P() ⊆ ).
The second disjunct contradicts foundation so we must have (∀ ∈ X)( ⊆
P().

Next we prove by induction that each member of X is finite (has cardinal in
IN). Suppose not, and let P() be a ∈-minimal infinite member of X. But if
|P()| 6∈ IN then clearly || 6∈ IN too.

Notice also that there can be no ⊆-maximal member of X, for if  were one
we would have P() ⊆  and  ∈  contradicting foundation.

Therefore the sizes of elements of X are unbounded in IN. Now let n be an
arbitrary member of IN. By unboundedness we infer that for some  ∈ X we
have || ≤ n ≤ |P()|) and therefore || ≤ n ≤ |P()| ≤ 2Tn. But n was
arbitrary, so (∀n ∈ IN)(n ≤ 2Tn).

But by lemma 12 this implies AxCount≤ .

Left-to-Right

If ƒ is an operation of the kind we are interested in, there will be a cor-
responding operation on natural numbers. For example λ.{} corresponds
to λn.2n. If ƒ is the operation we start with, let us notate the correponding
operation on natural numbers ‘ƒ∗’. For example, if ƒ is the singleton operation,
ƒ∗ is λn.2n. Suppose now we have a number of such operations (one is easiest
for illustration!!) and consider the result of closing {0} under ƒ∗.

It will turn out that in Vπ this is the smallest set containing Λ and closed
under ƒ . Showing that it contains Λ and is closed under ƒ is easy. We need
AxCount≤ to show that it is the least set containing Λ and closed under ƒ .

For the moment, consider the following illustration, which just happens to
be lying around. (Later i’ll write out a more general proof)

Let us write nETm for TnEm. That is to say: nETm iff the Tnth bit of
m is 1.

We will need to know that AxCount≤ implies that ET is wellfounded.
Suppose it isn’t, and X ⊆IN has no ET -minimal member. Let n be the least

member of X. Since n is not ET -minimal, it follows that there is m ∈ X, m ≥ n
and mET n. But then Tn ≤ Tm < n contradicting AxCount≤ .

The converse (that ET wellfounded implies AxCount≤ ) is also true but we don’t

need it here. (This is in Forster [1995].) If we have AxCount≤ we know that ET

is wellfounded and we use this to prove by induction on it that if y is a set s.t.
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Vπ |= Pℵ0 (y) ⊆ y then all naturals belong to y. So a is minimal with this property,

and is indeed Vω in Vπ .

We will show also that AxCount≤ → (∀y)(Vπ |= (Pℵ0(y) ⊆ y) → (∀n ∈
a)(n ∈ y))

We prove this by UG on ‘y’ and by induction (on ET) over the naturals.
Since AxCount≤ implies that ET is wellfounded, this task is precisely that of
proving

(∀y)(Vπ |= (Pℵ0(y) ⊆ y)→ (∀n ∈ a)(n ∈ y))

by ET -induction.
Now

Vπ |= ((Pℵ0(y) ⊆ y)→ (∀n ∈ a)(n ∈ y))

is
((Pℵ0(π‘y) ⊆ π“π‘y)→ (∀n ∈ a)(n ∈ π‘y))

(since a is fixed by π) and we can reletter π‘y to get

((Pℵ0(y) ⊆ π“y)→ (∀n ∈ a)(n ∈ y))

Now let y be an arbitrary object satisfying (Pℵ0(y) ⊆ π“y). Suppose
(∀m)(mET n → m ∈ y) Consider {m : mET n}. This is a finite set, so
is in Pℵ0(y) and therefore in π“y. Therefore π−1‘{m : mET n} ∈ y. But
π−1‘{m :mET n} is n. This proves the induction.

REMARK 44 X exists iff Vω exists and a rank function on Vω exists.

Proof: If X exists then its sumset is Vω. The rank of a set in Vω is the number
of elements of X to which it doesn’t belong.

Conversely, if Vω exists and a rank function—ƒ , say—on Vω exists, then X

is {ƒ−1“{n} : n ∈ IN}

Suppose the inductively defined set Vω exists. Can we even show that it is
countable? There is no total order of Vω definable by a stratified formula.

If Vω is countable, does AxCount≤ follow?
We can show it is countable if there is a countable set X equal to the set of

its finite subsets because then Vω ⊆ X. There is a always a permutation model
in which such a set exists (even if ¬AxCount≤ ) so the idea is: show not that
Vω ⊆ X (which would be true in the permutation model), but rather that there
is an embedding from Vω ,→ the set that becomes X in the permutation model.
In other words, map Vω recursively into IN. The obvious thing would be to
define a map by recursion on ∈ but this we cannot do!

DEFINITION 15 ν = |Vω|

REMARK 45 .

1. ℵ0 ≤ ν→ ν = ν2
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2. Tν ≤ ν ≤ 2Tν

3. ℵ0 ≤∗ ν

4. ν = Tν→ ℵ0 ≤ ν

5. If α is a cardinal s.t. there is a set in Vω of size α, then there is β such
that 2α · β = ν

6. T2(ν2) ≤ ν

Proof:

(1) By coding ordered pairs

(2) Vω is transitive and contains all its singletons.

(3) By wellfoundedness Vω cannot be finite (i.e. ν 6∈ IN). Therefore it has
subsets (and consequently members) of all finite (in IN) sizes, and a countable
partition.

(4) follows from a lovely theorem of Tarski’s that says (in NF-speak) that if
there is a bijection between ι“X and Pκ(X) then X has a wellordered subset of
size ℵ(κ). The proof is as follows: There is a bijection ƒ : Vω ←→ ι“Vω. We
define a sequence

g‘0 = Λ

g‘(n + 1) = (g‘n) ∪ ƒ ‘{y ∈ g‘n : y 6∈ ƒ−1‘{y}}

(5) Let X be a member of Vω of size α. Consider the equivalence relation
on members of Vω defined by

 ∼ y←→ ( ∩ X) = (y ∩ X)

For each equivalence class there is a subset X′ ⊆ X such that all member of
that equivalence class are of the form X∪y where y ∈ Pℵ0((Vω \X). Therefore
all equivalence classes are the same size, namely |Pℵ0((Vω \X)|. Since there is
also a canonical representative for each equivalence class (each equivalence class
contains precisely one subset of X) we infer that 2α divides ν.

(6) Follows from the availability of Wiener-Kuratowski ordered pairs in Vω.
Similar results hold for higher exponents.

A consequence of (5) would appear to be that for each n ∈ IN there is β
such that β2

n
= ν. This does not seem to be be about to turn into a proof that

ν = ℵ0.

There doesn’t seem to be any proof that ℵ1 6≤ ν, and i can’t see any reason
why we should expect NF to be able to prove things like that.
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Discussion

let ƒ , g be bijections ι“IN ←→ Pℵ0(IN) and think about the structures
〈IN,{〈, y〉 :  ∈ ƒ ‘{y}}〉 and 〈IN,{〈, y〉 :  ∈ g‘{y}}〉. Call these 〈IN,∈ƒ 〉
and 〈IN,∈g〉. Notice that all these structures are—or ought to be—end exten-
sions of 〈Hℵ0 ,∈〉

A morphism from ƒ to g is an injection π : IN ,→ IN such that

1. (∀, y ∈ IN)( ∈ ƒ ‘{y}←→ π‘ ∈ g‘{π‘y})

2. (∀, y ∈ IN)(( ∈g ‘{y}∧ (y ∈ π“IN))→  ∈ π“IN)

(That is to say 〈IN,∈g〉 is an end-extension of 〈IN,∈ƒ 〉 iff there is an arrow
from ƒ to g.)

Now the assertion that this category has an initial object is stratified. It
therefore cannot imply AxCount≤ . It is a consequence of AxCount≤ , though.
We’d better prove this. The idea is that if AxCount≤ , then we take ƒ ‘{n} =
{m : the mth bit of n is 1} and construct an embedding by recursion of ∈ƒ
which we know is wellfounded.probably snip from here . . .

What happens if ¬AxCount≤ ? Work in a model M of ¬AxCount≤ and
consider Mπ. On the face of it there are three possibilities:

1. Vω does not exist;

2. a (the old IN) is the new Vω;

3. Some other set is the new Vω.

First we show that case 3 is impossible. Vω would be (in M) a subset of the
old IN. In fact it would have to be an initial segment. Think of its size. This
would have to be a number n = 2Tn (since a finite set equal to the set of all
its finite subsets is in fact a set equal to its power set) and we know this is not
possible. A slightly more elementary proof reasons that a finite Vω would have
to be self-membered, contradicting wellfoundedness.

To deal with case 2 we note that if n is a power of 2 and 2Tn < n then
the integers below n form a set which—in Mπ—thinks it contains all its finite
subsets. (write this out) But, as long as ¬AxCount≤ , there will be such n and
so the old IN cannot be the new Vω.

This leaves only 1. So we have proved

¬AxCount≤ → �¬∃Vω
but not

¬AxCount≤ → ¬�∃Vω
. . . to here
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15.1 Sideshow: Hereditarily Dedekind-finite
sets

It might be an idea to think about the set of hereditarily Dedekind-finite sets.
It isn’t directly involved, but it lives next door, and might illuminate the events
at home. Later still we can think about hereditarily countable sets, and other
collections that cannot be coded as subsets of Vω. Perhaps the correct way to
deal with them is to think about BF instead of IN.

We can prove that a set with a finite partition into finite pieces is finite.

(By induction on n, any union of n finite sets is finite). We can also

prove that a set with a dedekind-finite partition into dedekind-finite pieces

is dedekind-finite. (If it weren’t then we would have a dedekind-finite

partition of a countable set into dedekind-finite pieces, which we can’t

have.) Curious that these two proofs should be so different!

HDedfin =
⋂

{y : Pdedekind-finite(y) ⊆ y}. In ZF we can prove that this
collection is Vω without any use of choice: Vω exists and, because it is countable,
it is a y such that Pdedekind-finite(y) ⊆ y so HDedfin ⊆ Vω. In KF or NF we
know a lot less.

REMARK 46 (NZF)
If Vω exists and is countable then HDedfin exists and is equal to Vω.

Proof: If Vω exists and is countable then it contains all its dedekind-finite
subsets. Therefore HDedfin ⊆ Vω. The inclusion in the other direction is easy.

But we do seem to need the assumption that Vω is not Dedekind-finite.

DEFINITION 16 δ = |HDedfin|

REMARK 47 .

1. Tδ ≤ δ ≤ 2Tδ

2. ℵ0 ≤ δ

3. δ = δ2

4. If α is a cardinal s.t. there is a set in HDedfin of size α, then there is β
such that 2α · β = δ

Proof:
(1) just as with ν
(2) First, since HDedfin is the intersection of all sets extending their set of

finite subsets it must be wellfounded. In particular it is not self membered
so it cannot be dedekind-finite. So it has a countable subset. (If we knew
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cn(HDedfin) we could derive this from Tarski’s theorem but we can do it
anyway!)

(3) HDedfin has a countable subset so we can fake Quine ordered pairs.
(4) Let X be a member of HDedfin. Consider the equivalence relation on

members of HDedfin defined by

 ∼ y←→ ( ∩ X) = (y ∩ X)

For each equivalence class there is a subset X′ ⊆ X such that all members of that
equivalence class are of the form X∪y where y ∈ Pdedekind-finite(Vω\X). There-
fore all equivalence classes are the same size, namely |Pdedekind-finite(Vω \ X)|.
Since there is also a canonical representative for each equivalence class (each
equivalence class contains precisely one subset of X) we infer that 2α divides δ.
(This is just like the corresponding proof for Vω)

15.2 Discussion

Can we show ℵ1 6≤ δ?
All of this talk of small permutations involving IN can be done in KF too of

course. In this context it seems important to note that KF+AxCount≤ is no
stronger than KF, even tho’ NF+AxCount≤ probably is stronger than NF.

Eight propositions about wellfounded sets: second version

(A bottomless set is one with no ∈-minimal element; PFN is the set of finite
power sets)

1. {Vn : n ∈ IN} exists.

2. Vω exists.

3. There is an infinite transitive wellfounded set.

4. There is an infinite wellfounded set.

5. Every natural number contains a wellfounded set.

6. WF has no finite superset.

7. (i) Every fat set is infinite; (ii) 〈PFN,∈〉 is wellfounded; (iii) every bot-
tomless set of power sets consists entirely of infinite sets.

8. �(∈�FN is wellfounded ).

Everything in this list implies everything below it. All the propositions in
item 7 are equivalent. I do not know how to reverse any of the arrows. If you
strip the ‘�’ off item 8 you get something that implies item 7

6 → 7. If WF has no finite superset then it certainly has no finite fat
superset. But every fat set is a superset of WF, so there are no finite fat sets.
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Various forms of 7: if  is fat then {P()} is a bottomless set of power sets.

“There are infinitely many (wellfounded) hereditarily finite sets” (aka: “no
finite set contains every hereditarily finite wellfounded set”) doesn’t seem to
fit into this linear sequence . . . Let’s think about this last one. It follows from
(3), as follows. Suppose  is an infinite transitive wellfounded set, and y is
a finite set containing all hereditarily finite sets. Consider  \ y. This must
have an ∈-minimal member. (It’s worth spelling out why this is the case, beco’s
“I have an ∈-minimal member” is not stratified and cannot be proved by ∈-
induction. However we can prove that every member and every subset of a
wellfounded set is wellfounded, and certainly every wellfounded set is regular:
If  is wellfounded every  with  ∈  is disjoint from one of its members).
Clearly  \ y is nonempty and all its members are wellordered, so it has an
∈-minimal member—, say. Now  ∈  so  ⊆  by transitivity of . By
∈-minimality we have  ⊆  ∩ y, so  is finite (co’s y is finite) so  is a
finite set of hereditarily finite sets and so is hereditarily finite, contradicting
assumption. . . . and it implies 6.

So what we should do now is either:

(i) show that if there is an infinite wellfounded set then no finite set
can contain all hereditarily finite (wellfounded) sets; or

(ii) show that if no finite set can contain all hereditarily finite (well-
founded) sets then there is an infinite wellfounded set.

Another thing to look at is this.
F(X) := { ∈ FN :  ∩ FN ⊆ X}

F := least set containing ∅ and closed under F. Or the even stronger:
Where does the existence of F fit in all this?

Eight propositions about wellfounded sets

Consider the following assertions.
1 {Vn : n ∈ IN} exists
2 Vω exists
2′ There is an infinite transitive wellfounded set
3 There is an infinite wellfounded set
4 There is no finite bound on the size of wellfounded sets
5′ Every set of power sets with no ∈-minimal member has only infinite

members
5 P() ⊆ →  is infinite
6: There are infinitely many wellfounded sets
7: There are infinitely many (wellfounded) hereditarily finite sets
Randall has recently shown that 2′ is not a theorem of any consistent in-

variant extension of NF.
I think i prove somewhere that the least fixed point for Hinnion’s + is well-

founded on the wellfounded sets. To be clear about it, there is a binary relation
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 ≤ y iffdƒ (∀R)(R+ ⊆ R → 〈, y〉 ∈ R), and this is wellfounded in the sense
that any set of wellfounded sets has an R-minimal element. And anything ≤ a
wellfounded set is wellfounded. (I think all this is true)

I then go on to say

“So if there is an infinite wellfounded set there is one of minimal
rank”.

But i think this is wrong. The collection of infinite wellfounded sets is not a set.
so i think i cannot therefore draw the conclusion i claimed:

“So if there is an infinite wellfounded set there must be infinitely many
hereditarily finite sets”

Obviously 3 implies 6. Does 6 imply 7? It ought to, but we can’t reason
about ranks here! Certainly in Vα 6 implies 7. Suppose 7 is false. Then
AxCount≤ fails. But if AxCount≤ fails, there is n > 2Tn and in Vα this
becomes a finite thing extending its own power set, so all wellfounded sets are
finite.

Similarly in Vα 5 implies 7. Suppose 7 is false. Then AxCount≤ fails. But
if AxCount≤ fails, there is n > 2Tn and in Vα this becomes a finite thing
extending its own power set. In general one would expect that 5 doesn’t imply
7.

If one suspects these things are separate, then we will have to reason in
things other than Vα to prove it.

It would be nice to be able to prove that 2 implies 3. Suppose 2 is true but
3 is false, and X is a finite set that contains all hereditarily finite sets. Then
every infinite wellfounded set has an infinite wellfounded member. This is no
use unless the class of infinite wellfounded sets is a set! If we had an axiom of
transitive closures we’d be ok....

(Should try to fit in “Every finite wellfounded set has a transitive closure”.
Come to think of it, can we even prove that the transitive closure of a well-
founded set—if it exists—must be wellfounded? I don’t see how!)

Obviously 1 → 2 → 3 → 4 → 5. The point about 1 is that it is equivalent
to the assertion that there is a rank function on Vω. If 5 looks out of place,
remember that a wellfounded set is simply something that is included in all
 such that P() ⊆  so there cannot be any infinite wellfounded sets at all
unless 5 is true. At the moment there is the theoretical possibility that all the
arrows might be reversed, however improbable such an outcome may seem. My
guess is that none of them can be. We have seen that �1 is an equivalent of
AxCount≤ , but none of the others seem to imply AxCount≤ , so there remains
the unexcluded possibility that NF ` �2. I don’t believe that either. In fact i
don’t believe even that NF ` �5, even tho’ 5 is so weak that we have to hang a
‘2’ on the front of it to get anything strong enough to be obviously equivalent
to AxCount≤ .

REMARK 48 25 and AxCount≤ are equivalent.

(We already know that AxCount≤ and �1 are equivalent).



15.2. DISCUSSION 263

Proof:
L→ R: (By contraposition) If AxCount≤ fails, there is n > 2Tn ∈ IN. Since

whenever  6∈ , B‘ is a set of size |V| disjoint from its power set, we can find,
for any cardinal n, a set of size n disjoint from its power set. In particular if n
is the finite cardinal promised above (so 2Tn < n) then we have a set  of size
n disjoint from its power set and an injection p from P() into . This can be
extended to a permutation π of V. This proves �¬5.

R → L: If π is a permutation such that Vπ thinks that some set  is finite
and a superset of its power set, then V contains a map (namely a suitable
restriction of π) from some finite power set P() into  and therefore a natural
number n = || such that 2Tn < n, which contradicts AxCount≤ .

sept 2003: a brilliant idea. Clearly if there is an infinite wellfounded set then
there can be no finite  with P() ⊆ . However, we can even show, in those
circumstances, that ∈ restricted to finite power sets is wellfounded. Indeed we
can prove even that if A be a family of power sets without a ∈-minimal member
then every member of A is infinite. Let A be a set of power sets with no ∈-
minimal member. We prove by ∈-induction that every wellfounded set belongs
to every member of A. (reality check: ∅ obviously does, so we are pointing in
the right direction!!). Let P() be an arbitrary member of A, and  a family of
sets each of which belongs to every P(y) ∈ A. We want  ∈ P(). Beco’s A has
no ∈-minimal member, there is P(y) in A with P(y) ∈ P(). Then  ⊆ P(y)
by induction hypothesis, so  ⊆ P(y) ∈ P() but P(), being a power set,
is ⊆-downward closed, so  ∈ P() as desired. This means that if A contains
even one finite set then every wellfounded set is finite. So if there is an infinite
wellfounded set then not only is ∈ restricted to finite power sets wellfounded
but any bottomless set of power sets consists entirely of infinite sets. Indeed we
can even prove the following:

REMARK 49 If A is a bottomless set of power sets, then
⋂

A is a self-
membered power set.

Proof: Clearly any intersection of a lot of power sets is a power set, so
⋂

A is
a power set. We want

⋂

A ∈
⋂

A. So we want
⋂

A ∈ P() for every power
set P() ∈ A. Let P() be an arbitrary member of A. Now A is bottomless,
so there is another power set P(y) in A such that P(y) ∈ P(), which is to
say P(y) ⊆ . Now P(y) ∈ A gives

⋂

A ⊆ P(y). But then
⋂

A ⊆ P(y) ⊆ 
and
⋂

A ⊆  and
⋂

A ∈ P(). But P() was an arbitrary member of A, so
⋂

A ∈
⋂

A as desired.

So, to recapitulate:
If every finite cardinal contains a wellfounded set, then there can be no finite

self-membered power set. So every bottomless set of power sets consists entirely
of infinite sets. So membership restricted to finite power sets is wellfounded. So
using the clever Boffa-style permutatation of remark 50 (i think this reference
is correct!) we get a model in which membership restricted to finite sets is
wellfounded.
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(Sse A is a set of finite power sets with no ∈-minimal element. Let P(M) be
an element of A of minimal size. Then P(N) ∈ P(M) for some N. (|M| = m,
|N| = n of course). Then P(N) ⊆ M) so Tn < 2Tn ≤ m ≤ n (this last
by minimality of P(M)). This contradicts AxCount≤ . Thus AxCount≤ → ∈�
finite power sets is wellfounded. A similar argument will show that if there is a
bottomless set A of power sets, with κ = nƒ (ℵ“{|| :  ∈ A}, then κ > Tκ.
But this isn’t big news. We know stronger results than this already.)

So if there are arbitrarily large finite wellfounded sets, then every bottomless
set of power sets consists entirely of infinite sets. How surprising is this? Are
there any bottomless sets of power sets at all?? Yes: {V} is one!

So the general argument now goes as follows. Let κ be strongly inaccessible,
and suppose that there are wellfounded sets of arbitrarily large size below κ. So
if B is a collection of self-membered power sets then nothing in B is κ-large. So
∈�{P() : || < κ} is wellfounded. Then use a Boffa permutation as above to
obtain a model in which ∈�{ : || < κ} is wellfounded.

We can also show

REMARK 50 �5′ ←→ �(∈ restricted to finite sets is wellfounded)

Proof:
This requires a Boffa-style permutation.
R → L.

We can prove this even with the � stripped off, which we will now
do. The right-hand side implies that no finite set is selfmembered
and in particular that no finite power set is selfmembered. Now let
A be a set of power sets with no ∈-minimal member. Then

⋂

A is
a self-membered power set by remark ??. If any member of A had
been finite, then

⋂

A would be finite too. So A consists entirely of
infinite sets. This is 5′.

[This takes us very close to a proof of a result of Tonny Hurkens
for Zermelo set theory: that the relation F(, y) iff P( ∩ y) ⊆ y
is wellfounded. Suppose not, and that there is a set X with no F-
minimal element. Consider

⋂

X. Let y be an arbitrary member
of X. Then there is  ∈ X with F(, y)). We have

⋂

X ⊆  and
⋂

X ⊆ y whence P(
⋂

X) ⊆ P() and P(
⋂

X) ⊆ P(y). These last
two imply P(
⋂

X) ⊆ P() ∩ P(y = P( ∩ y) ⊆ y). But y was an
arbitrary member of X; so P(

⋂

X is included in every member of X,
so P(
⋂

X) ⊆
⋂

X, contradicting Zermelo’s axioms.]

L → R.

Let π be the permutation

∏

||∈N
(〈P((
⋃

(fst“ ∩ FN)), V \ 〉, )
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(FN is the set of finite sets). Clearly if  is finite then π() isn’t.

Suppose Vπ |=  ∈ y, both finite. Then  ∈ π(y), and π() and
π(y) are both finite, so

 = 〈P(
⋃

fst“(π())) ∩ FN, V \ π()〉

and
y = 〈P(
⋃

fst“(π(y))) ∩ FN, V \ π(y)〉.

 ∈ π(y) so fst() ∈ fst“π(y). That is to say

〈P(
⋃

fst“(π())) ∩ FN, V \ π()〉 ∈ fst“(π(y)).

Now fst“π(y) is a subset of P(
⋃

fst“(π(y))) and consists entirely
of finite sets so

fst“π(y) ⊆ P(
⋃

fst“(π(y))) ∩ FN

which is fst(y).
This tells us that fst is a homomorphism from 〈FNπ,∈π〉 to
〈PFN,∈〉 where PFN is the set of finite power sets. And 5′ cer-
tainly implies that this second structure is wellfounded. So the first
must be wellfounded too.

It’s natural to wonder if we can do this for properties other than finiteness,
for other notions of smallness. Remark 50 exploits the fact that a union of
finitely many finite sets is finite, which is a bit of a downer. In general we
will have difficulties beco’s |Pκ(X)| > κ so Pκ(X) ⊆ X is not the same as
Pκ(X) ∈ Pκ(X). We seem to need κ to be strong limit.

So, if there is an infinite wellfounded set, �(∈ restricted to finite sets is
wellfounded). The first of several interesting questions this suggests is: is there
a converse?

If �(∈ restricted to finite sets is wellfounded) is there an infinite
wellfounded set?

A second question arises from the observation that of course the interesting
assertion is not “ �(∈ restricted to finite sets is wellfounded)” but Δℵ0 , which
says “�(∈ restricted to finite sets is wellfounded and the graph of the rank
function is a set)”. The second question is

Might Δℵ0 follow from “There is an infinite transitive wellfounded
set”?

This is suggested to me by the way in which Holmes’ permutation highlights
the rôle of transitivity in this setting. Is it time to review the question of
whether or not transitive closures of wellfounded sets (when they exist) are
likewise wellfounded?

That sounds like something worth looking at:

“If a wellfounded set  has a transitive closure TC(), is TC()
wellfounded?”
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A funny translation task

As always happens when i encounter a new idea, i cannot leave it alone. Here
are some tho’rts on how to take it further.

Suppose we are in a model M where we have some stratified property ϕ such
that M |= ϕ()→  6∈ . A good example would be Boffa’s model, where ϕ is
|fst“| 6≥∗ ℵ0. ϕ is closed under surjections. Consider the permutation

π =
∏

|fst“|6≥∗ℵ0

(, 〈V \ fst“, 〉)

We want to show
Vπ |= ψ()→  6∈ 

for some suitable ψ. This is

V |= ψ(πn‘)→  6∈ π‘

Now we have constructed π so that, for instance:

V |= |fst“| 6≥∗ ℵ0 →  6∈ π‘

so what we want is to find ψ s.t. (∀)(ψ(πn‘) → |fst“| 6≥∗ ℵ0). This is
equivalent to

(∀)(ψ()→ |fst“(πn‘)| 6≥∗ ℵ0).

Therefore we want to see if the property

|fst“(πn‘)| 6≥∗ ℵ0

turns out to be implied by anything sensible. (Remember π is definable, so ‘’
is the only free variable!

15.3 Is it consistent relative to NF that there
should be an infinite wellfounded set?

I tho’rt i’d proved it:
Let us work in Friederike’s model which contains a natural number k s.t.

(∀n ∈ IN)(n > k → n < Tn). Let π be the permutation that for n ∈ IN swaps
{n · k} with (Tn+ 1) · k for n > 0, swaps Λ with 0 and fixes everything else.
In Vπ the set that was {n · k : n ∈ IN} (let us call this set b) has become the
Zermelo integers, which is to say the intersection of all sets containing the empty
set and closed under singleton. Suppose Vπ |= 0 ∈ y∧ (∀ ∈ y)({} ∈ y), we
want Vπ |= b ⊆ y. That is to say, π(b) ⊆ π(y). π(b) = b.

Vπ |= Λ ∈ y∧(∀ ∈ y)({} ∈ y) is just π‘Λ ∈ π‘y∧(∀ ∈ π‘y)(π‘{} ∈
π‘y). We know π‘Λ = 0. So we must show

(∀y)(0 ∈ y∧ (∀ ∈ y)(π‘{} ∈ y)→ b ⊆ y)
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We cannot prove by induction on b that if n ∈ b then (∀y)((0 ∈ y∧ (∀ ∈
y)(π‘{} ∈ y))→ n ∈ y) because this is not a stratified induction. We do it
instead by UG on ‘y’. Let y be a set such that 0 ∈ y∧ (∀ ∈ y)(π‘{} ∈ y).
We want b ⊆ y.

0 is in y, by hypothesis. Let n · k be minimal such that n · k 6∈ y. Now
n = π‘{T−1(n − 1) · k}. But—since (∀ ∈ y)(π‘{} ∈ y)—we must have
T−1(n−1) ·k 6∈ y too. But T−1(n−1) ·k is bigger than k so T−1(n−1) ·k <
(n − 1) · k and (n − 1) · k < n · k contradicting minimality of n · k.

This tells us that, in Vπ, b is the intersection of all sets containing the
empty set and closed under singleton. This set is clearly wellfounded, because
if P(X) ⊆ X then X contains the empty set and is closed under singleton. Now
to show it is infinite. We have |b| = T |b| + 1, so clearly |b| is not a natural
number.

. . . but of course in the last paragraph but one the sentence beginning “But
T−1(n− 1) · k is bigger than k . . . ” should go on to say that T−1(n− 1) · k <
(n − 1) · Tk which of course is buggerall use to man or beast.

Nevertheless, the idea of trying to prove �∃INZm from nothing seems a
good one. All we need is a k such that (∀n ∈ IN)(n · k < Tn · k) rather than
(∀n > k)(n < Tn). But this is just AxCount≤ .

Inductively define a subset X of IN as follows: 0 ∈ X; if  ⊆ X then k ·n∈2n
∈ X.

Define E′ on X by E′ y iff the th bit of y/k is 1.
Now swap Tn with {m : mE′ n}, for n and Tn in X. The trouble is, for

this to work we seem to need X to be closed under T.
There is this idea abroad that if ∈ restricted to FIN is wellfounded, then

we should be able to get an infinite wellfounded set. Let ƒ : FN→ IN. Define
ƒ∗ : FN→ IN by ƒ∗‘ = T sup{ƒ ‘y+ 1 : y ∈ ∩FN}. If we could show that
* had a fixed point we would be able to infer that <T is wellfounded. But this
is far too strong. So the obvious approach doesn’t work!

Think again about trying to get an infinite wellfounded set at no cost. What
does a natural have to do to be a wellfounded set in the Ackermann permutation
model? Clearly the restriction of ET to ET“{n} has to be wellfounded. One
way of ensuring this is to require that (∃m)(∀k)(Tkn ≤ m). (Forgive abuse
of notation!).

So we are led to the proposition that the collection of naturals n such that
there is such an m is unbounded.

(∀m′)(∃m ≥m′)(∃k)(∃A ⊆ IN)(T−1“A ⊆ A∧m ∈ A∧ (∀ ∈ A)( < k))

Of course one could be more kosher about it and concentrate on the property

Vα |= (∀)(Pℵ0() ⊆ → n ∈ )

where α is the Ackermann permutation. This is (∀)(Pℵ0() ⊆ → n ∈ )α
(∀)(Pℵ0() ⊆ α“ → n ∈ ). I think without loss of generality we can
restrict attention to subsets of IN.
(∀ ⊆ IN)((∀ finite ′ ⊆ )((y∈′2Ty) ∈ )→ n ∈ )
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We want there to be an infinite set of such n. An obvious question is: is
this collection downward-closed? I think it is clear that if  is a member and
the Tkth bit of  is 1 then k is a member.

The obvious thing to do is a recursive definition:

0 is a wellfounded* natural; if X is a finite set of wellfounded* nat-
urals, then T(n∈X2n) is wellfounded*

Is this class unbounded? Does it have an unbounded subset? This is some-
thing to do with finite sets extending their own power sets. I suspect it is
unbounded iff the following class is unbounded:

0 is a widget; if n is a widget, so is 2Tn.

(This takes us back to the Zermelo naturals!)
What we seem to have done is shown that in Vα there are infinitely many

hereditarily finite sets iff the collection of wellfounded* naturals is unbounded.
Think about the family of inductively defined collections:

{0, Tƒ (0), T(ƒ (Tƒ (0))) . . .} indexed by the family of definable homoge-
neous maps ƒ : IN→ IN which commute with T. Are these equally unbounded,
as it were? Start with the closure of {0} under λn.T(n+ 1). The assumption
that this is unbounded implies AxCount≤ . For sse there is  > T. Then the
initial segment bounded by  contains 0 and is closed under λn.T(n + 1). So
this is a strong assumption. Where ƒ is more rapidly increasing this could be a
weaker assumption. So how about: ∃ƒ : IN→ IN which commutes with T such
that {0, Tƒ ‘0, T(ƒ ‘Tƒ ‘0) . . .} is unbounded? Is this the same as ∃ƒ : IN→ IN
which commutes with T such that (∀n)(ƒ ‘Tn ≥ n)?

So suppose there is an  s.t.  > ƒ ‘T. Then the ini-
tial segment bounded by  contains 0 and is closed under λn.T(ƒ ‘n),
so the sequence {0, Tƒ ‘0, T(ƒ ‘Tƒ ‘0) . . .} is bounded. Contraposing, if
{0, Tƒ ‘0, T(ƒ ‘Tƒ ‘0) . . .} is unbounded, then there is no  s.t.  > ƒ ‘T,
so (∀n ∈ IN)(n ≤ ƒ ‘Tn). But, as we have seen earlier (lemma 12), if ƒ com-
mutes with T then (∀n ∈ IN)(n ≤ ƒ ‘Tn)→ AxCount≤ . (If there is an n > Tn
then consider the Tnth member of the sequence {0, ƒ ‘0, ƒ2‘0, . . . ƒn‘0 . . .}.
This will be a counterexample to the antecedent.)

So we seem to have proved:

THEOREM 21 Let ƒ be a definable homogeneous map IN→ IN which com-
mutes with T. The inductively defined collection: {0, Tƒ ‘0, T(ƒ ‘Tƒ ‘0) . . .} is
unbounded iff AxCount≤ . [HOLE What happens if ƒ isn’t a unary thing like
this?]

No, we haven’t shown that: there is a gap in the proof. We shouldn’t
be considering an n s.t. n > ƒ (Tn) but an n which bounds the collection.
But i think what is true is that if ƒ : IN → IN is monotone increasing and
commutes with F then AxCount≤ is equivalent to the assertion that the only
initial segment of IN closed under ƒ ◦ T is IN itself. We reason as follows. (This
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will need a bit of tidying up) Sse ƒ : IN → IN is monotone increasing and
commutes with F. If ƒ isn’t the identity then we will have n + 1 ≤ ƒ (n). Sse
now that [0, n + 1] is closed under ƒ ◦ T. Then

ƒ (Tn) < n + 1 ≤ ƒ (n)

whence
ƒ (Tn) < ƒ (n)

and Tn < n. So, unless AxCount≤ fails, no proper initial segment of IN can be
closed under ƒ ◦ T. So the intersection of all initial segments closed under ƒ ◦ T
is IN itself. Is this exactly the same as saying that the closure of {0} under
ƒ ◦ T is unbounded. . . ? This relies on the downwards closure of the closure of
{0} under ƒ ◦ T being the same as the intersection of all initial segments of IN
closed ubnder ƒ ◦ T. This should be easy to check one way or another.

Even that case is easy. Suppose there is an  s.t.  > T(y<2y). Then
the collection of wellfounded* naturals is bounded. But there will be such an 
unless AxCount≤ .

COROLLARY 8
If Vα contains infinitely many hereditarily finite sets then AxCount≤ .

(The converse is easy because, if AxCount≤ holds, then Vα contains Vω).

So if we want infinitely many wellfounded sets cheaply we will have to try
something else. For example: work in a model where ∈ restricted to finite sets
is wellfounded.

One might think that one should be able to collapse FN to get Hƒ n. The
collapsing function is a fixed point of a TRO so one might hope to add it by
permutation while keeping FIN wellfounded. j is a map from FN → FN into
itself, and the collapsing function is the lfp. We would need an ƒ that was n-
similar to jƒ and that might require weak forms of choice. Sounds hard. In any
case the output of this construction (if there is one) would be Hƒ n and this is
much stronger than the result we are looking for, namely the existence of an
infinite welfounded set.

Instead ask: is there an infinite extensional set of finite sets? If X is such
a set consider the permutation

∏

∈X(,  ∩ X). Extnsionality of X ensures
that these transpositions are disjoint. In the resulting permutation model X
has become an infinite wellfounded set.

So we have shown:

REMARK 51 If ∈�FN is wellfounded, and there is an infinite extensional
subset of FN, then �∃ infinite wellfounded set.

∈�FN can be made wellfounded at no cost, so the only hard part is getting
an infinite extensional subset of FN. If we can’t do that, then every infinite set
X of finite sets contains  and y s.t.  ∩ X = y ∩ X. Can we do anything with
this?

Here’s an idea i had while invigilating one day.
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Suppose no permutation model contains an infinite wellfounded set. Let’s
derive something nasty from it.

2∀((∀y)(P(y) ⊆ y→  ⊆ y)→ Fn())

∀σ∀((∀y)(P(σ“y)) ⊆ y→  ⊆ y)→ Fn())

(∀)( (∀σ)(∀y)(P(σ“y)) ⊆ y→  ⊆ y)→ Fn())

(∀)( (∃σ)(∀y)(P(σ“y)) ⊆ y→  ⊆ y)→ Fn())

Snooze . . . does this become

(∀α)( (∃σ)(∀y)(P(σ“y)) ⊆ y→ α ≤ |y|)→ α ∈ IN)

Idea: show that every singleton is {Λ} in some permutation model. This is
easy. {} is {Λ} in V(,Λ). Then show that every pair is wellfounded in Vσ

for some σ, and so on.
What we now have to do is find something slightly stronger than

‘(∃σ)(∀y)(P(σ“y) ⊆ y →  ⊆ y)’ that might enable us to deduce “any set
that embeds into all fat sets is finite”? Either there are arbitrarily large cardi-
nals of such finite sets in which case ℵ0 is such a cardinal (any fat set that is
not inductive is dedekind-infinite) which contradicts hypothesis, or there aren’t.
If not, there finite sets too big to embed in a fat set. But then there are smaller
fat sets. But this was any old base model. So we would have established that if
no permutation model contains an infinite wellfounded set, every permutation
model contains a fat finite set. The consequent sounds improbable!!!!

Mind you, i’d’ve tho’rt that (∃σ)(∀y)(P(σ“y) ⊆ y →  ⊆ y) is strictly
stronger than  embedding into all fat sets.

Randall sez:
Wed Sep 23 11:42:23 1998
Note on permutation idea
Aim is to make an infinite well-founded set. The idea is to ensure that all

sets which include their power sets include IN.
The strategy is to permute in such a way that any set which excludes part

of IN has a subset mapped outside itself. We postulate further that this subset
will be a subset of N (necessarily a proper subset). We postulate further still
that this subset of IN will be mapped to an element of IN.

So the situation we envisage in one in which each proper subset of IN (the
part of IN included in a set missing part of IN) itself has a subset which is
assigned by the permutation as the extension of a natural number not in the
original proper subset.

For each proper subset A of IN there is a subset B of A such that π‘n = B
for some natural number n in IN \ A.

It is not clear that this is possible, but it is also not clear that it is impossible.
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15.3.1

How about this for a clever idea. We need to think about permutation models
with more wellfounded sets than Vα, yes? Now say

Try σ ≤ τ iff
(∀Y)((P(Y) ⊆ Y)τ → (∃X)((P(X) ⊆ X)σ ∧ σ‘X ⊆ τY))
which simplifies to

(∀Y)((P(Y) ⊆ τ“Y)→ (∃X)((P(X) ⊆ σ“X)∧ X ⊆ Y))

Now some questions about ≤.

� Is ≤ wellfounded? It certainly should be!

� Is it connected? This is really a question about how ragged WF can be.
If it can’t be ragged then ≤ might be connected.

� Is it invariant (in the sense that closed formulæ containing only ≤ and
= are invariant? (need a word for this!)

� Can we show that ≤ is not the universal relation? Slightly more likely
is the assertion that ϕWF is invariant for all ϕ. How about ϕHƒ n being
invariant? That ought to be easy!

Let’s have a look at this last one. We might be able to do something if ϕ is
stratified.

Expand ϕWF. The variables in it have types. The quantifiers become things
like (Q)((∀X)(P(X)) ⊆ X→  ∈ X)→ . . .)σ

which is
(Q)((∀X)(P(σn‘X)) ⊆ σn+1‘X→ σn−1‘ ∈ σn‘X)→ . . .)
relettering we get:
(Q)((∀X)(P(X)) ⊆ (jn+1σ)‘X→ σn−1‘ ∈ X)→ . . .)
and the trouble now is that saying that something at type n is wellfounded

is different from saying that something at type n+1 is wellfounded, unless there
is something really clever we can do.

The obvious way to show that WFσ and WFπ are elementarily equivalent
w.r.t. stratified expressions is to show that they are stratimorphic. For them to
be stratimorphic one would expect there to be a permutation of V that maps
one onto the other. Such a permutation one would expect to be definable in
terms of σ and π and there isn’t anything obvious.

The same difficulty occurs when trying to show ϕHƒ n invariant. This suggests
that even the stratified theory of hereditarily finite sets isn’t clean! Clearly
there is a gap here. I can imagine no way of showing that the stratified theory
of hereditarily finite sets is invariant and no way of showing that it isn’t.

One might think it would be worth trying
π ≤ σ iff ∃ partial injection ƒ : V + V such that ƒ ‘ = σ−1‘{ƒ ‘z : z ∈π },

which is to say
π ≤ σ←→ (∃ƒ : V + V)(σ−1(j‘ƒ )π ⊆ ƒ ).
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That is to say
σ ≤ τ iff (∃h : V + V)(τ−1 ◦ (j‘h) ◦ σ ⊆ h.
. . . which looks nice because these h’s look a bit like germs. The trouble

with this is that it is symmetrical! We should also presumably have the banally
obvious: (∃h : V + V) s.t. if Vσ thinks  is wellfounded then h‘ is defined
and believed by Vτ to be wellfounded.

Let  be the set of sentences in the language of arithmetic-with-T which become
truths of arithmetic when one erases ‘T’ from them.

1. Are the ƒ ∈ ININ that commute with T cofinal in the partial order under
dominance?

2. AxCount≤ → (∀α < ω1)(α ≤ Tα)? Is this perhaps related to the ques-
tion of whether or not there is an assignment of fundamental sequences to
ctbl limit ordinals that commutes with T. But this formula is in . I have
the very strong feeling that no form of AC (eg fns assigning fundamental
sequences) will help prove them.

3. If  is a sentence in arithmetic-with-T that is true of the identity but not
provable in arithmetic-with-T is there an Ehrenfeucht-Mostowski model
in which it fails?

4. André’s question. (∃n ∈ IN)(n 6= Tn∧ (∀m< n)(m ≤ Tm))

5. Does “∈ restricted to FIN is well founded” imply “(∃ƒ ∈ INN)(∀n ∈
IN)(ƒ (Tn) > n)), namely the existence of a Körner function? Is the exis-
tence of Körner functions provable in NF already? It’s certainly invariant.

6. Is it consistent with NF that there should be a ƒ : T“NO → NO s.t.
(∀α)(ƒ ‘α ≥ T−1α)?

If there is ƒ : T“NO → NO s.t. (∀α)(ƒ (Tα) ≥ α)—namely a Körner
function on the ordinals—then surely something interesting must happen. For
suppose α is an ordinal to which ƒ can be applied as often as we like, and
think about F(α) := sup A where A := {ƒn(α) : n ∈ IN}. We have ƒn(α) ≥
T−1ƒn−1(α) for each n, so everything in T−1“A is ≤ something in A so F(α) ≤
T(F(α)). Without extra assumptions we’re not going to be able to do much:
commutes with T, monotone, nondecreasing.... Let’s face it, might there not be
such a function with no assumptions at all: λα.Ω+α? No—it doesn’t work for
α > Ω.

Suppose there is a Körner function on the ordinals: ƒ : T“NO → NO s.t.
(∀α)(ƒ (Tα) ≥ α). Then we can make it continuous by filling it in, and we can

make it nondecreasing, by recursively setting g(α) := max(ƒ (α),
∑

β<α
g(β)).

Or at least that’s what i tho’rt. The trouble is, that sup might not always be
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defined, as {g(β) : β < α} might be cofinal in the ordinals. So we have to use
my version of Erdös-Rado. Two-colour the complete graph on NO according to
whether or not (α < β) ←→ (ƒ (α) < ƒ (β)). There will be a monochromatic
set of size T3|NO| and on it ƒ must be monotone. Then things get a bit tricky,
but the idea is to pull the map back via T. No, not even that will work, as there
is no guarantee that enough of the image under ƒ of the monochromatic set is
in the range of T. We have to do various manœuvres like work not on ƒ but on
ƒ |{α : α > Ω} ∪ ƒT .

6 is obviously something to do with ∈ restricted to something quite being
wellfounded: set Ω =

∨

On{α + 1 : α is a second component of an ordered
pair in }. That sort of thing.

It implies that cƒ (Ω) is cantorian. Is the converse true?
Is there any connection between 4 and the cofinality of Ω? (Must check that

if there is such a function there is one that is continuous) Suppose there is a map
h from the ordinals below α cofinally into T“NO. Suppose also that α = Tα.
Then there is also a map g from the ordinals below α cofinally into NO. We
prove by induction that (∀β < α)(Tg‘β = h‘Tβ) We now define an ƒ as in 4
as follows. First we define it on things in the range of h. For β < α set ƒ of
h‘β to be g‘β.

Whatever happened to the idea that every assertion of cardinal arithmetic
is 2 some assertion about sets? For example, AxCount≤ is equivalent to

2(if  is a finite set then  is not a proper subset of ι“).

I think that in the NF case it is complicated by the fact that equinumeros-
ity and 1-equivalence are not the same, but in ZF they are. Obviously their
negations are � of some piece of combinatorics.

André once cheered me greatly by saying that it was very significant that
cardinal arithmetic is invariant. I’d always tho’rt i was the only solipsist. It
now occurs to me that the fact that it has an implementation that is invariant
must be something to do with the fact that it is a theory of virtual entities.
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Chapter 16

Miscellaneous Cardinal
Arithmetic

16.0.1 Some factoids useful in connection with TZT and
Bowler-Forster

For the moment let the variable ‘κ’ range over alephs. Then we can prove things
like: a union of κ-many κ-sized sets cannot be of cardinality ≥ κ++ ; a union of
κ-many < κ-sized sets cannot be of cardinality ≥ κ+ . In the study of TZT we
sometimes need arguments that rely on facts like these. Can a union of T |V|
many sets each of size T |V| be of size |V|? Well, yes—obviously. But how about
a union of T2|V| many sets each of size T2|V|? We need to worry about things
like that.

It turns out that the old methods work quite well. Drop the assumption
that κ is an aleph, but assume κ2 = κ. This is actually reasonable, because it
holds of |V|.

Here’s a taster. Suppose κ2 = κ. Then a union of κ-many things of size κ
cannot be of size 22

κ
. Here’s why. By Sierpinski-Hartogs any set P2(K) of size

22
κ

has a subset of size (ℵ(κ))++ . (Well, you might need an extra exponent
but you get the idea) The subset is a union of ≤ ℵ(κ) sets each of size ≤ ℵ(κ)
and therefore cannot be of size (ℵ(κ))++ after all.

We need to push the boat out a bit. Suppose κ2 = κ as before. Then can a
union of ≤ κ-many things of size ≤ κ be of size 22

κ
? Presumably not, and by

the same proof. But then can a union of ≤∗ κ-many things of size ≤∗ κ be of
size 22

κ
? We may well need results like that and they may well be much harder

to obtain.

Perhaps we should spare some thought for the parenthetical remark a couple
of paragraphs ago. I write there as if (ℵ(κ))++ ≤ 22

κ
as long as κ = κ2.

But that’s not secure. Let K be a set of size κ. Send every prewellordering
of a subset of K to its length and send everything not a prewellordering to
0. This maps P(K × K) onto a set of size ℵ∗(K) and—since κ2 = κ—we

275
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get ℵ∗(κ) ≤∗ 2κ. Analogously we of course also get ℵ∗(2κ) ≤∗ 22
κ
. So

certainly (ℵ∗(κ))+ ≤ ℵ∗(2κ) ≤∗ 22κ . It doesn’t seem to want to come out
at the moment. It probably doesn’t matter (for TZT applications at any rate)
having to have another layer of exponentiation.

Here’s why. By Sierpinski-Hartogs any set P2(K) of size 22
κ

has a subset of
size (ℵ(κ))++ . (Well, you might need an extra exponent but you get the idea)
The subset is a union of ≤ ℵ(κ) sets each of size ≤ ℵ(κ) and therefore cannot
be of size (ℵ(κ))++ after all.

Other Stuff to fit in

Cardinality of V?
While thinking about the question of whether or not AxCount≤ implied that

(∀α ≤ ω1)(α ≤ Tα) I found that this would follow from the assumption that
every ordinal (in T2“NO) contains a wellordering that commutes with T. This
should make us think of the term model, because although there are clearly
definable functions (definable as stratified set abstracts) NO → NO which do
not commute with T (send α to 0 if T−1α is not defined and to 1 o/w) something
along the lines: every definable wellordering of ordinals commutes with T. But
isn’t (∀α ∈ NO)(α ≥ Tα) strong? This might enable us to show that NF has
no term models.

16.1 Wellfounded extensional relations

I broadcast a message yesterday which got lost. That was probably just as well
for in the intervening 24 hours i have had time to collect my thoughts on this
subject and give a better summary. I owe thanks to Randall Holmes and Bob
Solovay for pushing me in the right direction.

Randall has been thinking for some time about whether or not P(NO) can
be wellordered. Since if we can wellorder P(NO) we can wellorder the power
set of any wellordered set, this reminded me that there is an old theorem of
Rubin’s that if the power set of a wellordered set is always wellordered, then
every wellfounded set is wellordered. Since one of my current preoccupations
is the theory of wellfounded sets in NF (I conjecture that it is precisely KF)
I was intrigued! However the induction Rubin used is highly unstratified and
there seems no hope at all of reproducing it in NF. Something Rob Solovay said
made it clear to me that the correct thing to do with Rubin’s proof is to use it
to prove something about domains of wellfounded extensional relations rather
than about wellfounded sets. This i do below.

There is an old problem of Hinnion’s: in his thesis he did a lot of work
on relational types of wellfounded extensional relations and asked whether one
could show that there is no wellfounded extensional relation on V. I know of no
progress with this problem. However, what we can now say (if i’ve got this right -
and i am not staking my life on the correctness of this broadcast!) then if P(NO)
can be wellordered there is no wellfounded extensional relation on V. Since
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Holmes has recently pointed out that if P(NO) cannot be wellordered there
is a cantorian wellordered set whose power set is not wellorderable something
interesting is doomed to come out of this one way or another. To prove Holmes’
result, simply consider the least aleph α such that 2α is not an aleph. If α is
such an aleph so is Tα, so α ≤ Tα. Therefore T−1α is defined and is another
such aleph, so α ≤ T−1α whence α = Tα. Finally Richard Kay remarked to
me some time ago that there seems a natural way in which models of NF with
wellfounded extensional relations on V might arise, and i append his message
on the end of this broadcast with his permission.

I shall prove the following

THEOREM 22 the following are equivalent

1 P(NO) is wellorderable

2 The power set of a wellordered set can be wellordered

3 The domain of a wellfounded extensional relation is wellorderable

4 |P(NO)| < |NO|

Proof:
1 → 2 is fairly easy. Let X be an arbitrary wellordered set. The ι“X is the

same size as some subset of NO and therefore its power set is wellordered. 4
comes into the picture because it is a theorem of Henson’s that |NO| 6≤ |P(NO)|.

To prove 3 → 1 notice that we can define a wellfounded extensional relation
on P(NO). For starters, we can define a relation E on subsets of NO that are
not initial segments by setting {α}EX iff α ∈ X (so that the only things that E
anything are singletons) and distinguishing between singletons by saying αEβ
iff α < β. Now a simple application of Bernstein’s lemma shows that NO has
as many subsets that aren’t initial segments as it has subsets, and we use the
bijection to pull back the relation to the whole of P(NO).

To prove 2 → 3 we need the induction in Rubin. This is lifted wholesale
from Rubin (or rather the version of it in Jech The Axiom of Choice) the only
difference being that here it is cast in the more general setting of an arbitrary
wellfounded extensional relation. It seems highly unlikely that one could prove
it over ∈ in NF, since the induction is unstratified and ∈ is not a set.

Assume 2. Let R be a wellfounded extensional relation with domain X. We
will show that X can be wellordered. Without serious loss of generality we can
assume that the rank of R is reasonably small, by considering RUSCn(R) for n
sufficiently large (3 will be large enough) because X can be wellordered iff ιn“X
can be.

To each member  of X we can associate the rank of ∗R−1“{}. Call this
the rank of . Let Nα be the set of things of rank ≤ α. We will need to know
that there is an ordinal too big to be the rank of any element of X. (This is the
reason for reasoning with RUSC3(R) instead of R, just to be on the safe side).
Let K be some set of size ℵ‘||, and fix ≤K and ≤PK wellorderings of K and
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P(K) respectively. We are going to show that there is a canonical injection

α : Nα ,→ K

where the range of α is an initial segment of K in the sense of ≤K .
For α = 0 it is easy. For the induction step from α to α + 1 notice that α

lifts to

j‘(α) : P(Nα) ,→ P(K)

Since R is extensional there is a canonical map ι“Nα+1 ,→ P(Nα+1) so we
compose the two to get a map ι“Nα+1 ,→ P(K). Since P(K) is wellordered
by ≤PK this gives us a (canonical) wellordering of Nα+1. Now compare this
wellordering of Nα+1 with 〈K,≤K 〉. Remember that K has been chosen so that
it has a wellordering ≤K too long to be isomorphic to any wellordering of any
subset of X. Therefore there is a (canonical) injection Nα+1 ,→ K obtained by
the recursive construction of the canonical map between two wellorderings.

This is not the end of the story, because we want to ensure that the various
α agree on their intersections, so that we can take sums at limits. Therefore
we have to ensure that everything in Nα+1 goes after everything in Nα. So,
given our injection from Nα+1 into K, use it to order things in Nα+1 \ Nα (by
pulling back ≤K) and map them to the terminal segment of 〈K,≤K 〉 consisting
of things not in the range of α.

The case where α is a limit is easy as long as each α is an end-extension of
all earlier β, and we have arranged for this by construction.

This shows that Nα is wellordered for all α. Since there is some ordinal too
big to be the rank of any member of X, (call it γ) we know that Nγ must be
the whole of X. Therefore X is wellordered.

A metamathematical remark. Many people find it difficult, on being told
Rubin’s result, to reconstruct the proof. If you are told it relies on foundation,
you try to prove by induction on ∈ that every wellfounded set is wellordered.
But is isn’t a proof by induction on ∈, it’s a proof by induction on
rank.

Don’t forget that Henson proved that |NO| 6≤ |P(NO)|.

COROLLARY 9 Either P(NO) is wellordered, in which case there is no bfext
on V or it isn’t, in which case there is ℵ = Tℵ s.t. 2ℵ isn’t an aleph

So if there is a wellfounded extensional relation on V there is a bad aleph.

Can we find a proof that is a bit more effective? This one uses cut (the cut
formula is ‘|P(NO)| ∈WC’).

Consider the minimal rank of wellfounded relations on .
We need a notion of relative jaggedness of a wellfounded relation. We have

a notion of hole, and of rank of holes. We can make a relation less jagged by
chipping off some elements that do not bear R to anything, and putting them
in holes. We say R < S if some of the holes in R are filled in S, and any of
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the holes in S that are not holes in R are of higher rank than those in R but
not S. It should not be too hard to show that every descending chain under <
has a lower bound. Any minimal element is something very like a Vα. We can
consider a version of < on isomorphism types.

Suppose every set has a wellfounded extensional relation on it. Does this
follow from the assertion that V has a wellfounded extensional relation on it? In
either case consider the least ordinal α s.t. ∃ a wellfounded extensional relation
on V. Should be easy to show α ≤ Tα + 1

Suppose there is a wellfounded extensional relation on . Then there is also
one on ι“. How about P()? Some of the holes we would want to fill up with
elements of P() are already occupied, so we can only accomodate 2T ||−T ||.
But this is likely to be at least 2T ||, at least if 2.|| = ||.

Existence of wellfounded extensional relations on V generalises upward in
models of TZT, and is P

1 .

16.1.1 Inhomogeneous wellfounded extensional relations
on V

Given a set X we say that a relation R ⊆ ι“X × X such that if 1 6= 2 both
in X then there is a singleton R-related to one but not the other is skew-
extensional.

If X admits such a relation then there is a map ƒ : X ,→ P(X) defined by
λX.
⋃

{z : zR}. Since not all sets can be embedded into their power sets,
this is nontrivial. The corresponding move with bfexts does nothing.

Say R ⊆ ι“X × X is skew-wellfounded iff (∀X′ ⊆ X)(∃ ∈ X′)(∀y ∈
X′)(¬({y}R)).

We shall say that R is a skew-extensional skew-wellfounded relation on X if
its range is X, and let us call these relations ‘Kbfext’s.

Naturally the existence of Kbfexts is related to the existence of transitive
wellfounded sets. For example, V is the same size as a transitive welllfounded
set iff � there is a kbfext on V.

We’d better have a proof of this.
If b : V → X is a bijection between V and a transitive wellfounded set X,

Without loss of generality X is a power set. Now {〈{}, y〉 :
P
() ∈

P
(y)} is

skew-extensional and skew-wellfounded.
Conversely, if R ⊆ ι“V × V codes a Kbfext, and ƒ is a bijection between V

and a moiety, then {〈{ƒ ‘}, ƒ ‘y〉 : 〈{}, y〉 ∈ R} codes a Kbfext on a moiety.
If R is a Kbfext on a moiety X, let π be a permutation of V extending the

map λ,
⋃

R−1“{}. Then in Vπ π−1‘X has become a transitive wellfounded
set the same size as the universe.

It seems so extraordinarily unlikely that V should even be the same size as
a wellfounded set, let alone a transitive wellfounded set, that i’ve never taken
much interest in Kbfexts on V.

Now i claim the following. �∃Hℵ0 iff there is a skew-wellfounded skew-
extensional structure satisfying the obvious. And generalisations of this are
true.
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For suppose
Vπ |= ∃∀y(y ∈ ←→ (∀z)(Pℵ0(z) ⊆ z→ y ∈ ) this is
∃∀y(y ∈ ←→ (∀z)(Pℵ0(z) ⊆ π“z→ y ∈ ))
Fix a a witness to this. We then prove that a with the relation Ry if

 ∈ π‘y is a skewthingie. The way to do this is to consider
Z = {y ∈a: (∀ ⊆a)(y ∈  → (∃ ∈ )(∀ ∈ )(¬( ∈ π‘)))}. It

is easy to check that Z is a z such that Pℵ0(z) ⊆ π“z and therefore contains
everything in a. All we have to do is verify that if  ⊆ Z is finite then it is π
of something in Z.

The other direction is easy. Suppose 〈X,R〉 is a skewthingie. Without
loss of generality we can assume X ∩ P(X) is empty, so that the product of
transpositions

∏

∈X
(,{y : {y}R})

is well-defined. That does it.
Suppose we have a set X and a map  that accepts small subsets of X and

returns members of X. Suppose further that the relation Ry iff (∃X′ ⊆ X)( ∈
X′ ∧ ƒ ‘X′ = y) is wellfounded. Without loss of generality we can assume that
all members of X are the size of the universe.

Then consider the product π of transpositions (, 〈, (X ∩ snd“)〉) over
all sets  with the property that all partitions of  are small. Notice that if 
is small π() isn’t.

Notice that if n is a Körner number we can take X to be IN and () =
Tsp() + 1.

In Vπ membership restricted to sets all of whose partitions are small is
wellfounded. (Write this out)

Now is it possible to have such an X where “small” means “cannot be mapped
onto V?

16.1.2 A message from Richard Kaye

If  is a transitive set in a model M of ZF (say), J is an automorphism of M
and ƒ ∈M is a bijection from y = J() to P(). Then { ∈M :M |=  ∈ }
is the domain of a model of NF, the epsilon being  ∈ne  iff  ∈ ƒ J(). This
much is standard.

The point is, since
⋃

 ⊆ ,

R = {〈,〉 :  ∈  ∈ } ⊂ Pn‘

is a relation on the universe, actually a set (or rather, you probably want
(ƒ J)−n(R) for some suitable n) and is wellfounded (but certainly won’t be the
new ∈ relation ). There is some minor trouble in checking that this set really is
a well-founded relation in the sense of the new model, but this shouldn’t be too
bad, as it is certainly wf in the original. It doesn’t seem to contradict anything
particular, so one might think that if models of NF exist at all, they might arise
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in this way. Incidently models of NFU like this do exist. That’s why it occurred
to me.

I think I need the original model to satisfy rather more than KF. Foundation
is obviously necessary. Perhaps this is enough. I’m not sure exactly what you’ve
written, (i.e. what base theory is implied) so maybe you should check this point.
Otherwise it sounds OK.

Best wishes, Richard

I’m pretty sure it should be R = {〈{}, 〉 :  ∈  ∈ }.
Consider also the situation (which admittedly seems rather unlikely) of a

transitive wellfounded set X the same size as its power set, with some bijection
π. This of course gives us a model of NF. Now consider the fate of the set
{〈ι‘, y〉 :  ∈ y ∈ X} which is going to be a set of the new model, Y, say.
Clearly the relation 〈ι‘, y〉 ∈ Y is going to be wellfounded. However it doesn’t
give rise to a wellfounded extensional relation on the new universe because
it isn’t homogeneous, and so (and here we return to the metamathematical
remark) it doesn’t enable us to carry out Rubin’s proof beco’s Rubin’s proof is
an induction on rank not on the wellfounded relation itself. A pity, really.

However there is an old observation (i think it is in the yellow book) that
if there is a definable wellfounded extensional relation on V then there is no
nontrivial automorphism of 〈V,∈〉. This works even if the definable wellfounded
extensional relation is not homogeneous. Therefore, if there is a Kaye model, it
has an element that is moved by all automorphisms.

Wellfounded sets all over the place!

Remarks on wellfounded sets are scattered all over the place! Here is another
one to go somewhere one day.

REMARK 52 We cannot prove that if ℵ0 contains a wellfounded set then so
does every other aleph.

Proof:
Suppose we could prove that if ℵ0 contains a wellfounded set then so does

every other aleph. Then we could prove 2(if ℵ0 contains a wellfounded set
then so does every other aleph), and therefore if 2(ℵ0 contains a wellfounded
set) → 2(every aleph contains a wellfounded set). Now it is easy to arrange
for a permutation model with an  ∈ T2|V| extending its own power set, which
makes the consequent false, so the antecedent would be refutable in NF, which
seems rather unlikely.

There are other observations of this kind.
We can prove that every concrete natural contains a wellfounded set. We

know (because Hinnion has done it) that we can at least prove in NF (as op-
posed to NF+AxCount≤ ) that �(every strongly cantorian natural contains a
wellfounded set). Can we prove that every strongly cantorian natural contains
a wellfounded set? If NF+ AxCount≤ + ¬ AxCount is consistent then there
are models of NF with finite noncantorian wellfounded sets
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16.2 Does the universe have a wellordered par-
tition into finite sets?

If it does, the size of the partition is the last aleph. Remember, a union of ℵ
finite sets cannot be of size ≥ ℵ+ .

Suppose it does: we hope to show that the universe is wellordered. It is
obvious that if the universe has a wellordered partition into finite sets then
any set has a wellordered partition into finite sets. So any ordered set can be
wellordered: consider a wellordered partition into finite pieces, order all the
pieces uniformly and the result is a wellordering. In particular, the power set of
a wellordered set is wellorderable.

So far so good. We will now use the assumption that every set has a
wellordered partition into finite sets to derive a version of the order-extension
principle (I hope!)

Let X be an arbitrary set, and ≤ a partial order on it. Let X be the set
of partial orderings of X that refine ≤. X has a wellordered partition P into
finite sets, and P is in fact the set of atoms of an atomic subalgebra B of P(X ).
Now B is, up to isomorphism, the power set of P, which is wellordered, so B is
wellordered too. The idea is that we can use the fact that B is wellordered to
show that every filter in B can be extended to an ultrafilter in B and then rely
on the fact that B is nearly the same as P(X ) to be able to extend any filter
⊆ P(X ) to an ultrafilter ⊆ P(X ). Unfortunately this doesn’t work. Consider
the simple case where a set Y has a countable partition into pairs, and IR is
wordered. Then there is an ultrafilter on the index set (IN) but not—or not
obviously—on Y. No dice.

For each pair , y ∈ X, set N〈, y〉 be the set of partial orders refining ≤
that decide whether or not  < y or y < . N〈, y〉 is not in general going to

be an element of B, but
⋃

{z ∈ P: z∩N〈, y〉 6= Λ} is. Let us abbreviate it to

N〈, y〉. It is obvious that the N〈, y〉 form a filter base in P(X ), so it follows

that the N〈, y〉 form a filter base in B. Now B can be wellordered, so we can

extend this filter base to an ultrafilter U ⊆ B.
So this bombs out.
However, if we put a finite bound (any bound) on the size of the pieces we

get the result we need. They don’t even have to be disjoint. This is beco’s of a
result in Jaune 5 to the effect that if || = ||2 and  is a union of a wellordered
family of n-tuples then  can be wellordered. In fact a trivial reworking of the
proof in Jaune 5 allows us to weaken the hypothesis to || ≥∗ ||2. If there is
no finite bound on the size of the tuples it doesn’t seem to work. All we get is
that V is the union of countable many very funny much smaller sets.

Some random tho’rts. If V is the union of a wellordered set of finite sets
then the power set of a wellordered set is wellordered. Does this show there is
no last aleph and that the cofinality of Ω is uncountable? If V is indeed a union
of countably many finite sets one can ask about the cardinality of the number
of n-tuples. This gives us an ω-sequence of alephs, and one should think about
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its sup. Notice that a union of ℵ finite sets has no partition of size ℵ+ so one
should be able to do something there . . .

Thinking aloud. If V is the union of a wellordered family of finite sets then
the power set of every wellordered set is wellordered. Now let αn be the sup
of those alephs that are in of something. These sets get smaller so the αs
form a nonincreasing sequence and must be eventually constant. (We can do
this anyway but perhaps if the power set of a wellordered set is wellordered
something interesting will happen)

Let n0 be the least n s.t. αm is constant for m > n. Then every cardinal
that is in0 of something is ≤ a cardinal that is in0+1 of something.

If V is a union of a wellordered family of finite sets then we can use the fact
that V = V×V to refine the partition in various ways until we reach a partition
whose corresponding equivalence relation is a sort of congruence relation for
pair, fst and snd. We can do things like this. Let < be the prewellorder and
∼ the equivalence relation. Let P be a piece of the partition and ordain that,
for , y ∈ P,  <′ y iff {} × P′ <+ {y} × P′ where P′ is the first piece of
the partition that can tell then apart. Of course we can do multiplication on
the L too. Similarly any piece P can be prewellordered lexicographically by <
since every set is a pair. When we reach a fixed point we must have that, for all
pieces P, fst“P is a single piece and |fst“P = |P|—and of course snd“P, too,
is a single piece and |snd“P = |P|.

The trouble is, I don’t seem to be able to show that a fixed point for all
these refinements must be a wellorder!!!

16.3 A theorem of Tarski’s

We know from this result of Tarski that every set has more wellordered sub-
sets than singletons. So consider the operation that sends T || to |{y ⊆  :
wellorderable(y)}|. This behaves in various ways like exponentiation. Can we
work tricks on it like we do with ordinary exponentiation? First (silly) problem:
how do we notate it? Try ep‘α. Perhaps there is some mileage to be got out
of considering operations ƒ which—like ep and ordinary exponentiation—
satisfy

ƒ ( + y) = ƒ ‘ × ƒ ‘y

and suchlike. Do categorists have anything to say about this?

16.4 The Attic

This is what Andrei Bovykin calls the big sets of NF.
Developments in set theory since the 1960s have shown that large cardinal

axioms (which talk about sets of high rank) can tell us things about sets of low
rank. (This story is usually told as large sets giving us information about small
sets but my take is that it is the rank (rather than the size) that is doing the
work. Given that large sets have to have large rank it might be complained
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that I am arguing about nothing, but I shall press on). This matters to people
beyond set theory because these sets of low rank are the sets that we use to
implement mathematical objects of the kind that most mathematicians care
about, and the information they give us might solve old problems about the
reals and other similar small objects.

Illfounded sets are sets whose internal ∈-structure is so complicated that
they have not so much high rank as rank that is—in Cantor’s sense—absolutely
infinite. Seeing them in this light one would expect the sets of the attic to have
things to tell us about the sets of low rank that implement reals etc, just as
the sets of high rank do. However, things are not entirely straightforward, since
there can be sets that lack rank for silly reasons: Quine atoms for example.
Clearly illfounded sets per se do not necessarily have anything to tell us about
sets of low rank. ZF + antifoundation gives us no new stratified theorems (which
is to say no new facts about reals). If we want novel information about sets ofSay something about CO

models here low rank, or about reals, then we will have to look to illfounded sets of a kind
not compatible with ZF, to wit, the sets that NF keeps in the attic. So: does
the attic tell us anything about arithmetic? Well, yes: the obvious example is
the proof of the axiom of infinity! That’s not much use, beco’s we knew that
already, but—by showing that the attic does have things to tell us—it may be
a harbinger of results of the kind we seek.

But when these results start coming in, should we believe them? In short, do
we/are-we-going-to believe that NF is consistent? Most set theorists would ex-
hibit scepticism and caution in response to this question. There is an instructive
parallel here with the early days of large cardinal axioms. The initial reaction
to them was caution and scepticism: for example it is clear, reading between
the lines of Keisler-Tarski, that the authors expected measurable cardinals to be
proved inconsistent. Back in those days rumours of inconsistency proofs received
a much more attentive and respectful hearing than they do nowadays. What
has brought about the change? Man is a sense-making animal, as Quine says,
and the mere fact that no inconsistency has turned up in sixty years spurs us to
find explanations for this absence, and stories about cumulative hierarchies are
co-opted to provide them. It is clear how a belief that the cumulative hierarchy
can and should be extended as far as possible can explain the Mahlo cardinals,
but measurables are another matter. One cannot altogether escape the unwor-
thy thought that the real reason why measurables, supercompacts etc are now
accepted as part of the set-theoretic zoo is simply that nobody has yet refuted
them—so it seems reasonable to adopt them. To quote another American: “so
convenient a thing it is to be a reasonable creature, for one can always find or
make a reason for that which one has a mind to do”. The moral of this null
hypothesis is that what goes for measurables and supercompacts and the rest of
them goes also for NF. In sixty years time, when NF has still not been proved
inconsistent, people will accept whatever consequences NF has for wellfounded
sets, just as my generation accepted that there must be nonconstructible sets
of reals, because measurable cardinals say so.

It’s worth asking why this hasn’t happened already.
My guess is that it’s merely that taking a universal set on board is a more
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radical departure than taking a measurable cardinal on board, or at least is
generally felt to be.

Summary:

(i) Most of the mathematical entities that people care about can be imple-
mented in a theory of sets of low rank;

(ii) theories of sets of high rank tell us important things about the sets of
low rank that perform the implementations;

(iii) illfounded sets are like sets of high rank only more so, so they might tell
us yet more about sets of low rank; the illfounded sets we can find in models of
ZF-minus-foundation don’t tell us anything new, but

(iv) the sets we find in the attic of NF just might. Certainly worth a rum-
mage.

There is a temptation to think that wellfounded sets and illfounded sets
are such different kinds of chap that there is an interpolation-lemma argument
to show that facts about the second cannot tell you anything about the first.
However, a close inspection reveals no lemma corresponding to the intuition.

NF knows about certain structures (Specker trees like τ|V|)) which can be
seen from outside to be illfounded, but which it can prove to be wellfounded.
Thus any model of NF contains structures which it steadfastly believes to be
wellfounded (and therefore to have a rank) but which the outside world knows
to be illfounded. This means that the more the model knows about the world
outside it, the bigger it believes those ranks to be. This is a source of large
ordinals. (Might it be that all the information we get about sets of low rank
from the attic is channeled through large ordinals in this way?)

Assumptions about natural numbers tell us things about the attic:
AxCount≤ implies that ρ(τ(|V|)) > ω, for example. But i don’t think that’s
what people mean. Here are three ways in which we can use cardinal trees to
extract information from the attic.

� Assume the axiom of counting. Then there are lots of cardinals (whose
Specker trees are) of infinite rank. Observe that a tree (whose top element
is) of rank λ (where λ is limit) has nodes of all ranks below λ, so there are
lots of (cardinal) trees of rank ω. If you are a node of rank ω then the set
of ranks of your children is an unbounded subset of IN, which is to say (in
some sense) a real—definable with a single parameter. Similarly if you are
node of rank ω+ ω you have children of rank ω+ n for arbitrarily large
n. Below each of these children is a node of rank ω and of course a real
as before. So every cardinal of rank ω+ ω gives us a set of reals—again,
definable with a single parameter. Since counting (or even AxCount≤ )
tells us that there are lots of such cardinals inside τ|V| we have sets of
reals definable with parameters from the attic.
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� Let κ be any cardinal of infinite rank. Recall that τ(κ) � NOβ is the
tree consisting of those elements of τ(κ) that are of rank at least β.
All these trees are wellfounded, and therefore support games. So to any
β < ρ(τ(κ)) we can associate I or II depending on who has a winning
strategy in the game over τ(κ)�NOβ. Thus κ comes to define a subset of
the ordinals below ρ(τ(κ)).

� Every cardinal not in SM corresponds to an ω-sequence of ordinals, as
follows. α 7→ (λn ∈ IN)(ρ(in(α))). But there are other tricks we can
do. τα is a wellfounded tree and gives rise to a determinate game. (“pick
a logarithm-to-base-2 and lose if you can’t!”). For ordinals below ρ(α)
we can do the following recursive construction. [τα]0 := τα; thereafter
remove endpoints at successor stages and take intersections at limits. Each
tree [τα]ζ is either a Win for I or for II, so α gives us a sequence of
length ρ(α) of I’s and II’s.

There is a relation between the sequence for α and that for 2α. If we let
((α, ζ)) be I or II depending on where the result of removing from τα
all cardinals of rank less than ζ is a win for I or for II, then ((α, ζ)) =
II→ ((2α, ζ)) = I.

In general, how much information about a tree can one code by this se-
quence of I’s and II’s?

� But there is yet more we can do. The extensional quotient of τ(κ) is
a BFEXT, a wellfounded set picture. If κ is a cardinal of infinite rank
this BFEXT is of infinite rank, since the rank of the extensional quotient
is the same as the rank of the original tree. Now assume AxCount≤ or
something of that nature, in order to ensure that ρ(τ(|V|)) is infinite.
Then there will be cardinals in τ(|V|) of infinite strongly cantorian rank,
and their extensional quotients will be of strongly cantorian rank. We
have to do a little bit of work to ensure that their carrier sets are likewise
strongly cantorian. (We can show that any BFEXT of rank ω has a
countable carrier set and is therefore strongly cantorian. It’ll be harder in
general but even the rank ω case serves to make the point.) Once we have
established that, Rieger-Bernays permutation constructions will then give
us actual wellfounded sets isomorphic to these set pictures (BFEXTS).
And these wellfounded sets are defined using parameters from the attic.

For the last item to give us wellfounded sets of large transfinite rank with
attic provenance we will need the following

LEMMA 13 Every BFEXT of strongly cantorian rank has strongly cantorian
carrier set.

Proof: All in good time!

Of course there is no reason to suppose that sets definable with attic-
parameters in this way cannot be defined in other ways, but equally there is no
reason to suppose that they can.
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16.5 NC finite

Consider the function || 7→ |ι“
⋃

|. Well, it’s not single-valued but if NCI
is finite then there is a distinguished value, namely the sum of all its values (I
don’t think the inf works.) This is monotone decreasing and so has a fixed point.
What can we say about the greatest fixed point? Perhaps there are possibilities.

Well, here’s one. Start with |V|. At each stage you have a cardinal. If you
can find  in that cardinal s.t. |ι“

⋃

| < || pick that |ι“
⋃

| to be your next
cardinal. You can’t pick an infinite descending chain so you must reach a fixed
point.

One thing i have never properly investigated in this context—in all these
years—is the lattice of equivalence classes of sets under the relation “ and y
map onto each other”. The quotient is a poset, with the obvious partial ordering
≤∗ where [] ≤∗ [y] iff (∃ƒ )(ƒ : y→→ ). The quotient is actually a lattice,
and it is probably worth spelling out the details.

If  and y both map onto z, then they both map onto t z. So, since NCI
is finite, we can obtain the glb of [] and [y] just by forming a finite disjoint
union. So it looks as if the glb in this lattice is the same as in the cardinal
lattice. What is the lub? It might be smaller than || = |y| of course (≤∗
contains more ordered pairs) but we can take the glb of all the upper bounds
for [] and [y].

Fix a cardinal . Think about the set of all cardinals b s.t  =∗ b—i.e.,
any two things of size  and b map onto each other. It’s closed under +; is it
closed under ∧? It would be nice, but i can’t see how to prove it. But actually
it’s fairly easy to see that it won’t be. Think about the cardinals of sets that
unions of countably many finite sets. One can easily imagine how two minimal
uncountable ones could map onto each toher, but their glb will be ℵ0.

Consider the cardinal ideal  of those cardinals that have only finitely many
infinite cardinals below them. Clearly closed under +; i don’t see any reason
why it should be closed under ·. It doesn’t contain any Dedekind cardinals. Does
this ideal  have a top element? (it certainly can’t have more than one maximal
element). If τ is a top element then τ · n = τ for any n ∈ IN. Notice that if
 has a maximal finite antichain then it will have a top element. Furthermore,
if it has a maximal finite antichain then we can rerun inside it the old proof of
mine that n = 2n if NCI is finite.

What if it has an infinite antichain? Let’s recall the Minimal Bad Sequence
construction, taking care not to use DC. Must there be a minimal α that is
the first member of an infinite antichain? Certainly!—because if there are none
then there are infinitely many below any one. So there are minimal bad finite
sequences of arbitrary length.

“There are only finitely many cardinals below α” sounds like the thing one
ought to be able to prove by induction on <c but of course one can’t. However
if there are any counterexamples they are all <c-minimal. OK, so the set of
them forms an antichain in NC. Is this antichain finite? Possibly—it might even
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be empty. The problem is that there is no reason to suppose it is a maximal
antichain.

Let α and β be two such minimal cardinals. Think about the things below
them. They are all in  so are idemmultiple and what with one thing and another
they will have binary infima.

Remark. (∀α ∈ )(α = 2α→ (∀β < α)(β = 2β))
Proof:

Sse α = 2α, and β < α. Then, for all n ∈ IN, n · β ≤ n · α ≤ α. So
{n · β : n ∈ IN} is a set of cardinals below α and must be finite. But, but
Truss-Sierpinski-Tarski, this entails β = 2β.

A converse would be nice, but i haven’t found a proof so far. Suppose
α < 2α but β = 2β for all β < α. α cannot be a sum of smaller cardinals
since any such sum/product β satisfies β = 2β. Nor can it be bounded above
by such a sum or product, by the preceding result. If there are n cardinals
β1 · · ·βn below α then their sum is going to be below nα. Suppose now we
have n disjoint sets A : 1 ≤  ≤ n, each of size α, and each copy A has a
subset coloured in that is of size β. But observe that α is amorphous! There
is plenty of uncoloured space in each copy—α-much of it in fact—enough for
all the coloured bits to be moved into one copy. So there is a unique maximal
β < α.

However i see no reason why this should lead anywhere. α could be the
cardinality of the socks.

All this looks like fun, but it doesn’t really amount to a whole hell of a lot.

My abortive proof of the infinitude of NCI is an interesting cautionary tale.
Assume NCI finite. Then the following good things happen: n = 2n holds for all
infinite cardinals, and NCI itself is a finite poset which is actually a distributive
lattice - sups and infs exist - and sup is simply +. Since NCI is infinite every
sequence , 2, 3, 4... is eventually constant, so call this eventually constant
value ∞. Consider the map  7→ ∞. This is a lattice homomorphism, so the
image is also a distributive lattice. The image of course is precisely the set of
infinite  s.t.  = 2. This set is of course a subset of the original lattice ...
but it’s not a sublattice! The info operation is honest but the sup isn’t! Two
idempotents  = 2 and b = b2 have a sup in the original lattice (it’s just
 + b) and they have a sup in the quotient lattice - but its  · b not  + b!

So i don’t get a proof that NCI is infinite. However it does give a slightly
different take on why (∀)( = 2) implies AC. If (∀)( = 2) then consider
, b and  + b and use Bernstein’s lemma. It will tell you that  and b are
*-comparable.

But i’ll try again....

What other homomorphisms are there? Send α to the largest cardinal that
is the size of a union of Tα-many finite sets. This is idempotent.
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16.5.1 How many socks?

Let S be a union of countably many pairs, and assume |S| = |S| + |S|. (This
last happens automatically if NC is finite.)

We have two functions πL and πR: S ,→ S where πL“S ∪ πR“S = S and
πL“S ∩ πR“S = ∅. Thus every sock s can be thought of as the ordered pair
〈πL(s), πR(s)〉. (Not every ordered pair of socks is a sock, tho’).

There is a quasi-order on the socks, beco’s the socks come in countably
many pairs. We want to refine this quasiorder into a total order. What do
we do with the pair {s1, s2}? We exploit the fact that we can extend the
quasiorder to ordered pairs of socks and ask which of 〈πL(s1), πR(s1)〉 and
〈πL(s2), πR(s2)〉 comes first. We iterate until we reach a fixed point. Is this
fixed point antisymmetric? Suppose we have been unable to split the pair
{, b}, and let us suppose it is the first one we cannot split. This must mean
there are two pairs {,} and {, y} with  = 〈, 〉 and b = 〈, y〉. Our
pair {, b} now represents a bijection between these two pairs. It does not
give us a choice from either of them, but it has reduced the task of choosing
from two pairs to a task of choosing only from one. Now we look at the second
unsplit pair, and so on, getting more and more bijections between pairs. Notice
that we don’t have to worry about the possibility of  being the pair 〈, 〉 and
b being the pair 〈y, y〉 (in which case the pair {, y} would have contained no
information(∗)) beco’s the set of first components is πL“S and the set of second
components is πR“S and these two are disjoint. Nor do we have to worry that
 might be 〈, y〉 and b be 〈y, 〉 beco’s nothing can be both a first component
and a second component.

The idea is that eventually we will build a family of commuting bijections,
so with one choice from the first pair we will be able to wellorder the whole of S.
The major problem with this is that since every sock is a component of precisely
one ordered pair, no pair of socks lands in the range of more than one bijection!
It may be that with a bit more work we can get round this, perhaps by using
more than one pair of mappings, so that we can prove: Sse |S| + |S| = |S|
and S is a union of countably many pairs, then S is countable. (This would
presumably also prove that if |S| · n = |S| and S is a union of countably many
unordered n-tuples, then S is countable. That would be nice!!)

But for now let’s assume not only that every sock is an ordered pair of
socks but that every ordered pair of socks is another sock, in other words |S| =
|S| × |S|. What now? This time we can use pairing “in the other direction” as
well. If we want to separate  from b we can compare {} × S and {b} × S
lexicographically.

Now think of the first unsplit pair, which is {, b}, and let {, y} be any
other unsplit pair. Think about the four ordered pairs in {, b}×{, y}. They
can’t belong to a quadruple co’s there are no quadruples, and they must come
in two pairs {〈, 〉, 〈b, y〉} and {〈, y〉, 〈b, 〉} (without loss of generality)
and one of these pairs comes first! This pair is simply the graph of a
bijection between {, b} and {, y}. That way we have reduced the problem
of choosing from {, y} to the problem of choosing from {, b}.
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Pretty, isn’t it?! Now how about things that come in bundles larger than
two? Let S be a union of countably many unordered k-tuples, and do the same.
This time we reason not about the first surviving pair, but the first surviving
j-bundle, where j is the maximal size of surviving bundles. Let A be the first
surviving j-bundle and let B an arbitrary other j-bundle. A×B must be split into
j-bundles. None of the bundles can be -bundles with  < j beco’s we would have
been able to use that to split A or B. In each bundle ⊆ A×B each member of A
must be the first component of precisely one ordered pair and each member of
B must be the second component of precisely one ordered pair. In other words,
each bundles is the graph of a bijection—as in the case of the socks.

So we can match up all the j-tuples in such a way that one single choice
suffices to order them all. Then we work on the next size down. So only finitely
many choices needed. This is the correct proof of the allegation in the yellow
book: the proof there is fallacious.Smuggle in the expression

‘indiscrete category’ here Can we do the same if S is a union of countably many finite sets without
any bound on the size of the finite sets?

This time let’s not assume that every ordered pair of socks is a sock, but that
every ordered pair of distinct socks is a sock, and that every sock is an ordered
pair of distinct socks. (This addresses the concerns above at *) This time there
may well be no maximal size of surviving bundles, so we cannot use the useful
boldface trick of last time to get bijections—though we might sometimes be
lucky and get bijections or at least constraints on bijections: if A × B gets
split we get a constraint on a bijection: the earliest bundle to be included in it
represents a constraint. Also, a bijection or constraint-on-a-bijection between A
and A′, together with a bijection or constraint-on-a-bijection between B and B′

will lift to a bijection or constraint-on-a-bijection between A × B and A′ × B′.
This time we look at surviving bundles of minimal size. Just as in the

original development, with πL and πR we can say that a j-bundle can only be
a bijection between two j-bundles. Now it becomes clear that it could really be
worth trying very hard to show that in that development there really is enuff
info to obtain bijections between all the pairs, because if it works there, it might
work here. If it did, we could reduce the problem of splitting all j-bundles to the
problem of splitting one. Then we use the fact that bijections and constraints
on bijections can be lifted to cartesian products and hope that we can then
attack larger bundles.

I am deeply pessimistic about this. Even supposing that we can exploit
the fact that everything is an ordered pair to build up bijections between all
surviving j-bundles, where j is minimal, and that we can (well, we obviously
can) use this to build up bijections between cartesian products, i don’t see any
reason why there shouldn’t be infinitely many surviving bundles of every size.
For each p, we might be able to build bijections between all the p-bundles, but
they don’t interfere helpfully at all.

So the best we can hope is that we hang onto the finite bound in the as-
sumption, and weaken the assumption to |S| = |S| · n.

March 2009: i now think that this method will show that if |S| = |S|2 and
S has a totally ordered partition into pieces of bounded finite size then S is
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totally ordered.

THEOREM 23 If NC is finite, 〈NC,≤〉 is a complete distributive lattice,
and ∨ b =  + b.

Proof: Observe that if  ≤ c and b ≤ c then + b ≤ c+ c = c, so + b really
is ∨ b. This makes 〈NC,≤〉 into a complete poset, so ∧ b is defined. All
that remains to be shown is distributivity.

It is clear that c∧+ c∧b ≤ c∧ (+ b). A set that is a union of a piece
that embeds into both C and A, and a piece that embeds into both C and B
embeds into both C t C (which is C) and into A t B.

For the other direction (c∧ (+ b) ≤ c∧+ c∧b) we reason as follows.
Consider subsets of A t B of size ≤ c. Such a subset D ⊆ A t B comes in two
parts: D∩A and D∩B, and thereby defines two cardinals: |D∩A| and |D∩B|.
There are only finitely many such pairs of cardinals so for each such pair pick a
D and ensure that they are all disjoint. Then take the union of all the D∩A. It
will be of size c∧ . And the union of all the D ∩N will be of size c∧ b. But
then the union of all the D will clearly be of size (c∧ )∨ (c∧ b). But the
union of all the D is obviously the largest things thing that can be embedded
in both C and A t B, and is therefore of size c∧ (∨ b).

I suspect there are general reasons why NC should be a distributive lattice
if it is a lattice at all, but in this case we can exploit  = 2 · .

Now that we know that 〈NC,≤〉 is a complete distributive lattice consider
the function ƒ : NC → NC defined by ƒ () =

∨

{b : b 6≥ }. If  ≤ ′ then
{b : b 6≥ } ⊆ {b : b 6≥ ′} whence ƒ () =

∨

{b : b 6≥ } ≤
∨

{b : b 6≥
′} = ƒ (′). So  ≤ ′ → ƒ () ≤ ƒ (′). (Can we have  ≤ ƒ ()? I don’t see
why not. . . )

Now start with an arbitrary cardinal  and consider 〈ƒn() : n ∈ IN〉.
This sequence can take only finitely many values, so it must repeat. Any
loop must be an antichain, because of the monotonicity. Suppose it is
{, ƒ (), ƒ2() . . . ƒ (n−1)(), ƒn() = } with n > 2.

But then (ƒ () + ƒ (ƒ ()) + . . . ƒn()) is a sum of things 6≥  and so must
be ≤ ƒ (), so ƒ (ƒ ()) ≤ ƒ () contradicting the fact that we have an antichain.

Thus the antichain must be of width 2 at most. It could be a singleton.

Now, it doesn’t have to be an antichain. It could be a chain ending at a
fixed point!

Suppose  = ƒ (b) ∧ b = ƒ () is such an antichain. What happens above
 and b? Suppose c > . If c 6≥ b we have c ≤ ƒ (b) =  so we must have
c ≥ b. Thus c >  → c ≥ b and c > b → c ≥  analogously. So everything
above either  or b must be above ∨ b which is therefore a pinchpoint. It
could be |V| of course. . .

How about analogously defining g() to be
∧

{b : b 6≤ }?
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Let α be a cardinal with a unique successor α+ . That is to say, anything
> α is ≥ α+ . Now suppose there are cardinals incomparable with α. This
makes the following definition sensible. Set

α− =
∧

{β : α 6≤ β}.

By distributivity (after all, 〈NC,≤〉 is a complete distributive lattice)

α∨
∧

{β : α 6≤ β 6≤ α} =
∧

{α∨ β : α 6≤ β 6≤ α}

This cardinal must be ≥ α+ since it is an inf of things all > α. But if α∨ splat
is bigger than α, splat must be bigger than α or at least incomparable with it.
It can’t be bigger than α (it is the inf of thing incomparable with it) so it must
be incomparable with it. So α− is incomparable with α.

This proves that if α has a unique successor, and is not a pinch-point, there
is a unique minimal thing incomparable with it.

(Let’s try the dual of this. Suppose as before that α is a cardinal with a
unique predecessor α− . That is to say, anything incomparable with α is ≤ α+ .
Now suppose there are cardinals incomparable with α. This makes the following
definition sensible. This time

α+ =
∨

{β : α 6≤ β}.

By distributivity

α∧
∨

{β : α 6≤ β} =
∨

{α∧ β : α 6≤ β 6≤ α}

etc)

16.5.2 The Oberwolfach Cardinal

At the Oberwolfach meeting in 1987 John Truss and I had a look at the old
question of whether or not NC can be proved to be infinite and we briefly
thought we had proved it. If NC is finite there is a ∗-unique ∗-maximal
cardinal α s.t α2 6≤∗ α.

Assume NC finite . . . now read on . . .

Suppose α is *-maximal so that α2 6≤∗ α. We will show that it is *-unique.
(We may also have to consider a ≤-maximal version.)

Suppose α and β are both ≤∗-maximal with this property, and are *-
incomparable, so α, β,< α + β. Therefore, by *-maximality, (α + β)2 ≤∗
(α + β). Therefore, by Bernstein’s lemma, α and β are *-comparable.

Therefore, if α is *-maximal so that α2 6≤∗ α then it is unique with this
property: it is the *-maximum α such that α2 6≤∗ α.

Now let β be any cardinal s.t. β 6≤∗ α. Then α <∗ β + α. Therefore, by
maximality of α, we have (β+ α)2 ≤∗ β+ α and we invoke Bernstein’s lemma
again to infer α ≤∗ β. So α is a *-pinch-point: (∀β)(β ≤∗ α∨ α ≤∗ β).
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Notice that this has an an immediate corollorary that α >∗ every aleph.
It’s *-comparable with every alpeh but cannot be an aleph itself, so it maps
onto every aleph.

Next we show that α2 is a *-successor of α. Suppose b and c are two
cardinals >∗ α. We must have (b + c)2 ≤∗ b + c so by Bernstein’s lemma b
and c are ∗-comparable. (this fact is worth noting on its own account!)

Next suppose α <∗ β <∗ α2. This gives α2 ≤∗ β2 ≤∗ β ≤ α2. So β and
α2 are *-equivalent, whence α is *-adjacent to α2.

Suppose α is a maximal lower bound (wrt ≤∗) for two cardinals b 6= c. By
maximality of α we have b2 ≤∗ b and c2 ≤∗ c. We also have α2 ≤∗ b2 and
α2 ≤∗ c2. So α2 ≤∗ b and α2 ≤∗ c. So α2 is also a ≤∗-lower bound for
{b, c}, and α <∗ α2 contradicting the assumption that α was a ≤∗-maximal
lower bound for {b, c}.

So (∀b, c >∗ α)((α <∗ α2 ≤∗ b, c)∧ (b ≤∗ c∨ c ≤∗ b))

Let’s try to get a contradiction

DEFINITION 17 Define ƒ on NC by ƒ ‘α =dƒ {β : 2β ≤ α}.

Evidently ƒ ‘α ≤ α. We want ƒ ‘α < α to make ƒ pressing-down and interesting.
In fact we can prove something stronger.

LEMMA 14 ƒ (α) ≤ α 6≤∗ ƒ ‘α.

Proof: Let Aα be {β : 2β ≤ α}. With α free we will show by induction on n
that no subset of Aα with n members has a supremum ≥ α.

When n = 1 this is trivial.
Suppose it proved for n = k and let X ∪ {β} be a k + 1-membered subset

of Aα whose supremum is ≥∗ α. Let χ be X. Suppose per impossibile that
χ + β ≥∗ α. Then

χ + β ≥∗ α ≥ 2β = 2β+β = 2β · 2β

Now use Bernstein’s lemma:

χ ≥∗ 2β ∨ β ≥∗ 2β

so
χ ≥∗ 2β

whence χ ≥ β and χ + β ≤∗ χ + χ = χ. But χ 6≥∗ α by induction hypothesis.

We note that ƒ ‘α is defined as long as α ≥ 2ℵ0 .
We will eventually obtain a contradiction by considering ƒ -chains.

Let F(α, n, β) say that β = ƒn(α). By induction on ‘n’ we have
(∀αβ)(F(α, n, β)←→ F(Tα, Tn, Tβ)) as long as α, β ≤ T |V|.

Because NC is finite and ƒ is pressing-down, every ƒ -chain is finite. Let
G(α) be the largest n such that (∃β)(F(α, n, β). We must check that G(Tα) =
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TG(α). Consider the β such that F(α,G(α), β). We have F(Tα, TG(α), Tβ).
Now β 6≥ 2ℵ0 (since ƒ (β) is not defined) and the continuum is cantorian so
ƒ (Tβ) is not defined either. So if we do ƒ TG(α) times to Tα we obtain
something we cannot do ƒ to. So G(Tα) = TG(α).

To obtain a contradiction it will suffice to show that G(T |V|) = G(T2|V|)+
1. That might not be possible. We note that T |V| > ƒ (T |V|) ≥ T2|V|. (Draw
a ladder.)

Now attempt to build a bijection, leaving out T |V| to get the parity argu-
ment. Pair ƒ (T |V|) with T2|V| and, once you’ve paired  with y, pair ƒ () with
ƒ (y). That is to say, we endeavour to pair off ƒn+1(T |V|) with ƒn(T2|V|). Since
we know ƒn+1(T |V|) ≥ ƒn(T2|V|) this process can come adrift (the two arms of
the ladder run out at different times) only if we reach an n such that ƒn+1(T |V|)
is big enuff to feed to ƒ but ƒn(T2|V|) isn’t. But if ƒn+1(T |V|) ≥ 2ℵ0 then also
T(ƒn+1(T |V|)) ≥ 2ℵ0 .

All this shows is that this n isn’t cantorian. Bugger.

A bit of fun

Assume NC finite as usual. Let An := {α ∈ NC : ℵn ≤ α 6≥ ℵn+1}. Since
NC is a distributive lattice we can show that each An is a sublattice, with a
top element and a bottom element and is closed under ×.

We can do something clever by exploiting theorem 24 to show that the map
α 7→ α + ℵn+1 : An → An+1 must be an injection. What about a map coming
down? consider α 7→

∨

{β ∈ An : β ≤ α}. I think this is a right-inverse to the
last map. (miniexercise: check this) It wouldn’t be onto by any chance would
it? No reason to suppose that. But at least we show that NC is the union of
a family of finite distributive lattices, with a sequence of retracts....

leftovers

Now suppose α2 = α. Then 2ƒ ‘α ≤ α

2ƒ ‘α =
∏

2β≤α

2β

so 2ƒ ‘α is a product of things ≤ α and so is ≤ αn which is α
We ought to be able to prove something like this. Let α be a cardinal of

infinite rank. Let [α]0 be {α} and let [α]n+1 be {β : 2β ∈[α]n}. Let ⊕0 be
+ and κ ⊕n+1 μ =dƒ 2(γ⊕nζ) where κ = 2γ and μ = 2ζ. It would be nice to
show by induction on n that

ρ(α) ≥ n + 4→ (∀k ≤ n)([α]k is closed under ⊕n−k)
Unfortunately this doesn’t seem to work. Suppose 2ℵ17 = ℵω+1, 2ℵω =

ℵω+3. ℵℵ17
ω

> ℵω to be continued
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16.5.3 α of infinite rank or 2Tα ≤ α
Does 2Tα ≤ α have the same consequences for α (not being an aleph, for
example) as 2Tα = α? Well, it certainly doesn’t if α ∈ IN for then we can have
n > 2Tn but n is the cardinal of a wellordered set. So the conjecture should
be something like: if α is infinite, or if AxCount≤ , then 2Tα ≤ α has the same
consequences for α as 2Tα = α?

The idea is this: use the singleton function, given || > |P()|, to get a
setlike bijection (which will—obviously—not be a set) between  and P() so
that 〈〈〉〉 ' 〈〈P()〉〉 and thus 〈〈〉〉 is a model glissant of TSTI. So what we
need, given α > 2Tα, is that there should be  and y such that

α =  + y

2Tα =  + Ty

 and Ty are both odd or both even, since their sum is even. Either way
α is even. Then whenever we have a thing A of size α we can partition A =
A1 t A2, P(A) = B1 t B2 with maps ƒ : B1 → A1 and g : ι“A2 → B2 with
ƒ a set ι−1g a set. We use this to construct a bijection h : A ←→ P(A) by
h = ƒ ∪ ι−1g. We would like this to be setlike. If it is we have shown that MA
and MP(A) are isomorphic.

Now we do know that if α ∈ IN we have no hope of partitioning  in this way
to get a setlike bijection, so either (i) the construction of  and y must depend
on α being infinite, or (ii) the fact that the bijection constructed is setlike must
depend of α being infinite, or on AxCount≤ , or something.

Now (i) doesn’t seem possible. It is true that a parity argument shows that
α would have to be even but i don’t see any way of excluding the possibility of
finite solutions to this pair of equations.

So it is probably (ii) and we have to think about strong axiom would be
available to make the partition have the desired property. It’s worth pointing
out that as long as α is infinite there are such  and y, for set  = 2Tα and
y = α − 2Tα (unless α = 2Tα in which case there is nothing to prove!) For we
want

2Tα = 2Tα + T(α − 2Tα)
This will follow from

2Tα = 2Tα + T(α)

which will follow from
2Tα = 2Tα + 2T(α)

which follows from
α = α + 1

But if 2Tα ≤ α we must have

22
2T
3α
≤ α

so α must be dedekind infinite as desired.
[HOLE Tidy this up]
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1. Can we show that α of infinite rank → α not in of any aleph? Assuming
ACo then iα is defined for some α > Tα so in such a case, no.

2. If AxCount≤ fails, then in will be a counterexample for some n.

3. AxCount≤ ←→ (2∀(P() ⊆  →  not wellordered))?

Suppose 2Tα ≤ α. Then α is infinite. Suppose it is an aleph. Let α‘β
be {β,2β . . .} as far as the powers remain below α. Can we do anything
with this?

4. AxCount≤ → (2T || ≤ || → M |= Amb)? AxCount≤ is needed to
prove (2T || ≤ || → M |= Amb because 2Tn < n can happen otherwise
and this would give a model of Amb + ¬ AxInf.

5. AxCount≤ → (2T || ≤ || → M |= Amb)? Assume ACo. So all i
numbers exist. Now for some α ∈ On with α > Tα we will have the
corresponding i number iα with 2Tiα < iα. This cannot give rise to a
model of NF + AxCount≤ , for in any such we can prove “|V| is not a
i number” But since we can use Ehrenfeucht- Mostowski to get models
of KF containing 2Tα ≤ α without any additional assumptions, we know
that 2Tα ≤ α has no strong consequences in a stratified context.

If (2) is to work, we want to be sure that (1) works only for α 6∈ IN. If it
were to work for all finite n ≥ Tn then for any n ∈ IN we would have  and y
s.t.

 + Ty = 2Tn

 + y = n

Now clearly + Ty and + y are conguent mod 2, and one of them is a power
of 2, so the other is at least even. So n is even. But if 2Tn ≤ n then certainly
2(Tn+1) ≤ (n + 1) and n + 1 would have to be even as well.

So far so good!
That takes care of (1). How about (2)? Well, this is just the old problem of

showing that s-b works for setlike injections to give setlike bijections, and there
seems no reason why it should. It is quite clear that h will lift once, but there
seems no reason to suppose it will lift twice. Of course in general we cannot
expect to be able to derive interesting consequences from 2Tα ≤ α because this
can happen in KF with no knobs on.

We have seen that AxCount≤ → |V| is not a i number, and that if α is of
infinite rank then it is not an aleph. Can we show that if α is of infinite rank
then α is not a i number?

Every now and then one of my part II set theory supervisees asks me “I know
what ω is, it’s the length of the positive integers. What is ω1 the length of?”
And i always feel, when i reply “the set of all countable ordinals in their natural
order” that i am giving a trick answer. And i suspect i am too, because they
usually don’t seem very satisfied. The witness is not the one one would obtain
by transformation of a constructive proof—unless it is of higher type, where
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all the countable ordinals are elements—so we get ℵn at type n. Therefore no
proof of existence of ℵn uniform in n, and no stratified proof of existence of
ℵω. The only proof is by induction on n.

This certainly seems to be the situation in NF anyway.

Indeed even if we do have all ℵn, we cannot construct an ℵω of the same
type without AC. (Coret: all stratified replacement provable in Zermelo, and
no ℵω in Z)

(∀n)(ℵn exists) stratified but has no stratified proof.

Is it true that whenever TZT ` F(t) for all terms t then there is a uniform
proof in the arithmetic of TZT that such proofs exist? Clearly the arithmetic
of TZT is typically ambiguous: the T function is an isomorphism between the
naturals of level n and the naturals at level n + 1.

I remember now why i was so concerned about finding a nice set of large
finite size. Consider the claim that there is a function β such that (∀n) every
non-empty n-symmetric set has an (at worst) β(n)-symmetric member. This
sounds desirable, at least, though it is prima facie an even stronger assertion
than the one that TZT has a term model. Now consider the finite cardinals, all
of which are 2-symmetric. We are now stuck with having to produce, for each
finite cardinal k, a ≤ β(2)-symmetric set of size k. If we now use hereditarily
finite sets we run up against the fact that m-symmetric hereditarily finite sets
are bounded in size, and so for k large enuff we are not going to be able to find
a hereditarily finite set of rank β‘2 and size k. The obvious thing to do is to
reach for the initial seg of IN bounded by k, but this is an object of higher type.
What does the proof look like that that the natural numbers below n are a set
of size Tn? One way we could hack round this is if we have an algebraic version
of “definable with n alternating blocks of quantifiers” (after all, the notion of n-
symmetric set is an algebraic version of set-abstract-with-sole-free-vbl-of-type-n)
for then we seek instead function β, γ such that (∀n1, n2) every non-empty
n1-symmetric set definable with n2 alternating blocks of quantifiers has an
(at worst) β‘〈n1, n2〉-symmetric member definable with γ‘〈n1, n2〉 alternating
blocks of quantifiers.

Finding large sets disjoint from their power sets can be useful. Suppose
we wanted to prove the consistency of NF3 + (ℵ0) ∈ IN. We work in NF +
¬AxCount≤ and fix on α some finite beth number > 2Tα. We cannot use 2
here because this only works for internal permutations, but if we can find  ∈ α
disjoint from P() then we can extend the 1-setlike bijection ←→ P() to a 1-
setlike permutation of the universe, which gives rise to a model of NF3 in which
α is the size of the new universe. Mind you, if  6∈  then P(B()) is disjoint
from its power set and of size |V|. But in any case  6∈ → B‘∩P(B()) = Λ
so every cardinal contains a set disjoint from its power set.

The point about finding sets disjoint from their power sets is this. If we
have a bijection between a part of  and a part of P() then this will extend
to a permutation of the universe. If  ∩ P() = Λ, then the permutation is an
involution, which makes life much easier.



16.5.4 Idempotence implies Trichotomy implies AC

Suppose α = α2 for all α. Let α and β be two cardinals, and consider α+β. It
must be equal to (α+ β)2 which will simplify to α ·β. We then use Bernstein’s
lemma (twice) to infer both α ≤ β ∨ β ≤∗ α and α ≤∗ β ∨ β ≤ α which
together give

α < β∨ β < α∨ α ≤∗ β ≤∗ α,

which is trichotomy. Or at least near enuff to trichotomy to imply AC.

16.6 Everything to do with Henrard’s trick

[HOLE Explain why we can prove SB for Henrard maps in NF3] If we can
explain bijection we can explain injection. So (deep breath)

An bijection from  into y is a set  of singletons and unordered pairs from
 ∪ y such that

� every member of Δy belongs to precisely one pair

� every member of  ∩ y belongs to precisely two pairs or to one singleton.

� No chain can have two ends in  \ y or two ends in y \ .

All these conditions can be made to look horn.
If we take the set containing a pair and close under the operation “add any

pair that meets one of the things you’ve already got” you get a chain. There
are several sorts of chains.

1. Chains consisting of one pair only.

2. Chains consisting of more than one pair beginning in  and ending in y.

3. Chains with one end in  and no other end.

4. Chains with one end in y and no other end.

5. Chains with no ends at all.

If we want to use Henrard bijections to talk about orderisomorphisms then
we will need to allow chains like those in (2). This is because such bijections
have to do extra things, and we will explain this later.

Normally we can assume without loss of generality that all chains with two
ends consist of precisely one pair. This is because you simply pair off the two
endpoints (to get a pair in 1) and rejoin the severed ends to get a chain in 5)

Let us make explicit the connections with a decomposition theorem of
Tarski’s. It’s old and elementary but not commonly taught nowadays.

Suppose we have three sets A, B and C—all disjoint—of sizes α, β and γ,
and a henrard bijection between A ∪ B and A ∪ C. We assume—as we always
can without loss of generality, and this time we need it—that all chains with
two ends contain precisely one pair. We are going to partition these sets.
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� Some things in B are paired directly with things in C. Put these into B1

� Some things in B start in B and belong to chains with only one end. Put
these in B2.

Similarly

� Some things in C are paired directly with things in B. Put these into C1

� Some things in C start in C and belong to chains with only one end. Put
these in C2.

� Some things in A belong to singletons or to chains without ends; Put them
in A1

� Some things in A belong to single-ended chains ending in C; put them in
A2

� Some things in A belong to single-ended chains ending in B; put them in
A3

Clearly we have |B1| = |C1|. Call this cardinal δ. Let |B2| be β′ and |C2|
be γ′ and |A1| be α′.

Then we have



� β = β′ + δ

� γ = γ′ + δ

� α = α′ + ℵ0 · (β′ + γ′)

That is to say, we have proved:

THEOREM 24 (Tarski)
Whenever α + β = α + γ there are δ, α′, β′ and γ′ such that β = β′ + δ,

γ = γ′ + δ and α = α′ + ℵ0 · (β′ + γ′)

Must check whether or not this can be done in NF3.

It’s also worth asking whether we can use this to show that if α + β =
α + γ = |V| with α, β, gmm < |V| then β = γ.

Well, we would certainly have α + β = α · γ which by Bernstein’s lemma
would give α ≤ β∨ γ ≤∗ α. But of course we know that anyway.

Now we have to consider the problem of composing bijections!
Note that the slick proof of S-B works in NF3 for Henrard maps.

16.6.1 Orderisomorphisms

We can represent partial orders without using ordered pairs by talking about
the set of initial segments. We want to use Henrard bijections to talk about
isomorphisms between orderings. If we do this, then we cannot assume that all
chains with two ends have precisely one pair.

Consider the two wellorderings.

� A = set of even naturals in their usual order followed by the set of odd
naturals in their usual order

� B = {4n : n ∈ IN} in its usual order followed by {4n + 2 : n ∈ IN} in
its usual order followed by the set of odd naturals in their usual order.

The set IN belongs to a pair with the set of evens, because—in A—IN is the
initial segment of length ω · 2 and in B the initial segment of length ω · 2 and
in B is the evens. The set of evens—in A—is the initial segment of length ω
and is therefore paired with the initial segment of B that is of length ω, namely
the set {4n : n ∈ IN}.

On the other hand a henrard bijection that codes a bijection between two
total orderings A and B cannot contain any chains without endpoints. For
suppose it does. One of the features of partial orders coded-as-initial-segments
is that the intersection of any subset of this representation is another element of
it. (Careful: this is true always! The clause that codes wellfoundedness—at least
in the case of total orders—is that, for any initial segment, the intersection of all
its supersets in the code has precisely one more element) If we have a chain with
no ends we know that all the objects appearing in its pairs are initial segments
of both A and B. If C is such a chain, look at its intersection . This is an initial



segment of both A and B. If these two initial segments are the same length,
then  would belong only to a singleton. So one of them is shorter than the other
(here we use the fact that the orders are total), and without loss of generality
it is the occurrence in A. Since C has no ends, we know this occurrence of  is
paired with some initial segment ′ of B. But then, since the A-occurrence of
 was shorter than the B-occurrence of , we know that ′ is shorter than (and
therefore a B-initial segment of) , contradicting ⊆-minimality of .

There may be easier ways to procede from here, but this does at least mean
that every pair in every chain can be said to have an ‘A-end’ and a ‘B-end’, and
once we have that we can characterise isomorphisms between two wellorderings
by adding the clause that if a bijection contains a pair {A,B} where A is the
A-end of {A,B} and B is the B-end, then it must also contain the pair {A′, B′}
where A′ is the ‘next’ initial segment after A (the intersection of all its supersets
in A) . . . , and a similar condition for limits. This part depends on the partial
order being wellfounded.

Unfortunately all this seems to need four types, so we aren’t really any
further forward!

16.7 How many sets are there of any given size?

DEFINITION 18

A cardinal ideal is a set closed under subset and equipollence.
For  a cardinal ideal, let ∗ be the set of surjective images of things in .
For α a cardinal, let us write α for { : || ≤ α} and write ∗

α
for { :

|| ≤∗ α} and

∗ is another cardinal ideal,  ⊆ ∗ and the inclusion may be proper.
This next little lemma is the result of an idea of Nathan Bowler’s.

LEMMA 15 (Nathan Bowler)
For all cardinal ideals ,

|∗| ≤∗ ||.

Proof:
Send each X ∈  to fst“X. (snd“X would do just as well). Clearly this

gives us members of ∗ as values: we just have to check that everything in ∗

is obtained in this way. Yes, because if  ∈ ∗ is ƒ“y for some y ∈ , then ƒ �y
is also in : every function is the same size as its domain!

Or, again:
If ƒ is a function defined on a member X of  then fst is a bijection between

ƒ and X—which is in , so ƒ ∈ . So anything in ∗ is the range of a function
which—considered as a set of ordered pairs—is a member of . So let F be the
function defined on  as follows:

F(X) := if X is a function then X“ else ∅.



then every member of ∗ is a value of F. So F maps  onto ∗.

REMARK 53

If β ≥ α then |β| ≤ 2Tα

For B in β and A in α there is a surjection ƒ : B→→ A. Now {ƒ−1“A′ : A′ ⊆ A}
is a subset of β and it is the same size as P(A).

What Tarski’s argument shows in an NF context is that any cardinal ideal
the same size as ι“V cannot contain all wellorderable sets.

We collect some nice results about sizes of cardinal ideals, but only some.
Cardinal ideals defined by excluded-minor properties have sizes that seem very
hard to measure. How does one get a handle on the number of Dedekind-finite
sets for example?

REMARK 54
Let  and J be cardinal ideals with |J| = T |V|.
Let K be the cardinal ideal {

⋃

 :  ∈  ∧  ⊆ J}.
Then |K | ≤∗ ||.

Proof: Assume |J| = T |V|. Then we have the following

ι“ =(1) ι“P(V) '(2) P(ι“V) '(3) P(J) →→(4) ι“K

(1) holds beco’s  is a cardinal ideal;
(2) holds by redistributing iotas;
(3) holds by assumption on J;
(4) holds by definition of K.

So (peeling off the iotas) |K | ≤∗ ||.

Can we weaken the assumption “|J| = T |V|” to |J| ≤∗ T |V|? That would
enable us to bound the sizes of the Cn (see below). Come to think of it i’m no
longer 100% happy about step (2). . . . It seems to need something like -being-
cantorian. In the case of interest below  is the set of countable sets, so it’s
OK.

COROLLARY 10 There is a surjection from the set of wellordered sets to the
collection of sets that are wellordered unions of finite sets.

Proof:
Let  be the ideal of wellorderable sets and J the ideal of finite sets.



So, if V really is a wellordered union of finite sets, then every set you can
think of (being a subset of V) is a wellordered union of finite sets and is therefore
in the range of this mapping from the set of wellordered sets, so the collection
of wellordered sets maps onto V. That sounds terribly implausible to me.

This looks like something worth making an effort for. Can we show that
there is no surjection from the set of wellorderable sets onto V?

How many countably infinite sets are there? How many wellorderings of
length ω?

(i) Tarski has a theorem that every set has more wellorderable subsets than
singleton subsets. This works in NF. Since no wellordered set maps onto V
this tells us that there are more sets that do not map onto V than there are
singletons:
|{ : || 6≥∗ |V|}| > T |V|
But we can do much better than that.
(ii) Nathan showed that the collection of sets that are surjective images of

ι“V is itself a surjective image of ι“V. However i cannot find his proof.
He also showed that there are precisely T |V| finite sets.
Can we connect this with the question of whether or not V is a union of a

wellordered family of finite sets? Is WFN smaller than V?

REMARK 55

|{ : || < |V|}| = |V|

Proof: Do we have |P()| = |V| → || = |V|? Clearly not. So there is  with
|| < |V| and |P()| = |V|. So P() is a |V|-sized set of things smaller than
V. So there are |V|-many things smaller than V.

But i think this argument proves a bit more. Suppose |P()| = |V|. Then
this argument shows that there are at least |V|-many things of size ≤ ||. And
there are |V|-many things of size V: {V ×  :  ∈ V}. Duh!

REMARK 56
(1) (∀α, β ∈ NC)(α ≤ β→ |α| ≤ |β|)
(2) (∀α, β ∈ NC)(α ≤∗ β→ |α| ≤∗ |β|)
(3) (∀α, β ∈ NC)(α ≤∗ β→ |{ : || ≤∗ α}| ≤ |{ : || ≤∗ β}|);
(4) (∀α, β ∈ NC)(α ≤∗ β→ |{ : || ≤∗ α}| ≤∗ |{ : || ≤∗ β}|.

Proof:
(1)
Suppose α < β are cardinals. Fix A ∈ α and B ∈ β with A ⊂ B. Without

loss of generality we can take B to be included in a moiety. This means that
there are the same number of things in α disjoint from B as there are things
in α. (Details for the suspicious. If M is the moiety disjoint from B and π a
bijection V ←→ M then, for any A′ ∈ α, π“A′ is a member of α disjoint from
B, and the function A′ 7→ π“A′ is injective.) Now let A′ ∈ α be disjoint from B.
We send it to (B\A)∪A′, which is a member of β. This map A′ 7→ (B\A)∪A′



too is injective. Composing these two injections sends α into β. This proves
α ≤ β→ |α| ≤ |β|.

(2)
Suppose α ≤∗ β. If ƒ is a function defined on a member B of β then fst is

a bijection between ƒ and B—which is in β, so ƒ ∈ β. So anything in α is the
range of a function which—considered as a set of ordered pairs—is a member
of β.

So fix A an arbitrary set of size α, and let F be the function defined on β as
follows:

F(ƒ ) := if ƒ is a function with |ƒ“β| = α then ƒ“β else A.

then every member of α is a value of F. So F maps β onto α.

(3)
If B→→ A then the set of things that B maps onto is a superset of the set of

things that A maps onto.

(4)
We can refine (2) into a proof that if α ≤∗ β then |{ : || ≤∗ α}| ≤∗

|{ : || ≤∗ β}|. The F that we need can be defined as: Consider the function

F(ƒ ) := if ƒ is a function with |ƒ“{ : || ≤∗ β}| ≤∗ α
then ƒ“{ : || ≤∗ β}
else ∅.

Notice that F has no parameters. That is to say, we have a canonical
construction that gives us, for all cardinals α ≤∗ β, a map

Fα,β : { : || ≤∗ β}→→ { : || ≤∗ α}.

Do the Fα,β commute? I bet they don’t.

Some remarks.
Here’s another proof of (1)

Suppose α < β are cardinals. Fix a moiety M. Clearly M has the same
number of α-sized subsets as V does, so if we can find an injection from Pα(M)
(the set of α-sized subsets of M) into β we will be done. Now the moiety V \M
will contain a set c of size β − α. We have to be careful here: a set c is of size
β − α if its union with a disjoint set of size α is of size β. α < β so there are
such sets c, and V \M is a moiety and so has subsets of all sizes. But then the
function from Pα(M) defined by  7→  ∪ c is injective and all its values are
sets of size β.

We know that the sizes of cardinals start at T |V| and stay that way for
finite cardinals at least, and eventually reach |V|. Naturally one wonders at



what point the size of a cardinal (as a set) flips to |V|. How many things are
there of size T |V|? Of course it is at least T |V| but I have the feeling that it is
precisely T |V|, but i can’t now remember where this feeling comes from.

And how many countably infinite sets are there? At least T |V|. But also
≤∗ T |V|. Precisely T |V|?

I noticed years ago that if  injects into its complement, so does P().
After all, if  injects into V \ , P() injects into P(V \ ), which is a subset
of V \P().

But actually the same works for other lifts. If  and y both inject into their
complements, so does × y. We’d better prove this. If  injects into V \ and
y injects into V \ y then  × y injects into (V \ ) × (V \ y) which is a subset
of V \ ( × y).

But what kind of ill-brought-up set does not inject into its complement one
might ask? Some things of size |V| of course. But if you are smaller than V and
still do not embed in your complement then you are one piece of a partition of
V into two smaller pieces. Now suppose X2 is one piece of a partition of V into
two smaller pieces. Then X2 does not inject into its complement, so neither does
X. Does this mean that if α2, β < |V| with α2 + β = |V| then α+ β = |V|? It
looks like it but we have to be careful. The point is that the property of being
smaller than your complement is not obviosuly preserved under equinumerosity.

Even if α2 + β = |V| it might be the case that whenever |A| = α then
|V \ (A× A)| = |V|. The fly in the ointment is that—for all we know—it might
be that there are sets of size α2 whose complements are of size β with β < |V|
but whenever |A| = α then |V \ (A × A)| = |V|.

Another cute fact i’ve just noticed, which will have to be fitted in somehow.

REMARK 57
Let α be a cardinal such that α = α2 ≥∗ |V|;
then there are |V|-many sets of size α.

Proof: Let α be as in the statement of the remark, and let A be a set with
|A| = α. For each A′ ⊆ A we have α ≤ |A × A′| ≤ α2 whence |A × A′| = α.
There are |V|-many such A′ (beco’s α ≥∗ |V| so |P(A)| = |V|)) so there are
|V|-many sets of size α.

I think this can be refined. Let 2Tβ = |V| and |A| = α · β = α ≥∗ |V|, and
β = |B|. For each B′ ⊆ B we have α ≤ |A × B′| ≤ α · β = α. Each set A × B′
is of size α and there are |V|-many of them beco’s B has |V|-many subsets, so
there are |V|-many things of size α.

However we don’t know that there are any such α other than |V| itself. Of
course what is really going on in this proof is the following. Suppose A is a set
of size α and  is the cardinal ideal { : | × A| = α}. Then there are at least
||-many things of size α.

It would be nice to be able to prove that if X maps onto V then there are
|V|-many things of size |X|.



16.7.1 The smallest σ-Ring and an old Question of Boffa’s

Consider the recursive datatype C generated by the countable (ie countable
or finite) sets as founders, and containing Y whenever there is a surjection
ƒ : Y →→ X where X is a C-set and the fibre ƒ−1“ is a C-set for every  ∈ X.

C0 = set of countable sets, Cα = countable unions of sets in
⋃

β<α Cβ. The
closure set is C∞. Observe that each Cα is a cardinal ideal.

The question is: can we have C∞ = V? one way to exclude this possibility is
to bound the size of the Cαs somehow; perhaps one could show that ι“V maps
onto each Cα.

Every ω-sequence S of sets can be coded up as a single set K(S) = X such
that S(0) = fst(X) and thereafter S(n) = fst(sndn(X)).

This gives us ƒ0 : ι“V →→ C0 by ƒ0({}) = (K−1())“IN
Thereafter we can set

ƒn+1{} =
⋃

ƒn“ι“
. . . which is stratified but inhomogeneous. So we can define it for concrete n

but cannot iterate transfinitely. ƒn : ι“V →→ Cn.

To be more concrete about it: we have two bijections θ1 and θ2 with θ1“Vt
θ2“V = V. 〈, y〉 is usually θ1“∪θ2“y. But we can do better than this. We
can encode an ω-sequence 〈0, 1, 2 . . .〉 as

θ1“0 ∪ θ2“(θ1“1 ∪ θ2“(θ1“2 ∪ θ2“(. . .

or, avoiding the unbounded nesting (since we can):

θ1“0 ∪ θ2“(θ1“1) ∪ (θ2)2“(θ1“2) ∪ . . . (θ2)n“(θ1“n) . . .

By this means we can encode an ω-sequence of things at the same type as
the things in the sequence.

Notice that every set encodes an ω-sequence in this way.

Consider the function X 7→ set of ω-sequences-from-X. It’s ⊆-monotone.
(Best check this allegation!), and the GFP is V. It would be nice to have a steer
on the size of the LFP—or its rank. We can reach the LFP by starting with the
set of all those sequences whose every component has size 1 at most.

We might have to be careful. If we only stop when we reach a singleton (on
the grounds that a ctbl union of finite sets might not be countable) we have
to be sure that if we decode a finite set as a sequence then it is a sequence of
singletons, and that might not be true. We could just stop descending once we
reach finite sets, but that looks a bit odd. Let us call this set S∞.

. . . or we could decide to just start with those ω-sequences that are every-
where singletons or empty, and then close under taking ω-sequences. Now it’s
no longer true that the GFP is V but that doesn’t matter.

We can probably use a modification of Jech’s argument to show that every-
thing in S∞ has rank < ω2. There is an obvious projection from S∞ → C∞.
However there is no reason to suppose that it is surjective.



How can we exploit Jech’s construction in a model in which every limit
ordinal has cofinality ω? Instead of HC we consider the rectype of ω-sequences
of ω-sequences of . . . There will be a surjection fromn this family onto On. Or
will there? Does this need ACω (see the worries about certificates above).

Anyway the idea now is to use a trick like that i used in LIS to show that
you can embed Hℵ1 into IR. All you need is a set that is as big as the set of
countable sequences from itself. However one such set is ι5“V, and we surely
don’t expect S∞ to embed into anything that small. The point is that in LIS
trick you start from nothing. Here you start from the collection of things that
are unions of countably many finite sets. This is a surjective image of FNω

which is of size T |V|.
And once we have got the LFP we need to explain the connection with C∞.

Stop burbling, Forster

A key observation of course is that, for all α, the map that sends a countable
subset X of Cα to {

⋃

X} is a surjection from Pℵ1(Cα) onto ι“Cα+1.
Next we show that

REMARK 58 |C0| ≤∗ |ι“V|.

Proof: Let {X :  ∈ IN} be a partition of V into ℵ0 moieties, and let χn be a
bijection between V and Xn.

Then we can encode any sequence ƒ : IN→ V as the singleton

K(ƒ ) := {
⋃

{χn“(ƒ (n)) : n ∈ IN}}.

K is evidently a bijection between ι“V and the set IN→ V. Clearly any singleton
is the result of encoding some—unique—ƒ or other. Thus the map

{} 7→ K({})“IN

is a surjection from ι“V to C0, the set of countable sets.

This is probably a corollary of remark 54
I think we can actually do better than this. let  be a partition of V into

moieties, equipped with a function π such that, for each p ∈ , π(p) is a
bijection between V and p. Need a picture, really

Now suppose X is a set the same size as , with σ a bijection X ←→ .
Consider the singleton

{{(π(σ()))“ :  ∈ X}}
Notice that we can recover X from this singleton. Any

y ∈ {(π(σ()))“ :  ∈ X} is a subset of a unique p ∈ . (π(p))−1“y
is now a member of X.

This gives us a map from ι“V onto the set of things of size ≤ ||.
However all this gives us is a recasting of Nathan’s proof that the set of

surjective images of ι“V is itself a surjective image of ι“V.
We will need the following



REMARK 59 Any surjective image of a set in Cα is in Cα.

Proof:
Clearly a surjective image of a countable set is countable. If X ∈ Cα then

X =
⋃

∈N X where all the X are in Cβ with β < α. For any function ƒ
evidently ƒ“X =

⋃

∈N ƒ“X, and the ƒ“X are all in Cβ with β < α by induction
hypothesis.

We ought to be able to prove that |C0| = T |V| precisely. Then we will be
able to use lemma 54 to prove that |Cn| = T |V| for all n ∈ IN. I doubt very
much if that is sufficient to prove that |Cω| = T |V|

each concrete n.
All this is OK so far. This is where it starts to go wrong.

Mistake!

|C∞| ≤∗ T |V| and C∞ 6= V.

Attempted proof.

We observed in remark 58 that |C0| ≤∗ T |V|. We now claim the following
chain of inequalities.

|ι“C1| ≤∗ |Pℵ1(C0)| ≤∗(1) |Pℵ1(ι“V)| =(2) T |Pℵ1(V)| = T |C0| ≤∗ T2|V|

(1) This is where the mistake is. One would think that this star-inequality
follows from |C0| ≤∗ T |V|, but we have to be careful. The problem is that,
altho’ h“ is—indeed—a countable subset of C0, we cannot be sure that every
countable subset of C0 is an h-image.

(2) Take the T outside.
so

|C1| ≤∗ T |V|

and the analogous argument will work for any α, so we have shown

|Cα | ≤∗ T |V| → |Cα+1| ≤∗ T |V|

Notice that this construction is canonical: if we start with a surjection
ι“V →→ C0 we can recursively give later surjections in terms of it. How do
we prove that there is a surjection from ι“V to Cλ, given, for each α < λ, a
surjection ι“V to Cα? The details deserve to be spelled out.

Let us write ‘C’ for {Cα : α < λ}. Let ƒ be the function that sends each
singleton {} to the first Cα in C s.t.  ∈ Cα, or to C0 if there is no such
α. Thus we have ƒ : ι“V →→ C. Also, the canonical nature of the construction-
so-far of the surjections means that we have a function g such that, for each
c ∈ C, g(c) is a surjection ι“V →→ c.

Now consider ι“V × ι“V and define a map

〈{},{y}〉 7→ g(ƒ ({}),{y})



This sends every ordered pair of singletons to something in the union
⋃

C
which is of course Cλ. Thus we can extend the canonical sequence of surjections
at limit stages.

Finally this shows that ι“V can be mapped onto C∞.

Deep breath. Let’s try again. This is the plan.
First show that |C0| = T |V|. Then use remark 54 to power an induction

over countable ordinals. We need to be quite clear about what we are doing.
First we establish an explicit bijection between C0 and ι“V. Then we check
that the proof of remark 54 is effective. That way we can give explicit bijections
between Cn and ι“V by recursion on n.

What about limit ordinals? Here we trade on something that it would do
no harm to spell out anyway. For any countable ordinal α, thee is a function
Fα that, for any β < α, provides a bijection between β and IN. (The existence
of Fω1 requires AC, of course.) Let’s have a proof of this. Since α is countable,
there is a bijection F : α ←→ IN. To obtain a bijection β ←→ IN reflect that
F“β ⊆ IN and F“β is infinite so it is in bijection with IN, and this bijection can
be found beco’s the proof of Cantor-Bernstein is effective.

A similar argument shows that, for any β < ω1, there is a system of funda-
mental sequences. Whether the system is Schmidt-coherent is another question!
Presumably it is, or can be arranged to be.

Therefore, if the above strategy works, we can show, for any countable or-
dinal α, that |Cα | ≤ T |V|. The would mean that if C∞ = V then the closure
ordinal is not countable.

However I can now reveal that that actually wasn’t Boffa’s original problem.
The original version was with “countable” replaced by “wellordered”. It is not
clear that the analogous proof will go through, because it is not clear that the
set of wellordered sets is a surjective image of the set of all singletons. However
it will go through if we replace “countable” by “is a surjective image of ι“V”.
Thus to be pedantic, say:

An S0 set is a surjective image of ι“V. An Sα+1-set is a set of the
form
⋃

X where X ⊆ Sα and X is a surjective image of ι“V. Take
unions at limits, and let S∞ be the union of all the Sα.

Then S∞ is a surjective image of ι“V [why??] and therefore S∞ 6= V.

We can prove by induction on the ordinals that

REMARK 60

(∀κ)((∃ ∈ Cα)(|| = κ)→ (∃ ∈ CTα)(|| = Tκ)) (16.1)

(∀)(∀α)( ∈ Cα ←→ ι“ ∈ CTα) (16.2)



Proof:
We note first that all the Cα are closed under equinumerosity. This we prove

by induction on α. If  ∈ Cα and |y| = || then there is a bijection π between 
and y. If  =
⋃

∈N —so that { :  ∈ IN} is a certificate that  ∈ Cα—then
y =
⋃

∈N π“ so so that {π“ :  ∈ IN} is a certificate that y ∈ Cα.

Now we can prove 16.1 by induction on α. Assume 16.1 for ordinals below
α.

Suppose  ∈ Cα. Then there is a certificate { :  ∈ IN} with
(1)  ∈ Cα for each ;
(2) α = sp{α :  ∈ IN}.

Then—by induction hypothesis—for each α we have ι“ ∈ CαT . (Here we
need the fact that all the Cα are closed under equinumerosity.) So ι“ ∈ CTα.

So we have proved that if Cα contains a set of size || then CTα contains a
set of size |ι“|—indeed by the equinumerosity lemma it will contain ι“ itself.

For the other direction we want to show that if CTα contains a set of size
|| then Cα contains a set of size T−1||. This is where the gap is! After all, if
cƒ (Ω) = ω then some CTα might contain a set not the size of a set of singletons
even tho’ every smaller set is the size of a set of singletons. It seems that what
might happen is that C∞ = Cα and CTα is the first level to contain sets that
are not the same size as any set of singletons.

Let us say an S set is a surjective image of ι“V.
How many sets are there that are unions of S-many finite sets? We have

to be careful what we mean by this: V =
⋃

ι“V and so is a union of an S set
of singletons! We are interested in those sets that are the ranges of functions
ι2“V → V. Let us call this set S∗. Then

ι“S∗ →→ (ι2“V → S) ⊆ PT2 |V|(S) ?? PT2 |V|(ι“V) ' ι“PT2 |V|(V)→→ ι2“V

The problem comes with the stage flagged by the question mark. One wants
these two sets to be the same size but it’s not clear that they are.

However some smaller cases work. Let FN be the set of finite sets, C the
set of countable sets and C∗ the set of sets that are unions of countably many
finite sets.

ι“C∗ →→ (IN→ FN) ⊆ Pℵ1(FN) ' Pℵ1(ι“V) ' ι“(Pℵ1(V))→→ ι2“V

so |C∗| ≤∗ T |V|.
No, hang on, one of those inequalities is the wrong way round.
Notice that this is not a trivial corollary of Nathan’s result. If  is cantorian

then it is certainly a surjective image of ι“V. It’s not obvious that a union of



countably many finite sets is a surjective image of ι“V nor a foriori cantorian,
even if AxCount holds. Is a surjective image of a cantorian set cantorian?
Not unless Axcount. Is a surjective image of a strongly cantorian set strongly
cantorian? Yes: think about the power sets.

This last point seems to be to worth making a fuss about. Suppose
stcn(X), and ƒ : X →→ Y. Then the map y 7→ ƒ−1“y injects P(Y) into
P(X), and stcn(P(X)). One would like to be able to do it more directly, by
inducing ƒ to work somehow on ι �X to give ι �Y, so that ι �Y is obtained a a
surjective inage of ι�X.

What are we to do (in a stratified way!) with a pair 〈,{}〉?
Suppose ƒ : X→→ Y. Then g = ƒ ι maps ι“X→→ ι“Y. Declare h(〈,{b}〉) =

〈ƒ (), g({b}〉). This is OK beco’s ƒ and g are both sets. Then ι�Y = h“(ι�X).
Worth checking that the same sort of behaviour is exhibited by sets for which

ιn� exists. See stratificationmodn.tex

Probably worth recording that can(X) and |X| = |Y | implies can(Y) (not
that i ever doubted it) but it’s not entirely straightforward. Suppose ƒ : X←→ Y
is a bijection, and g : X←→ ι“X is a bijection. Then the composition

ƒ ι · g−1 · ƒ−1

maps Y 1-1 onto ι“Y.

Going back a bit. Suppose ƒ : X→→ Y is a bijection, and write g for ι�X.
Then send y ∈ Y to any ƒ−1(y) and send that to g · ƒ−1(y) then that goes

to ƒ ι · g · ƒ−1y which is OK.

Small Sets

“small” = “cannot be mapped onto V”
Is the set of small sets small? If so, every set of small sets is small, so the

power set of a small set is small, whence

(∀A)(|P(A)| ≥∗ |V| → |A| ≥∗ |V|)

So, substituting P(B) for A one obtains

(∀B)(|P2(B)| ≥∗ |V| → |P(B)| ≥∗ |V|

whence
(∀B)(|P2(B)| ≥∗ |V| → |B| ≥∗ |V|

and, for each concrete n,

(∀B)(|Pn(B)| ≥∗ |V| → |B| ≥∗ |V|

whence



Now |A| ≥∗ |V| implies |P(V)| ≤ |P(A)| so we infer

(∀A)(|P(A)| ≥∗ |V| → |P(A)| = |V|)

Now |P(A)| = |V|) certainly implies |P(A)| ≥∗ |V| so we have proved

(∀A)(|P(A)| = |V| → |A| ≥∗ |V|)

Now consider the case where A is P(B). This gives

(∀B)(|P(P(B))| = |V| → |P(B)| ≥∗ |V|)

and the RHS implies |P(B)| = |V|) so we have proved

(∀B)(|P(P(B))| = |V| → |B| = |V|)

Ah! (∀B)(|P(P(B))| = |V| → |B| = |V|) is equivalent to

(∀β)(22
β
= |V| → β = T2|V|)

and that is clearly not true. So the set of small sets is not small.
We need α ≤ |α|. Then we would have been able to show that |S| was the

supremum of all the small cardinals.All that looks rather sus.

16.7.2 How many Dedekind-finite sets are there?

From Nathan’s work we know that there are T |V|-many (inductively) finite sets,
but how many Dedekind-finite sets?

If  is Dedekind finite then, for any countable y, y \  is nonempty. So,
assuming GC, for any Dedekind-finite  there will be lots of functions ƒ such
that ƒ picks from any ω-sequence a member of that sequence that is not in .
We ought to be able to use this to show that there is a surjection from the set
of singletons onto the set of Dedekind-finite sets.

Let S be the set of wellorderings of length ω. Evidently |S| = T |V|. Now
let ƒ be a function from S to ι“V. (Again, there are T |V| such functions.)

Then ƒ 7→ {(V \
⋃

ƒ“S)} and we seem to have an extra T....

16.7.3 Union of a low Set of low Sets

Must it be low? (A low set is a set the same size as a wellfounded set). Suppose
{X :  ∈W} is a low set of low sets, where the index set W is wellfounded.
The obvious thing to do is the following.

First off, observe that without loss of generality W can be taken to be a set
of singletons beco’s (at least if we are in NF) every wellfounded set is the size
of a set of singletonk for any concrete k.

For each  ∈W pick a wellfounded set Y which is in bijection with X, and
consider the cartesian product Y ×. This is wellfounded, is a bijective copy



of X and these products are all distinct. So consider the union
⋃

∈W Y×.
This maps onto

⋃

{X : ∈W}. Then we take power sets.

What have we used? Annoyingly, quite a lot.

The di Giorgi view reminds us that facts about cardinal relations between
subfunctors of the power set are just facts about the consistency of certain set
theories!)

Cantor’s theorem sez that || < |P(X)|. Of the many ways of generalising
this result, i shall concentrate on two. One can ask for which subfunctors of P
one can prove the obvious analogue. One can also note that Cantor’s theorem
is equivalent to the assertion that the relation |P()| ≤ |y| is irreflexive. In fact
one can prove that it is wellfounded. The analogues of Cantor’s theorem we will
prove will of course also be castable in the form “the relation |F(y)| ≤ || is
irreflexive” and one can wonder whether these strengthenings of Cantor’s theo-
rem can themselves be strengthened to assertions that the relations appearing
in these versions are wellfounded as well as being irreflexive. (The Sierpinski-
Hartogs theorem is used to show that “2α ≤ β” is wellfounded. Analogues of
it might be useful.)

Let us contemplate a few subfunctors and what is known about them. There
are analogues of Cantor’s theorem for the function sending  to the set of all its
wellorderable subsets, and the set of its transitive subsets. There is no analogue
for the function sending  to the set of all its finite subsets. This might suggest
that the availability of a Cantor-like theorem depends on the function not having
finite character, but then one reflects that there is no Cantor theorem for the
function sending  to the set of all its countable subsets, nor indeed the set
of subsets of size κ for any fixed κ. Indeed in ZF one can construct fixed
points for all these functions. The key seems to be that if the function has
bounded character then one can prove in ZF that there is a fixed point. If it has
unbounded character one can derive a paradox. The slightly disquieting feature
is that the available proofs of Cantor-like theorems do not all seem to be the
same.

(The meaning of Hartogs’ theorem seems to be that ‘wellordered’ does not
have bounded character)

It would be nice to see more clearly for which ƒ one can find fixed points in
ZF, and for which ƒ s one can prove Cantor-like theorems.

16.8 A message from Nathan Bowler: a con-
struction showing there aren’t all that
many sets  such that AC|| and || ≤∗ T |V|

We’ll be interested in encoding fragments of information about various sets; a
fragment of information about a set  will be given by a specification of which
elements of another set  are contained in . The set  will be thought of as



a window through which this fragment of information may be seen. The set 
must be guaranteed to be small in the following slightly technical sense:

DEFINITION 19 A window is a set  together with a surjection ι“V →→ .
Normally, we’ll refer to the window as , without mentioning the surjection.

Let W be the set of all windows.
The first thing to notice about W is that it is only as big as T |V|. To

see that |W| ≤ T |V|, observe that the map W → ι“V given by ι“V
ϕ
−→  7→

{{〈, b〉| ∈ ϕ({b})}} is injective. So there aren’t too many windows.
A fragment of information about  which might be seen through a window

 is given by a subset of ; the subset  ∩.
This suggests the notion of view:

DEFINITION 20 A view is a pair 〈, s〉, where  is a window and s ⊆ .

Let A, the album, be the set of all views.
Once more, the first thing to notice is that there aren’t too many views. In

fact, |A| ≤ |W| · |P(ι“V)| = T |V| · T |V| = T |V|.
Later, I’ll need notions capturing the idea that one view is more panoramic

than another, or that a view matches a particular set. Here are the relevant
definitions:

DEFINITION 21 Let  = 〈, s〉 and ′ = 〈′, s′〉 be views and let  be a
set. Then  ≤ ′ iff  ⊆ ′ and s = ∩ s′, and M(, ) iff  ∩ = s.

Note that if  ≤ ′ and M(, ′) then also M(, ).
Now we can define the function which will give our coding, and another which

will witness its injectivity. Let  : V → P(A);X 7→ { ∈ A|(∃ ∈ X)M(, )}.
Let j : P(A) → V;Y 7→ { : (∃ ∈ Y)M(, ) ∧ ((∀′ ∈ Y) ≤ ′ →
M(, ′))}.

THEOREM 25 (∀X)j((X)) ⊆ X

Let x ∈ j((X)), and choose  = 〈, s〉 ∈ (X) such that M(, ) and (∀′ ∈
(X)) ≤ ′ → M(, ′). Choose ′ ∈ X such that M(′, ). Pick any element
 of ′, and let ′ = ( ∪ {}, s ∪ {}). Then M(′, ′) and so ′ ∈ (X),
and trivially  ≤ ′. Thus M(, ′), and so  ∈ . A similar argument shows
that any  which isn’t in ′ also isn’t in . Therefore  = ′ ∈ X.

THEOREM 26 Let α = |X| ≥ 2 satisfy ACα and α ≤∗ T |V|. Then X ⊆
j((X)).

Let x ∈ X. Using ACα, we can find a function  : X \ {}→ V such that for

any ′ ∈ X \ {} we have (′) ∈ Δ′. Let  be the image of the function
; since α ≤∗ T |V|, X can be given the structure of a window, and therefore
so can .



Let  = 〈, ∩ 〉. Clearly M(, ), and so  ∈ (X). Now suppose
we have any other ′ ∈ (X) such that  ≤ ′. Choose ′ ∈ X such that
M(′, ′). Since  ≤ ′, we also have M(′, ). If ′ 6=  then (′) ∈
(∩)Δ(∩′) = ∅, which is a contradiction. Thus ′ =  and so M(, ′).
Thus  ∈ j((X)), as required.

COROLLARY 11 Let α ≥ 1 satisfy ACα and α ≤∗ T |V|. Then |α| = T |V|.

B
ythest2theorems, ƒorny

X ∈ α we have j((X)) = X. Therefore  is

an injection α ,→ P(A) and so |α| ≤ |P(A)| ≤ |P(ι“V)| = |ι“V| = T |V|. For
any set X of size α, − × X is an injection from ι“V to α, so T |V| ≤ |α|. Thus
|α| = T |V|.

COROLLARY 12 For each positive natural number n, |n| = T |V|.

A construction showing that |S : |S| ≤̂èT |V| |̂è ≤̂èT |V| Nathan Bowler
April 16, 2021
The idea is that we can interpret any set C of pairs as the function from ι“V

to V sending {} to {s : 〈, s〉 ∈ C}. Since this operation is type-raising, it
gives a surjective map from ι“V to the set of all such functions, and thus also
to the set of their images.

More formally, we define a function ϕ : ι“V → V by

ϕ : {C} 7→ {{s : 〈, s〉 ∈ C} :  ∈ V}

It suffices to show that {S : |S| ≤∗ T |V|} is the image of ϕ, since then
ϕ witnesses the claim in the title. First of all, for any C ∈ V, ϕ({C}) is in
{S : |S| ≤∗ T |V|} since we can define a surjective function ι“V → ϕ(C) by
{} 7→ {s : 〈, s〉 ∈ C}.

Secondly, for any S with |S| ≤̂èT |V|, let F : ι“V →→ S be a surjective
function witnessing this. Let C := {〈, s〉 : s ∈ F({})}. Then

ϕ({C}) = {{s : s ∈ F({})} :  ∈ V} = {F({}) :  ∈ V} = F“(ι“V) = S

and so S is in the image of ϕ.

16.9 Retraceable You

There is yet another way in which one can strengthen Cantor’s theorem. If
F and G are subfunctors of P—or perhaps merely increasing functions on the
complete lattice 〈V,⊆〉—one can sometimes prove

|G()| 6≤ |F()|. (16.3)

The strengthenings of Cantor’s theorem mentioned so far fall under this form
by taking F to be the identity. These strengthenings too can be phrased as



assertions that a relation (to wit: {〈, y〉 : |G()| ≤ |F(y)|}) is irreflexive, and
one can then even wonder if such a relation is wellfounded.

One could go mad worrying about wellfoundedness of these relations, but
there is perhaps something to be gained from considering what sorts of natural
conditions enable one to prove |G()| 6≤ |F()|. I’m not trying to drive myself
or the reader mad: i am introducing this extra complication because it takes us
to the more general situation that Conway was interested in analysing.

Let me tell the story the way it was told to me—or at least as i find it in
my 1975 notebook.

16.9.1 A theorem of Specker

E. Specker: Verallgemeinerte Kontinuumshypothese und Auswahlaxiom, Archiv
der Mathematik 5 (1954), 332–337.

Ernst Specker was (he died in dec 2011) a Swiss combinatorist and logi-
cian who did a lot of interesting work in set theory—particularly NF. He also
proved a number of results in cardinal arithmetic without choice, specifically
the following. If α and β are cardinals we say α adj β if there is no cardi-
nal strictly between them. (Thus CH is the assertion ℵ0 adj 2ℵ0 .) Then if

α adj 2α adj 22
α

then 2α is an aleph. (An aleph is the cardinal of a wellorder-
able set. When i last heard it was still an open question whether or not α adj 2α

implies that α is an aleph!). One of the lemmas he proved en route to this result
was the following:

THEOREM 27 α > 5→ 2α 6≤ α2.

This is an instance of formula 16.9: take G() to be  ×  and F() to be
P(). Let’s see Specker’s proof.
Proof:

We will restrict attention to the case where α is not finite. Let X be a set
whose size is a counterexample to the theorem. so that ƒ : P(X) ,→ X× X. The
idea is to use ƒ to build a long wellordering of members of X, and show how to
extend this so that X can be shown to have wellordered subsets of arbitrarily
large cardinality.

We note that there is a bijection (the “herringbone map”) uniform in α
between A × A and A, where A = {β ∈ On : β < α}.

Let’s call it ‘h’ for herringbone so that hβ is the canonical bijection taking
pairs of ordinals below β to ordinals below β.

Let Mβ be a wellordered subset of X equipped with a wellordering, so that
Mβ = {mγ : γ < β}. We will construct a Mβ for all β. The induction step at
limit β will be to take the unions of all Mγ with γ < β. For the successor step
we procede as follows.

Restrict ƒ to that part of P(Mβ) whose image under ƒ is included in Mβ×Mβ.

That is, consider ƒ �(ƒ−1“(Mβ × Mβ) ∩ P(Mβ), or ƒβ for short. Compose this
with hβ so that we now have a map hβ ◦ ƒβ sending (some!) subsets of Mβ to
elements of Mβ.
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Figure 16.1: |α2| = |α|

Let N =: { ∈ Mβ :  6∈ (ƒβ)−1 ◦ hβ−1()}.

Clearly N is not going to be in the domain of ƒβ! So

ƒ (N) ∈ (X × X \ (Mβ × Mβ)).

We now set

mβ =: if fst(ƒ (N)) 6∈ Mβ then fst(ƒ (N)) else snd(ƒ (N)).

Remember ƒ (N) 6∈ Mβ ×Mβ so at least one of the two components is not in
Mβ.

Conway observes that the same strategy will work on any F and G to show
|F()| 6≤ |G()| as long as the following conditions are satisfied.

1. F and G are ⊆-monotone.

2. There should be a function Ψ so that if ƒ is a bijection between a subset
of F() and a subset of G(), then Ψ(ƒ ) ∈ (F() \ (ƒ−1“G())). We say
F is diagonalisable over G.

3. G is retraceable. This is, given  ∈ G(Y)\G(Z) we can produce h() ∈
(Y \ Z).



4. If  is wellordered, so is G().

For example—as we have seen—λ. ×  is retraceable.

16.10 Kirmayer on moieties

(Kirmayer: Proc. AMS 83 (dec 1981) p 774)
Recall (this notation is not in Kirmayer) A moiety of a set is an infinite

co-infinite subset. Let M(X) be the set of moieties of X.

THEOREM 28 Kirmayer’s first theorem
Suppose X has a moiety. Then |X| 6≥∗ |M(X)|

Proof:
Suppose ƒ : X→M(X). We will show ƒ is not onto. If { ∈ X :  6∈ ƒ ()}

is a moiety we get the usual paradox. So { ∈ X :  6∈ ƒ ()} is not a moiety.
Set

g() =:
§

ƒ () if { ∈ X :  6∈ ƒ ()} is finite
X \ ƒ () if { ∈ X :  6∈ ƒ ()} is infinite.

and

R =:
§

{ ∈ X :  6∈ ƒ ()} if { ∈ X :  6∈ ƒ ()} is finite
X \ { ∈ X :  6∈ ƒ ()} if { ∈ X :  6∈ ƒ ()} is infinite.

Either way g is a surjection X → M(X), R is finite, and (∀ ∈ X)( ∈
R←→  6∈ g()).

Let  ∈ X \R, and let T() =: { ∈ X :  ∈ g()}. Now (R∪T()) \{}
is a moiety. g is onto, so there is b such that g(b) = (R ∪ T()) \ {}. Then
b ∈ R←→ b 6∈ R. So g is not onto, and ƒ was not onto either.

[HOLE Does this work if ‘moiety’ means “the same size as its complement
wrt X?”]

THEOREM 29 Kirmayer’s second theorem
If X is infinite there is no map from X onto the set of its infinite subsets.

Proof: Suppose ƒ is a map from X to the set of its infinite subsets. Then
{ ∈ X :  6∈ ƒ ()} is a moiety. [HOLE why?]

16.11 My attempt at proving Kirmayer’s second
theorem

We will be making much use of the adjective ‘small’. It will denote any property
obeying the following.



1. Every subset or surjective image of a small set is small;

2. if X is small then X ∪ {} is small too.

(I seem to have got away so far without assuming that the union of two
small sets is small). Y is a co-small subset of a nonsmall set X if X \Y is small.
A subset of X that is neither small nor co-small is a moiety. co-small and
moiety are dual: every co-small set meets every moiety.

Suppose X is not small and Y ⊆ X is a moiety. If  6∈ Y, Y∪{} is a moiety,
and if  ∈ Y then X\{} is also a moiety so there are at least |X|-many distinct
moieties. By the same token the set of moieties containing –or not containing
 for that matter—are alike not small. That is, as long as X has any moieties
at all, which it mightn’t.

THEOREM 30 Let ƒ be a map X → P(X). Then there is a moiety or small
subset of X not in the range of ƒ .

Proof: It will be helpful to use the language of permutation models and always
have in mind the structure 〈X,∈ƒ 〉, where “ ∈ƒ y” means  ∈ ƒ (y). Thus the
set { ∈ X : (∀y ∈ X)( 6∈ ƒ (y)∨y 6∈ ƒ ())} is not in the range of ƒ , beco’s it
is { : ¬( ∈2 )} in the sense of 〈X,∈ƒ 〉. Let’s call it D, for Double Russell.

Let us assume, with a view to obtaining a contradiction, that every subset
of X is a value of ƒ unless it is co-small. D must now be co-small. So the set of
 such that 〈X,∈ƒ 〉 |=  6∈2  is co-small.

We want to find , b, st ƒ () and ƒ (b) are complementary moieties (that
is, ƒ () = X \ ƒ (b)) and  and b are both in D. For then  ∈ƒ  and b ∈ƒ b
are both impossible, since both  and b are in D. But then we must have  ∈ƒ
b ∈ƒ  which is also impossible and for the same reasons. This contradiction
will establish that there are things ƒ misses that are not co-small.

Suppose we cannot find such  and b. Then for every moiety M, X\D either
contains a code for M (that is to say, an  s.t. ƒ () = M) or a code for X \M.
Fix c ∈ X and a moiety C (it won’t matter which they are) and set:

g() =:







C if ƒ () is not a moiety;
ƒ () if  6∈ ƒ ();
X \ ƒ () if  ∈ ƒ ()

g now maps X \ D onto the set of moieties of X \ {}. If X is not small,
neither is X\{}, so the set of moieties of X\{} is not small, so X\D wasn’t
small. But it was.

Now this is not the end of the story, as I have assumed that X has moieties.
In the trade, infinite sets that cannot be split into two disjoint infinite pieces are
called amorphous. Let us pinch this word for use here: a nonsmall set that is not
the union of two disjoint nonsmall sets is henceforth amorphous. It remains
to exclude the possibility that X is an amorphous set with a map ƒ onto the
set S(X) of its small subsets. Notice that the set S(X) of small subsets of an
amorphous set is not itself amorphous: S(X) is not small, beco’s it maps onto



X. Fix  ∈ X, and think about {Y ∈ S(X) :  ∈ Y} and {Y ∈ S(X) :  6∈ Y}.
Each maps onto the other, and both map onto X so they are not small.

To complete the proof, notice that if ƒ : X→ S(X) is onto, then ƒ−1“{Y ∈
S(X) :  ∈ Y} and ƒ−1“{Y ∈ S(X) :  6∈ Y} are two disjoint nonsmall subsets
of X.

16.12 Stuff to fit in

THEOREM 31 No X can be the same size as the set of its wellordered subsets.

Proof: Suppose there were an X the same size as the set of its wellordered
subsets, and that π is a bijection between X and the set of its wellordered
subsets. Consider the binary structure whose domain is X and binary relation
Ey iff  ∈ π(y). Think about the set of those  ∈ X s.t. 〈V,∈π〉 |=  is a
Von Neumann ordinal. This cannot be a set of 〈V,∈π〉 and so is not a value of
π. But it is wellordered and so must be a value of π.

There is an alternative proof, which is the one Tarski originally gave:
Let 〈,⊆〉 be a downward-closed sub-poset of P(X) closed under insertion.

(That is to say, if  ∈  and y ∈ X then  ∪ {y} ∈ .) Let π be a bijection
X→ . We will exhibit a wellordered subset of X that is not in .

Consider the following inductively defined family of elements of , called X .

� The empty set is in X

� If y is in X so is y ∪ {π−1{ ∈ y :  6∈ π()}}.

� If I is a subset of X wellordered by ⊆, then
⋃

I ∈ X , as long as I ⊆ .

We want to know that y ∪ {π−1{ ∈ y :  6∈ π()}} is distinct from y.
Let { ∈ y :  6∈ π()} be  for short. Suppose π−1() is in y. Then we have
(subst π−1() for )

π−1() ∈ ←→ π−1() 6∈ π(π−1())

This is Crabbé’s paradox. Therefore y 6= y ∪ {π−1{ ∈ y :  6∈ π()}} as
desired.

By induction, every member of X is wellorderable, and X itself is wellordered
by inclusion. Now

⋃

X is wellordered, being a union of a nested set of
wellordered sets. It therefore follows that

⋃

X is not in , for otherwise
⋃

X ∪ {π−1{ ∈
⋃

X :  6∈ π()}} would be in  ∩ X and would be big-
ger. So there is a wellordered subset of X that is not in .

Actually i don’t think this original proof is of any interest.
The general idea seems to be:
(i) find a concept of smallness



(ii) Find a paradoxical set which is small
(iii) Deduce that there is a small set not in the range of ƒ : X→ P(X).
EG, Tarski’s result is: small = wellordered; paradoxical set = set of VN

ordinals.
Is there a Cantor theorem for wellfounded sets? Some thing that says that

a set has more wellfounded subsets than members? No: think of a Quine atom.
But there is something with that flavour. . .

(∀A,X)(P(A) ⊆ A.→ .¬∃ƒ : (X ∩ A)→→ P(X) ∩ A)

Suppose ƒ : (X ∩ A) →→ P(X) ∩ A. Consider { ∈ X ∩ A :  /∈ ƒ ()}. All
its members are members of A, so it is a subset of A and therefore a member
of A, so it’s in P(X) ∩ A and must be in the range of ƒ . Consider an  ∈ X s.t.
ƒ () = { ∈ X :  /∈ ƒ ()}. We get a Cantor-style contradiction as usual.

Things to think about

1. Things like cartesian product respect cardinality but things like
λ.(transitive subsets of ) don’t. Presumably we should think only about
things that respect cardinality, or are at least stratified.

2. No cantor theorem for wellfounded sets. Think of a Quine atom.

Might the following be true. . . ?

P(A) ⊆ A.→ ¬∃ƒ : X→→ P(X) ∩ A

Consider { ∈ X /∈ ƒ ()}. All its members are members of A, so it
is a subset of A and therefore a member of A. Consider an  ∈ X s.t.
ƒ () = { ∈ X /∈ ƒ ()}. We get a Cantor-style contradiction as usual.

3. Can prove |F()| < |P()| for some Fs. Kirmayer

4. Can’t expect to be able to prove || < |F()| < |P()|—at least for Fs
that respect cardinality—beco’s of the consistency of GCH with ZF.

5. What is the proper theory for doing this? KF? Zermelo?

6. related to the question of whether or not every wellfounded relation arises
from a rectype.

Propositions to consider:
The book sez: Let us say  is a notion of smallness if

1. Any subset of an  thing is also 

2. Any union of -many -sets is  ( if ƒ : X→ Y is onto, and Y is small, and
for all y ∈ Y, ƒ−1“{y} is small, then X is small.)



3. V is not 

Could also consider:
 must be nonprincipal and contain all singletons! Closed under bijective

copies.
surjective image of smalls are small, or (weaker) Not mapping onto V.
If you have as many small subsets as subsets then you are small;
closed under unions of small chains;
The union of a wellordered number of small sets is small.
The set of all small sets is small
The power set of a small set is small.
If X is not small, there is a map from X onto V where the preimage of every

singleton is small.
∈ restricted to small sets should be wellfounded.
Is there a notion of small s.t. for every  either  has as many small subsets

as subsets (in which case  is small) or has as many small subsets as singletons
(in which case it isn’t)? This is stratified! Sounds a bit like GCH,

So consider the operation G =: λS.{ : |P()| = |(P(X)) ∩ S|}.
I can’t see any reason why G(S) should be downward closed if S is (and we

will need this) so redefine G:

G =: λS.{ : (∀′ ⊆ )(|P(′)| = |(P(′)) ∩ S|)}.

Or we could even try the much weaker

G =: λS.{ : (∃′ ⊇ )(|P(′)| = |(P(′)) ∩ S|)}.

Anyway: here is something to think about. We have a notion of smallness,
and we keep on making it weaker and weaker by iterating some homogeneous
operation. We start off with something that isn’t self-membered, like finite.
We might reach something trivial like V, which *is* self-membered. Now we
can’t ask for the first stage at which it becomes self-membered, but for any
self-membered stage S, we can enquire about the stage at which S becomes
small

Consider Boffa’s set: the least set closed under wellordered unions. This is
a special case.

16.13 leftovers

Boolos JPL v 26 pp237-9
Let X, Y be sets. Then P(X) and P(Y) are, as you well know, complete

boolean algebras. Moreover if ƒ is a function X→ Y then j(ƒ )−1 : P(Y)→ P(X)
is a homomorphism of complete boolean algebras. In particular, it preserves all
meets and all joins. (I remember proving this as a first-year undergraduate
exercise.) Because j(ƒ )−1 preserves all meets, it has a left adjoint ∃ƒ : P(X)→
P(Y) and because it preserves all joins, it has a right adjoint ∀ƒ : P(X)→ P(Y).



Now ∃ƒ turns out to be the same as the direct-image map:

(∃ƒ )(A) = {ƒ () :  ∈ A}

= {b ∈ Y : (∃ ∈ A)(ƒ () = b)}

= {b ∈ Y : (∃ ∈ X)(ƒ () = b∧  ∈ A)}

Why have I written ∃ƒ in terms of such a complicated formula? Because it’s
my mnemonic device for remembering the formula for ∀ƒ !

(∀ƒ )(A) = {b ∈ Y : (∀ ∈ X)(ƒ () = b→  ∈ A)}

The point of this is that there are (at least) three “powerset functors”.
Unfortunately there is no standard convention for naming or notating them: I
use Sub to denote the (contravariant, i.e. Setop → Set) functor

 7→ P() ƒ 7→ ƒ−1

∃P for the functor

 7→ P() ƒ 7→ ∃ƒ

and ∀P for the functor

 7→ P() ƒ 7→ ∀ƒ

Every topos has an analogue for each of Sub, ∃P and ∀P.
Sub is regarded as important and comparatively well-understood; ∃P is

regarded as important and comparatively not well-understood; ∀P is regarded
as unimportant and not understood at all. In fact, people do tend to refer to
∃P as “the” covariant powerset functor, despite the fact that ∀P also fits that
description.

Now a subfunctor of ∃P (which is what I am studying) consists of Q() ⊂
P() for every set 

SUCH THAT
A ∈ Q()→ ∃ƒ (A) ∈ Q(y) whenever ƒ : → y is a function.
TTFN, Jeff.
The extension of Q must be closed under hom (not subsets) eg Kfinite

From t.forster@dpmms.cam.ac.uk Thu Apr 27 11:07:09 2000
Greg, despite my retraction i now think i can prove that the number of small

sets is large in relation to the set of singletons. I’m glad i took up this line of
thought beco’s i am now satisfied that i really understand the theorem of Tarski
about the set of wellordered subsets of a set. Here goes:

Suppose there is a bijection π between a set X and the set S(X) of its small
subsets. Then the structure 〈X,∈ ◦π〉 is a model for some sort of set theory.
The collection of things that are Von Neumann ordinals of this structure cannot
be coded in it. So that is a wellordered subset of X that is not small. So this is
what Tarski proved: if X is the same size as S(X), it has a wellordered subset



that is not small. Specifically, since we can take small to be wellordered, no X
is the same size as the set of its small subsets.

Applied to the NF case this shows that there can be no bijection between the
set of singletons and the set of small sets, where here small means NF-small, not
mapping onto V. Not terribly surprising, but better than nothing. I’ll have to
check what happens if we assume a surjection from the singletons to the small
sets rather than a bijection.

From gkirmayer@cmpmail.com Fri Apr 28 18:38:23 2000
Thomas,
I think Zermelo showed that if F : P(X)→ X then there is a unique subset

W of X and well-ordering < of W such that F{y : y < } =  for all  ∈ W,
and FW ∈W.

Suppose now that ƒ : P1(X) → P(X) is injective. Let  be an element of
X. Define F : P(X) → P1(X) by F(Y) = {y} if ƒ{y} = Y, and F(Y) = {}
otherwise. Let W and < be the sets as above in Zermelo’s theorem. Then
F(W) = F{y : y < F(W)}. W and {y;y < F(W)} are different because FW
is in the first and not the second. Since ƒ is injective at least one of them is not
in the range of ƒ (if ƒ{y} =W then y = F(W) = F{y : y < F(W)} and thus
{y : y < F(W)} is not in the range of ƒ ).

As you can see this argument does not need that the range of ƒ is downward
closed or closed under the addition of singletons. The argument you sent me did
not require this either. As to whether the above paragraph can be attributed to
Zermelo, I do not know. I first learned about the above corollary of Zermelo’s
theorem from a paper by Kanamori in the September 1997 issue of the Bulletin
of Symbolic Logic. Kanamori’s paper has some historical information which
might be of interest to you.

Best Wishes,
Greg

From mahler@cyc.com Thu May 11 18:31:44 2000
External motivation is certainly helpful: I dug up and looked at the Reynolds

paper last night. it is ”Polymorphism is not set theoretic”. It looks like the
models should exist in NF and/or relatives. The proof consists of showing that if

system F has a set theoretic mode then the operation λ.22


has an least fixed

point A meaning that A = 22
A

which is a contradiction in classical set theory.
The proof however can be extended to any covariant type constructor expressible
in system F. I believe this is the origin of the Girard-Reynolds correspondence
between types in F and initial algebras. It has been a while since I have looked
at categorical semantics but I believe the essence of the paper is that for a
category to provide a ”set theoretic” model of F, it must have a full cartesian
closed subcategory which has initial fixed points for all ”representable” covariant
functors. A sufficient condition for this for the subcategory to have an initial
object and directed colimits. In more set theoretic language this is more or less
equivalent to a class of sets, containing the empty set, closed under function



spaces, finite products and (I think) directed unions of classes of sets. If I
am right about directed cocompletess, and directed unions, then everything
should be fine since directed unions of classes can be obtained by taking the
intersection of all upperbounds in V. I am a little nervous that I have imported
some classical intuitions into the above though. I have Randall’s book and
saw some issues about the regarding the singleton constructor. I think the
correspondence between directed colimits and directed unions assumes certain
”obvious” isomorphisms.

At any rate, my statements should be taken with a grain of salt: it has been
a long time since I have looked at any categorical type theory seriously, and I
am new to NF.

Daniel

16.13.1 Partitions into pairs

I am still hopeful that one might be able to obtain a proof of AC2 by considering
conjugacy classes of partitions of V into pairs. Perhaps by tying this up with
Nathan’s work on embeddings-of-permutations. We say 1 ≤ 2 iff (∃ƒ :
V ,→ V)((∀p ∈ 1)(ƒ“p ∈ 2)). There is a Cantor-Bernstein–like theorem
about this quasiorder: if 1 ≤ 2 ≤ 2 then 1 and 2 are conjugate. This
motivates consideration of the quotient, the family of conjugacy classes. It
supports a partial order ≤ and a + corresponding to disjoint union. Presumably
≤ and + interact correctly: a ≤ b iff (∃b′)(a + b′ = b). Tho’ perhaps the b′

is not unique. There is a unique minimal element, which is the equiv class
of those partitions that admit a choice function. The thought (seems to me
to be that) one might get some mileage by considering how many equivalence
classes there might be. Is there a maximal element? I think there might be.
In stratificationmodn.tex there is a discussion of universal involutions without
fixed points. They sound like maximal partitions-into-pairs.





Chapter 17

The Universal-Existential
Problem

(One day i am going to write a novel in which the world is being taken over by
a nasty yank megacorporation which peddles psychotherapeutic bullshit. It will
be called Universal Existential and its logo looks something like

Its mission statement will contain a promise to free the world from Angst.)

17.1 Stuff to fit in

surjections

If M and N are two natural models of simple type theory, with ƒ a surjection
from the bottom type of M onto the bottom type of N, then we can lift ƒ
successively to surjections from the nth level of M onto the nth level of N by
the obvious recursion: ƒ () =: ƒ“. This shows that N is a homomorphic
image of M. This implies ambiguity for positive formulæ. Let us say a formula
is stable if it is preserved both ways. Then  = ∅ is stable. Let us say a term
t is stable if  = t is stable. Then {t1 . . . tn} is stable if the t are stable.

Observe that every model of TST is dual, and the dual of a positive formula
is a special kind of negative formula, where we have 6∈ and never ∈, but = and
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never 6=. So ƒ will preserve any conjunction of disjunctions of positive formulæ
and duals of positive formulæ.

Now consider a “basic” ∀∗∃∗ sentence in the bigger model. It says that,
for all ~ if the things in the tuple are related in a certain way [conj of atomics
and negatomics] , then we can add a lot of stuff to obtain a larger tuple related
in some way. It has an antecedent and a consequent.

We want to see how much of such a basic AE sentence we can recover by using
only stable AE basic sentences. Such sentences either have negative antecedents
and posive consequents or positive antecedents and negative consequents

Any antecedent is a conjunction of a purely positive antecedent and a purely
negative one. These two conjuncts can be thought of as the antecedents of a
purely positive basic AE fmla and a purely negative one. Then we look up all the
stable basic AE sentences with those consequences, and infer the consequences.
Unfortunately that doesn’t do very much for us.

This probably doesn’t work either...

THEOREM 32 Every ∀∗∃∗ sentence true in arbitrarily large finitely gener-
ated model of TST is true in all infinite models of TST.

Proof: The key is to show that every model of TST can be obtained as a direct
limit of finitely generated models of TST. The hard part is to find the correct
embedding.

Let M be a model of TST. We will be interested in finite subthingies char-
acterised as follows. Pick finitely many elements 1 . . . k from level 0 of M;
they will be level 0 of the finite subthingie. Then take a partition of level 1 of
M for which the  form a selection set (a “transversal”). The pieces of this
partition are the atoms of a boolean algebra that is to be level 1 of the finite
subthingie. That gives us level 1 of the subthingie. To obtain level 2 we find
a partition of level 2 of M such that the carrier set of the boolean algebra we
have just constructed (which is level 1 of the subthingie) is a selection set for
it. The pieces of this partition are the atoms of a boolean algebra that is to be
level 2 of the finite subthingie. Thereafter one obtains level n+ 1 as a boolean
alegbra whose atoms are the pieces of a partition of level n+ 1 of M for which
level n of the subthingie is a transversal.

There is, at each stage, an opportunity to choose a partition, so this process
generates not one subthingie from the finitely many elements 1 . . . k from
level 0 of M, but infinitely many. This means that the family of subthingies
has not only a partial order structure but also a topology. Choosing n things
from level 0 does not determine a single finite subthingie, co’s you have a degree
of freedom at each step (when you add a new level). It’s a kind of product
topology, where each finite initial segment (a model of TSTk with n things at
level 0) determines an open set: the set of its upward extensions.

Is the obvious inclusion embedding an example of what Richard calls an
almost-∀ embedding?



The long-term aim is to take a direct limit, and we want this direct limit to
be M itself, so we must check that every element of M can be inserted into a
subthingie somehow.

Clearly any finite set of elements of level 0 of M can be put into a finite
subthingie, but what about higher levels? We prove by induction on n that
every finite collection of things of level n can be found in some finite subthingie
or other.

The induction step works as follows. We have a subthingie M1 and we want
to expand it to a subthingie M2 that at level n+1 contains finitely many things
1 . . . k . To do this we have to refine the partition of Vn that is the set of
atoms that M1 has at level n + 1 so that every  is a union of pieces of the
refined partition. There are only finitely many  so any refinement that does
the job has only finitely many pieces. Identify such a refinement, and pick a
transversal for it that refines the set which is level n of M1. This transversal is
a finite set of things of level n, and we can appeal to the induction hypothesis.

Next we ask, suppose at each level from 2 onwards, instead of picking a
partition of level n of M to be the set of atoms of the boolean algebra at
level n, we simply take B“level n − 2 to be a set of generators for the boolean
algebra of level n? We lose a degree of freedom but we get better behaviour of
the embedding, since this ensures that it preserves B. Can we still ensure that
every element of M appears in the direct product?

Unfortunately the answer to this can be easily shown to be ‘no’ since, for the
answer to be ‘yes’, one would have to be able to express every element of level
n of M—for n as big as you please—as a {B,∪,∩, V, \}-word in the finitely
many elements chosen to be level 0 of the subthingie and the elements of the
partition that are to be level 1. That is clearly not going to happen.

This proof is essentially the correct general version of the proof in the book
where the same result is claimed only for countable models. This proof is more
general and easier to follow. The converse problem remains: can we show that
every ∀∗∃∗ sentence true in even one model of TZT is true in the term model
for TZT0?

Consider total injective functions ƒ : IN → IN s.t. all the functions in
{{ƒ (n)} : n ∈ IN} are distinct two-valued total functions. Any such ƒ gives us
a structure for L(∈). The set of partial injections gives a topology.

Each function gives us a di Giorgi structure.

Or, again. Consider the set of computable (partial?) functions IN→ {0,1},
and the equivalence relation on this set of having the same graph. Is there a
computable total function IN→IN whose range is a transversal for this set?

The latest wheeze is to show that B,ι3 things generalise downward to the
term model for TZT0. Suppose (∀~z)(∃~)(∀~y)ϕ is true in some model M of
TZT0. Then, however we instantiate the ~z to TZT0 terms, we hope that the



resulting B,ι2 formula with parameters holds in the term model. So we hope
that witnesses to the ~ variables can be found in the term model.

So consider (∃~)(∀~y)ϕ where ϕ now contains parameters (from the term
model) Let’s process ϕ. . . . First we put it into CNF, and then we extract (pull
to the front) all the atomic subformulæ that contain only  variables. These
are not bound by the y quantifiers and do not need to be within their scope.
ϕ now looks says “either the ~ are related to each other like this and they are
related to the ys like thus-and-so, or . . . , and so on with finitely many mutually
exclusive disjuncts. Since M believes this to be the case, it believes precisely
one of these can hold. So M says that there are these ~ and they are related
to each other like thus-and-so, and there are finitely many clauses we have to
satisfy, all of them looking like (∀~y)D where D is a disjunction of atomics and
negatomics. We now have to select from the term model things suitable to be
witnesses to the ~. The wriggle room comes from the fact that we don’t have
to literally satisfy all the (∀~y)D clauses, but only all the substitution instances
obtained by instantiating the ~y to TZT0 terms.

If you try this you find (at least i found) that mostly i could make do with
NF2 words but it’s easy to see that that won’t work in general.

There is some further processing we can do to the conjuncts/disjunctions
inside ϕ. . . leave at the front of the formula the universal quantifiers over the
s of lowest type and import everything else. Then (inside that formula) leave
outside the quantifiers over  variables of next lowest type and import everything
else. The result is that each conjunct/disjunction ends up looking like

(∀~1)(D1 ∨ (∀~2)(D2 ∨ (∀~3)(D3 ∨ . . .)))

17.1.1 Duh!

I had been thinking that the conjecture ought to hold also for ∀∞∃∞ and
thought i was being terribly clever. But it’s obvious, because the finite approx-
imants to ∀∞∃∞ formulæ are all ∀∗∃∗. It isn’t anything clever to do with
countable categoricity

17.1.2 How to prove it

Throughout this discussion we will try to keep to the cute mnemonic habit—due
to Quine—of writing a typical universal-existential sentence with the initial—
universally quantified—variables as ~y (‘y’ for youniversal) and the existentially
quantified variables as ~—for Eistential). That was so we can talk about y
variables and  variables.

We will show that if  is universal-existential then  → + holds in every
model of TST with at least n atoms, where n is finite and depends only on .
That will suffice to establish that → ∗ is a theorem of TZT.

We know of old that when dealing with universal-existential sentences we
need concern ourselves only with those  that are of the form (∀~y)(ψ(~y) →
(∃~)θ(~, ~y)) where ψ is a conjunction of atomics and negatomics, and θ is



quantifier-free; all universal-existential sentences considered below will be as-
sumed to be of this form.

We want to prove that M (a model of TST) satisfies → ∗. We assume
that M |=  and that the variables in  of lowest level are of level 0. We
want to infer that M |= ∗. The new idea is that it is not neccessary to find
a particularly clever type-raising injection that deals with all ; it isn’t even
necessary to find an h for each . Our h will depend on the instantiations of
the y variables in .

We require of our injection h that it lift types and that it respect ∈:
(∀,)( ∈ ←→ h() ∈ h()). For this it is necessary and sufficient that
h() always be a (not neccessarily proper) superset of h“, with the property
that h() \ h“ be disjoint from the range of h.

So, let ~y—elements of M—be some tuple of instances of the ‘∀~y’ in ∗.
Clearly if we can find a type-raising injection h : M ,→ M∗ with the feature
that every y in our tuple is a value of h then we are home and hosed.

To start with, things are comparatively straightforward. For reasons which
will become clear (they may be clear already) h is going to have to be setlike,
and the best way of doing that is to ensure that it is definable. So, for each
y1 . . . yn, (where y1 . . . yn are the y objects of level 1 in ∗ (the lowest level))
we designate a thing of level 0 to serve as h−1(y) and we give it a name—‘’,
say. This will ensure that h is definable with parameters (the various ys and
the ) and is therefore setlike. We are now in a position to announce what h
does to things in level 0: it sends  to y and sends everything else of level 0
to its singleton (or anything definable—it really doesn’t matter as long as it’s
an injection).

That was painless. Suspiciously easy, you might think! Thereafter how do
we define h on (things of) level n+ 1—on the assumption that we have defined
it on (things of) level n? Well, there are various y objects of level n + 2 that
have to be values of this h. So y is h of something. . . but of what? Here the clue
is that h is an ∈-homomorphism. This tells us that h() is always a superset
of h“. What do we know about h() \ h“? We have already remarked that
it mustn’t contain any values of h. So, if y is to be h of anything it must be h
of h−1“(y ∩ h“V). If y is at level n+ 2 then h−1“(y ∩ h“V) is of level n+ 1,
so that reveals to us h of at least some things of level n + 1. (Notice that for
this to work we absolutely need to ensure that h remains setlike at each stage,
and this is why we want it to be definable.) The other elements  of level n+ 1
can be sent to h“, but of course any superset of h“ obtained by adjoining
nonvalues of h will do—as long as the h that results thereby is setlike.

This extra flexibility in constructing h seems to be of no use to us, and with
our fairly limited aims it isn’t, admittedly. However, we might be trying to
(upwardly) preserve formulæ in ∀∗∃∗ for some class more demanding than
just the quantifier-free formulæ, and in such an endeavour the extra flexibility
might turn out to be very useful indeed.

I hope it is now clear how to show that ∀∗∃∗ sentences generalise upward in
all sufficiently large models of TST. Let  be any universal-existential sentence



as above, and fix a sufficiently large model M |= TST. For any tuple of ys
instantiating ψ(~y) we devise an injection h as in the above construction. Now
invoke  in M, obtaining witnesses to the  variables, and apply h to all those
witnesses. These will be witnesses to the  variables in ∗.

Notice that this does not (or at least does not obviously) resolve the question
of whether or not TZT decides all ∀∗∃∗ sentences. It does mean that every
∀∗∃∗ is either true in cofinitely many finitely generated models of TST or is
false in cofinitely many finitely generated models of TST. We know that every
model of TST is elementarily equivalent to a countable model and that every
countable model is a direct limit (colimit) of all finitely generated models, but
there does seem to be the possibility that there could be a ∀∗∃∗ sentence that
is false in cofinitely many finitely generated models of TST but nevertheless
true in some (but not all) models with an infinite bottom level.

17.2 Injections

This contains old material relevant to showing that suitably nice formulæ gen-
eralise upwards.

17.2.1 Boolean injections

Any surjection ƒ : A→→ B lifts to a surjection P(A)→→ P(B)and so on up. Just
send A′ ⊆ A to ƒ“A′. But it also gives an injective homomorphism P(B) ,→
P(A) by B′ ⊆ B goes to ƒ−1“B′.

This means that given ƒ : A→→ B there is a family of injective maps n from
the levels of the natural model 〈〈B〉〉 to the levels of the natural model 〈〈A〉〉.
(The nonzero levels that is!) These are boolean homomorphisms, but do they
cohere to form a morphism between the models? That is, does it preserve ∈?

I think the answer is ‘yes’. (Must verify by hand). Of course ƒ has to be
setlike. But in the setting we are interested in, it is setlike. Let M be an
arbitrary model of TST, and ƒ an (internal) surjection from level 1 onto level
0. So let’s do this thing, slowly.

Let M = 〈V0, V1 . . .〉 be a model of TST. Let ƒ ⊆ V1× ι“V0 be a surjection
V1 →→ V0. As usual M+ is M shorn of its bottom level and with the surviving
levels relabelled. We can think of ƒ as a surjection from level 0 of M+ to level
0 of M and, for each n > 0, it lifts to a surjection from level n of M+ to level
n of M, which me way as well also notate ‘ƒ ’, since no confusion will arise.
Since surjections h : A→→ B always give a boolean injection  7→ h−1“ from
P(B) ,→ P(A) these ƒ s will give injections from M back to M+ .

So what does this injection preserve? Not much, really; certainly not enough.
It doesn’t preserve B or ι. If we start with an injection instead of a surjection—
so that we have a chance of preserving singletons—then at each level we have
to have a nonprincipal ultrafilter up our sleeve.



17.2.2 Earlier Stuff

Let A ⊆ B be sets. There is a surjection P(B)→→ P(A) defined by  7→  ∩ A.
And any surjection lifts in the obvious way so we have an injection P2(A) ,→
P2(B) by  : X 7→ {y ⊆ B : y ∩ A ∈ X}.

Things to check.

1. it sends generators to generators. (B()) = {y ⊆ B : y ∩ A ∈ B()} =
{y ⊆ B :  ∈ y ∩ A} = {y ⊆ B :  ∈ y ∩ A}. But, since  ∈ A,  ∈ Y iff
 ∈ y ∩ A, so this is {y ⊆ B :  ∈ y} which is B() in the sense of B.

2. It doesn’t preserve singletons or sets of singletons so it doesn’t interact
well with extraction of models.

3. It preserves ∈2. Sse  ∈2 (X). This is  ∈2 {y ⊆ B : y ∩ A ∈ X}. So
there is y ⊆ B with y ∩ A ∈ X and  ∈ y. But again, since  ∈ A,  ∈ y
iff  ∈ y ∩ A. So this is equivalent to  ∈2 X.

Now let’s think about the surjection from P(B)→→ P(A). It would be nice
if we can cook up a right inverse. For  ⊂ A, what sort of things get sent to ?
Only supersets of . Only the empty subset of B gets sent to the empty subset
of A, but (the whole of) B gets sent to the whole of A. So if we want a right
inverse we have to find some extra stuff to add to  to get what we want.

Now let ƒ be any boolean homomorphism P(B) → P(B \ A). It will turn
out that if the kernel of the homomorphism contains all singletons then the
injection we eventually build will preserve singletons. But let’s not make any
assumptions just yet.

The map  ⊆ A 7→ ∪ ƒ () is now a right-inverse to the surjection P(B)→
→ P(A).

Let us now overload ‘’ to mean the identity on A,  7→  ∪ ƒ () on P(A),
and  on P2(A). Is  an ∈-isomorphism?

Sse  ∈ A and y ⊆ A. Then () ∈ (y) iff  ∈ y ∪ ƒ (y) but ƒ (y) ∩ A = ∅
so this is just  ∈ y.

Now sse  ⊆ A and y ⊆ P(A). Then () ∈ (y) iff  ∪ ƒ () ∈ {z ⊆ B :
z ∩ A ∈ y}. This is  ∪ ƒ () ⊆ B and ( ∪ ƒ ()) ∩ A ∈ y. Now of course
( ∪ ƒ ()) ∩ A =  so this reduces to  ∈ y as desired.

Now can we lift  on the second type to  on the fourth type?
For this we want  (at the third level) to be a right-inverse for the surjection

arising from the -goes-to-∪ ƒ ()-injection at the second level. Let’s call this
surjection h. We want:

h((X)) = X.

Now

h((X)) = { ⊆ A : () ∈ (X)}

= { ⊆ A :  ∪ ƒ () ∈ (X)}

= { ⊆ A :  ∪ ƒ () ∈ {y ⊆ B : y ∩ A ∈ X}}



= { ⊆ A : ( ∪ ƒ ()) ∩ A ∈ X}

= { ⊆ A :  ∈ X}

= X

Does this respect ∈??

Let us now write down what  at the fourth level is. Actually i suspect that
before we can do this intelligibly we’d better generalise all this to the case where
B is not a superset of A but where there is an injection from A into B.

So let’s start all over again. We have two sets of atoms, A and B, with
 : A ,→ B. We’ll agree to start counting the types of our variables so that A
and B are of type 1, and n accepts inputs of level n.

This injection induces a surjection h : P(B) →→ P(A). h() := { ∈
A : () ∈ }. This in turn induces an injection  : P2(A) ,→ P2(B) by
(3) = {y2 : h(y2) ∈ 3} or, in other words, (3) = {y2 : { ∈ A : () ∈
y2} ∈ 3}.

Now let ƒ : P(A) → P(B \ A) be a boolean algebra homomorphism. set
(1) := “1 ∪ ƒ (1)

[at some point rerun the proof that this  on the first three levels is still an
∈-isomorphism]

To get the dfn of 4 just copy the dfn of 3:

(4) = {y3 : { ∈ P(A) : 2() ∈ y3} ∈ 4}.

2() is “ ∪ ƒ () so this is

(4) = {y3 : { ∈ P(A) : (“ ∪ ƒ ()) ∈ y3} ∈ 4}.

Now we want to simplify (3) ∈ (4)

{y2 : { ∈ A : () ∈ y2} ∈ 3} ∈ {y3 : { ∈ P(A) : (“∪ƒ ()) ∈ y3} ∈ 4}

{ ∈ P(A) : (“ ∪ ƒ ()) ∈ {y2 : { ∈ A : () ∈ y2} ∈ 3}} ∈ 4
Now (“ ∪ ƒ ()) ∈ {y2 : { ∈ A : () ∈ y2} ∈ 3} is just
{ ∈ A : () ∈ (“ ∪ ƒ ())} ∈ 3}
so we can simplify to

{ ∈ P(A) : { ∈ A : () ∈ (“ ∪ ƒ ())} ∈ 3} ∈ 4
Now { ∈ A : () ∈ (“ ∪ ƒ ())} is just , so this becomes

{ ∈ P(A) : ∈ 3} ∈ 4
and { ∈ P(A) :  ∈ 3} is obviously just 3 so we get extensionality as

desired.
So we’ve got *something*!! (Not sure what!!)



3 doesn’t send singletons to singletons. 3 sends  to the set of all y s.t.
−1“(y ∩ “A) ∈  not just some of them. That’s how 3 sends V to V. We
could have sent  to {y ⊆ “A : −1“y ∈ } but then it wouldn’t send V to
V. So we want to send  to some z s.t {y ⊆ “A : −1“y ∈ } ⊆ z ⊆ {y :
−1“(y∩ “A) ∈ }. So we have to “inflate” {y ⊆ “A : −1“y ∈ } with some
quantity that is the empty set for singletons and is the whole of V3 \ “V2 for
V. Clearly we need another boolean homomorphism killing all singletons! But
beware: once we have such a thing, can we be confident that the revised version
of 3 will preserve B?

We certainly want injective boolean homomorphisms from level n to level
n+ 1. Any surjection A→→ B gives rise to an injective boolean homomorphism
from P(B) to P(A). But how do we lift it up a level? We have to have a smooth
way of obtaining a surjective boolean homomorphism from P(A) to P(B) from
an injective boolean homomorphism from P(B) to P(A).

17.2.3 Can there be a ∀-elementary embedding M infM+?

This section needs radical revision. First we must establish that
for an embedding to be ∀-elementary it is necessary and sufficient
that it should also preserve B and ι. We prove this by considering
a formula in prenex normal form, with the matrix in CNF so we
can import the universal quantifier so it is applied to disjunctions
of atomics and negatomics: to wit, things like (∀)( ∈  ∨  6∈
∨ = y∨ ∈ z) which of course is {y}∪B‘∪B = V. Then we
have the sad duty of showing that any B-and-singleton-preserving
boolean homomorphism will force there to be a nonprincipal prime
ideal ⊆ V2 which blows away any hope of showing that the ambiguity
we might get from this doesn’t just drop out of the infinitude of the
model of TST.

A ∀-elementary map is one that preserves formulæ of the form (∀) where
 is the sole bound variable. (these are sometimes called “1-embeddings” by
model theorists). I here consider the task of building a ∀-elementary map h
from a model M of simple type theory into χ‘M, (When M is a model of simple
type theory χ‘M is the result of truncating the bottom type and relabelling the
new bottom type—which had been 1—as 0). We will trade on the fact that for
an embedding h :M→ χ‘M to be ∀-elementary is sufficient (because in type
theory we need consider only stratified ∀-formulæ) that it should respect B, ι
and the boolean operations. At the time of writing it is not known whether
there can be such an embedding or not. Any model with one must at least have
infinitely many elements of type 0.

Why should any NF-ist care? Two reasons. (i) it is a natural subcase of full
ambiguity. (ii) finding a method for constructing ∀-elementary embedding M→
χ‘M when M has infinitely many elements at type 0 would prove conjecture 2,
that NF decides all stratified ∀2 sentences.



We can think of constructing a ∀-elementary embedding M → χ‘M as
building a series of maps h : M → M+1 where M is the ith level of M.
We shall try to construct these maps h so that they can be coded inside M in
the usual way. The precise nature of this coding is not important: what does
matter is that the image of a set in the embedding will be a set of the model
if h is coded in the model. (h of an element of the model must be an element
of the model, but if h is not coded in the model there is no reason to suppose
that the image of  in h is an element of the model) in general, so we shall
want h to be setlike. h0 can be any old map M0 → M1 that is 1-1. If the
only thing h1 had to do was respect ∈, (that is, if we were content merely to
preserve quantifier-free sentences) we would set h1‘ =dƒ h0“, and indeed
the idea survives in part in this more complicated context. As it is, h1 must be
a map M1 → M2 which also respects the boolean operations and the singleton
operator ι, i.e., we must have h1‘{} = {h0‘}. The requirement that h1
respect the boolean operations means that in particular h‘V1 = V2.

We can construct h1 if we have a nonprincipal prime ideal on the boolean
algebra M1. If  is in the ideal h1‘ is to be h0“. If not, then V1 \ 
is in the ideal and we set h1‘ =dƒ V2 \ h0“(V1 \ ). The ideal must be
nonprincipal because otherwise some singletons might be “large”, would not get
sent to singletons and thus ι would not be respected.

It is only when we reach Mn with n ≥ 2 that we have to consider the
remaining operation B. For each n, Mn+2 is a complete boolean algebra, and
it is generated by the B‘, for  in Mn. On this important fact will turn the
rest of the construction. Thus every object in Mn+2 can be regarded as an (in
some cases infinitary) word in the generators B‘. We may as well fix now a
notation which we will need later: gn of a word (at type n) is simply the same
word in generators B‘h‘ instead of B‘. gn thus preserves B and the boolean
operations, tho’ not necessarily ι. For a lot of , gn‘ is what we want hn‘
to be. For example if  is a finite boolean combination of the B‘, then hn‘
must be gn‘ in order for hn to respect B. However if  is an infinitary word
hn‘ need not be taken to be gn‘, and indeed in some cases (when  is a
singleton for example) cannot, for gn‘ will be infinite as we shall see, and hn
of a singleton must be a singleton, for ι must be preserved. For singletons, and
indeed finite sets  in general hn‘ must be hn−1“. The apparent conflict
with the need to preserve B causes no problem as long as Mn is infinite, for
then no singleton is a finitary word in the B‘, and it is only finitary first-order
properties we have to preserve. Finally the empty set (universe) at each level
must be sent to the empty set (universe) at the next type. Thus Vn gets sent
neither to hn−1“Vn nor to gn‘Vn, but to something bigger than either of these.
hn‘ must always extend hn−1“ in order for the family of h to respect ∈.
Small things , like ∅, get sent to hn−1“, but bigger things  get sent to
hn−1“ ∪ somethng, with the something depending on . Let us call this
something the “inflator” of , since it is what we have to inflate hn−1“ by to
get hn‘. To be explicit,

DEFINITION 22 infl() = hn‘ \ hn−1“



First we show that if we are to succeed in constructing hn at all then nƒ 
must be a boolean algebra homomorphism.

PROPOSITION 6  ⊆ y→ infl‘ ⊆ infl‘y

Proof:
Suppose per impossibile that we could find , y such that  ⊆ y∧infl‘ 6⊂

infl‘y. Then there is z such that
z ∈ infl‘∧ z 6∈ infl‘y
Now z 6∈ infl‘y is z 6∈ (hn‘y \ hn−1“y and similarly , whence
z ∈ hn‘∧ z 6∈ hn−1“∧ (z ∈ hn‘y∨ z 6∈ hn−1“y)
Now z ∈ hn‘ so z ∈ hn‘y since hn respects ⊆. So the first disjunct is

impossible, and we conclude z ∈ hn−1“y. But since z is in the range of hn−1
it must be hn−1‘ for some . But then hn−1‘ ∈ hn‘ so  ∈  and
hn−1‘ ∈ hn−1“ contradicting z 6∈ hn−1“.

PROPOSITION 7 infl( ∩ y) = infl‘ ∩ infl‘y

Proof:
infl‘( ∩ y) =
hn‘( ∩ y) \ hn−1“( ∩ y) =
hn‘ ∩ hn‘y ∩ \hn−1“ ∩ \hn−1“y =
(hn‘ ∩ \hn−1“) ∩ (hn‘y ∩ \hn−1“y)
= infl‘ ∩ infl‘y

PROPOSITION 8 infl(V \ ) and infl() are complements in hn‘Vn \
hn−1“Vn.

Proof:
They are disjoint since they are included in hn‘(V \) and hn‘ respectively

which are disjoint by ∀-elementarity of hn. infl( ∪ infl(V \ ) is

(hn(V \ ) \ hn−1“(V \ )) ∪ (hn‘ \ hn−1“).

Now since hn(V \ ) and hn‘ are disjoint we can rearrange this to

(hn(V \ ) ∪ hn‘) \ (hn−1“(V \ ) ∪ hn−1“)

which is

Vn+1 \ hn−1“Vn

Thus nƒ  is a boolean algebra homomorphism. Let  be the kernel. We will
use the notation []  (the subscript  usually omitted) to mean that  ∈ Mn
and []  is the element of Mn/  to which  belongs.



REMARK 61 There is in each element of Mn/  at most one object  such
that hn‘ = gn‘

Proof:
Suppose we had , y such that
gn‘ = hn‘, gn‘y = hn‘y, Δy ∈ 
hn‘(Δ y) = hn−1“(Δ y) since Δ y is small. But hn and gn both

commute with boolean operations so hn‘(Δy) = gn‘(Δy). We conclude
hn−1“(Δ y) = gn‘(Δ y).
We shall now show that these two objects are of impossibly different sizes.

The first object is bounded in size by Mn−1. To ascertain the size of the second
we think of (Δ y) as a union of singletons z.

gn‘(Δ y) as a union of gn‘singletonsz What is such a gn‘ singleton z?
Well, z is an intersection of things B‘∩−B‘ so g‘z is B‘hn−2‘∩−B‘hn−2‘
where the  and the  between them exhaust Mn−2.

Thus each member of gn‘z must have as members hn−2‘
. . . not have as members hn−2‘.
This was enough to determine the member of z uniquely, as  and  ex-

hausted M n − 2 but there are now more generators in Mn−1 ( |Mn−1|) of them
in fact) and so |Mn| possibilities for members of gn‘z. Thus hn−1“(Δ y) and
gn‘(Δy) are of impossibly different sizes as promised.

From this we can conclude that each equivalence class in Mn/  contains at
most one  such that gn‘ = hn‘ and infer the important

COROLLARY 13 Distinct finitary words are sent to distinct members of Mn/ 

So far we have been trying to deduce information about h from the fact
that it is ∀-elementary . If conversely we are using this knowledge to build a
∀-embedding this shows that at the very least we will need to find a quotient
algebra Mn/  of Mn. If we can find an order-preserving set of representatives
to get a subalgebra of Mn, then, given  ∈ Mn/  we compute hn‘ for  ∈ 
by infl() =dƒ (gn‘) − (hn−1“) where  is the representative from a.
If all we have is an Mn/  without such a set of representatives we know that all
members of any a ∈Mn/  have the same inflator, but we do not know what that
inflator is, and therefore have no obvious means of constructing hn for members
of a.

Thus to construct a ∀-elementary embedding by this method we must find
an ideal  in Mn which is non-principal (because singletons must be preserved)
and contains no finitary words in the generators B‘, and such that Mn/  has
an order-preserving set of representatives.

Obvious questions are

(i) Can we ever do this? and

(ii) Is there a converse?



Distinct generators must be sent to distinct members of Mn/ . So if an
element  of Mn/  contains a generator (or, a fortiori) a finitary word in those
generators, then that generator (or word) must be the chosen representative,
and we know what hn does to members of . This is because h must respect
B and finitary boolean algebra operations, so for finitary words  we know
hn‘ = gn‘. We have seen above that no quotient class can contain more
than one  such that gn‘ = hn‘, and so can contain at most one finitary
word.

Now consider b, an element of Mn/  which contains no finitary words. What
is b, the representative of b, to be? We have some guidance in this from the
consideration that the set of representatives is to be order-preserving, and so if b
contains a word W which is ⊆ infinitely many finitary words W, then b ≤ [W]
for each , and the chosen b must ⊆ the representatives of the [W] which will
be W of course. Thus b ⊆ W. So if b contains any infinitary intersections of
finitary words, b must be (included in) the intersection of all those infinitary
intersections. Dually if b contained elements that were infinitary unions of
finitary words.

17.3 The direct limit construction

There is an old idea that i have never written about. Start with the canonical
model of TST with empty bottom type. Define ƒ by picking, for each , an
injection ƒ : T ,→ T+1 satisfying  ∈ y iff ƒ () ∈ ƒ (y). This gives a direct
limit. We define ∈ on the direct limit in the obvious way. There is an obvious
profinite family of direct limits with an obvious topology. There is of course also
a logical (“Stone”) topology as well. This pair of topologies reminds me of the
pair of topologies on the family of all permutation models. These two topologies
seem to take no notice of each other in exactly the way the two topologies on
the space of permutation models take no notice of one another.

Tear this up and start again (above).
Here’s a thought about how to prove the Universal-Existential conjecture.

Try to show that ∀∗∃∗ sentences generalise downwards in models of TZT.
Without loss of generality we can suppose every ∀∗∃∗ sentence is of the form

(∀~y)(ψ(~y)→
∨

∈
ϕ(~, ~y)) (1)

where ψ and the ϕ are all conjunctions of atomics and negatomics.
We will follow Quine’s agreeable habit of thinking of the youniversally quan-

tified variables as ‘y’ with subscripts, and the eXistentially quantified variables
as ‘’ with subscripts—eistential and youniversal!.

So suppose (∀~y)(ψ(~y) →
∨

∈ ϕ(~, ~y)) holds at level 1, in the sense that
the variable(s) of lowest level are of level 1. We want to show that it holds one
level down.

That is to say we want to know that if we pick up a tuple of ys (one level
down, as it were) we can find a tuple of s related to the ys in the right way.



The idea is to “copy the ys up” and then use the fact that our AE sentence
holds one level up to find s one level up which we can then copy down.

To do this of course we need a type-raising injection h that respects ∈, and
we want the s that we obtain one level up to be in the range of h so we can
copy them back down. There are lots of such injections, fortunately for us.
How are we to extend an ∈-preserving injection h up one level? If h is to be
an ∈-isomorphism we must have h() ⊇ h“, and this is sufficient. For each 
we have to pick something nƒ () (the inflator of  from definition 22) so that
h() = h“∪ nƒ (). As far as i can see the only constraint on the inflator of
 is that it must be disjoint from the range of h. Well, we also have the minor
constraint on inflators that h has to be injective, to inflator cannot be just
any function raising types by 1.

The key fact is that we are free to use different injections h for different
tuples ~y: our choice of h is not determined solely by the AE sentence we are
trying to generalise down. In fact we will build our injection h bit-by-bit as
we ascend through the levels. This is worth making a fuss about. In trying
to prove the universal-existential conjecture one might think that one has to
find a uniformly definable type-raising injection which, for all M, injects M into
M∗ in a way that preserves all universal-existential sentences. I don’t know if
there is such a definable injection, but in any case we don’t need one: it would
be sufficient to have a family of injections, one for each universal-existential
sentence. Indeed, one can choose a different injection for each instantiation of
the y variables to elements of M.

So we have our handful ~y of input objects and we want to find things related
to them in certain ways. Well, we whack our objects with h (whatever h turns
out to be) and invoke our assumption that our AE sentence holds one level up.
So there are things one level up that are related to h“(our handful) in the right
way; all we have to do is ensure that all these things are values of h, so we can
copy them down a level and they become witnesses to the existential quantifiers.

So there is a witness  to the istential quantifier; hang onto that fact. We
want this thing  to be h of something. So what is it h of? If it is h() then
h() = h“ ∪ , some . So  must be h of h−1“( ∩ h“V). There are two
difficulties here. (i) we need h to be setlike, and (ii) (worse!) h for things of
that level has already been defined! We are going to have to create h by means
of a priority construction.

So: let M be a terminal segment of a model of TZT. We want a ∈-preserving
injetion M ,→M+ . I think there is no cost attached to taking h0 (from level 0
of M to level 1 of M aka level 0 of M+) to be ι.

Start by considering the case there there is only one  variable. I think this
will turn out to be less of an oversimplification than one might think, because
the construction in the general case will deal with the witnesses to the istential
quantifiers by recursion on the levels to which they belong.

So we have fixed M |= TZT and an AE formula ∀~y∃~(~~y); Without loss
of generality we can take the y vbl of lowest level to be of level 0 and the 
variable of lowest level to be of level 1. We want ∀~y∃~(~~y) to be true, but
all we are told is that it is true one level up.



level 0

level 1

level 2

level 3

y0

h(y0) 0b

h(0)y1, y3

h(y1), h(y3)



We want to find 0 s.t. y0 is (or is not) a member of it, and s.t. it is (or
is not) a member of y2 and y3. (We don’t have to worry about ys of the same
level as 0.) What we do know is that there is  s.t. h(y0) is (or is not) a
member of it, and s.t. it is (or is not) a member of h(y2) and h(y3). What we
want to do is doctor h so that this  (or at any rate at least one of these )
is h of something. But of course doctoring h so that  is in the range of h has
the potential to alter h(y1) and h(y3).

Well, what is h(y1)? It is a judiciously chosen superset of h“y1. So we need
to know how to find h of members of y1. Members of y1 are things of level 1,
and h of a thing  of level 1 is a judiciously chosen superset of h“. But h
on level 0 is just ot. so h() is a judiciously chosen superset of ι“. Now
we want  to be h of some object b of level 1. So  has to be a judiciously
chosen superset of ι“b, namely (ι“b) ∪ c, where c contains no singletons. And
b must be ι−1“( ∩ ι“V) (which i suppose is just ι−1“).

So alter that part of h that sends level 1 into level 2 (which i suppose we
could call h1,→2) by deciding that h(b) is no longer the old h(b) but is now
. This changes only one ordered pair in h1,→2) but of course propagates to
h2,→3, and changes infinitely many pairs there, and of course that can mean
that the new h(y1) is not the same as the old h(y1). And that again means
that our  may have become useless. There will be a new  of course, but
there’s nothing to say that we won’t have exactly the same problem all over
again. The challenge is to have designed h in such a way that when we tweak it
we don’t suddenly find we need a new . Or better still, seek an h that doesn’t
cause us to alter  in the first place.



And how do we do that?!

But perhaps, like Wrong Way Norris1, our path is in the correct direction but
has the wrong sense. What we should be doing is trying to prove the following.

Let M |= TZT. Let y1 . . . yn be n distinct elements of M. Then we
can find an injection h :M ,→ M that preserves ∈ and raises types
by 1, s.t. every y is a value of h.

This actually sounds quite plausible!
If we can prove it, then we can use it to prove the universal existential

conjecture (or at least that universal-existential sentences generalise upwards)
as follows.

As usual it suffices to consider formulæ of the kind (∀~y)(ψ(~y) →
(∃~)(ϕ(~y, ~))) where ψ and ϕ are quantifier-free and ψ is a conjunction of
atomics and negatomics. We want to show that, whenever M is a model of
TZT, M |= (∀~y)(ψ(~y)→ (∃~)(ϕ(~y, ~)))

So fix M |= TZT and fix a tuple y1 . . . yn of things in M instantiating ψ(~y).
Use the conjecture to obtain a type-raising h defined on a terminal segment of
M and elements y′1 . . . y

′
n

of M s.t. h(y′

) = y for all 1 ≤  ≤ n. Then

we assume that (∀~y)(ψ(~y) → (∃~)(ϕ(~y, ~))) holds one level down to obtain
witnesses for the istential variables. We then whack those witnesses with h
to obtain witnesses for the instance of the unshifted version of (∀~y)(ψ(~y) →
(∃~)(ϕ(~y, ~))).

Now this seems to be just the idea that Zachiri had in 2013! So why should
it be any different this time?

Clearly we are going to construct h by recursion on levels. h−1 can be
defined on y objects of the lowest level with complete freedom, as far as i can
see at the moment.

Thereafter we are trying to inject level n into level n + 1. If y is of level
n + 1 what is h−1(y) to be? y is to be thought of as h“A ∪ B where A is
y ∩ h“V and B is disjoint from h“V. Then h−1(y) is h−1“A. So, given y we
have to identify A and B. A is clearly controlled by what is in y. Things at
level n+ 1 that are not y objects we don’t care about, but we do have to define
h on all the other things are level n, the things that aren’t h−1 of y objects
at level n + 1. I think these remaining things at level n can be sent to their
images in h (i.e., null inflators). Notice that for this h has to be setlike. Does
this construction create a setlike h? I think the answer is ‘yes’ beco’s the h we
construct can be definable with the y objects as parameters.

Don’t we prove somewhere that an ∈-loop cannot consist entirely of finite
sets? (yes: it’s lemma 15 of Bowler-Forster). Is there an AE version of this
allegation?

1http://www.montypython.net/scripts/emigration.php

http://www.montypython.net/scripts/emigration.php


The natural assertion “Every bottomless set contains V” is ∀∗∃∗∀∗ which
is the wrong way round.

Zachiri,
Thanks for this. You have started me thinking, and reminded me of old

tho’rts...
Cast your mind back to the proof you showed me on wednesday. You have

a big model of TST, and a family of [points in it, and you want to find a small
model of TST and an injection from the small model into the big model which
hits all those points. It’s easy if the family is extensional, so the idea is to plump
up the family to an extensional one, You show how to do that. Fine

I have two tho’rts on this
(i) I recall having had the same idea myself once, but i got stuck, beco’s

what i was trying was too ambitious. Suppose the big model is a model of
TZT! How can you be sure that the downward propagation ever terminates?
There’s no reason why it should, but might it happen, if you are very clever
in your choice of witnesses to symmetric difference, that it eventually hits the
empty set. Suppose one had an E*A* sentence such that, whatever witnesses
one chose, and however one propagated downward, one never reached the empty
set. Wouldn’t there be something really weird going on?

(ii) Your downward propagation idea is fine. Tickety-boo. However, i think
one can do something even better. Recall that every level of your model of
TST is a boolean algebra. So, when you propagate, add enuff stuff to ensure
that at any one level of the extended family, the things at that level form a
sub-boolean-algebra of that Level. As far as i can see, this is entirely painless.
And what does it get for us? Presumably it means that: whatever we could
prove for sentences of the form ∃~y∀~ϕ where ϕ is quantifier-free, we can now
prove for such formulae where phi is allowed to contain ∩, ∪, \ and ⊆.

Is that not so?

On Nov 1 2013, Zachiri McKenzie wrote:
Dear Anuj (cc’ed Thomas),
I hope that this finds you both well!
It is Friday afternoon and perhaps a good time to make a summary of where

we are at:
So far we have shown that every EA sentence it either true in finitely many

finitely generated models or cofinitely many finitely generated models. More-
over, if an EA sentence is true in any ‘infinitely generated model’ (model with
an infinite base) then it is true in cofinitely many finitely generated models.
This has the following consequences:

* Every pseudo-finite model of TST satisfies the same EA sentences
and this set of sentences is decidable (I suppose we already knew the
latter).

* The set of EA sentences true in any model of TST must be con-
tained in the set of EA sentences true in the pseudo-finite models.



Thomas has also proved the following: Any AE sentence that is true in some
model of TZT is true in the term model of TZT0.

Therefore, what we would like to do is show that the term model of TZT0
only satisfies the AE sentences true in the pseudo-finite models of TST...

Very best wishes,
Zach.

5/xii/2013
I’ve been thinking some more about these recent tho’rts of Zachiri’s. Here

is my take on them.
We have in our left hand a large model M of TST, one with an infinite

bottom level. (To keep things simple, but large-finite might come later). We
want to establish that M |= (∀~)(∃~y)ϕ(~~y), where ϕ belongs to some syntactic
class .

To this end we point to a tuple of things in M and think of them as inputs
~ to ϕ, and hope to find a tuple ~y. The strategy for doing this involves finding
a smaller model M′ (one that satisfies (∀~)(∃~y)ϕ)~~y)) plus an injection h :
M′ →M, where h does two things. (i) everything in our tuple must be in the
range of h; and (ii) h preserves all formulae in . Then we copy our tuple down
into M′ (using the fact that everything in the tuple is hit by h); then we find
witnesses to the ~y inside M′, and then we copy them upstairs. Job done.

That, as i understand it, is Zachiri’s Cunning Plan. And here is my take.
We have our tuple of ~ in M. The idea is to use these elements to build

a substructure of M. We start at the top level of M at which elements from
~ appear. This top level is a boolean algebra, and we consider the subalgebra
generated by those top-level members of ~. The atoms of this algebra constitute
a partition of this top level, and we add to the ~s of the next level down a
representative from each element off the partition, and we carry on downwards
until we have reached the bottom level of M at which ~s appear. Now comes the
clever bit. The boolean subalgebra we have at this level is still only finite, and it
has only finitely many atoms. So we can find a partition of the same size as this
partition-into-atoms-of-the-partition which is mapped onto it by a permutation,
and such that each element of the image of the partition under this permutation
contains a hereditarily finite set. We now continue our downward march, but
this ruse has ensured that we eventually reach the empty set. The substructure
we have thus constructed is a copy of the canonical model of TST with empty
bottom level, with a twist in the middle induced by the permutation.

So M′ is just the canonical model of TST with empty level 0. Now copy
the ~ down and find ~y and copy them back up. But what formulae does our h
preserve? Not just atomic formulae, but also all

⋃

,
⋂

, \, ∅ and ⊆.
The permutation of course doesn’t change anything, so we seem to have

proved:
Any ∀∗∃∗ sentence true in arbitrarily large fingen models of TST is true

in all infinite gen models, where  is the language containing not just = and ∈
but also
⋃

,
⋂

, \, ∅ and ⊆.
How does this sound?



We seem to need the permutation to get round the possibility that the down-
ward propagation doesn’t reliably seem to reach the empty set. But perhaps we
can show that there is always a way of propagating downwards so as to reach
the empty set.

17.4 The Conjectures

CONJECTURE 1 Every ∀1∃∗ sentence refutable in NF is refutable already
in NF2.

CONJECTURE 2 Every ∀∗∃∗ sentence refutable in NF is refutable already
in NFO.

CONJECTURE 3 NFO decides all stratified ∀∗∃∗ sentences.

CONJECTURE 4 Any term model for NF and any model for NF in which all
sets are symmetric satisfies every ∀∗∃∗ sentence consistent with NFO.

CONJECTURE 5 All unstratified ∀∗∃∗ sentences are either decided by NF
or can be proved consistent by permutations.

CONJECTURE 6 Let us say a Henkin sentence is a branching quantifier sen-
tence where every prefix is ∀∗∃∗. Then TZT has a model satisfying all consis-
tent Henkin sentences.

We cannot strengthen this last conjecture to “TZT decides all Henkin for-
mulæ” beco’s there is a Henkin formula that says there is an external tsau. And
that is true in some models of TST but not all!

Throughout this discussion we will try to keep to the cute mnemonic
habit—due to Quine—of writing a typical universal-existential sentence with
the initial—universally quantified—variables as ~y (‘y’ for youniversal) and the
existentially quantified variables as ~—for Eistential). That was so we can
talk about y variables and  variables.

In earlier versions, conjecture 3 used to be “NF2 decides all stratified ∀∗∃∗

sentences.
It is known that the term model for NFO satifies all consistent ∀∗∃∗ sen-

tences consistent with NFO. Putting this together with conjecture 2 suggests
that NF might have a model satisfying all the ∀∗∃∗ sentences consistent with
NF. (In fact we conjecture that a term model for NF would be such a model).
At the very least it suggests that the class of ∀∗∃∗ sentences consistent with
NF is closed under conjunction. This also suggests that if conjecture 2 is cor-
rect then whenever ϕ is a consistent ∀∗∃∗ sentence consistent with NF then
{π : ϕπ} belongs to some class  of sets of permutations that is closed under
intersection. Is  nicely defined in terms of a natural topology on the symmetric
group on V? It clearly can’t mean “open” in the usual topology.



A factoid to be fitted in

Write D() for ΔB(). I think i can show that D has no finite cycles. That
is to say, we can prove by meta-induction on n that

REMARK 62 (∀)(Dn() 6= ).

Proof:
Start with n = 1. If  = D() then  = ΔB(), which is clearly impossible

since B() is never empty.
Let {d1 . . . dn = d1} be an n-cycle where d+1 = D(d) for 1 ≤  ≤ n.
Now (∀)( ∈ dn ←→ ( ∈ dn−1 ←→ dn−1 6∈ )).
But  ∈ dn−1 is the same as ( ∈ dn−2 ←→ dn−2 6∈ ) so we get

(∀)( ∈ dn ←→ (( ∈ dn−2 ←→ dn−2 6∈ )←→ dn−1 6∈ ))

and so on getting

(∀)( ∈ dn ←→ (( ∈ dn− . . .←→ dn−2 6∈ )←→ dn−1 6∈ )).

Now we can exploit the associativity of ←→ to erase all the brackets and
leave just the set

{d1 ∈ , d2 ∈ , . . . dn ∈ }

where the number of negation signs has opposite parity to n. So we end up
with

(∀)(d1 ∈ ←→ d2 ∈ ←→ d3 ∈  . . . dn ∈ )

which says that for any , an odd number of ds are not in, or an even number
are in, depending on the parity of n. Picking  to be a suitable finite set can
bugger this up completely. So D has no finite cycles.Write this out properly

Let’s illustrate with an odd n and an even n. Sse d4 = d1
then

(∀)( ∈ d1 ←→ (d4 6∈ ←→ (d3 6∈ ←→ (d2 6∈ ←→ (d1 6∈ ←→  ∈ d1)))))

which simplifies to

(∀)(d3 ∈ ←→ (d2 ∈ ))

or, in plain language d3 = d2, contradicting our inductive hyp that d2 and
d3 are distinct.

“(∀)(D() exists)” is an unstratified ∀3 sentence which, together with
extensionality, has no finite models.



We can’t show that D is injective, sadly. After all, if  = B2() we have
D() = D(B()).

But the assertion that D is injective is universal-existential. Is it consistent
?

17.5 A note on the first two conjectures

The background to these conjectures is that NFO proves all ∃∗ sentences con-
sistent with LPC, and one naturally wants to speculate about what happens
with formulæ with more quantifiers.

Notice that “every superset of a self-membered set is self-membered” is a
∀∗∃∗ sentence consistent with NF2 (it’s true in the term model) that is not
consistent with NFO, so we cannot strengthen ‘NFO’ to ‘NF2’ in conjecture 2.

Every ∀∗∃∗ sentence has a canonical normal form. If we take the dis-
junction of all possible conjunctions of atomic and negatomic formulæ built up
from all the  and y variables by means of ∈ and =, then any ∀∗∃∗ sentence
can be put in the form (∀~y)(∃~) followed by a disjunction of some of those
conjunctions.

Let us assume this done. Now suppose we had started with a ∀1∃∗ sentence,
and put it into this normal form. There is only one y variable, and every value
that it takes either is or is not a member of itself, so we know that if our ∀1∃∗

sentence is to be satisfiable at all then at least one of its disjuncts must be
a conjunction containing the atomic conjunct ‘y ∈ y’ and at least one of its
disjuncts must be a conjunction containing the negatomic conjunct ‘y 6∈ y’.
This is because (since V is a set) ‘y’ might be interpreted by something that is
a member of itself, and (since ∅ is a set) ‘y’ might be interpreted by something
that is not a member of itself.

Anything else is going to be false in all models of any theory in which we can
prove the existence of V and Λ. Also, this seems to be about all we can do in
the way of weeding out formulæ that are not going to be satisfiable. Notice that
this line of talk relies only on things we can prove in NF2. Hence conjecture 1.

Now let us consider ∀2∃∗ sentences. We now have to consider not just the
two formulæ ‘y ∈ y and ‘y 6∈ y’ but the 32 conjunctions we get by assigning
truth values to ‘y1 ∈ y1’, ‘y1 ∈ y2’, ‘y2 ∈ y1’, ‘y2 ∈ y2’ and ‘y1 = y2’.

Now in any set theory in which we can find objects satisfying, for example,
t1 ∈ t1 ∧ t1 6∈ t2 ∧ t2 6∈ t1 ∧ t2 ∈ t2 we can argue that if a ∀2∃∗ is to
be satisfiable at all then at least one of its disjuncts must be a conjunction
containing y1 ∈ y1 ∧ y1 6∈ y2 ∧ y2 6∈ y1 ∧ y2 ∈ y2, because otherwise it
could be falsified in any model by interpreting each ‘y’ by t. Such a theory is
NFO. As before, this seems to be the only thing we can do to weed out formulæ
that are not going to be satisfiable, so the corresponding conjecture for ∀2∃∗

sentences will be that every ∀2∃∗ sentence refutable in NF is refutable in NFO.
As it happens, NFO proves every consistent ∃∗ sentence so we do not need to
reach for more complicated theories when considering ∀3∃∗ sentences. This is
why conjecture 2 takes the form that it does.



We can prove that every ∀∗∃∗ sentence consistent with NFO is true in
the term model of NFO. (This is proved in the book somewhere). What about
NF2? There is a complication with NF2, namely that the term model doesn’t
satisfy the ∃∗ sentence (∃12)(1 ∈ 1 6∈ 2 ∈ 2 6∈ 1). So it isn’t true
that the term model for NF2 satisfies every consistent ∀∗∃∗ sentence. (I think
it proves that, given two self membered sets, one is a member of the other)

OTOH, we do get this:

REMARK 63 The term model for NF2 satisfies every ∀∗∃1 sentence consis-
tent with NF2.

Proof:
Let (∀~y)(∃) be a ∀∗∃1 sentence consistent with NF2. Then for every

vector ~t of terms there is an  such that , so all we have to do is establish that
such a witness can be found among the terms.
(∀~y)(∃) is satisfiable, so fix a model in which it is true. (It doesn’t matter

which one, as the term model is unique, and embeds in all models). Express 
in DNF, and fix a tuple ~t of terms. One of the disjuncts is true. Truth of this
disjunct tells us that there is a witness  which has certain ts as members, is
distinct from certain other ts (if there is a clause requiring it to be equal to one
of the ts then we are done) lacks certain other ts, and belongs to a final t. This
last simplification arises beco’s a finite conjunction of things like  ∈ t and  6∈ t
is equivalent to a single expression of that form, complements and intersections
of ts being ts. If this final t is a low set then the witness is already a term. If
it isn’t, then we are looking inside a cofinite set for a set satisfying conditions
each of which exclude only a moiety of sets. So there must be a witness.

Something analogous holds for all basic CO models. The term model for
NF2 is the hereditarily finite-or-cofinite sets, least fixed point version. This
needs to be nailed down.

IN particular this holds for (∀)( ∈ → (∀y)(y =  \ {}→ y ∈ ))
(∀)( ∈ → (∀y)((∃z)(z ∈ y←→ ¬(z ∈ ∧ z 6= )∨ y ∈ ))

Now the same argument won’t work for ∀∗∃2 sentences consistent with NF2,
since that could commit us to finding two witnesses 1 and 2 satisfying 1 ∈
1 6∈ 2 ∈ 2 6∈ 1. In these circumstances 1 and 2 both have to be cofinite,
and if 2 and 2 are cofinite, one is a member of the other: if V \ {1 · · ·n}
and V \ {b1 · · ·bn} are members of each other then V \ {b1 · · ·bn} must be
one of the  and V \ {1 · · ·n} must be one of the b, contradicting the fact
that the subformula relation on terms is wellfounded.

What about extending this to ∀∗∃∗ sentences?
Every ∀∗∃∗ sentence is a conjunction of things of the form

(∀~y)(A(~y)→ (∃~)(B(~, ~y)))



where A is a conjunction of ∈ and 6∈ between the ~y and in B all atomics
involve at least one .

The point is that if there is more than one y we can get A to describe a
finite structure that is not a substructure of the term model for NF2, which
means that any ∀∗∃∗ sentence built up using that A is trivially true in the
term model for nf2.

But we might be working our way back. Suppose (∀~y)(A(~y) →
(∃~)(B(~, ~y))) is a ∀∗∃∗ sentence refutable in NF2. Then A must describe a
substructure of . . .

17.6 A note on Conjecture 2 and Conjecture 3

The finitely generated models of TSTO are those whose type 0 has only
finitely many atoms.

A partition  of a set X is a subset of P(X) such that
⋃

 = X and the
members of  are pairwise disjoint.

If 1 and 2 are two partitions of the same set we say 1 refines 2 if
every piece of 1 is a subset of a piece of 2.

A subset X′ ⊆ X crosses another subset p ⊆ X if X′∩p and X′ \p are both
nonempty. (That is to say, X′ is not in the field of sets generated by  if X′

crosses a piece of ).
We first prove that every countable model of TSTO is a direct limit of all

the finitely generated models of TSTO. (The “all” is important.)
We do this by induction on the number of types. For reasons which will

become clear we will regard the finitely generated models as starting with a
base type T1 with 2n elements and a boolean algebra structure rather than
starting with a base type T0 with n elements and no structure. In effect we
forget about the bottom type. So the thing we are going to prove by induction
on k is that every countable model of TSTOk is a direct limit of all finitely
generated models of TSTOk .

For the base case we prove that every countable atomic boolean algebra B
there is a family B :  ∈ IN of subalgebras of B where B has  atoms, where the
inclusion map is a boolean homomorphism and the union

⋃

∈N B is B.
We obtain B+1 from B by splitting one of the  atoms into two, effectively

adding two new atoms. To decide which atom to split, and how to split it,
depends on how we wellorder B. We have a fixed wellordering of B to order
type ω. At stage 0 we consider B0 which of course is just the two element
boolean algebra containing the top element and the bottom element. We make
1 an atom and set B1 to be the four element boolean algebra with 1 and
V \ 1 as atoms.

Thereafter at any stage we have two things in hand:
(i) a most-recently-constructed algebra B and
(ii) an k which is to be an element of an algebra soon to be constructed.

(Notice that  and k are not assumed to be the same! In general  is likely to
be much bigger than k.)



The set of atoms of B that we have is simply a partition of the atoms of
B into  pieces. At stage k we consider k . k will be a superset of some
atoms and disjoint from others. These we do nothing to. The remaining atoms
it crosses. The atoms are ordered by the canonical worder of B. Suppose for
example k crosses five of the  atoms of B, to wit: c, d, e, ƒ , g in order. Then
we obtain succesively B+1 by splitting c into c ∩ k and c \ k ; then B+2 by
splitting d into d ∩ k and d \ k ; then B+3 by splitting e into e ∩ k and
e \ k ; then B+4 by splitting ƒ into ƒ ∩ k and ƒ \ k ; and finally B+5 by
splitting g into g ∩ k and g \ k .

What has this achieved? We now have constructed our sequence of subal-
gebras as far as B+5 and we have ensured that k is in the direct limit. By
iterating this we will eventually ensure that every element of B appears, so the
direct limit of the sequence of subalgebras generated in this way is B.

The induction step is similar but messier.

Let B be a countable atomic boolean algebra which is the union of
〈Bn : n < ω〉: a ⊆-nested sequence of finite subalgebras of B. Let B+ be a
countable atomic subalgebra of P(B) containing all singletons. Then there is a
sequence 〈 :  < ω〉 of finite partitions of B such that 0 is the trivial partition
with only one piece and for each  ≥ 1,

 refines −1.  ⊆ B+
B is a selection set for .

Further, if we let B+ be the subalgebra of B+ whose atoms are the pieces of

 (so that P(B) ' B+ ) then the union of the B+ is B+ . As before we have a

well-ordering 〈n : n < ω〉 of B+ .

We construct the sequence of partitions by recursion. As noted above, 0
is the trivial partition with only one piece. Thereafter we procede as follows.

Suppose we have constructed partitions up to −1, and we have j in hand,
where j is the first element of B+ (in the sense of the canonical ordering) not
already a finite union of pieces of −1. We seek a refinement  of −1 such
that each piece of  contains precisely one element of B and such that j is a
union of pieces of .

How are we to subdivide the pieces of −1 to get pieces of ? Clearly
whenever j extends, or is disjoint from, a piece of −1 then we do not need
to subdivide that piece in order to get pieces for  such that j is a union of
some of them. However, if j crosses a piece p of −1 we need to take steps.
There are other things that may cause us to subdivide p and that is the need to
ensure that every member of  contains precisely one element of B. If p meets
j and p ∩ j contains elements from B \ B−1 then we can partition p into
pieces each of which contains precisely one element of B \B−1. Naturally if we
can do this for every piece that meets j or its complement success is assured.

However there remains the possibility that p crosses j but that p ∩ j
contains no elements from B \ B−1. This is grave, because then there is no
means of partitioning p into pieces each of which contains precisely one element
of B and whose union is p ∩ j (and this of course excludes the possibility of



refining −1 into a partition every piece of which contains precisely one element
of B and such that j is a union of pieces).

This means that in these circumstances we have to lower our ambitions. It
has turned out to be too much to expect j to be a union of pieces of  but we
can expect to be able to make it a union of pieces of +k for some finite k. That
will be sufficient, because that way every j will get used up eventually, but can
it be done? We have to go on throwing in elements of B, B+1, B+2. . .B+k ,
until p ∩ j and p \ j both meet B+k . But this must happen sooner or later
because B is a union of all the B so any subset of B (such as p∩j) must meet
cofinitely many of them.

So, to sum up, the step from −1 to  is made with an j in mind. If
we can refine −1 in such a way that every piece of the new partition contains
precisely one element of B and j is a union of the new pieces, well and good.
Set  to be the new partition and worry next about j+1. If we cannot do this,
we can at least refine −1 in such a way that every piece of the new partition
contains precisely one element of B, and we call that . We then attempt the
same, starting this time with  and continuing to worry about j.

Every countable model of TST is a direct limit of all finitely generated
models of TST.

Let M, a countable model of simple type theory, have as its domain a family
〈Bn : n < ω〉 of countable atomic boolean algebras, where Bn+1 is a countable
atomic subalgebra of P(Bn). Let B1 be a union of an ω-sequence 〈B1 :  < ω〉.
We then invoke the induction step above repeatedly to obtain, for each n, fam-
ilies 〈B

n
:  < ω〉 of subalgebras and 〈

n
:  < ω〉 of partitions as above. Now

for each  < ω consider the structures 〈〈B
n
: n < ω〉,∈〉. We have constructed

the B
n

so that B+1
n

is an atomic boolean algebra whose atoms are elements

of a partition for which B
n

is a selection set. Thus, if we want to turn the

〈B
n
: n < ω〉 into a model of simple type theory the obvious membership re-

lation to take is ∈ itself. They are models of simple type theory without the
axiom of infinity, and by construction their direct limit is pointwise the nth
type of M, so the direct limit is M as desired. 2

There is an obvious modification for TZT. Every countable model of TST
is a direct limit of all finitely generated models of TST and so is certainly a
direct limit of M1, M2 . . .Mn where M1 is the canonical model where T0 has
one element and Mn+1 is the result of deleting the bottom type off Mn and
relabelling. Now let N be an arbitrary countable model of TZT, and consider a
terminal segment of it. We have just shown that this terminal segment is a direct
limit of the Mn. It is a simple exercise to extend this network of embeddings
downwards . . .

This tells us that every countable model of TZT is a direct limit of an ω∗

sequence of copies of M1.

2This suggests that the obvious product topology on the space of countable models of TST
might be useful . . .



The missing link is a proof of the assertion that there is no universal-
existential sentence (in the language of boolean algebra or perhaps set theory)
which has infinite models but no finite models.

The intention is that once we have this we wrap up the proof as follows.
Let ϕ be a existential-universal sentence with an infinite model. Therefore

it has a countable model. Then ¬ϕ cannot be true in arbitrarily large finitely
generated models because otherwise ¬ϕ would be true in all countable models.
So ϕ is true in all suff large finitely generated models, say all models with at
least n atoms.

If ¬ϕ has an infinite model so does the expression “¬ϕ∧ there are at least
n atoms”. (Indeed they have the same infinite models!) But this expression
has no finite models. But unless ϕ is true in all countable models, “¬ϕ∧ there
are at least n atoms” is an example of a universal-existential sentence with an
infinite model but no finite models.

So if there is no universal-existential sentence (in which language?) which has
infinite models but no finite models then TST decides all universal-existential
sentences.

17.6.1 Some other observations that might turn out to be
helpful

First prove that if (∀~y ∈ Vω)(∃~)(~, ~y) is a universal-existential sentence
consistent with TST then its type-free version is true in some transitive well-
founded model of KF. Next prove that if (∀~y ∈ Vω)(∃~)(~, ~y) is a universal-
existential sentence true in some transitive wellfounded model of KFthen it is
true in Vω. (This ought to be true beco’s every transitive wellfounded model
of KFis an end-extension of Vω—also rud functions increase rank by only a
finite amount may 1998). Then we argue that if (∀~y ∈ Vω)(∃~)(~, ~y) is a
stratified universal-existential sentence true in Vω then its typed version has a
finitely generated model.

Do we mean true at one type or true at all types?
Suppose (∀~y ∈ Vω)(∃~)(~, ~y). Assume that  is stratified and is in

disjunctive normal form.
Since  is stratified there is a stratification of its variables. This suggests an

obvious conjecture. If ‘’ is of type n why not restrict the quantifier binding ‘’
to Vn and hope the result to be true? How might this go wrong? One obvious
way is exemplified by the following formula:

(∀y)(∃1 . . . 1010)(
∧

1≤<j≤1010
( 6= j ∧ (y ∈  ∧ y ∈ j)))

This is only going to be true at sufficiently high types. What we have to
establish is that this is the only way things can go wrong.

First, by reasoning in ZF or Zermelo plus foundation, we argue that every
universal-existential sentence true in V is true in Vω.

Pause briefly to think about the graph of , by which i mean the digraph
whose vertices are variables with a directed edge from ‘y’ to ‘’ if ‘y ∈ ’ occurs



somewhere. If this digraph has no loops involving ‘’ variables we procede
as follows, making use of the obvious rank function on ‘’ variables which is
available in these circumstances.

Instantiate all the ‘y’ variables to names of individual hereditarily finite
sets. We can import the existential quantifiers past the disjunctions so that
each disjunct is now a string of existential quantifiers outside a conjunction of
atomics and negatomics. At least one of these disjunctions is true: grab it.
We now want to find witnesses for—instantiate—the ‘’ variables bound by the
existential quantifiers leading that disjunct, and we want to find these inside Vω.
(Notice that at this stage we can assume there are no positive occurrences of
‘=’ within this disjunct, because ‘(∃)(∃)(. . .  =  . . .) can be rewritten to
remove one of the two variables.) Some of these variables “point to” ‘y’ variables
in the sense that there is a directed edge from them to one or more ‘y’ variables.
Such ‘’ variables must be instantiated by hereditarily finite sets if they can be
instantiated at all, and we know they can be so instantiated because we are
assuming that (∀~y ∈ Vω)(∃~)(~~y). So instantiate them all simultaneously
with a tuple of witnesses in virtue of which we knew that particular instance of
(∀~y ∈ Vω)(∃~)(~, ~y).

Now to instantiate the remaining ‘’ variables. A witness for this sort of
variable must have certain given things as members and certain other things
not as members, so why not simply take it to be the set of things that it has to
have as its members? Because we might end up thereby instantiating both ‘1’
and ‘2’ to {1, 2,{∅}}, say, while elsewhere in the formula we are trying
to make 1 6= 2 true, so sometimes we have to add silly elements to things to
make them different.

We then continue by recursion on the rank of ‘’ variables.
This tells us that any true stratified universal-existential expression in the

language of set theory is true in Vω.
In this connection it may be worth noting that every model of TSTO P-

extends every finitely generated model, so any P
1 sentence true in even one

finitely generated model is true in all infinitely generated models.
It is almost certainly time to use the theorem of Ramsey that says that there

is a decision proceedure to establish whether or not an arbitrary 1 sentence
has an infinite model. Ramsey claims a generalisation to 2 formulæ.

The following remark probably belongs here:

REMARK 64 TZT ` Amb(Ley1 )

Proof: It falls into two cases

1. All models of TZT+ ¬ AxInf satisfy Amb(P
1 ). For any P

1 sentence 
either it is false in all finitely generated models or there is an n such that
it is true in all models bigger than n. This n is standard if the Gödel
number of  is. So if M |= TZT ∧ ¬ AxInf then |M| is non-standard
finite, so bigger than all the n. This shows that all models of TZT + ¬
AxInf satisfy the same P

1 sentences.



2. Now consider M such that M |= AxInf. M and M∗ have the same integers
because Specker’s T function is an isomorphism as long as each universe
is at least countable. This shows that any model of TZT+ AxInf must
have the same arithmetic at each type. We will need this and the fact

thatLéy1 sentences generalise upward. The next step is to show that

if Th(M) ` Con(ϕ) where ϕ is Léy1 in the language of TZT then M
contains an ∈-model of ϕ. First we prove in the arithmetic of Th(M)
that ϕ + Et has a model N in the integers. The elements of this model
have a type discipline in a natural way, and only finitely many types
are mentioned. We construct an ∈-model N′ essentially by a Mostowski
collapse as follows: the elements of minimal (internal) type are the same
as they were in N, namely particular integers at (external) type k, or
whatever. The objects of (internal) type 1 in N′ are to be the appropriate
sets of things of (internal) type 0, and these will of course be of (external)
type k+1. And so on, for finitely many types. Note that this construction
cannot work for P

1 ! Thus TZT+ AxInf ` Con(ϕ) → TZT+ AxInf ` ϕ

for ϕ ∈ str(Léy1 ), in slang TZT+ AxInf reflects Léy1 sentences.

Next we need a converse. Suppose ϕ ∈ Léy1 is true at some level of M.
Therefore ϕ has a model and this model can in fact be coded by a set of
M. Therefore Th(M) knows that ϕ + Et is a consistent theory. This
allegation is expressible in the arithmetic of M and so Th(M) ` Con().

17.7 Conjecture 5: finding permutation models

Given a ∀∗∃∗ sentence S, import all the ∃’s and export all the ∀’s. The result
is a formula with ∀~y outside a conjunction of implications each of the form

Y → (∃~)(ϕ(~, ~y))

where ϕ is a boolean combination of atomics and negatomics each one containing
an  variable, and Y is of the form

(
∧

〈,j〉∈J⊆2
y Ryj),

where the ‘R’ is either ‘∈’ or ‘ 6∈’. The disjunction of all the Ys must be valid,
since every consistent ∃∗ formula of LPC is a theorem of NF. We can now
export the conjunctions, and this shows that S is a conjunction of things of the
form

(∀~y)((
∧

〈,j〉∈J⊆2
y Ryj)→ (∃~)(ϕ(~, ~y))



Now a conjunction of two formulæ of this form is another formula of this
form. This means that without loss of generality we need consider only formulæ
of this form.

Can we restrict attention even further to ∀∗∃∗ sentences of this form
where the consequent is the existential closure of a conjunction of atomics and
negatomics rather than a boolean combinations? Sadly, no. Consider y1 ∈ y1
and y2 6∈ y2. There is something in y1Δy2 but is it in y1 \ y2 or in y2 \ y1?
No reason to suppose either. But perhaps if we supply more information, about
whether or not y1 ∈ y2 and y2 ∈ y1 then we might be able to cut down to a
single disjunct.

[This problem is nothing to do with these things being unstratified: the
same happens with y1 ∈ y2 ∧ y3 6∈ y2 There is either something in y1 \ y3 or
something in y3 \ y1 but we don’t know which.]

That this is not true is shown by the following case.

(∀y1y2)(y1 6∈ y1∧y2 ∈ y2∧y2 ∈ y1∧y1 ∈ y2 → (∃)( ∈ y1∧ 6∈ y2)∨(∃)( 6∈ y1∧ ∈ y2))

This is provable beco’s of extensionality, but neither

(∀y1y2)(y1 6∈ y1 ∧ y2 ∈ y2 ∧ y2 ∈ y1 ∧ y1 ∈ y2 → (∃)( 6∈ y1 ∧  ∈ y2))

nor

(∀y1y2)(y1 6∈ y1 ∧ y2 ∈ y2 ∧ y2 ∈ y1 ∧ y1 ∈ y2 → (∃)( ∈ y1 ∧  6∈ y2))

are provable because we can find y1 and y2 satisfying the antecedent with
y1 ⊆ y2 and y1 and y2 satisfying the antecedent with y2 ⊆ y1. Try y2 :=
BV; y1 := {BV} for the first case and y2 := BV; y1 := BV ∪ {V} for the
second.

Anyway the idea now is that all we have to do to prove the ∀∗∃∗ conjecture
is to show how to get a permutation model of anything of the form

(∀~y)((
∧

〈,j〉∈J⊆2
y ∈ yj)→ (∃~)(ϕ(~, ~y))

as long as it’s consistent with NFO. But is it not the case that every ∀∗∃∗

sentence consistent with NF0 is true in the term model for NF0?
That suggests considering only permutations that leave NFO terms alone,

since they have witnesses anyway!
We can’t just move things that aren’t NFO terms, since being an NFO term

is not stratified, so we have to move things are not “sufficiently like” NFO terms.
The idea is that anything sufficiently like an NFO term will satisfy the ∀∗∃∗

formula we have in mind at any one time, where “sufficiently alike” depends on
the formula in question. So we consider only those permutations that, say, swap
with their complements those things that are not NF0 terms of rank at most k
for some concrete k.



Illustrate this by thinking about the assertion that there are no Boffa atoms.
What witness is there?

There is something very odd about the case
(∀y1y2)(y1 6∈ y1 ∧ y2 ∈ y2 ∧ y2 ∈ y1 ∧ y1 ∈ y2 → (∃)( ∈ y1 ∧  6∈

y2)∨ (∃)( 6∈ y1 ∧  ∈ y2))
The point is that this is true not because of the behaviour of NFO terms,

but because of extensionality and classical logic. There is no reason to suppose
that the witnesses will be easy to find.

17.8 Positive results obtained by permutations

Many of these are published, and collected in Forster [1991]. Here are some new
ones.

17.8.1 The size of a self-membered set is not a concrete
natural

Boffa has made some progress on this front. He has proved that, if the axiom
of counting holds, there is a permutation π such that in Vπ there is no self-
membered finite set. A little adjustment strengthens the conclusion and weakens
the assumption slightly.

REMARK 65 If NF+AxCount≤ is consistent so is NF+AxCount≤ + “Every
self-membered set maps onto IN”.

Proof: Let X be the collection of sets that do not map onto IN. If  is such a
set, then the set of n ∈ IN such that {n}× V meets  is finite, and will have a
last member. Add 1 to this last member to get a number we will call n. n
has the feature that (∀m ≥ n)((∩ ({m}× V)) = Λ). Tn is the same type
as  and so the permutation

∏

∈X
(, 〈Tn, 〉)

is a set. Notice that if  ∈ X then τ‘ is infinite and not equal to .
Now suppose  ∈ τ‘. To prove that in Vτ every self-membered set is

infinite it will suffice to show that τ‘ is infinite. We will assume AxCount≤
and prove that τ‘ has a countable partition.

If  is fixed then  is infinite so τ‘ (which is ) is infinite as desired. If 
is not fixed there are two cases to consider.

(i)  ∈ X. Then τ‘ is infinite by construction.
(ii) τ‘ ∈ X. Then  = 〈Tnτ‘, τ‘〉. But also  ∈ τ‘ so 〈Tnτ‘, τ‘〉 ∈

τ‘. Now nτ‘ has been chosen to be so large that no ordered pair 〈m,y〉
is a member of τ‘ for any ≥ nτ‘. So, to get a contradiction all we need is
Tnτ‘ ≥ nτ‘. The simplest way to get this is to assume AxCount≤ .



(Originally Boffa had taken n to be the first n s.t. {n} × V does not
meet . That way he needs the whole of the axiom of counting.) Friederike
Körner and i both noticed that to make this proof work it is sufficient to have
a (set) function ƒ : IN→ IN such that (∀n)(ƒ (Tn) ≥ n). I propose to call such
functions Körner functions. If we have such a function we swap  (when  is
finite) with 〈ƒ (Tn), 〉 instead of 〈(Tn), 〉. Indeed in those circumstances
we can do something even better.

REMARK 66 If there is a function ƒ : IN → IN such that (∀n)(ƒ (Tn) ≥ n)
then (letting π be the permutation

∏

||∈N
(〈ƒ (Tn), 〉, )

that swaps  with 〈ƒ (Tn), 〉 for  finite) we find that in Vπ the member-
ship relation restricted to finite sets is wellfounded.

Proof:
Suppose Vπ |=  ∈ y∧ || ∈ IN∧ |y| ∈ IN. Then π() and π(y) are both

finite and  ∈ π(y). We will show nπ() < nπ(y). Since π() is finite,  must
be 〈ƒ (Tnπ()), π()〉. But then, since  ∈ π(y), the first component of  must
be less than nπ(y), so ƒ (Tnπ()) < nπ(y). But we have nπ() < ƒ (Tnπ()) by
choice of ƒ so nπ() < nπ(y) as desired.

(In fact we can swap  and 〈, ƒ (Tn)〉 as long as  does not map onto
IN. So we can set π :=

∏

(, 〈, ƒ (Tn)〉) taking (, 〈, ƒ (Tn)〉) to be the
identity if n is undefined.)

Friederike Körner then showed that it is consistent relative to NF that there
should be n ∈ IN such that for all greater m we have m< Tm, and that means
there is such an ƒ , namely λ.(if  < n then n else ). Let us call natural
numbers k s.t. (∀n ∈ IN)((n + k) < T(n + k)) Körner numbers.

The significance of Körner numbers is that if there is a Körner number then
there is a Körner function, a function ƒ : IN → IN such that (∀n ∈ IN)(n ≤
ƒ ‘Tn). The existence of such a function commuting with T is of course equiva-
lent to AxCount≤ , but this is weaker, and implies that there is a permutation
model in which ∈�FN is wellfounded (which indeed was how we found it!). Given
the desire to find cardinal arithmétic equivalents for all modalised sentences it
is natural to try to find a converse . . .

REMARK 67 If NF is consistent so is NF + “No strongly cantorian set is
self-membered”.

Proof:
For α ∈ T“NO set

� F(α, ) = { ∈  : (∃y)( = 〈V, T−1α, y〉)}

� μ() = the least α ∈ T“NO such that F(α, ) = ∅ if there is one, = V
otherwise.



Note the following:

1. stcn()→ (∃α ∈ T“NO)(F(α, ) = ∅));

2. If stcn() then μ() is a strongly cantorian ordinal;

3. For all , (∀y)(〈V, T−1(μ()), y〉 6∈ ).
If we alter the definition of μ
so it picks up the sup of the
nonempty Fs rather than the
first empty F we have to be
sure that (ii) remains true. It
will be true if only strongly
cantorian ordinals can have
strongly cantorian cofinality.
But perhaps that’s not even
plausible....

Then set
π =
∏

 6∈|V|
(, 〈V, μ(), 〉)

I now think that—assuming that this works at all—it establishes that ∈
restricted to strongly cantorian sets is wellfounded. To that end, suppose Vπ

believes that  is a member of y and both are strongly cantorian. We will show
that μ(π()) < μ(π(y))

So π() and π(y) are both strongly cantorian and therefore cannot be nasty
ordered triples. So it is  and y that are the nasty triples, and we must have
 = 〈V, μ(π()), π()〉) and y = 〈V, μ(π(y)), π(y)〉)

We also have  ∈ π(y), which is to say that the triple  =
〈V, μ(π()), π()〉) is one of the triples in π(y).

We want μ(π()) < μ(π(y)). π() is strongly cantorian, so μ(π()) is a
strongly cantorian ordinal.I think we have to modify the

definition of μ() to be the
sup of nonempty Fs rather
than the first nonempty one
. . .

This will work as long as cƒ (Ω) is not strongly cantorian. In fact i suspect
that it will show that membership restricted to small sets is wellfounded as long
as cƒ (ω) is not small.

So let’s try to generalise the Boffa-Pétry construction

For α ∈ T“NO set

� F(α, ) := { ∈  : (∃y)( = 〈V, T−1α, y〉)}

� μ() :=sup{α + 1 ∈ T“NO : F(α, ) = ∅} if this sup is defined, = V
otherwise.

Note the following:

1. If  is small then μ() is not V;

2. For all , (∀y)(〈V, T−1(μ()), y〉 6∈ ).

Then set
π =
∏

 6∈|V|
(, 〈V, μ(), 〉)

(Perhaps we don’t need to swap everything smaller than V: it may be that
swapping only small things will do; but we shall see.)

We shall attempt to show that, in Vπ, ∈ restricted to small sets is well-
founded. So let  and y be such that Vπ believes  ∈ y and that both  and
y are small. We will (we hope) infer from this that μ(π()) < μ(π(y)).



Assuming that smallness is a property preserved under surjection we know
that Vσ believes  to be small iff σ() was small in V. So in this context we infer
that π(y) and π() are both small and so cannot be nasty ordered triples. So it
is  and y that are the nasty triples, and we must have  = 〈V, μ(π()), π()〉)
and y = 〈V, μ(π(y)), π(y)〉)

We also have  ∈ π(y), which is to say that the triple  =
〈V, μ(π()), π()〉) is one of the triples in π(y). from which μ(π()) <
μ(π(y)) is immediate

So we seem to have shown that:

if cƒ (Ω) is not small, then �(∈�small sets is wellfounded).

There doesn’t seem to be anything special about the choice of Ω here

It’s worth remembering that in Boffa’s original construction μ picks up the
first empty F rather than the sup of the nonempty Fs. I thought this was
wasteful but actually the difference between his definition and my modification
of it is the same as the difference between the definition of grundyrank on
a wellfounded structure and the definition of rank, so it might be something
natural and meaningful.

H I A T U S

It seems that we should be able to do better than this. Suppose there is a
function ƒ : NO→ NO such that (∀α)(ƒ (Tα) ≥ α). Let α be the first ordinal
that is bigger than every ordinal in fst“. α is defined as long as  is small
in the sense of not being mappable onto a cofinal subset of NO. Then let π
be the permutation that swaps  with 〈ƒ ‘(Tα), 〉 for  small then in Vπ the
membership relation restricted to small sets is wellfounded.

Can we tweak André’s proof to show that Con(NF) → Con(NF+
∈�stcn is wellfounded)?

What can we say about the idea that there is an ƒ : NO→ NO s.t. ƒ (Tα) ≥
α? Suppose there is such a function, and let X be a cofinal subset of T“NO.
Then ƒ“X is a cofinal subset of NO so cƒ (NO) ≤ cƒ (T“NO) = T(cƒ (NO)).
For the other direction sse, to take a straightforward case, that cƒ (NO) = ω.
To get such an ƒ (try it!) we would need AxCount≤ .

Boffa has a conjecture that

CONJECTURE 7 It is consistent with NF that (∀)( ∈ → || = |V|)

The dual of this is (∀)( 6∈  → |V \ | = |V|). Now if these two hold
simultaneously we infer (∀)(|| = |V|∨ |V \ | = |V|). This is stratified and
so is certainly not going to be provably consistent by means of permutations.
It is known that there are models of ZF in which the real line can be split into
two smaller pieces. Richard Kaye’s idea for a counterexample to (∀)(|| =
|V|∨ |V \ | = |V|) is {y : |y| < |V|}. In view of what follows we should also
consider {y : |y| 6≥∗ |V|}.



If we think of Bernstein’s lemma, all it tells us is that (∀)(|| = |V|∨ |V \
| ≥∗ |V|).

If || 6≥∗ |V| we say that  is small and if |V \ | 6≥∗ |V| we say  is
co-small. By Bernstein’s lemma a set cannot be simultaneously co-small and
small. (Beware: not everything the same size as a co-small set is co-small:
every co-small set is of size |V| but not vice versa. However, nothing the size of
a co-small set is small.)

This suggests that we might be able to tackle a weaker version by permuta-
tions, namely:

CONJECTURE 8 NF` �(∀)( ∈ → || ≥∗ |V|)
We can make a small amount of progress with this version of the conjecture.
\begin{digression}

Some remarks on Quine pairs

In what follows we will be using ordered pairs in the style of Quine. That
is to say, we set 〈, y〉 = θ1“∪θ2“y, where θ1 and θ2 are homogeneous
bijections between V and two other sets θ1“V and θ2“V s.t. θ1“V =
−θ2“V. Quine actually provides two such functions θ1 and θ2 but we
do not need to know anything more about them than i have just said.
fst() is the first component of the ordered pair .

The advantage Quine pairs are usually supposed to have is that they
ensure the “ = 〈y, z〉” is homogeneous. There are other advantages as
well. If we need a disjoint union function  t y then 〈, y〉 would do.
〈V,⊆,− . . .〉 is a boolean algebra, and so is V × V. The Quine pairing
function is actually an isomorphism between V × V and V. Thus, V \
〈, y〉 = 〈V \ ,V \ y〉, 〈 ∩ y, z〉 = 〈, z〉∩〈y, z〉, and so on. Some of this
will be useful in what follows.

Of course this is less attractive in the context of ZF, but similar results
hold. One should also think about the smallest number of types with
which one can define the two theta functions. Is now the time to go
back and look at Joel Friedman Some set-theoretical partition theorems
suggested by the structure of Spinoza’s God. SYNTHESE v 27 (1974) pp
199-210

\end{digression}

REMARK 68 If (∀)( ∈ → || ≥∗ |V|) is consistent with NF, so is
(∀)( ∈ → || ≥∗ |V|)∧ (∀)(|V \ | 6≥∗ |V| →  ∈ )

Proof:
The two conjuncts are duals of each other, so one is consistent iff the other

is. So let us start with a model V satisfying

(∀)(|V \ | 6≥∗ |V| →  ∈ )

We want to swap every small set  with 〈V \ fst“, 〉 but to do this we must
check that if  is small then 〈V \ fst“, 〉 isn’t (otherwise we would have to
swap that with 〈V\fst“〈V\fst“, 〉, 〈V\fst“, 〉〉 and the definition would



not be consistent.) We will show that if  is small 〈V \ fst“, 〉 is not small,
and vice versa.

Suppose  is small. 〈V \ fst“, 〉 is a superset of θ1“(V \ fst“). Now
fst“ is a surjective image of a small set and is therefore small. Therefore
V \ fst“ is a co-small set, and θ1“(V \ fst“), being the same size as a
co-small set, is at least not small, so its superset 〈V \ fst“, 〉 is not small
either.

For the converse suppose 〈V \ fst“, 〉 is small. If 〈V \ fst“, 〉 is small,
then so is its subset θ1“(V \fst“). But if θ1“(V \fst“) does not map onto
V neither does V \ fst“. So fst“, being the complement of a small set, is
co-small. But if fst“ is co-small,  cannot be small.

(If we were to try to prove an analogous result with “small” meaning “smaller
than V”, this is where the proof would break down. We cannot show that if
 is smaller than V then 〈V \ fst“, 〉 isn’t. As far as we know  could be
smaller than V but fst“ could be the whole of V)

Now we can safely set

π =
∏

||6≥∗ |V|
(, 〈V \ fst“, 〉)

We will verify the two conjuncts separately.

Vπ |= (∀)(|| 6≥∗ |V| →  6∈ )

This is
V |= (∀)(|| 6≥∗ |V| → π‘ 6∈ )

We procede by a case analysis:

� If  = π‘ then  was not small, because all small things are moved.
Therefore the antecedent is false and the conditional is true.

� If  6= π() and  is small, then π() = 〈V \ fst“, 〉. Since  is
small, fst“ (which is a surjective image of ) is also small, so V \fst“
is co-small, and therefore—by hypothesis—a member of itself. Therefore
〈V \ fst“, 〉 6∈ , which is to say π() 6∈ .

� If  6= π() and  is not small, then the antecedent is false and the
conditional is true.

We also want the dual to hold in Vπ, as it did in V. So we want

Vπ |= (∀)(|V \ | 6≥∗ |V| →  ∈ )

This is
V |= (∀)(|V \ π()| 6≥∗ |V| →  ∈ π())

As before, we do a case analysis.

� If  is fixed, the result is true because it was true in the base model by
hypothesis.



� If  is small, then π() = 〈V \fst“, 〉. This is θ1“(V \fst“)∪θ2“,
so V \ π() = θ1“(fst“) ∪ θ2“(V \ ). But if  is small, V \  is co-
small, and so θ2“(V \ )—being the same size as a co-small set—cannot
be small. So its superset θ1“(fst“)∪θ2“(V \) isn’t small either. But
θ1“(fst“)∪ θ2“(V \) is V \π(). Therefore V \π() is not small so
the antecedent is false, and the conditional true.

� If  is not small, it is π(y) for some small set y. So π() is small, and so
V \ π() is co-small and the antecedent is false.

Another observation in the same style is the following:

REMARK 69 If there is a wellfounded set X s.t. Pκ(X) ⊆ X then there is a
permutation model in which ∈ restricted to sets without partitions of size κ is
wellfounded.

Proof: (κ actually has to satisfy the extra condition: α ≤∗ κ→ α ≤ κ, but κ
will be an aleph in all current applications—for the moment at least.) Let π be
the product

∏

||6≤∗κ
(, 〈V \ , (snd“ ∩ X)〉)

of the transpositions (, 〈V \ , (snd“ ∩ X)〉) over all  without partitions of
size κ.

Let such sets be “κ-small”, at least for the duration of this proof. This
is basically a Boffa permutation (as in remark 65). However, there is a slight
wrinkle. With Boffa’s original permutation much use was silently made of the
fact that the second components of the ordered pairs in the story were large,
being natural numbers. This ensured that whenever π moved , then π() was
large iff  was small. This was essential to the plot, and remains essential here.
Now snd“ ∩ X is small if  is, so in order to achieve “whenever π moves ,
then π() is large iff  is small” we need to do something to the fst element
of the pair it make it large instead. This is what complementation is doing.

Let’s just check this. If  is κ-small then π() is an ordered pair one of
whose components is V \  wot ain’t nohow κ-small, so π() is not κ-small.
Now suppose π() 6=  and π() is not small. Then it is 〈V \ , snd“ ∩ X〉.
By design of π, this object can only have been moved from , so  was κ-small.

Suppose Vπ thinks that that  ∈ y and both are κ-small. This last tells
us—as we have seen—that y must be 〈V \ π(y), (snd“π(y) ∩ X)〉, and  must
be 〈V \ π(), (snd“π() ∩ X)〉. Now  ∈ π(y) so snd() ∈ snd“π(y). Now
snd() = snd“π() ∩ X so snd() is at least a subset of X, and it’s κ-small
because it’s a subset of snd“π() which is a surjective image of π() which is
κ-small. So it’s a κ-small subset of X and is therefore a member of X, since
Pκ(X) ⊆ X. So snd() is a member of both snd“π(y) and X, so it’s a member
of snd“π(y) ∩ X, which is snd(y) so snd() ∈ snd(y).



Thus we have shown that: whenever Vπ thinks that  ∈ y and both  and y
are κ-small, then snd() ∈ snd(y), and we also know that both of these things
are in X. In other words, if we let K be the set of things that Vπ believes to be
κ-small, then snd is a homomorphism from 〈K,∈π〉 to 〈X,∈〉. X is wellfounded
by assumption, so 〈K,∈π〉 must be too.

It might be worth considering an indexed family of permutation models
generated as follows. Given an X as above (minus the wellfoundedness condition)
let πX be the permutation defined as above. Order them according to the partial
order on the X’s. The result is a Kripke model of something-or-other.

It would be very nice to have a converse to remark 69.
My version of Boffa’s conjecture is: co-small implies self-membered. (A

special case of) the universal-existential conjecture is: self-membered implies
meets everything in the sublattice generated by the values of B. The conjunction
of these two implies that every co-small set meets everything in the sublattice
generated by the values of B. This we know to be true.

Can we spice this up to lattices generated by free bases for V?

How many bases are there? How big are they? How big are their elements?
Given any basis i can swap any element with its complement, so the number

of bases is at least two-to-the size of any basis.
The ∀∗∃∗ conjecture implies that if  ∈  then  meets every element

of the standard basis. How about every element of every basis? Doesn’t that
sound a bit like “Every self-membered set generates 〈V,⊆,−〉”?

I claim the following

1. “Every self-membered set generates 〈V,⊆,−〉” is ∀∗∃∗;

2. If α is the size of a generating set then T |V| ≤ 2α;

3. If 2α = T |V| then there is a basis of size α.

The first is easy to check. It is ∀y ∈ y)(∀y1y2)(∃ ∈ y)(y1 ∈  ←→
y2 6∈ ∨ y1 = y2). The following generalisation of item (i) merits attention:
 ∈ →  ∩P() generates P(). It’s not ∀∗∃∗ but it’s natural.

(ii) Follows beco’s every singleton is an intersection of basis elements and
complements of basis elements.

(iii) Sse F : ι“V ←→ P(X) is a bijection. Each singleton {y} corresponds to
a subset X′ of X, and we deem that {y} is the intersection of the basis elements
belonging to X′ and the complements of the basis elements in X \ X′. So ƒ ‘
must be
⋃

{y ∈ ι“V :  ∈ F(y)}. Then ƒ“X is a basis.
small()→  6∈ ; Hsmall()→WF(); ∈�small is wellfounded.

17.8.2 Bases for the irregular sets

Something about this in coret.tex



A set is irregular iff it meets all its members. A basis for the irregular sets
is a set that meets every irregular set. Some of the theorems we have proved can
be expressed as facts about bases. Membership restricted to finite sets being
wellfounded is the same as the infinite sets forming a basis. Can the uncountable
sets form a basis? We shall see! However the set of co-small sets isn’t big enuff
to be a basis. If X is irregular so is B“X, and no member of B“X is co-small!

Still, there is a large gap between the set of uncountable sets and the set of
co-small sets.

17.8.3 Membership restricted to ideals and their filters

History seems to lead us thus. We start off with a notion of smallness (like finite)
and notice that no small set seems to be a member of itself. We then conjecture
that ∈ restricted to small sets is wellfounded, and finally that R (defined by
R(, y) iff  and y are both small or co-small and  ∈ y ←→ y is small) is
wellfounded. But it’s no good if the ideal of small sets is prime:

REMARK 70 Let  be a prime ideal and consider the relation Ry defined as
 ∈ y←→ y ∈ . Then R is not wellfounded.

Proof: In those circumstances ∈� is wellfounded and 6∈� is wellfounded. Find
somehow sets  and b such that  6∈  ∪ b and b ∈  ∩ b. (This is easy to

arrange: set  := BΛ; b := B‘V.) Then  6∈  so  ∈  and b R  ‘cos b ∈ .
b ∈ b so b 6∈  and  R b ‘cos  6∈ b. Then R is not wellfounded.

(Notice that this refutation uses the NFO axiom, so we might get away with
the following relation over Church-Oswald models of NF2 might be wellfounded
(at least when the koding function is nice):  ∈new y ←→ (snd(k(−1)(y)) =
0).)

There are two steps involved:
(i) Move from “∈ restricted to  has no loops of diameter 1, 2 . . . ” to “∈

restricted to  is wellfounded”
(ii) to Move from “∈ restricted to  is wellfounded” to “R is wellfounded”.
How difficult are these? Where  = FN, (i) seems clear enuff. How about

(ii)? Perhaps the permutation making ∈�FN wellfounded (or some variant of
it) will also make this other relation wellfounded.

Try the following permutation: if  is finite, swap  with 〈ƒ (Tn), 〉; if 
is cofinite swap  with 〈ƒ (TnV\), V \ 〉. (I think we will need a sort-of rank
function that sends  to nV\ if  is finite and to nV\ if n is cofinite. Call this
n′

)

We want Vπ |=“R is wellfounded”. Now Vπ |=  R y iff
π() and π(y) are both finite-or-cofinite and  ∈ π(y)←→ π(y) is finite.
Want to show that if Vπ |=  R y then n′

π() < n′
π(y).

case 1: π(y) is finite. Then y = 〈ƒ (Tnπ(y)), π(y)〉.

1. Case 1a π() is finite. Then  must be 〈ƒ (Tnπ‘), π()〉. But then,
since  ∈ π(y), the first component of  must be less than nπ(y), so



ƒ (Tnπ()) < nπ(y). But we have nπ() < ƒ (Tnπ()) by choice of ƒ so
nπ() < nπ(y) as desired.

2. case 1b π() is cofinite. Then  must be 〈ƒ (TnV\π()), V \ π()〉. But
then, since  ∈ π(y), the first component of  must be less than nπ(y),
which is to say ƒ (TnV\π()) < nπ(y) and therefore (by choice of ƒ )
nV\π() < nπ(y).

case 2 π(y) is cofinite. Then y = 〈ƒ (TnV\π(y)), V \ π(y)〉. Case 2a π() is
finite. Then  must be 〈ƒ (Tnπ()), π()〉. But then, since  ∈ π(y), the first
component of  must be less than err......

. . . will get to the bottom of this.

At any rate (when  = FN) the assertion that R has no loops is a ∀∗∃∗

scheme. For example here is the subscheme that says there are no loops of
diameter 2.

∀~∀~y
∧

,j

( = −{y1 . . . yn}→ yj 6= {1 . . . m})

17.8.4 a bit of duplication here

Why does Boffa’s permutation work? The reason is that there is a set X with
a wellfounded relation on it, and a map which accepts a bounded subset of X
and returns a bound. So here’s an idea. Force with the following family. Let
X satisfy P(X) ⊆ X (tho’ perhaps i mean Pα(X) for some α—wait and see!).
Let A be the set of things  so small that any map from  to X has bounded
range. Remember that in Boffa’s original treatment X was the set of naturals
and it was very important that naturals qua sets, are very big. To preserve this
feature we will deal not with members of X but with members of X labelled to
be big. A widget is a pair 〈,V〉 with  ∈ X. Let Y be a set of widgets. Then
∨

Y is 〈
⋃

fst“Y,V〉. (“Peel off the labels, take the sup, put a label on again”).
Then consider the permutation

∏

∈A
(, 〈,
∨

((X × V) ∩ snd“)〉)

This is not enuff to show that comparatively small things are not self-
membered, but if we force over all such X we might end up with a model in
which: ∈�{ : (∃y)(WF(y)∧ |y| = ||)} is wellfounded. I see no reason why
this should not be true. I have actually managed to show that every model of
ZF is the wellfounded part of a model of NF2 in which the membership relation
restricted to low sets is wellfounded.

Maybe we should start from below and have a large wellfounded set X . . .

Suppose Hκ were a set. Label its elements as above to get widgets. Let A
be the set of things  such that no map  → Hκ is unbounded. Consider the
permutation



∏

∈A
(, 〈,
∨

((X × V) ∩ snd“)〉)

Isn’t this remark 69?

17.9 Some provable special cases or weak ver-
sions

The two following results are already in print:

REMARK 71 Every ∀∗∃∗ sentence consistent with NFO is true in the term
model for NFO.

We should show that this holds for branching-quantifier formulæ all of whose
quantifier prefixes are ∀∗∃∗.

But this is immediate—the same proof works!

I think we should be able to prove that every stratified ∀∗∃∗ sentence
consistent with NF2 is true in the term model for NF2. In fact it’s quite a nice
question how much we can weaken “stratified”.

REMARK 72 Every countable binary structure can be embedded in the term
model for NF0.

Think of this last remark as saying that every ∃∞ expression consistent with
NFO is true in the term model.

There are also these two very similar lemmas on term models

REMARK 73 Let M be the (NF-)term model from some model N of NF, and
suppose M is extensional. Let ‘(∃~y)((~, ~y))’ be weakly stratified and suppose
that ‘(∀~)(∃~y)(~, ~y)’ is true in N. Then it is true in M.

Proof:
Assume the hypotheses. (∃~y)((t, ~y)) for any choice ~t of terms. We now

want to be sure that witnesses for the ~y can be found in M. To do this, consider
{~y: (t, ~y)}. This is a term if we can stratify the ~y, as the matrix will be
stratified since the t (being closed terms) can be given any type. M is an
extensional substructure of N, and so there must be such a witness in M.

And now the second theorem.

REMARK 74 Let N be a model of some subsystem T of NF extending NF∀∗,
and M be the T-term model from N, with M extensional. Let ‘∃~y(~, ~y)’ be
weakly stratified with ‘’ quantifier-free. Suppose

N |= ∀~∃~y(~, ~y)

then
M |= ∀~∃~y(~, ~y)



Proof:
Assume the hypotheses.
We start counting the ~y at y0. Then for each ~t ∈ M, N |= ∃~y(~t, ~y) and the

question is, can these ~y be found inside M? Consider {y0 : ∃y1 . . . yn(~t, ~y)}.
Now since ‘’ is quantifier-free, this thing is actually an NF∀∗ term over the ~t
and therefore certainly a T-term and is in M. We also know that it is nonempty
in N and therefore nonempty in M since M is extensional. Therefore, for some
m0 in M, ∃y1 . . . yn(~t,m0, y1 . . . yn) and the task now is to find witnesses
for the y1 . . . yn in M. This is the same problem as before, but with one fewer
y-variable to deal with. So we have a proof by induction on the length of ‘~y’.

17.10 Some consequences of conjecture 1

STUFF TO FIT IN
If WF() we do not expect there to be a y =  ∪ {y}. This gives an axiom

Aω : (∀y)(WF()→ y 6=  ∪ {y})

which is ∀4 or something horrid anyway. Are there ∀2 versions obtained by
thinking about loops?

A1 : (∀y)( 6∈ → y 6=  ∪ {y})

This is stronger (antecedent weaker)—perhaps much stronger. It’s like the version
that is true in the term model of NF2 but not INF, but weaker. That was “every
superset of a self-membered set is self-membered”. This one is true in the term model
of NFO—think about the least rank of a counterexample.

If so, then perhaps we should consider the other finite versions:

An : (∀y)( 6∈≤n → y 6=  ∪ {y})

which get weaker as n gets larger, and they’re all ∀∗∃1. Perhaps there is an
infinite family of systems between NF2 and NFO, and An is true in the term model
for the nth but not in the term model for NFO, or something like that.

It would be nice to prove Aω by ∈-induction but of course we can’t. We would be
able to if we could show that for any y ∈ y, the set { : ∪{y} 6= y} is fat. It isn’t of
course, but the assertion that it is is ∀∗∃∗.*** So the universal-existential conjecture
implies Aω by ∈-induction.

Later: i don’t believe the starred allegation. (Too many quantifiers. . . ?) Let’s
check. The following formula asserts that { :  ∪ {y} 6= y} is fat:

P({ :  ∪ {y} 6= y}) ⊆ { :  ∪ {y} 6= y}
(∀z)(z ⊆ { :  ∪ {y} 6= y})→ z ∈ { :  ∪ {y} 6= y})
(∀z)(z ⊆ { :  ∪ {y} 6= y})→ z ∪ {y} 6= y})
(∀z)((∀ ∈ z)( ∪ {y} 6= y})→ z ∪ {y} 6= y})
. . . so it’s ∀∗∃∗∀∗

But we expect (∀y)( 6= y \ {y}) to hold for nice . (The assertion that it holds
for  = ∅ is a repudiation of Quine atoms and is ∀∃!) Is this a property worth
considering? It says “ cannot be capped off” Can we prove by ∈-induction that all
wellfounded sets have it?? Can’t see how . . .



I used to think that one consequence of conjecture 1 is that { :  ∈ } is
an upper set in 〈V,⊆〉. However, this can be refuted by considering V \ B(V)
(which is selfmembered) and its superset (V \ B(V)) ∪ {V} (which isn’t).

The scheme of assertions: “ ∈  → yΔ is finite → y ∈ y” is ∀∗∃∗ but
doesn’t (despite what i initially tho’rt) come under the conjecture because—
altho’ consistent with NF2, it’s not consistent with NFO, and for similar reasons.
There is an interesting formula that comes out of this, tho’. “ ∈ → yΔ is
finite → y ∈ y” would follow from “{ :  ∈ } is an upper set in 〈V,⊆〉” and
(∀)(∀y)( ∈  ∧ y ∈ → ( \{y}) ∈ ( \{y})) which is ∀∗∃∗ too. This
second is equivalent to the conjunction of

(∀∀y)( ∈  ∧ y ∈  → ( \ {y}) ∈ ))

(∀∀y)( ∈  ∧ y ∈  → ( \ {y}) 6= y)

(This is because the conjunction of these two implies that if  ∈  and y ∈  then

 \ {y} ∈  \ {y}. Then of course we can use them any standard number of times to

conclude that if  ∈  and y ⊆  with  \ y standardly finite, then y ∈ y too. The

we want to know that { :  ∈ } is an upper set to infer that if  ∈  and Δy is

standardly finite, then y ∈ y.)

As noted, we can forget about the first (try  := B(V) and y := V), but
the second is interesting. It is an assertion that there are no generalised Quine
antiatoms. The dual assertion, that there are no generalised Quine atoms, is

(∀)(∀y)(( ∪ {y}) = y → (y ∈ ∨  ∈ ))

Actually we can simplify this a bit. The ‘y ∈ ’ in the consequent implies
the other disjunct in the consequent, so this is really

(∀∀y)(( ∪ {y}) = y →  ∈ )

Notice that in the case where  = Λ this becomes the assertion that there
are no Quine atoms.

This admits generalisation, and in two ways.
If  ∪ {y} = y we say that y caps . Only self-membered sets can be

capped, and even then the cap is unique.

1. For some  we can find y such that y \ {y} = . But for any  there
should be at most one such y. This is ∀∗∃∗ and presumably true in all
term models but don’t quote me on that.

(∀y1 ∈ y1)(∀y2 ∈ y2)(y1 \ {y1} = y2 \ {y2}→ y1 = y2)

which is

(∀y1 ∈ y1)(∀y2 ∈ y2)((∀z)(z ∈ y1\{y1}←→ z ∈ y2\{y2})→ y1 = y2)



which is ∀2∃1.

We dislike counterexamples to this for the same reason that we dislike
Quine atoms: there is no recursive way of telling them apart. (in fact the
nonexistence of Quine atoms is a special case)

What about the situation where 1 \ {y1} = 2 \ {y2}.

This might be perfectly innocent with all four objects different. But funny
things start to happen if enough of them are self membered or members
of each other. (Trouble is: the number of cases is huge!)

let’s try classifying them like this.

(∀12y1y2)(1 \ {y1} = 2 \ {y2}∧ (1, 2, y1, y2)→ 1 = 2)

where  is a boolean combination of atomics in the language L(‘1’, ‘2’,
‘y1’, ‘y2’, =, ∈).
These are all universal-existential. If ϕ is stratifed then the whole formula
is stratified and not interesting. We assume  contains y1 ∈ 1 and
y2 ∈ 2.

I think what i was trying to get at was the following generalisation.

We have a set X (which started off being finite) with the graph of ∈ re-
stricted to X. We are then given some equation between words in the
members of X with operations like singleton, union and difference. (The
equation must be ∀∗) and invited to infer an equation between two mem-
bers of X. This conditional is ∀∗∃∗ and should be consistent according
to the universal-existential conjecture.

E D I T B E L O W H E R E

But we can claim more than this in a ∀∗∃∗ way.

(∀X)(∀y1y2)((∀z1z2 ∈ X)(((z1 \ ) = (z2 \ ))→ y1 = y2)
This doesn’t make sense:the
y’s aren’t doing anything.
What did i mean?

Notice that the assertion at the start of this paragraph (that if ∪{y} = y
and ∪{z} = z implies y = z) is the special case where X = {y, z}. We
might need to insert into the displayed formula a condition like z ∈ X →
z ∩  not self-membered, beco’s of course if  ∈  we might be able to
“cap”  in more than one way. (Check this!) As it stands it’s not true:
X := V is a counterexample, and so is an initial segment of WF. But
we should be able to recover something. After all: this condition is just:
∈ |�is extensional plus a little bit extra. There might be other examples
too. One could take X to be inductively defined by {V \ X} ∈ X and
y ⊆ X → y ∪ {X} ∈ X. If one inserts a condition that ∈�X is strongly
illfounded then one could require that X be empty. But this is no longer
∀∗∃∗.



A S F A R A S H E R E

2. Is there an infinite family of analogues of this where the conclusion is
 ∈n ? If you can obtain y from  by inserting y into the transitive
closure of  n levels down then  ∈n ? Doesn’t seem to be ∀∗∃∗ tho’.
The key might be to look at the dual, namely

∀∀y (( \ {y}) = y →  6∈ )

Do not make the mistake i made of assuming that ( \ {y}) = y is the
same as (y ∪ {y}) =  . . . ‘cos y ∈ y is a possibility! We would need to
look at

9∀∀y)((y 6∈ y∧ (y ∪ {y}) = )→  6∈ )

17.11 Some ∀∗∃∗ sentences true in all term
models

There is a lemma (see lemma 73 and lemma 74) that covers 1- 4k below,
though in fact we can at present use it to prove only that 4k must hold in DEF,
permutation models for the others not being forthcoming at present. In fact we
can show by other methods that 1-3 hold in DEF and SYMM (that 2 is true in
DEF was proved directly by Boffa [1]).

1 All  ∈  are infinite (which is a scheme)

2
⋃

 ⊆  ∈ →  = V

3  ∈n →
⋃n  = V

4n (∀)( 6= ιn())

Observe that [3] and [4] are stratifiable-mod-n.

Item 3

About [3] one can say the following. Let  be co-small (a small set is one that
doesn’t map onto V). Then  meets every set that is not small. So it meets
every B-word (as it were!).

We can do better than this, for if y is small, the set of its supersets isn’t,
and so  contains a superset of y. If y isn’t small, nor is P(y) and so  contains
a subset of y. Let’s abbreviate this to F().So F() means “ meets ev-

ery non-small set”? I don’t
know what i meant here...

So we have co-small()→ F(). Can we interpolate  ∈  into this condi-
tional? Perhaps with the help of the universal-existential conjection we can get
F() to imply  ∈  and even vice versa.



item 1

Friederike has solved 1. She has shown that it is consistent relative to NF
that the membership relation restricted to sets without a countable partition is
wellfounded. After seeing her model i proved a similar result about symmetric
sets (proposition ?? below).

First we consider direct proofs that some of the things we want must be
true in DEF or SYMM. Propositions 9 to ?? below are best seen as statements
about the behaviour of the substructure SYMMM of an arbitrary model M
of NF. There is no very satisfactory way of representing these as first-order
theorems of NF.

PROPOSITION 9 For all symmetric sets , ( ∈  → (∃y ∈ )(y 6∈ y))

Proof:
Suppose not and that

 ∈ 

is a symmetric set such that (∀y ∈ )(y ∈ y). Let  be n-symmetric and k be
some power of 2 > n where  is n-symmetric. Then  ∈  implies—since  is
≤ k-symmetric—that (jkc)() ∈ (jkc)().

Now for a useful factoid which we are going to use repeatedly: for any 
and  and for any permutation ƒ we have  ∈ (j‘ƒ )‘ iff ƒ−1‘ ∈ . In fact in
the only cases we are going to use it on here ƒ is an involution so we can forget
about the -1. Using the factoid we infer

(jk−1‘c) ◦ (jk ‘c)‘ ∈ 

Now, by hypothesis everything in  is self-membered so we infer

(jk−1‘c) ◦ (jk ‘c)‘ ∈ (jk−1‘c) ◦ (jk ‘c)‘.

. Now we use the factoid again to rearrange this to:

(jk−2‘c) ◦ (jk−1‘c) ◦ (jk−1‘c) ◦ (jk ‘c)‘ ∈ .

The k-1‘s cancel, since jn‘c, like c, is of order 2 for any n, giving

(jk−2‘c) ◦ (jk ‘c)‘ ∈ .

Now consider the sequence of the three displayed formulæ. They are all of
the form W ∈ . To get from the first to the second (and to get from the second
to the third) we first appealed to the fact that everything in  is self-membered,
and then to the factoid to infer that some other W was a member of . The
reader is invited to think for a minute or so about what happens when we repeat
this process, bearing in mind that important simplifications can be made when
we exploit the fact that complementation commutes with every permutation
that is j of something, and that if π and σ commute so do j‘π and j‘σ. Thus
an easy induction tells us that all jn‘c, jk ‘c commute with each other. This



enables us to tidy up the W satisfactorily. Consider the following picture (i
have written numbers in hex to make it prettier):

10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
10

F 10
E 10

D E F 10
C 10

B C F 10
A C E 10

9 A B C D E F 10
8 10

7 8 F 10
6 8 E 10

5 6 7 8 D E F 10
4 8 C 10

3 4 7 8 B C F 10
2 4 6 8 A C E 10

1 2 3 4 5 6 7 8 9 A B C D E F 10
0 10

(Get each row from its predecessor by “subtract 1 pointwise and take sym-
metric difference”). Think of the elements of each row as the indices on j that
appear in the prefix W referred to above. I have talked through the con-
struction of the first three rows (with k = 16). The picture makes it plain
to the eye that if k is a power of 2 we end up with (jk ‘c)(V \ ) ∈ . Now
(jk ‘c)‘(V \ ) = (V \ ) since  is ≤ k-symmetric so V \  ∈  and (since all
members of  are self-membered) V \ ∈ V \ which cannot be simultaneously
true.

(This is actually a digitised picture of a Sierpinski sponge, tho’ this probably
does not matter!)

This assertion considered in the next proposition is actually a consequence
of the ∀∗∃∗ expression (∀)( ∈  → (∀y)(∃z ∈ )(y 6∈ z)). Can we prove
that this is true in the symmetric sets?

PROPOSITION 10 : (∀ ∈ SYMM)( ∈ . → .(∃y)(y ∈ ∧  6∈ y))

Proof:
Suppose  is m-symmetric and belongs to all its members. Then, for any

permutation τ, and any n ≥ m,  ∈  iff
(jn‘τ)‘ ∈ (jn+1‘τ)‘
iff
(jn‘τ)‘ ∈  (= (jn+1‘τ)‘ because  is ≤ n-symmetric) iff

(i)  ∈ (jn‘τ)‘ iff (jn−1‘τ)−1‘ ∈  whence

(ii)  ∈ (jn−1‘τ)−1‘ since  belongs to all its members.



We now repeat the line of reasoning that led us from (i) to (ii), decreasing
exponents on j at each step until

 ∈ τ−1 (n odd) or  ∈ τ‘ (n even).
But τ was arbitrary, and it is easy enough, given , to devise a permutation

τ so that  ∈ τ‘∧  ∈ τ−1‘.

I proved proposition ?? after Friederike Körner produced a construction
of a model of NF in which the membership relation restricted to finite sets is
wellfounded. It is sensible to ask if this can be proved for larger sets too. Let
us say  is a notion of smallness if

1. Any subset of an  thing is also 

2. Any union of -many -sets is 

3. V is not 

Finiteness is a notion of smallness, so is dedekind-finiteness. There’s not a
great deal more! In particular smallness (as in “can’t be mapped onto the
universe”) isn’t a notion of smallness. (We should perhaps consider here Boffa’s
question about the sequence: W1 = set of wellorderable sets, W+1 = sumsets
of wellordered subsets of W. This isn’t directly applicable here because the
natural application would be: W+1 = sumsets of W subsets of the set of all
wellordered sets. However, if W∞ is not V we can prove proposition ?? for
W∞ too.)

Finally we should note that the first list approximant to the branching quan-
tifier formula saying that there is an (external) antimorphism is true in the
definable or symmetric sets.

17.12 Strengthening the conjecture

We can’t extend this to formulæ with bounded quantifiers because the assertion
“There is a dense linear order” is 1.

Some ∀∗∃∗ sentences are theorems of NF beco’s they are consequences of
extensionality. In these cases we cannot expect to be able to prove the formula
in a nice way by witnessing the existential quantifiers with terms. We don’t
have this problem with ∃∗∀∗ expressions, so perhaps we should strengthen the
conjecture to:

For every stratified ∃∗∀∗ sentence either it is provable in SF or if it isn’t
its negation is a theorem of NF.

So look at the ways in which wee could fail to prove a given ∃∗∀∗ sentence
. . .

One might have hoped that one could have developed NFO as a PROLOG

theory with the expectation that whenever NFO proves a universal-existential
sentence the witnesses to the  variables can be found as words in the y variables.
The following ∀3∃1 example shows that this is doomed.



(∀y1y2y3)((y1 ∈ y2 ∧ y3 6∈ y2)→ (∃)( ∈ y1 ←→  6∈ y3))

Idea:
(i) Show that if NFO proves something existential-universal it exhibits a

witness
(ii) Use a PROLOG-style treatment. An attempt to prove an existential-

universal assertion corresponds to an attempt to make the youniversal vbls
into constants and to instantiate the xistential vbls with closed terms. ivo (i)
this is sufficient.

(iii) Transform a failure to NFO-prove your existential-universal assertion
into an NFO-proof of its negation.

Let’s apply this to the nasty example above. We fail to find a closed term
to do for ‘’ in

(∃)(∀y1y2y3)((y1 ∈ y2 ∧ y3 6∈ y2)→ ( ∈ y1 ←→  6∈ y3))

so (if this works) we expect to be able to prove its negation, namely

(∀)(∃y1y2y3)((y1 ∈ y2 ∧ y3 6∈ y2)→ ( ∈ y1 ←→  ∈ y3))

which seems innocent enough.

∀∗∃∗ witnesses?

If we should be able to prove consistent by permutations all consistent ∀2-
sentences, we can ask whether there are definable skolem functions that do the
business for us. For example, is there a skolem function witnessing

Ψ : (∀y ∈ y)(∃ ∈ y)( 6= y)?

A good guess is that  could consistently be taken to be y \ {y}. Ψ is ∀∃,
and a natural extension of this conjecture would be that for any ∀∃ sentence
there is some NF2 word (or finite disjunction of NF2 words) we can consistently
assume to uniformly provide witnesses for it. This certainly looks plausible for
Ψ. And, pleasingly, the assertion that y \ {y} works for Ψ is itself ∀2, namely

(∀y)(y ∈ y → (y \ {y}) ∈ y)

which is

Ψ∗ : ∀∀y  ∈ ∧ y 6∈  → ∃z (z ∈ (yΔ( \ ι‘)))
But presumably in general this cannot work, because otherwise we would

be committed to producing a disjunction of terms which would be candidate
witnesses to the Δy if  6= y, because of

(∀y)(( ∈ ∧ y 6∈ y)→ (∃z)(z ∈ ←→ z 6∈ y))



and this would presumably imply AC.
Let’s think about this a bit. Extensionality implies that if  6∈  and y ∈ y

then Δy is inhabited. But by what? Not provably by  or y beco’s of B‘V
and {B‘V}. I can’t see any NFO word in  and y that can be relied upon to
inhabit Δy in these circs, nor any finite set of words one of which must. It
would be nice to have a proof of this fact.

17.12.1 Extending the conjecture to sentences with more
blocks

If the ∀∗∃∗ conjecture is true, we will have an extension of Hinnions old result
on ∃∗ sentences. What is the appropriate extension of these conjectures to
formulæ with three blocks of quantifiers? Presumably it would be to ∃∗∀∗∃∗

formulæ, keeping going the pattern of having the innermost block a block of
existential quantifiers.

And what is the conjecture to be? Let us define n to be the set of formulæ
with n blocks of quantifiers, with the innnermost existential. The strongest
form of the conjecture would be to set NF1 := NF; NFn+1 := NFn∪ all the
n+1 sentences consistent with NFn. Finally we would hope that the complete
theory which is a union of all these is consistent and has a term model.

Unfortunately there are some pretty obvious prima facie counterexamples.
Wellfoundedness is a source of lots of hard cases for the three-quantifier case,
since “ is wellfounded” is ∀∗∃∗∀∗,

1. The axiom of ∈-determinacy is ∀∗∃∗∀∗ but is true in all term models.

2. There is a ∃∗∀∗∃∗ sentence POL that asserts that there is an antimor-
phism of the universe which is an involution (a polarity). “X is a partition
of V” is

(∀∃ ∈ X)(( ∈ )∧ (∀′ ∈ X)( ∈ ′ → ′ = )) (B)

∀∗∃∗. What we do is assert that and add the clause

(∀yz)(∀)[((∃ ∈ X)(y ∈ ∧ z ∈ )∧ (∃b ∈ X)( ∈ b∧  ∈ b))→
( ∈ y←→  6∈ z)] (A)

It is a simple exercise using extensionality to check that (A) implies that
every member of X is a pair. (If we had to assert specifically that every
member of X is a pair it would cost an extra alternation of quantifiers.)
POL is the conjunction of (A) and (B)

No term model can contain an antimorphism. So we must hope that POL
is refuted by the ∀∗∃∗ scheme. But that can happen only if the existence
of a polarity is ∃∗∀∗.

3. “Every transitive set that is not self-membered is wellfounded” is
∀∗∃∗∀∗ but is true in all term models.

4.  =
⋂

 is ∃∗∀∗∃∗ but not true in any term model.



Ad item (1). I’d like to see this spelled out.

17.12.2 Perhaps the key is to doctor the logic

There are other logics that have a notion of quantifier hierarchy that we might
be able to use. The cofinite logic for example. With a two-block formula we
can say something like “Every transitive set that isn’t self-membered is finite”:
and this ought to be true in the nice models

(∀∞y1)((∀∞1 ∈ y1)(1 ⊆∞ y1)→ (∀∞y2)(y2 ∈ y1))

(Is there a prenex normal form theorem for the logic with the cofinite quan-
tifier?)

(3)

∞ : (∃)(
⋃

 ⊆  6= V ∧¬WF())

This is ∃∗∀∗∃∗, and apparently consistent with NF2, but it is obviously
pathological, e.g., it is demonstrably false in DEF and SYMM, because of Boffa’s
theorem that there are no definable transitive sets other than V and a smattering
of hereditarily finite sets.

However it does not appear to be consistent with NF2 ∪ , where  is the
formula:

(∀)(No circles  ∈n →no ω-descending ∈-chains starting at )
To see this consider the formulæ

n: (∀)(
⋃

 ⊆  ∧  ∈n .→  = V)

as n varies over the positive integers. Each n is certainly ∀∗∃∗ and appears
to be consistent with NF (no Proof to hand, but they are demonstrably true in
DEF or SYMM, because of Boffa’s theorem just alluded to). But in any model
in which the n and  all hold, ∞ must be false.

Now although  is certainly infinitary it is in some sense ∀2 in Lω1ω1 . This
suggests that we should consider cutting down the number of ∃∗∀∗∃∗ sentences
we have to add to NF2 to get NF3 by defining NF2 to be not: NF ∪ all ∀∗∃∗

sentences consistent with NF, but: NF ∪ all ∀∞∃∞ sentences consistent with
NF.

(4)  =
⋂

 is a candidate pathology because

(i) it is true of no symmetric set. (We can establish this easily enuff
by asking about the least n such that there is an n-symmetric 
such that  =

⋂

.)

(ii) it looks possible that the existence of such an  should be
consistent with all the ∀∗∃∗ formulæ true in all term models.
 ⊆
⋂

 is ∀∗ (it’s (∀z)(z ∈  → (∀)( ∈  → z ∈ ))).
So (∀)( ⊆
⋂

→  = ∅) is ∀∗∃∗ and would solve our problem
if it is consistent.



However, life isn’t that easy. {y} ⊆
⋂

{y} is just y ∈ y. Cofinite sets tend
to be members of each other. Consider  = {V \ {{y}} : y ∈ V}. Clearly
 ⊆
⋂

.
 =
⋂

 is equivalent to the assertion that ∈� is just  ×  (So it follows
immediately that the proper class of  s.t.  ⊆

⋂

 is downward closed and
closed under directed unions.) In particular, (∀y ∈ )(y ∈ y). The contraposi-
tive of Proposition 9 tells us that any such (symmetric)  will not be a member
of itself. Also by propositions 9 and 10 this is true in symmetric models. Un-
fortunately this does not seem to tell us any more than that  ⊆

⋂

→  6∈ ,
and this does not seem to be impossible.

I keep having the feeling that if  =
⋂

 then stcan().

17.13 Remains of some failed proofs of conjec-
ture 3

Richard reminds me that if M satisfies every ∀∗-consequence of T then M has
an extension which is a model of T. (Do we have a P-version?). So, he says,
can we show that if M ⊆ N, both models of NF, then M ≺str(∃∗) N? To do
this by the method below we would want something along the following lines:

N a model of NF is an NF-term model over some list of generators ~n. The
question is, can we represent an arbitrary model M ⊆ N as a term model over
some subset of ~n in such a way that terms have the same meaning in both
models? Why the hell should we expect this?

17.13.1 A failed proof

Suppose (∀~)(∃~y)((~, ~y)), with  stratified, is true in the term model of
NFO. We are now going to show that it is true in an arbitrary sufficiently large
finite model of TST.

The proof is laborious and we spare the reader and ourselves some details.
Consider first of all the  variables of lowest type. Suppose there are n of them.
We want to show that any n objects from that level of any model satisfy a
certain property. Consider such an n-tuple of objects in Tk . Any set of objects
in Tk−2 will generate a boolean subalgebra of Tk . Consider the minimal set
~ ⊆ Tk−2 such that all elements of the n-tuple belong to the free subalgebra
of Tk generated by the B‘, so that each object in the n-tuple is a unique ∪,
∩, B, −, word in the ~. As before, we expand ‘y ∈ tj’ until they have all
been eliminated, and recast the matrix into DNF. As before we know that not
all the disjuncts can trivially violate the theory of identity since all results of
substituting NFO words for the  in ‘(∃~y)((~, ~y))’ are satisfiable. Fasten
on one good disjunct. Look at the ~y of minimal type. The conditions like
‘y ∈ tj’ have been replaced by boolean combinations of conditions saying that
such-and-such  are ∈ y or not, as the case may be. Now how many conditions
of this sort are there on any of these minimal y? Clearly at most as many as
there are things in ~, so the desired witness is a member of the boolean interval



[{~ :  ∈ },−{~j : j ∈ J}] for some sets , J of ’s.  and J must be disjoint,
since we know that the disjunct we are contemplating does not violate the
elementary theory of =. So if there were no inequations around we would have
shown that (∃~y)((~, ~y)). However we now have to accomodate some family of
inequations y 6= . These may exclude some more elements of [ ~,− ~j] and we
no longer know that [{~ :  ∈ },−{~j : j ∈ J}] is infinite. What this tells us
is that if we have inequations to deal with we wish [{~ :  ∈ },−{~j : j ∈ J}]
to be big enough for us to satisfy them all and that it is only the number of
inequations that we have to worry about. If ~ is a proper subset of Tk−2 then
[{~ :  ∈ },−{~j : j ∈ J}] will have many members, and ~ will be a proper

subset of Tk−2 if 22
n
< |Tk |.

So as long as Tk is sufficiently large in relation to the number of inequations
(which is bounded by (length of ~ + length of ~y)2) we will be able to find
witnesses. In short we can see:

For all m and n there is k such that for all , if
(∀1 . . . m)(∃y1 . . . yn)(~, ~y) is true in the term model of NFO,
then (∀~)(∃~y)(~, ~y) is true in all models of TST where T0 has at
least k elements.

17.13.2 Another failed proof

We are trying to show that any ∃2 stratified sentence true in M |= NF0 is
witnessed by a term. Idea:

look at ∃~
∧

∀~y
∨

atomics or negatomics.

We can rewrite to get rid of equations and inequations but it won’t help.
We think of each of the conjuncts as a constraint on what term the witness has
to be. We have the impression that such conjuncts reduce to things like “ is
the complement of the singleton of something other than Λ”. The point is that
these say that  must be a value of some NFO operation. If so, this is good
news, because a conjunction of finitely many such conditions can be satisfied in
the term model if at all.

each conjunct give rise to something like

~ = ~t(~) subject to finitely many exceptions ~ 6= ~s for some NFO terms ~s
which we shall call a constraint.

For example ∀y0y1y2(y0 ∈ y1 ∨ y0 ∈ y2 ∨ y2 ∈ ∨ y1 ∈ )
gives rise to

 = V \ ι‘ with exception  6= Λ
If this works we then hope that any finite set of constraints has either a

solution containing a parameter (like the singleton list above) in which case it
will certainly have infinitely many solutions, or it will have none at all, in which
case it wasn’t true in M in the first place.

later

Actually it seems that we have to use NF∀1 words for this



17.13.3 A third failed proof

PROPOSITION 11 : NF decides all stratified ∀∗∃ sentences.

In fact we will prove something significantly stronger. Let us descend to
simple type theory for a while, and accordingly impose type subscripts on our
variables. We will show that every wff

(∀~0)(∃y2)(∀z1)(~0, y2, z1) with (~0, y2, z1) quantifier-free is true in
all sufficiently large finite models of simple type theory.

I shall not provide a proof in full, for it makes use of tricks that we cannot
use to show that all stratified ∀2 sentences are decided by simple type theory.

First we note that it makes no difference whether the initial quantifier (∀~0)
in

(∀~0)(∃y2)(∀z1)(~0, y2, z1)

is ∃ or ∀, since all n-tuples will satisfy the matrix if any do. Next we notice
that each object 0 of type 0 gives rise to an object (B‘0) of type 2 and
the subalgebra of the boolean algebra 〈T2,⊆〉 generated by these elements is
free. Having it in mind to make use of this we invent a one-place predicate g
on objects of type 2, whose intended reading is “is a member of a set of free
generators for 〈T2,⊆〉”. We now rewrite

(∀~0)(∃y2)(∀z1)(~0, y2, z1)

as
(∀~2)(g(~2)→ (∃y2)(∀z1)(~0, y2, z1))

by replacing “0 ∈ 1” by “1 ∈ 2 ∧ g(2)” where the 2 are secretly
the various B‘~0. Next we show that the innermost quantifier—(∀z1)—can be
assimilated into the matrix to result in an expression

A (∀2)(g()→ (∃y2)Ψ(2, y2))

in the language of boolean algebras with the added primitive g, where Ψ
is quantifier-free. Finally some elementary manipulations in boolean algebra
will show that if we furnish g with this interpretation then any sentence like A
above with any models at all is true in all sufficiently large finite free boolean
algebras. I am grateful to Peter Johnstone says the witnesses to the y2 can be
found among words in the 2. Peter says:

can assume only one y. Restrict ourselves to combinations of
p(~, y) ≤ q(~y) without loss of generality
p =
∧

~&¬~, y q =
⋃

~&[illegible] y occurs on only one side. so reduces
to y ≤ q(~) or p(~) ≤ y
∨

pj ≤
∧

q
set y = V or Λ. Can’t piece it together . . .
A hard case: consider the assertion that the meet of all the ~y is not an atom.

This is certainly satisfiable in suff big algebras, but is not true in the algebra
generated by the ~y.



17.14 stuff to fit in

If  ∈  then  meets P(). So what does  ∩ P() look like? What can we
say about it in a ∀∗∃∗ way?
(∀ ∈  ∈ )(( \ ) ∈ )
Here’s another thing. Where do self-membered sets come from in NF? V is

a member of itself, and we can get get further self-membered sets by means of
NFO operations. The NFO operations can give us sets that are members2 of
themselves but these sets usually turn out to be self-membered anyway. V ∈
{V} ∈ V but then V ∈ V. So is it the case that—in the term model for
NF— ∈ y ∈ →  ∈ ? No, beco’s of {V}. However we could try this:

(∀y1y2)(y1 ∈ y2 ∈ y1 → y1 ∈ y1 ∨ y2 ∈ y2)

Obviously not, co’s it’s ∀∗. But how about the assertion that given an
n-loop, one of the things in it belongs to an n − 1-loop?

Paul Studtmann writes:
Robinson’s Arithmetic is complete with respect to quantifier free sentences. I

am wondering whether anyone can tell me if an analog of this holds in set theory.
Suppose, for instance, that the language contains two constants – one for the
empty set and one for the set of finite ordinals – as well as function symbols
for the basic set theoretic operations like set union, set difference, power set,
pairing, etc. Is ZF (or a fragment thereof) or some other theory complete with
respect to all the quantifier free sentences in the language?

If you omit the power set operator from the list and by “union” binary union
is meant, then ZF, but also ZF \ Power Set Axiom and even weaker theories,
are complete with respect to quantifier free sentences (equiv. atomic sentences).
That can be inferred from the decidability of truth in V for existential closures
of restricted purely universal formulae with no nesting of quantified variables,
over the primitive language of set theory with the addition of constants for the
empty set and the set of finite ordinals (as well as a unary predicate Ord(x) for
“x is an ordinal”) (Breban M., Ferro A., Omodeo E., Schwartz J.T. “Decision
Procedures for Elementary Sublanguages of Set Theory II. Formulas involving
restricted quantifiers together with ordinal, integer, map and domain notions”
Comm. on Pure and Applied Mathematics XLI 221-251 (1988) - see also Ch.7
in Cantone D., Ferro A., Omodeo E “Computable Set Theory Vol 1” Oxford
University Press, 1989 and my [FOM] of june 3th, 2003)

In fact the operations of (binary) union, intersection and set-difference as
well as the operation of n-tuple formation have a restricted purely universal
definition with no nesting of quantified variables, so that an atomic sentence
which also involves them, turns out to be equivalent to a sentence which belong
to the decidable class described above. Completeness follows since the proof
of the decidability of the class in question, which exhibits an actual algorithm



that shows that it does what it is supposed to do, can be formalized inside ZF\
Power Set Axiom (and even weaker theories).

Franco Parlamento
Dipartimento di Matematica e Informatica
Universita’ di udine
Via delle Scienze 208
33100 UDINE
Italy
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17.14.1 The term model of NF0

The term model of NFO can be thought of as the algebra of all words in NFO
operations reduced by NFO-provable equations. This quotient is unique and
well-defined; a proof can be found on p. 376 of [?]. It behaves in some ways like
a countably categorical structure.

THEOREM 33 For every countable binary structure M there is a nice family
of embeddings into the term model for NFO.

Proof:
We will prove this by refining the construction of my 1987 paper to obtain

a construction of a nice family of embeddings.
The 1987 construction takes a countable binary structure M = 〈M,R〉

equipped with a wellordering of length ω and gives to each initial segment
(or more strictly, its domain) an injection into the term model. We will do
something slightly more complicated. We will not be providing injections-into-
the-term-model to (domains of) initial segments of a fixed wellordering: our
injections-into-the-term-model will be defined on the domains of finite partial
functions from M to IN. We will think of these finite partial functions as lists of
ordered pairs so that we can construct the nice family of injections by primitive
recursion on lists. Doubled colons is our notation for consing things onto the
front of lists, so that—to take a pertinant example—〈, k〉 :: s is the finite map
that agrees with s on its domain and additionally sends  to k. We will construct
for each s an injective homomorphism s from dom(s) ∈ term-model-for-NFO,
and this family of maps will be nice.

We will need an infinite supply of distinct selfmembered sets and an infinite
supply of distinct non-selfmembered sets: such a supply can easily be found
with the help of the B function. Let the nth left object be Bn(V) and the nth
right object be Bn(∅). All left objects are self-membered and no right objects
are. The exponent gives us a convenient notion of rank of these left and right
objects. It will be important in what follows that every value of any s has
finite symmetric difference with a left object or a right object. It will also be
important that any two left or right objects have infinite symmetric difference.

For s a finite partial map M→ IN we will construct s from dom(s) to the
term model by primitive recursion on lists.



We start with the empty map from the empty substructure (the domain of
the empty partial map).

The variable ‘s’ will range over finite partial maps M→ IN and for each s, s
will be an injective homomorphism from dom(s) to the term model for NFO.

For the recursion (primitive recursion on lists) let us suppose we have con-
structed a map s and we want to construct 〈,k〉::s. And we must have s′ 6= s′′
whenever s 6= s′′.

The construction of 〈,k〉::s from s is uniform in  and k. 〈,k〉::s will agree
with s on dom(s) of course. During the earlier construction of s we will have
used some left objects and some right objects. Let ns be the least n such that
the only left or right objects touched so far in the construction of s have indices
below n. Now, given k ∈ IN, we want X to be a left object or a right object,
depending on whether M |= R(, ) or not, and we set it to be the (ns + k)th
such object, or the (ns + k + 1)th, if (ns + k) is odd. X is thus a left or right
object, with a subscript that is even and is larger than any subscript we have
seen so far.

〈,k〉::s() will be obtained from X by adding and removing only finitely
many things. We have to add things in A and delete things that are in B:

A: {s(m) :m ∈ dom(s) ∧M |= R(m,)}

B: {s(m) :m ∈ dom(s) ∧M |= ¬R(m,)}

C and D are harder to deal with:

C: {s(m) :m ∈ dom(s) ∧ M |= R(,m)}
E: {s(m) :m ∈ dom(s) ∧ M |= ¬R(,m)}

Our final choice for 〈,k〉::s() must extend A, be disjoint from B, belong to
everything in C, and to nothing in E. There is no guarantee that X will do, but
it’s a point of departure; our first approximation to 〈,k〉::s() is (X \ B) ∪ A.

For each m in dom(s) let Xm be that left or right object from which s(m)
was obtained by the finite tweaking that we are about to explain. We want to
control the truth-value of 〈,k〉::s() ∈ s(m). It’s hard to see how to do this
directly, but one thing we can control is the truth-value of 〈,k〉::s() ∈ Xm,

because this is the same as the truth-value of B−1Xm ∈ 〈,k〉::s(m) and we can

easily add or delete the various B−1(Xm) from (X \ B) ∪ A.
Suppose for some particular m we want to arrange that 〈,k〉::s() ∈ s(m).

We put B−1(Xm) into 〈,k〉::s(). This ensures that 〈,k〉::s() ∈ Xm. This
is very nearly what we want, since the symmetric difference Xm Δ s(m) is
finite. Now because we chose ns to be larger than the subscript on any left or
right object we had used so far in building s we can be sure that 〈,k〉::s() is
not one of the finitely many things in Xm Δ s(m). So 〈,k〉::s() ∈ Xm and
〈,k〉::s() ∈ s(m) have the same truth-value.

In the light of this, we obtain 〈,k〉::s() from our first approximation—

(X\B)∪A—by adding everything in {B−1(Xm) :M |= R(,m)} and deleting
everything in {B−1(Xm) :M |= ¬R(,m)}. Just a final check to ensure that



this doesn’t interfere with the adding and deleting we did initially, by adding
everything in A and deleting everything in B: this last stage adds and deletes
left-or-right objects with odd subscripts, whereas the initial tweaking added and
deleted left-or-right objects (if any) with even subscripts only.

COROLLARY 14 Every countable binary structure embeds into the term model
of NFO in 2ℵ0 ways.

The general theme of this note is extending to the logic of the cofinite quan-
tifier the various known results about ordinary logic and the Quine systems. We
know that every ∃∗ sentence consistent with NFO holds in the term model. To
get a version for the cofinite quantifier we need to get straight the idea of a ∃∗∞
formula consistent with NFO.

“Being consistent” in this sense for a formula (∃∞1 . . . n)ϕ where ϕ is
quantifier-free means the following. Suppose ϕ has n free variables. Then we
invent constants whose suffixes come from IN≤n. For each sequence c1 . . . cn
where the suffix k+1 is of length k + 1 and is an end-extension of the suffix k ,
we adopt the axiom ϕ(c1 . . . cn). Call this theory T. Then T is equivalent to
(∃∞1 . . . n)ϕ in the sense that every model of T is an expansion of a model
of (∃∞1 . . . n)ϕ and vice versa.

THEOREM 34 Every ∃∗∞ formula consistent with NFO is true in all models
of NFO.

Proof: Let (∃∞1 . . . n)ϕ be such a formula, and T the theory obtained from
it as above. Now every axiom of T is a consistent ∃∗ formula, and so is true in
the term model, and so is a theorem of NFO.

Notice that we haven’t yet had to exploit the clever construction of nice
embeddings. That happens next.

REMARK 75 The term model for NFO satisfies every ∀∗∞∃
∗
∞ formula consis-

tent with NFO.

Proof: Consider (∀∞1 . . . n)(∃∞y1 . . . yk)ϕ(~, ~y). Suppose this has a
model M. We want to show that it is true in the term model. For this it will suf-
fice to show that if ~t is any tuple of terms such that M |= (∃∞y1 . . . yk)ϕ(~t, ~y)
then there are infinitely many many terms s1 such that there are infinitely many
terms s2 etc such that ϕ(~t, ~s).

The first step is to simplify (∃∞y1 . . . yk)ϕ(~t, ~y) to the limits of our in-
genuity. We know that atomic formulæ in ϕ need never be of the form
‘yj ∈ t’, because any such atomic wff can be expanded until it becomes a
boolean combination of atomic wffs like ‘y = tj’, ‘yj ∈ y’, and ‘tj ∈ y’.
Then we can recast the matrix into disjunctive normal form. We know that
M |= (∀∞ ~)(∃∞ ~y)((~, ~y)) so there is at least one disjunct that does not
trivially violate the theory of identity. This disjunct is a conjunction of things



like ‘y = tj’, ‘yj ∈ y’, and ‘tj ∈ y’ and their negations, atomic wffs not
containing any ~y having vanished since they are decidable.

We now have to find ways of substituting NFO terms ~ for the ~y to make
every conjunct in the disjunct true. To do this we return to the constructions
seen in the proof of theorem 33. We construct witnesses for the ~y in the way we
constructed values of the function  in the proof of theorem 33. Let n0 be some
fixed integer such that all the t that appear in our disjunct have Bs nested less
deeply than n. We know of (the infinitely many witnesses that we have to find
for) y0 that they is to have certain ts as members and certain others not. For
each k ∈ IN we construct a word 0 which is the n0 + kth left member (if
‘y0 ∈ y0’ is a conjunct) or the n0th right object (otherwise) ∪ (the tuple of
t such that ‘t ∈ y0’ is a conjunct) minus (the tuple of tj such that ‘tj 6∈ y0’
is a conjunct). From here on, we construct words  to be witnesses for y in
exactly the same way as we proved theorem 33.

Actually we can exploit the theorem (Yasuhara?) that says that all occur-
rences of ‘=’ within the scope of a ‘∀∞’ can be massaged away.

THEOREM 35 If NFO ` ∃~∀~yϕ(~, ~y) where ϕ is quantifier-free then for
some tuple ~t of NFO words, we have NFO ` ∀~yϕ(~t, ~y).

Proof: Let ∃~∀~yϕ(~, ~y) be a ∃∗∀∗ sentence, and suppose that for every tuple
~t of NFO terms it is consistent that the tuple ~t is not a witness to the ~. Then
the scheme

(∃~y)(¬ϕ(~t, ~y)) over all tuples of terms ~t (17.1)

is consistent.

How complicated is scheme 17.1? Well, each instance is equivalent to a dis-
junction of things of the form (∃~y)(ψ(~t, ~y)) where ψ is a conjunction of atomics
and negatomics. What sort of atomics and negatomics? Well, equations and
inequations between the ts disappear beco’s they are all T or F by elementary
means. Equations y = t can be removed by replacing all occurrences of ‘y’
by ‘t’. What’s left? Inequations y 6= t and y ∈ t, t ∈ y, y 6∈ t, t 6∈ y. We
attack those recursively. y ∈ t might be y ∈ t1 ∧ y ∈ t2, in which case we
recurse further. If it is y ∈ t1 ∨ y ∈ t2 then the ∃∗ formula in which it occurs
gets split into two such formulæ. If we keep on doing this we will end up with
a disjunction of ∃∗ formulæ with terms appearing, but only in inequations or
to the left of an ‘∈’. Clearly any such disjunction, if satisfiable at all, is sat-
isfiable with the witnesses being finite tuples of terms, and is therefore true in
the term model. So each instance of scheme 17.1 is true in the term model.
That is to say, the term model believes (∀~t)(∃~y)(¬ϕ(~t, ~y)). So the original
∃∗∀∗ sentence is not true in the term model, contradicting our assumption
that NFO ` ∃~∀~yϕ(~, ~y).

So if NFO proves a ∃∗∀∗ sentence, there are provably witnesses that are
NFO terms.



By now the reader will have thought enough about extending these results to
isomorphic formulæ in the language with the cofinite quantifier to have spotted
that in the last para of the last proof there are of course infinitely many ways
of satisfying such disjunctions. Accordingly I hope that later draughts of this
note will contain a proof of

THEOREM 36 If NFO ` (∃∞ ~)(∀∞ ~y)ϕ(~, ~y) where ϕ is quantifier-free then
for a suitable infinity of tuples ~t of NFO words, we have NFO ` (∀∞ ~y)ϕ(~t, ~y).

We must think a bit about the scenario that the theorem describes. “NFO `
(∃∞ ~)(∀∞ ~y)ϕ(~, ~y)” means simply that in every model of NFO we can find
infinitely many 1 such that for each of them we can find infinitely many 2
etc. The claim then is that, whenever this happens, we can take this network
of s to be NFO terms.

Now suppose the claim is false, and that altho’ in every model of NFO we
can find infinitely many 1 such that for each of them we can find infinitely
many 2 etc., we cannot take all of these witnesses to be terms.

That is to say, if we take any set of countably many terms—and think of
them as ts where s is a sequence of natural numbers of length at most the length
of ~—then the scheme

(∀∞ ~y)ϕ(t, t,j, t,j,k . . . ~y) over all tuples of terms ~t (17.2)

is not a theorem scheme. We wish to show that this scheme fails in the term
model. So let (∀∞ ~y)ϕ(t, t,j, t,j,k . . . ~y) be one of the instances that is not a
theorem. Its negation is

(∃∞ ~y)ϕ(t, t,j, t,j,k . . . ~y)

and we wish to show that this is true in the term model. But this can be
done by the constructions of theorem 33 and remark 75.

See section ?? of quantifiertalk.tex for a discussion of the correct generali-
sation of this to random/generic/countably categorical structures.

It’s worth asking whether or not we can prove that every Henkin sentence
consistent with NF0 is true in the term model for NF0. And of course there is
the same question about TZT0.

But this is immediate!

It has been a puzzle to me for many years how the term model for NFO
could have all these homogeneity properties exploited so nicely above and yet
be rigid! I think the answer is that the homogeneity comes from the axioms
giving ∪, ∩, set difference, {} and B() and the rigidity happens only once
you get ∅ and V. You can get the infinite sequence of left and right objects
starting with any  ∈  and y 6∈ y.

Let’s sort this out properly. Exactly what do we need to prove theorem 33?
We need infinitely many left and right objects of course but beyond that i think
we need only B and adjunction and subcision.



So it looks to me as tho’ all we need is two constants  and b with  ∈ ,
b 6∈ b and Bn() 6=  and Bn(b) 6= b for all n, plus adjunction, subcision and
existence of B(). (I’m guessing that this theory is sufficient to show that any

two Bs have infinite symmetric difference, which we do need). Do we need B as
well? I think not.

17.15 Friederike Körner on Model Companions
of Stratified Theories: notes by Thomas
Forster

Let T be a theory in the language L of set theory (= and ∈) with (at least) the
axioms of extensionality and

∀1 . . . n∃y(y = {1, . . . n})

existence of unordered n-tuples.
We assume that T has an infinite model in which every transposition is

setlike.

17.15.1 The set of universal consequences of T

PROPOSITION 12 Every finite L-structure can be isomorphically embedded
in some model of T.

Proof:
Let A = 〈A,∈A〉 be an arbitrary finite L-structure.3 (A = {1 . . . n}).

Let M be a model of T where every permutation of finite suport is setlike.
Choose distinct c1 . . . cn ∈M and define a permutation τ by

τ(c) = {cj : A |=  ∈ cj}

for 1 ≤  ≤ n. Then Mτ |= cj ∈ c iff A |= j ∈  (for 1 ≤  ≤ n as before).
So the function ƒ sending each  to the corresponding c is an isomorphic
embedding.

COROLLARY 15 Any L-structure can be isomorphically embedded in a model
of T.

Proof: Compactness

DEFINITION 23 T∀ is the set of ∀∗ theorems of T.

COROLLARY 16 T is an extension of LPC conservative for ∀∗ formulæ

3Something like this is in Hinnion’s thesis



17.16 The Model Companion of T

DEFINITION 24 A theory T is model-complete iff every embedding between
models is an elementary embedding. (Equivalently, every first-order formula
is equivalent to a universal formula. This notion was introduced by Abraham
Robinson.)

DEFINITION 25 A theory T∗ in L is the model companion of T if
(T∗)∀ = T∀ and T∗ is model-complete

If T has a model companion at all then it is unique.
Now we are going to define the theory T∗ which will turn out to be the model

companion of T. Let γ(, y1 . . . yn) be a conjunction of some of the following
atomic and negatomic formulæ:  ∈ ,  6∈ ,  ∈ y,  6∈ y (1 ≤  ≤ n)
y ∈ , y 6∈  (1 ≤  ≤ n). Now if

∧

1≤<j≤n
(y 6= yj ∧  6= y)∧ γ(, y1 . . . yn)

is satisfiable4 then

(∀y1 . . . yn)(∃)
∧

1≤<j≤n
y 6= yj → (
∧

1≤≤n
 6= y ∧ γ(, y1 . . . yn))

is an axiom of T∗. T∗ has no other axioms.

PROPOSITION 13 T∗ is consistent

Proof: Since all the axioms of T∗ are ∀∗∃ sentences we have grounds to hope
that we can devise a model which is a union of a countable chain of models.
Enumerate all the axioms of T∗ as 〈ϕn : n ∈ IN〉 in such a way that every axiom
appears infinitely often.

Start with M0 = 〈M,R0〉 where M = { :  ∈ IN} and if  6= j then  6= j.
Thereafter construct Mn+1 from M as follows:

Suppose ϕn is (∀y . . . yn)(∃)ψ(, y1 . . . yn). If Mn |= ϕn then Mn+1 =
Mn. Otherwise let 〈1 . . . k 〉 ∈Mk be the first k-tuple (in the lexicographic

order of Mk) for which there is no  such that ∃ψ(, 1 . . . k ). Let b be the
 of smallest index which is not in dom(Rn)∪ rn(Rn). Rn+1 is now obtained
from Rn by adding enough pairs 〈 , b〉, 〈b,  〉 to make γ(b, 1 . . . 1k ) true.

M is the direct limit of the M and is a model of T∗.
5

PROPOSITION 14 (T∗)∀ = T∀.

4Does she mean “consistent with T?”
5Why do we want each ϕ to appear infinitely often? Presumably all this is “standard

model theoretic nonsense”.



Proof:
We have to show that for every L-structure A there is a model A |= T∗ with

A ⊆M.
Let A be an arbitrary L-structure and let ΔA be the diagram of A in the

language LA. We claim that any finite subset of ΔA is consistent with T∗. Let
 be a finite subset of ΔA. There are only finitely many constants c1, . . . cn that
occur in . We may assume that c 6= cj for 1 ≤  ≤ j ≤ n. Let γ(c1) be the
conjunction of the formulæ in  that contain c1 only. Choose 1 ∈M such that
M |= γ(1). Thereafter, having chosen 1 . . .  ∈M, let γ(c+1, c1 . . . c) be
the conjunction of those of the following formulæ that are in : c+1 ∈ c+1,
c+1 6∈ c+1, c+1 ∈ c, c ∈ c+1 (1 ≤  ≤ ). Since γ(c+1, c1 . . . c) is
satisfiable, (∀y1 . . . yn)(∃)

∧

y 6=yj →
∧

( 6= y) ∧ γ(, ~y)) is an axiom of

T∗ and thus there is +1 ∈M with M |=
∧
k=1 k 6= +1∧γ(+n, 1 . . . ).

Therefore 〈M, 1 . . . n〉 |= T∗ ∪ .

PROPOSITION 15 T∗ is model complete

Proof:
Use Lindström’s theorem. (See, for example, Chang and Keisler 3rd edn

3.5.8.) To do this we must show:

1. All models of T∗ are infinite.

2. T∗ is preserved under unions of chains.

3. T∗ is α-categorical for some α ≥ ℵ0.

(1) is obvious. (2) follows from the fact that T∗ has a set of ∀∗∃∗ ax-
ioms. As for (3), a back-and-forth argument will show that T∗ is countably
categorical.

Suppose A = 〈A,∈A〉 and B = 〈B,∈B〉 are countable models of T∗.
Wellorder A and B in order-type ω by ≤A and ≤B.

Let 0 be the ≤A-first element of A, and let γ0() =  ∈  (if 0 ∈A 0)
and  6∈  (otherwise). Let b0 be the ≤B-first member of B that satisfies γ0()
and set ƒ ‘0 b0.

Now suppose we have constructed n pairs in ƒ .
Two cases

� n + 1 is even. Let n+1 be the ≤A-first element not in the do-
main of the ƒ -so-far. Let γ(, y0 . . . yn) be  ∈∗  ∧

∧n
=0  ∈

∗

y ∧
∧n
=0 y ∈

∗  where the asterisks on top of the epsilons mean that

they should be negated, or not, so that A |= γ(, y0 . . . yn). Since
(∀y1 . . . yn)(∃)(

∧

y 6= yj → (
∧

 6= y ∧ γ(, y1 . . . yn) ∈ T∗ we

infer that B |= ∃γ(, b0 . . . bn)∧
∧n
=0  6= b. Define bn+1 to be the

≤B-first element b of B \ {b0 . . . bn} that satisfies γ(b, b0 . . . bn) and
set ƒ ‘n+1 = bn+1.



� n + 1 is odd. Let bn+1 be the ≤B-first element not in the range of the
ƒ -so-far. . . . and procede as before.

PROPOSITION 16 T∗ is the model-completion6 of T.

Proof: It will be sufficient to show that T has the amalgamation property.
Let A = 〈A,∈A〉, B = 〈B,∈B〉 and C = 〈C,∈C〉 be three disjoint models of

T with ƒ : C ,→ A and g : C ,→ B. Define an L-structure D as follows. The
domain D will be C∪ (A \ ƒ“C)∪ (B \ g“C). Then, for , b ∈ D set  ∈D b iff
one of the following holds:

, b ∈ C and  ∈C b
, b ∈ B and  ∈B b
, b ∈ A and  ∈A b
[HOLE exercise: complete this definition!!!!]

From koerner@math.tu-berlin.de Fri Jun 12 15:03:12 1998

>

> You know i have a conjecture

> that NF remains consistent if you add to it

> every $\forall^*\exists^*$ (or $\forall_2$ if

> you prefer) sentence that is consistent with

> it. This is presumably something to do with

> NF having a model companion.

Your question concerns the stuff in Ch2 of my thesis (do you have a copy ?,
i forget).

If i recall correctly, the basic facts are
NF has a model companion, i.e. there is a theory T which has exactly the

same universal consequences as NF (i.e. no sentences except tautologies) and is
model complete. (for definitions etc. see e.g. Chang/Keisler, 3rd ed., 3.5)

The countable model of T is countably categorical and probably should be
named “the countable universal homogeneous di-graph”.

That is, it’s the theory consists of all the sentences saying: i)
for all finite disjoint sets , J of points (vertices) and all all finite disjoint sets

K, L of points (vertices) there is a point  s.t.

� Ry for all y ∈ ,
¬(Ryj) for all yj ∈ J,
yk R for all yk ∈ K and

6That is to say, T∗ is the model companion of T and, for any model M |= T, T ∪ ΔA is
complete.



¬(y R) for all y ∈ L and

R

and

� for all finite disjoint sets , J of points (vertices) and all all finite disjoint
sets K, L of points (vertices) there is a point  s.t.

Ry for all y ∈ ,
¬(Ryj) for all yj ∈ J,
yk R for all yk ∈ K and

¬(y R) for all y ∈ L and

¬(R) .

T admits elimination of quantifiers. All ∀2-sentences which are consistent
with NF are true in T. Unfortunately the converse is false.

Love, Friederike

17.17 More thoughts about NF0

If we add a constant symbol ‘V’ for the universe, and function symbols B, {,}
(for singletons) and the boolean operations \ and ∪ then we can axiomatise
NF0 as a ∀∗ theory as follows.
(∀y)( ∈ B(y)→←→ y ∈ ))

(∀y)( ∈ {y}←→  = y))
(∀yz)( ∈ y ∪ z←→ ( ∈ y∨  ∈ z)))
(∀y)( ∈ y←→  6∈ y)
(∀)( ∈ V)

and extensionality is
(∀y)(( XOR y) = ∅→  = y)
Do we need all the comprehension of TZT to make this work? It suffices that

every permutation of finite support (or at least every finite product of disjoint
transpositions) should be setlike. Do we get this in TZT0? My guess is not.

Can we generalise this to theories with richer axioms than TZT0. No, or
at least not straightforwardly. We were able to obtain the assignment Wp by
an iterative process that worked by recursion on types. This was because the
characteristic axioms of TZT0 are type raising. At least one of the characteristic
axioms of TZT0 is

⋃

, which is type-lowering.

Corollary: any {B}1 sentence that is consistent with TZT is true in the
term model for TZT0, and therefore true in every model of TZT0. So TZT0
decides all {B}1 sentences. I think every ∀∗∃ sentence is {B}1 so we will have
proved at least that TZT decides all ∀∗∃ sentences.



17.18 Subthingies

THEOREM 37 Every ∀∗∃∗ sentence true in arbitrarily large finitely gener-
ated model of TST is true in all infinite models of TST.

Proof: The key is to show that every model of TST can be obtained as a direct
limit of finitely generated models of TST. The hard part is to find the correct
embeddings.

Let M be a model of TST. We will be interested in finite subthingies char-
acterised as follows. Pick finitely many elements 1 . . . k from level 0 of M;
they will be level 0 of the finite subthingie. Then take a partition of level 1 of
M for which the  form a selection set (a “transversal”). The pieces of this
partition are the atoms of a boolean algebra that is to be level 1 of the finite
subthingie. That gives us level 1 of the subthingie. To obtain level 2 we find
a partition of level 2 of M such that the carrier set of the boolean algebra we
have just constructed (which is level 1 of the subthingie) is a selection set for
it. The pieces of this partition are the atoms of a boolean algebra that is to be
level 2 of the finite subthingie. Thereafter one obtains level n+ 1 as a boolean
alegbra whose atoms are the pieces of a partition of level n+ 1 of M for which
level n of the subthingie is a transversal.

There is, at each stage, an opportunity to choose a partition, so this process
generates not one subthingie from the finitely many elements 1 . . . k from
level 0 of M, but infinitely many. This means that the family of subthingies
has not only a partial order structure but also a topology. Choosing n things
from level 0 does not determine a single finite subthingie, co’s you have a degree
of freedom at each step (when you add a new level). It’s a kind of product
topology, where each finite initial segment (a model of TSTk with n things at
level 0) determines an open set: the set of its upward extensions.

Is the obvious inclusion embedding an example of what Richard calls an
almost-∀ embedding?

The long-term aim is to take a direct limit, and we want this direct limit to
be M itself, so we must check that every element of M can be inserted into a
subthingie somehow.

Clearly any finite set of elements of level 0 of M can be put into a finite
subthingie, but what about higher levels? We prove by induction on n that
every finite collection of things of level n can be found in some finite subthingie
or other.

The induction step works as follows. We have a subthingie M1 and we want
to expand it to a subthingie M2 that at level n+1 contains finitely many things
1 . . . k . To do this we have to refine the partition of Vn that is the set of
atoms that M1 has at level n + 1 so that every  is a union of pieces of the
refined partition. There are only finitely many  so any refinement that does
the job has only finitely many pieces. Identify such a refinement, and pick a
transversal for it that refines the set which is level n of M1. This transversal is
a finite set of things of level n, and we can appeal to the induction hypothesis.



Next we ask, suppose at each level from 2 onwards, instead of picking a
partition of level n of M to be the set of atoms of the boolean algebra at
level n, we simply take B“level n − 2 to be a set of generators for the boolean
algebra of level n? We lose a degree of freedom but we get better behaviour of
the embedding, since this ensures that it preserves B. Can we still ensure that
every element of M appears in the direct product?

Unfortunately the answer to this can be easily shown to be ‘no’ since, for the
answer to be ‘yes’, one would have to be able to express every element of level
n of M—for n as big as you please—as a {B,∪,∩, V, \}-word in the finitely
many elements chosen to be level 0 of the subthingie and the elements of the
partition that are to be level 1. That is clearly not going to happen.

This proof is essentially the correct general version of the proof in the book
where the same result is claimed only for countable models. This proof is more
general and easier to follow. The converse problem remains: can we show that
every ∀∗∃∗ sentence true in even one model of TZT is true in the term model
for TZTO?

17.19 This looks like a titbit to do with the
universal-existential conjecture

Let M be a model of TZT. Pick out finitely many elements; we want to find a
substructure of M containing those elements, and we want the substructure to
be an isomorphic copy of the canonical model of TST with empty bottom level.
Key observation (thank you Arran Fernandez!) is that whenever we have a set
A of sets, with a set D ⊆

⋃

A of discriminators (which is to say that whenever
 6= b ∈ A then (( XOR b) ∩D) 6= ∅—at least whenever  and b live at the
same level) then, for any  6∈ A, the set A ∪ {} has a discriminator obtained
by adding at most one new element to D. As Fernandez says, this means that,
since any two distinct sets can always be distinguished by any one element of
the symmetric difference, we can prove by induction that n ∈ IN distinct sets
can always be distinguished by n− 1 suitably selected members of their union.

This means that we can add new elements to our original stock of chosen
elements of M, descending, and eventually we will be down to a single discrmi-
nator, and then none. So we have a substructure of M which contains all our
chosen elements. It’s extensional, and it’s finite, but it is not yet (an isomorphic
copy of) the canonical model with empty bottom level. And it’s certainly not
transitive! We now close under . . . what exactly? Any level is a boolean algebra
under ⊆, ∅, ∨ etc so—working upwards from the lowest level that our activities
have populated—we (i) expand each level-of-our-construction to a sub-boolean-
algebra of that level of M. (ii) We then populate the next level up with all
subsets of the level we have just processed, and (iii) we add to the level two
steps up, B() for all  that we have constructed.

The result is an (intransitive) copy of the canonical model, which is a sub-
structure of M closed under the boolean operations, ι and B. Being thus closed,



it is a substructure elementary for more than just ∈.





Chapter 18

The General Hierarchy

[HOLE This chapter needs heavy editing!]

It is an old puzzle whether or not Ambn (as i call it) is equiconsistent
with Amb. I showed that Ambn, for any n is enough to refute AC,
and Marcel gave a much simpler proof. How about trying to prove
that Ambn ` Amb for any n.

Here is a way that might work. Think about P-extensions. These
are the extensions Kaye and I wrote about in our joint JSL paper of
1990. B is a P-extension of A iff B is an end-extension of A in which
old sets do not acquire new subsets (not only no new members).

Take the case n = 2 for ease of illustration. If we had a model
of Amb2 then we would have a model of TST that was glissant2.
(I hope it is obvious what that means!). Remind yourself of two
elementary facts, and one piece of notation. M−n is the model
obtained from M by deleting the bottom n levels and relabelling
everything so that the old level n is now level 0. It is not hard
to check (use ι) that M−1 is (isomorphic to) a P-extension of M
whatever M is. Now let M be a model of TST which is glissant2.
We have

� M is a P-extension of M−1 (because M is isomorphic to M−2
(it’s glissant2) and

� M−1 is a P-extension of M (it always is).

So we have two structures each of which is (isomorphic to a) P-
extension of the other. What can we infer from this? Must they be
elementarily equivalent, or what?

Of course there are similar examples in the one-sorted case.

M ⊆e N says that N is a P-extension of M.

395



18.1 end-extension

⊆e is obviously transitive. Boffa has pointed out to me that CH is ΔP
1 and

independent of TST so ⊆e lacks upper bounds (and a fortiori sups). Also ω-
chains do not have sups in general, for the sup of 〈χn‘M : n < ω〉 would have
to be a model of Amb.

There is a related relation probably best written ≺e We might wonder
whether ≺e is antisymmetrical. (We should at least be able to prove that if
M ≺e N ≺e M then M ≡ N but even this i cannot see at the moment). This
question of antisymmetry is intimately related to whether we allow the injec-
tion implicit in “N ≺e M” to be setlike or insist on it being a set. The problem
is that the relation “there is a setlike injection  → y” does not seem to be
antisymmetrical, and it appears to go wrong in two quite separate ways. First,
there seems to be no guarantee that  and y can be split in the way required
by the proof of s-b, and second, even if we can split  and y appropriately the
bijection doesn’t seem compelled to be setlike: it will lift once (to give a model
of TST3) but not twice! This keeps cropping up. Perhaps it is worth isolating
this problem: it might be the right context for developing NF-with-classes. ML
is usually overlooked, as is GB and for the same reasons. However, there might
be a case for examining the halo of classes that lives around a pair of models,
for it might help us understand ≺e.

It is not clear whether or not ≺e or ⊆e is wellfounded. It is probably worth
noting that it doesn’t really measure size, for very small models of TST do not
go into very big ones: no non-natural-model is ⊆e a natural one! Another topic
for later development will be how ⊆e behaves with ultraproducts, permutation
models etc. We do know that every model of NF has a permutation model
which is a proper P-extension of it. We know also that end-extensions are never
elementary so we cannot ever have M ⊆e Mκ/U. To the extent that ⊆e is a bit
like � (normal subgroup) we should be thinking about a quotient N/M when
M ⊆e N. Since the images of the embeddings are ideals this is a possibility1.

The following is an obvious thing to try. TN/M0 = N \M. TN/M1 = (TN1 )/(T
M
1 )

as b.a.s, thereafter take power sets in the sense of N. That way the quotient
is a substructure of N, unlike groups, but that is only beco’s of the greater
expressive power of set theory. I have the impression that N is the sup of N/M
and M, tho’ i do not see how to prove it.

Another remark of Boffa’s is that two models could be elementarily equiv-
alent and still fail to have a common end-extension because one contains non-
standard integers and the other doesn’t. But if two models have a common
end-extension they must satisfy the same ΔP

1 sentences! No converse! Thus ≺e
seems to have less to do with logic than one might have expected.

1Is the inclusion embedding of a normal subgroup ever elementary? Probably not in
interesting cases: Any abelian group is a normal subgroup of any ultrapower of itself . . .



18.1.1 Natural models

The study of ≺e is fairly easy in this case. If we take ⊆e in the strong sense it
is simply the study of ≤ on cardinals. In ZF the strong and the weak notions
coincide but in NF they do not, and life can get quite difficult. We have a +
well-defined on natural models, and it is not defined on arbitrary models. This
is kin to the failure of s-b for setlike embeddings.

Question If M and N are both ambiguous natural models, what about M+
N?

Question: given a consistent extension T# of TST, is there a model of ZF
containing a natural model of T#? Presumably the answer to this is no, because
we can make T assert something pathological which is irrefutable in Zermelo
but not in ZF. One thinks of borel determinacy but that uses choice . . .

An answer to this would help us know when we can safely restrict our at-
tention to natural models.

Annoying (but possibly deep?) fact: There are no natural models of TZT.
(Nice models of TZTare scarce. Not only are there no natural models, no-

one has ever found an ω-model or a term model.)

18.1.2 Other models

Let us consider the old question of whether or not Amb2 implies Amb. Assume
Amb2. Then we have a model M with a ts2 σ. If we try to do s-b using
the obvious maps (ι and ι ◦ σ−1) then we need to know that the clever split of
the bottom type into two bits actually splits it into two sets of the model. A
little calculation shows that wht we need is that there should be  s.t. σ‘ =
−ι“ − ι“. This can certainly be arranged with the help of some model theory
and no extra axioms, but all it gives us as an isomorphism h between the two
bottom types. As usual, it will lift once (beco’s  is a set) but not, apparently,
twice. Actually for what it’s worth we can get this far with Ambn for an old n.

REMARK 76 If ≺e is antisymmetric on models of TST then Ambn ` Amb
for any concrete n.

Proof: :
If M |= TST and has a tsaun then χn‘M ≺e M. But χ‘M ≺e χn‘M holds

for all M anyway, so we infer χ‘M ≺e M. But we always have M ≺e χ‘M, so,
by antisymmetry, χ‘M and M are isomorphic.

18.1.3 The NF Case

We would naturally want to consider the analogous relation on models of NF. Is
it antisymmetric? If we have two models M and N of NF s.t. M ≺e N ≺e M,
are they

1. isomorphic? or at least



2. stratimorphic? or, lowering our sights,

3. elementarily equivalent? Or at worst

4. elementarily equivalent w.r.t. stratified sentences?

We do not seem to be able to prove any of these at the moment. Discussion
must split into 4 cases depending on whether or not the models are natural, and
whether or not we are doing this in NF. It also depends on whether or not the
injection mentioned in ≺e has to be a set! In the next paragraph it is allowed
that it mightn’t be.

Natural models discussed in NF. If the injections are sets then they must
be isomorphic. If they are merely setlike then we don’t know a great deal.
Any P() ⊆  will give rise to such a pair of natural models M and N. If
 and P() are distinct sizes then of course M 6= N. If ¬AxCount≤ there
can be finite P() ⊆  so they would |= AC.

Natural models in ZF

They must be isomorphic

Non-natural models.

In ZF without doing any extra work we can certainly show that N and M
satisfy the same P

1 sentences. If we try to argue that they must satisfy

the same P
2 sentences we would want to know that every witness to

∃~ ϕ(~, ~y) can be found inside 〈〈~y〉〉 if ϕ is ΔP
0 but this just isn’t true,

as Adrian’s counterexample shows: n-sized set all of whose members are
infinite and all of different sizes. We might be able to construct a counter-
example to (1) and (3) consisting of M and N, each embedded in the other
as the unique maximal  = P() 6= V and where M |= ∃y = {y}∧∀ =
P() 6= V y 6∈  but N doesn’t. (4) looks plausible. Unfortunately the
problem of constructing a stratimorphism in this case seems to be the
usual problem of s-b with setlike maps.

Beware of the following trap. Suppose ϕ is ΔP
2 . Consider the obvious direct

limit. If ϕ is true in M, then it is true in the direct limit. If ¬ϕ is true in N then
it is also true in the direct limit. Therefore M and N agree on ΔP

2 sentences.

Now they are both models of ∃V (in which case everything is ΔP
2 ). But this

is not much help. Let ψ be an arbitrary expression true in M and false in N.
Then

M |= ∀∃y y 6∈ ∧ ψ

N |= ∀∃y y 6∈ ∧¬ψ

So the direct limit satisfies both. This doesn’t give us a contradiction unless the
direct limit doesn’t contain a universal set, which it obviously doesn’t.



18.2 Normal Forms

The idea is that everything is equivalent to a formula in normal form where all
unrestricted quantifiers are out at the front and all restricted quantifiers are in
the matrix. We need to be able to push restricted universal quantifiers inside
unrestricted existentials (and dually). This introduces a complication.

Quantifier-pushing lemma:
if

(∀ ∈ y)(∃z)(, z, y)

then

(∃)(∀ ∈ y)(∃z ∈)(, z, y)

The usual trick for this is the axiom scheme of collection:

(∀ ∈ A)(∃y)(, y, A) → (∃B)(∀ ∈ A)(∃y ∈ B)(, y, A)

(which is equivalent to replacement)2. So we need collection to do quantifier-
pushing, and this is actually ok in type theory. It is even ok in NF as long as
we are restricting attention to stratified formulæ, since stratified collection is
provable in NF—just take B to be {y : ∃ ∈ A (, y, A)}. We do not have
unstratified collection in NF for obvious reasons, so we cannot push restricted
universal quantifiers inside unrestricted existentials (and dually) if the matrix is
unstratified. This will mean that ∀ ∈ y outside something P

n
may turn out

to be P
n+1 instead of P

n
if the matrix is unstratified. So for the moment we

shall restrict our attention to stratified formulæ. If we do restrict our attention
to stratified formulæ (and we are doing type theory for the moment) we can
drop the “∧, ∨ and limited quantifiers” closure condition (that exists in some
formulations) on the levels of the G hierarchy.

So, back to Z and stratified formulæ. Coret’s theorem is that we have strat-
ified replacement in Z so can we do all this for stratified formulæ in Z? Most of
it goes over without any trouble. We can even squash a block of quantifiers of
unlike type: if we have a block ∃~ we can squash ~ into one variable, by saying
∃ an n-tuple (or ∀ n-tuple) which is 〈. . . ιn ‘ . . .〉 and this is Δ0. The way
in which this is done is not uniform in the differences in the type indices, but
this is neither surprising nor unfortunate, since even so we are lumping together
infinitely many formulæ into one form.

In Zermelo we have stratified replacement (but not stratified collection) so
consider

(∀ ∈ y)(∃z)(, z, y)

where (, z, y) is stratified. We want an ƒ so that ƒ ‘ is some nonempty
subset of {z : (, y, z)}. Then we let  =

⋃

ƒ“y. (We can’t just send  to
the set of things of minimal rank, it isn’t stratified). Now one might think we

2Evidently a combination of quantifier-squashing and quantifier-pushing will eventually get
any formula into normal form. The point is that truth-definitions are available for things in
normal form.



should be able to show that {z : (, y, z)} must meet Pn‘
⋃k y, but Adrian

has a nice counterexample: let H(, y) say that y is a set of infinite sets all of
different sizes and =y = . Then

(∀ < ω)(∃z)H(, z)

but there is nothing that collects all the y, i.e., not

(∃)(∀ < ω)(∃z ∈)H(, z)

This counterexample clearly shows that we cannot bound the z inside Pn‘
⋃k y,

which is what one might expect. It may be sheerest coincidence but in NF we
have almost exactly the same problem: there doesn’t seem to be any way of
proving that there are infinitely many distinct infinite cardinals.

All this quantifier-pushing and squashing is pretty easy in NF and such
systems if (, z, y) is stratified.

And what about quantifier-pushing and squashing for arithmetic?

(∀ ≤ y)(∃z)((, z, y))

z has to be an y-tuple sending things  ≤ y to things z such that ((, z, y))
Can we do a uniform definition of y-tuples?

It is suggestive that the one P
1 sentence (NC infinite) is used to show that

1. stratified replacement does not prove stratified collection

2. Hiω 6≺P
1
V even tho’ for limit λ Hiλ ≺Léy1

V.

3. NF does not prove all consistentNF stratified P
1 sentences

It is worth noting that Vω+ω ≺strt Hiω ≺Léy1
V so that any stratified

Léy1 sentence true in V is true in Vω+ω, that is,

Vω+ω ≺str(Léy1 )
V

(“str” short for “stratified”) This is actually best possible beco’s the assertion

that there is an infinite set of infinite sets no two the same size is ΔLéy2 and
false in Vω+ω tho’ true in V. Can we have

Vω+ω ≺str(P
1 )
V ?

Since “there is an infinite set of infinite sets no two the same size” is str(P
1 )

this would imply that GCH fails below iω. It would also mean no measurables,
since “∃ measurable” is also str(P

1 ).
How about

CONJECTURE 9 .



1. NFC proves every consistentNFC stratified P
1 sentence.

2. NFC proves every consistentNFC P
1 sentence.

3. Every consistentNFC P
1 sentence is consistent with NFC.

4. Every consistentNFC stratified P
1 sentence is consistent with NFC.

5. NF proves every consistentNF stratified P
1 sentence.

6. NF proves every consistentNF P
1 sentence.

7. Every consistentNF P
1 sentence is consistent with NF.

8. Every consistentNF stratified P
1 sentence is consistent with NF.

3 → 7, 4 → 8. We can’t prove these by skolemheim. 1,2,5 and 6 are
presumably false beco’s of CH. This is a (probably) consistentNF stratified P

1
sentence that appears not to be a theorem of NF. It should be possible to find
examples that are more obviously not theorems of NF, though this and “there
is a nonprincipal ultrafilter” are the best i can do at the moment. 6 is obviously
false, because AxCount is a consistentNF P

1 sentence. 7 simply says NFC is
consistent. 8 can be true only if it is consistent w.r.t. NF that NCI should be
infinite and there is a nonprincipal ultrafilter somewhere.

Existence of wellfounded extensional relations on V generalises upward in
models of TZT, and is P

1 .

� Is Z + stratified collection equiconsistent with ZF?

� ZF is not an extension of Z conservative for 1-sentences: consider “There
is a model of Z”. For stratified 1-sentences?

� Does every stratified 1 consequence of Z follow from Ext,
⋃

, P(),
AxInf, {, y} and stratified replacement.

� What substructures of V are there elementary for Léy2 sentences?

18.2.1 remaining junk

Z really is stronger than TST + AxInf so we cannot assume that the model
of TST + nƒ is a model of Z, and, even if it was, we know that not every
model of Z is an initial segment of a model of ZF (Martin-Friedman theorem)
in the sense of being Vω+ω of the new model. The new model might be an

end-extension of the old but that isn’t enough to ensure that no new Léy1
sentences become true.

Develop arithmetic in Z in a stratified way (use Russell-Whitehead cardinals

at some level). We then find that we can devise lots of nasty stratified Ley1



sentences, such as Con(TST). This means that there is no hope of showing (in

ZF) that any model of TST + nƒ must satisfy all stratified Ley1 sentences.
This also shows that ZF is not an extension of Z conservative for stratified

Léy1 sentences (even). So this trick cannot work.
Let the scheme En say there are at least n distinct objects. If ϕ is true

in all sufficiently large finite models then it follows from some En + whatever
remaining first-order stuff all finite models have in common, like the negation
of the axiom of infinity etc., so it does not automatically follow that ϕ is true
in all infinite models of T.

Let us say a map σ between the bottom types of two models M and N of
TST is setlike if for all n, jn‘σ|(TM

n
) is onto TN

n
. We can have a similar notion

of setlike permutations of a model of a set theory with a universal set. There
are setlike maps from V onto proper subsets of V that are not sets, e.g. ι. I
don’t know any setlike permutations of V that are not sets. There are setlike
permutations of IN, NC, NO etc. that aren’t sets but they do not seem to
extend to setlike permutations of V3.

André says that you can prove omitting types if you define ϕ(~~y) realizes
 [ a set of fmlæ with only ‘’ free] if there is some ~ s.t.

ϕ(~, ~)→
∧

σ∈
σ(~, ~)

18.2.2 messages from james about reflection principles

dear t, thanks for the message. here is all i can think of off the top of my head
about reflection principles:

� (levy) if |Vθ| = θ, and ϕ is a 1 statement with parameters from Vθ,
then (V |= ϕ) → (Vθ |= ϕ). In the jargon of model theory the inclusion
map is a 1-embedding.

� (solovay?) if θ is supercompact, then the same holds for 2ϕ.

� (reinhardt?) if θ is extendible, ditto for 3. Notice that if n formulæ
reflect down then

3Let’s try. After all, we have

V
ι−→ V

V
ι←− V

So the S-B trick invites us to find X such that V \X = ι“− ι“X, and look at the permutation
ι|X ∪ ι−1 |(V \ X). As usual, it seems to lift one type but not two. Now even this much is
almost certainly not possible in a term model (exercise: prove that no set abstract t satisfies
t = −ι“ − ι“t) so perhaps in term models every setlike permutation is a set . . .

Conjecture: if we have permutation σ of V so that j‘σ, j2‘σ and j3‘σ are all permutations
of V, then σ is setlike. Outer automorphims of V are setlike. I do not know how to prove
the existence of setlike permutations of V that are not sets, so consider the ML axiom: every
setlike permutation of V is a set. Is there are nice way of restricting this to a first-order
version?



a) n+1 formulæ reflect down

b) n formulæ go up ( i think the model theorists say they are preserved)
see kanamori + magidor’s expository paper on large cardinals for proofs
and refs relating to 1,C,3. Another approach could be to reason like this
. . . if j embeds V into M (not necessarily contained in V) then j“V is an
elementary substructure of j′V = M. 2) has amusing consequences e.g. the
first huge < the first supercompact if both cardinals exist (’cos although
huge is higher in consistency strength, the defn. of huge is 2 so “there
exists huge” reflects). Not sure if this is germane (but it’s good stuff
anyway). if A is a class of V, κ is (1)-strong in A iff for all 1 ϕ (in
a language with a 1-place predicate A(x) ) 〈V,A〉 |= ϕ → ∃j, crt‘j = κ,
into inner model M s.t. 〈M, j(A)〉 |= ϕ (n.b. ϕ could have parameters
from V, i’m asserting that these get into M) it’s easy to check that κ is
1 strong in Λ ←→ ∀λ∃j : V →inner model M s.t. Vλ ⊆ M. The point
of all this is that the n strong hierarchy fit nicely into the large cardinals
(between hypermeasures and woodins) and have a goodish inner model
theory ( at least 1 does..

another message
Let ϕ be 1, with free variables among 1, . . . n.
a) κ is regular.
let 1, . . . n ∈ Hκ, and let ϕ(1, . . . n) hold in V. By the reflection princi-

ple it holds in some Vλ where λ is chosen >> κ. By Skolemheim there is M ≺ Vλ
such that TC(1 ∪ . . . ∪ n) ⊆ M and |M| < κ. Take the Mostowski collapse
of M to N: N ⊆ Hκ, the collapses fix 1, . . . n, so N thinks ϕ(1 . . . n). but
now M does too by upwards absoluteness. does this sound plausible?

In fact why doesn’t this work for singular κ as well? Answer beco’s for
singular κ it’s not enough to be hereditarily card less than κ to be in Hκ =def
{ : |TC()| < κ}.

b) κ singular. ϕ and a’s as before. As κ is limit, all the a’s are in Hβ for
β < κ, β regular! Hβ thinks ϕ holds so by upwards absoluteness Hκ does.

luv j.

(I asked him: is it true that every Ley2 theorem of ZF is true in Vλ for λ
limit)

let ϕ(, y) say something like y =  ∪ ω. then your statement is false in
Vω. less trivial examples can be concocted.

This is the usual thing about 0 functions vs rud functions; the former can
raise rank by an infinite amount, and the latter (by an easy induction) cannot
[in the sense that, if F is rud, there is n finite such that (∀)(rnk(F()) ≤
rnk() + n).

there is a theorem of jensen saying that if ϕ(~) is 0 then for some rud F
ϕ(~)←→ F(~) = 0.





Chapter 19

Miscellaneous junk

From malitzi@logic-handle.com Mon Aug 11 19:54:43 1997

Received: by emu.dpmms.cam.ac.uk (UK-Smail 3.1.25.1/1); Mon, 11 Aug 97 19:54 BST

Received: from ISAAC by mail.pronex.com (NTMail 3.01.03) id ua019338; Mon, 11 Aug 1997 12:02:24 -0700

X-Sender: malitzi@mail.pronex.com (Unverified)

X-Mailer: Windows Eudora Pro Version 2.1.2

Mime-Version: 1.0

Content-Type: text/plain; charset="us-ascii"

To: t.forster@pmms.cam.ac.uk

From: Isaac Malitz <malitzi@logic-handle.com>

Subject: Axiom of pseudofoundation

Date: Mon, 11 Aug 1997 12:02:24 -0700

Message-Id: <19022490000576@mail.pronex.com>

Status: RO

This is in response to an issue raised in your talk at the NF conference.

You were looking for some kind of “axiom of foundation” suitable for NF.

In what follows, I will describe two axioms of pseudofoundation; I suspect
that the second one is suitable.

Both of these axioms are characterized by means of games. The first one
will look familiar, the second one is a variation on the first.

1. Extensionality Game 1

”All there is to know about a set is its members.”

This game is played by two players, Eve and Adam. The game has poten-
tially an infinite number of stages STAGE0, STAGE1, ...

STAGE0 begins with two distinct sets. The objective of Eve is to ”demon-
strate” that these two sets are distinct (in a finite number of stages). The
objective of Adam is frustrate Eve’s efforts by causing the game to go on with-
out end.
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The game is played as follows: At each stage,there are two sets (the ”sets-
for-that-stage”). At each stage, Eve picks a member of one of the two sets-for-
that-stage; the set picked by Eve is known as “Eve’s set”. Then Adam picks a
member of the other of the two sets-for-that-stage; the set picked by Adam is
known as “Adam’s set”. It is required that Eve’s set be a member of exactly
one of the two sets-for-that-stage; it is required that Adam’s set be distinct from
Eve’s set.

The game begins with two distinct sets at STAGE0. If the game reaches a
stage where Adam is unable to respond, then Eve wins. If the game goes on
forever, then Adam wins.

(Intuitively: At each stage, Eve is saying “I can demonstrate that the two
sets-for-this-stage are distinct. Specifically, I am picking a set EVEn that is a
member of one but not the other”. Adam responds “Well, there is a set ADAMn
that is a member of the other set-for-this-stage; demonstrate to me that EVEn
and ADAMn are distinct”)

COMMENTS: If the game begins with two distinct well-founded sets, then
Eve wins. If the game begins with two distinct non-well-founded sets, Eve
can still win, provided that there are appropriate distinct well-founded sets
embedded in the respective epsilon trees.

If the game begins with V and V \ {V}, Adam wins: At each stage, Eve is
forced to select V; a winning strategy for Adam is to select V \ {V} at each
stage. Intuitively, there should be a variation of Extensionality Game 1 that
allows Eve to win in this circumstance.

2. Extensionality Game 2
”Two sets can be distinguished by means of different members *or* different

non-members”.
Game is same as Extensionality Game 1, except that at each stage, Eve may

(optionally) pick a set which is *not* a member of (exactly) one of the two sets-
for-that-stage. If Eve does this, then Adam is required to pick a non-member
of the other set-for-that-stage which is distinct from Eve’s set.

COMMENT: If the game begins with V and V \ {V}, then Eve wins: At
STAGE 0, she picks a non-memb

19.1 A Question of Alice Vidrine

As a bonne bouche I offer this solution to a question of Alice Vidrine that
cropped up in connection with the above: Can there be an infinite set of pairwise
disjoint sets that has, up to finite difference, precisely one transversal? The
answer is yes.

The construction of an example will be done in KF, or rather a version of KF
+ not-AC, in which we assume that there is an infinite set of pairwise disjoint
sets, no infinite subset of which has a transversal. I do not know offhand of
any construction of such a model, but i imagine that there is a standard FM
construction that effects it.



REMARK 77 KF + “there is an infinite set of pairwise disjoint sets, no in-
finite subset of which has a transversal” proves that there is an infinite set of
pairwise disjoint sets that has, up to finite difference, precisely one transversal.

Proof: Let {X :  ∈ } be an infinite family of pairwise disjoint sets s.t. for
no infinite ′ ⊆  does {X :  ∈ ′} have a transversal. Now make a copy
{ι“X :  ∈ } of {X :  ∈ }, and add one element to each ι“X to obtain
{ι“X ∪ {X} :  ∈ }.

Observe that this new family, unlike {X :  ∈ }, does actually have a
transversal, namely {{X} :  ∈ }. Observe further that this transversal is
unique up to finite difference.

One could use {X∪{X} :  ∈ } to the same effect, but i wanted something
that was stratified all the way and that therefore worked in KF.

I think this is a better version of Alice’s question:

“Can there be a family of pairwise disjoint sets that has a countable infinity
of transversals?”

I suspect this is equivalent to the question:

“Can there be a countably infinite profinite structure?”

19.2 Another game

Consider also the game H played as follows. If  is empty, II loses. Otherwise
I picks ′ ∈  and they play H′ , swapping rôles. Thus I wins iff the game
ever comes to an end.

Let A be the collection of sets Won by I, and B the collection of sets Won by
II. If even one member of  is a subset of A then for his first move I can pick
that element, and then, whatever member ′′ of it II chooses, the result is a
game for which I has a winning strategy. Thus

P
(P(A) ⊆ A. Similarly, if every

member of  contains a member of B then whatever I does on his first move, II
can put him into a game H′ with ′ ∈2  for which she has a winning strategy,
so P(

P
(B)) ⊆ B. Indeed, that is the only way II can win, by living on to fight

another day, so in fact we have P(
P
(B)) = B. But wait! We don’t mean “power

set of”
P
(B) = B! we mean “set of nonempty subsets of ”

P
(B) = B! Without

this we would have concluded that in this games II can Win any set  for which
she could have won G. This is obviously wrong, because II Wins G{Λ} but is
doomed to lose H{Λ} whatever I does: II cannot win H if  is wellfounded.

19.3 Non-principal ultrafilters

See the discussion after conjecture 9. The assertion that there is a nonprincipal
ultrafilter on V is P

1 (that is to say, simple).



Are ultrafilters extensional? Are there any symmetric non-principal ultrafil-
ters? Any U on { :  is (n − 2)-symmetric} is n−symmetric and extends to
a U on V.

19.4 A pretty picture

Recursive models Decidability Axiomatisability
Is NF -complete Is NF recursive? NF = NF?

NFO yes ∃1 yes ∃2 No

NF∀1 yes P
2 No

NF∀1 yes? str(∀2) yes?
str(∀3) No?

∀2 No P
2 yes

str(∃+3 ) No str(∃+3 ) No ∀+4 yes

str(∀4 ∪ ∃+3 ) yes

The Thoughts of Chairman Holmes

In my Ph.D. thesis and in my paper “Systems of Combinatory Logic Related to
Quine’s ’New Foundations’” (Annals of Pure and Applies Logic, vol. 53 (1991)
pp. 103-33) I describe systems of combinatory logic, equivalent to untyped
lambda-calculi with “stratification” restrictions on abstraction, which are of
precisely the same consistency strength and expressive power as NFU + Infinity
and extendible in parallel with NFU extensions (they are weakenings of a system
equivalent to NF); this suggests computer science applications, as this system
is similar to typed systems now in use. I have an unpublished essay in which
I develop an intuitive motivation for this system in terms of security of the
abstract data type “program” in a (very) abstract model of programming, along
the same lines as the argument for set theory above; I also observe that the
notion of ”strongly Cantorian set” seems to translate to the general notion of
”data type” internally to the model of programming. This is interesting, because
“strongly Cantorian set” is a notion which has no analogue in ZFC; it is specific
to NF and its relatives, and it is interesting to see it corresponding to anything
outside that context.

19.5 Typical ergodicity

The minimal kind of ambiguity that we expect of a model of negative type
theory is a sort of “ergodic” ambiguity, where there is no first-order sentence
true at a unique type. Let us call this typical ergodicity. This is quite easy to
arrange. Let M be any model of TST, and let κ, U be an infinite object and
an ultrafilter on it. Then Mκ/U is also a model of TST, and is elementarily
equivalent to M. Mκ/U has many more types of course, and they are indexed
by nonstandard integers, and thus Mκ/U can be seen to split naturally into one



model of TST (which will be an isomorphic copy of M) and lots of models of
TZT. What we will be working towards is the claim that any such model of
TZT satisfies ergodic ambiguity.

To do this it is convenient to express type theory not merely as a one-sorted
theory but as a one-sorted theory without type predicates. This is probably
worth doing in some detail as it has not been done in print to my knowledge.
We will need the idea of a set being a universe. Let us abbreviate “ is a
universe” to U()”. Then we adopt the definition:

DEFINITION 26 U() iff (∀y)(∀z)(z ∈ → z ∈ y→ y ⊆ ).

We can think of this, metamathematically, as (∃n)( = Vn). We can also
think of an equivalence relation  ∼ y iff (∃z)( ∈ z∧y ∈ z) and then universes
are equivalence classes under ∼. We will need an axiom ((∀)(∃!y)(U(y)∧ ∈
y) saying that every set belongs to a unique universe, and another saying that
a universe can have at most one universe as a member. If we want to specify
that it is TST we are dealing with not TZTwe can say that there is a universe
which does not have another universe as a member. For TZT we assert that
every universe has another universe as a member. This enables to re-interpret
all the type-predicates we have abolished (T0( ), T1( ), etc.), should we wish to:
T0() is short for (∀y)(y 6∈ )∧ (∀y)(∀z)( ∈ y∧ z ∈ y → (∀)( 6∈ z))
and similarly Tn+1() is short for (∃yz)( ∈ y∧ z ∈ y∧ ∈ z∧ Tn()).
To obtain the remaining axioms let  be an axiom of TST with type indices (or
predicates). Delete them, and let  be the result of relativising all variables in
the stripped version of  to variables in the list  :  ∈ . Then (∀)(U()→
) is an axiom in the one-sorted version.

PROPOSITION 17 Every model of TZT obtained from an ultraproduct satis-
fies typical ergodicity.

Proof:
We can say in a first-order way “there is a unique type at which ϕ holds”.

This will be preserved by  Loś’s theorem . If ϕ is, indeed, true at a unique type
in M then that will be so in Mκ/U and that unique type must be in the copy
of M. Thus the behaviour of all other types must be “ergodic”.

Another kind of weak ambiguity that could be confused with Typical Er-
godicity (well, I confused it) is that exhibited by a model M (of TZT) where,
for each closed formula ϕ, there is n ∈ IN such that M |= the scheme ϕ←→ ϕn

over all levels. Are there models of TZT in which for every ϕ there is an n
such that . . . ? Presumably yes (beco’s we believe NF to be consistent) but is
“for every ϕ there is n . . . ” weak enough to not refute AC? What happens to
TZT+ AC if it does? Think about the tree of lists of pairs 〈ϕ, n〉 meaning the
scheme ϕ←→ ϕn over all levels. Ordered by reverse end-extension of course. If
the grand scheme is inconsistent then the set of consistent lists is a wellfounded
fragment of the tree and every list in it has a rank. The lower the rank the
stronger the theory(!!?!)



At some point i must work out whether Van der Waerden’s theorem has
anything to say about Ambn.



Chapter 20

Stratification and Proof
Theory

Le 3 avr. 2020 à 00:41, Thomas Forster <tf@dpmms.cam.ac.uk> a écrit :
Marcel (cc Randall and Beeson)
I am thinking about the strongly typed fragment of the first-order language

of Set theory, the language i call L(TZT), types for every (positive and nega-
tive) integer. Consider the first-order logic that lives inside this language: no
nonlogical axioms. It is known that this logic admits cut-elimination. (Is that
Takeuti. . . ?) I am now asking about the result of adding a rule of inference of
typical ambiguity to this logic. Two questions:

(i) Do we still have cut elimination for this logic?
(ii) What subformula property do we have for cut-free proofs? ϕ+

is a subformula of ϕ?

I’m trying to reconstruct what Marcel was thinking in the 1990s!

Marcel writes

Dear Thomas,
Does this answer your question?
The sequent

` (∀)((∀y)(y ∈ )→ (∃z)( ∈ z))

is provable in predicate calculus, but no typed version of it is provable in
typed predicate calculus.

However its typed versions are provable in typed predicate calculus with an
ambiguity rule (as the one of page 14 in http://logoi.be/crabbe/textes/

ambstrat.pdf), but none of it is provable without cut.
Best wishes,

411

http://logoi.be/crabbe/textes/ambstrat.pdf
http://logoi.be/crabbe/textes/ambstrat.pdf


Marcel

However our notion of substitution is going to ensure that the class of weakly
stratifiable formulæ is closed under substitution. Thus:

any stratifiable theorem has a cut-free proof in which every formula
is weakly stratifiable.

Can we do better? No: if you want to drop the ‘weakly’ you have to drop
the ‘cut-free’ too.

To prepare the ground for this, start with the rather nice formula i stumbled
into.

(∀)[(∀y)(y ∈ → ((∀z)(z ∈ y)→⊥))→ ((∀z)(z ∈ )→⊥)] (**)

(If none of your members is V then neither are you.) This formula has (of
course) a cut-free proof wherein every formula is weakly stratifiable:

[(∀z)(z ∈ )]1
∀ elim ∈ 

[(∀)( ∈ → ((∀z)(z ∈)→⊥)]2
∀ elim

 ∈ → ((∀z)(z ∈ )→⊥)
→-elim

(∀z)(z ∈ )→⊥ [(∀z)(z ∈ )]1
→-elim⊥ →-int (1)

(∀z)(z ∈ )→⊥ →-int (2)
(∀)( ∈ → ((∀z)(z ∈)→⊥))→ ((∀z)(z ∈ )→⊥)

Observe that this proof is constructive. And, altho’ every formula within
it is weakly stratifiable not all of them are stratifiable. Now we doctor it by
introducing a maximal formula, so that all formulæ in it are stratifiable:

[(∀y)(y ∈ )]3
∀ elim

 ∈ 

[(∀)( ∈ → ((∀y)(y ∈)→⊥)]2
∀ elim

 ∈ → ((∀y)(y ∈ )→⊥)
→-elim

(∀y)(y ∈ )→⊥ [(∀y)(y ∈ )]1
→-elim

⊥

[(∀y)(y ∈ )]3
∃-int

(∃)(∀y)(y ∈)
∃-elim(1)

⊥
→-int (3)

(∀y)(y ∈ )→⊥
→-int (2)

(∀)( ∈ → ((∀z)(z ∈)→⊥))→ ((∀z)(z ∈ )→⊥)

The maximal formula is (∀y)(y ∈ ), which is the premiss (flagged with a
‘1’) of an ∃-elim, and simultaneously the conclusion of a ∃-int.

This second proof above is the result of some ad hoc manipulation by your
humble correspondent, but he thinks he can see a general technique. . . . OneActually it has got garbled
needs to ask how the unstratifiable (but weakly stratifiable) formulæ got in
there. They might have just been put in by brute force and one can’t do anything
about that. However the unstratifiable-but-weakly stratifiable formula we are
trying to get rid of could have arisen from a ∀-elim (as it did in this case). ∀-
elim can give us unstratifiable conclusions from stratifiable premisses, and none
of the other rules can do this. So we simply specialise to a different variable, do



a ∃-int and start a new branch . . . which is exactly what we did above. I believe
that this technique was known to Crabbé 30-odd years ago.

Observe that altho’ this doctored proof (which, like its undoctored progeni-
tor, is constructive) contains only stratifiable formulæ, it lacks a global stratifi-
cation. Not only does it lack a global stratification but the one place where our
attempted stratification fails is at the variable ‘’. We stratify the variables as
follows:

‘’ 7→ 2;
‘y’ 7→ 1;
‘’ 7→ 2;
‘z’ 7→ 1;

but we want to send ‘’ to both 1 and 2. And ‘’ is of course the eigenvari-
able of the ∃-elim we inserted to make the proof stratified. It is the poxy proxy
for the variable ‘’ that caused the failure of stratification in the first place—in
the original cut-free proof.

My guess is that stratifiable proofs obtained in this manner from weakly
stratifiable (but not stratifiable) proofs of expressions like ** never have global
stratifications. I believe that if one eliminates these maximal formulæ in the
obvious way one gets back the original proofs. (Marcel says as much). So per-
haps the conclusion is that they are not significantly different from the original
cut-free (normal) proofs and the exercise largely lacks point. Certainly Marcel
never got very excited about them.

Globally stratifiable proofs are important beco’s the global stratification can
be brutally tattooed onto the variables so that the proof becomes a proof in
TZT.

We need to think about formula **, and the idea that there is no universal
set, in a strongly typed context. If our variables have to have type subscripts (so
we are in L(TZT)) then of course ** cannot be proved—it’s false in any model
of TZT. This ties in with the fact that ** has no globally stratified proof.

I think:

• If ϕ has a globally stratifiable proof then it is a theorem of TZT
and will have a cut-free globally stratifiable proof. (Because of a
theorem of Takeuti about cut-free proofs in type theory)

• If ϕ has a cut-free proof in which every formula is stratifiable then
that proof is globally stratifiable.

Beeson thinks he’s proved the second bullet and i’m inclined to believe him.

Where do the axioms of typical ambiguity fit in?

I think that with the axioms of typical ambiguity we can give a globally strati-
fiable proof of (**)—which is to say, a proof in the first-order logic of L(TZT),
as follows.

Suppose no member of the level-n + 1-set  is a universal set but that 
itself is a universal set. So there is universal set of level n+ 1, and therefore by



(downwards) ambiguity there is a universal set of level n. This set is a member
of  (since  is a universal set) contradicting the assertion that no member of
 is a universal set. The official proof object is displayed below.

I’m guessing that, generally, the ambiguity axiom works by changing the
level of the conclusion of an ∃-int that gives the cut-formula, and thereby ab-
sorbs the cut. Is that what Marcel meant all those years ago by ‘cut-absorbing
operations’? Is this the shape of things to come? Will it turn out that all
stratifiable formulæ like (**) that have proofs wherein every formula is stratifi-
able but no globally stratifiable proofs will have globally stratified proofs using
ambiguity axioms?
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And these ‘cut-absorbing’ things are bad beco’s they don’t respect the sub-
formula property? Or rather, the notion of subformula that they impose is no
use.

Thinking ahead . . . .
Consider the formula

(∀)[(∀y)(y ∈2 → ((∀z)(z ∈ y)→⊥))→ ((∀z)(z ∈ )→⊥)] (***)

This presumably has exactly the same behaviour as (**). It’s a stratifiable
theorem of first order logic and has both a cut-free proof and also a cut-proof
wherein every formula is stratifiable but which is not globally stratifiable. It
also has a proof in L(TZT) using the ambiguity rule.

Now what about

(∀)((∀y ∈ )¬(∀z)(z ∈2 y)→ ¬(∀)( ∈2 ))→ (∀)(¬(∀)( ∈2 ))

This is classically equivalent to:

(∀)((∀y ∈ )((∀z)(z ∈2 )→ (∀)( ∈2 y))→ (∀)(¬(∀)( ∈2 ))

Consider V = {, b, c, d} with b ∈  ∈ b ∈ b; d ∈ c ∈ y. Then (∀y ∈
)(∀z)(z ∈2 y) but ¬(∀z)(z ∈2 )Better check this!

d ∈ c ∈ b ∈ b ∈  ∈ c works too, i think.

Another formula of Marcel’s:

(∀)((∀)( ∈ )→ (∃y)( ∈ y))

Here is a natural deduction proof

[(∀0)(0 ∈ 1)](2)
∃-int(∃1)(∀0)(0 ∈ 1)
Typical Ambiguity

(∃2)(∀1)(1 ∈ 2)

[(∀1)(1 ∈ 2](1)
∀ elim1 ∈ 2 ∃-int(∃2)(1 ∈ 2) ∃-elim(1)

(∃2)(1 ∈ 2) →-int (2)
(∀0)(0 ∈ 1)→ (∃2)(1 ∈ 2)

∀-int(∀1)((∀0)(0 ∈ 1)→ (∃2)(1 ∈ 2))

This does give one to think about the models one obtains for falsifiable
stratifiable formulæ by applying the ‘build proofs backwards’ strategy.

What is the notion of subformula needed so that the fragment of FOL in
L(TZT) plus ambiguity axioms enjoys the subformula property?

Does the L(TZT) fragment of FLO plus upward ambiguity admit cut-
elimination? Even without proving cut-elimination for such a system one can



at least piggy-back on cut elimination for the L(TZT) fragment of FLO. Sup-
pose we have a proof of ϕ that uses some ambiguity axioms ψ → ψ+ . Then
there is a cut-free proof of the sequent ψ→ ψ∗ ` ϕ. The ambiguity axioms in
such a proof all appear as major premisses of →-eliminations (don’t they? Can
they get exploited in any other way. . . ?) and it is simple enough to replace a
derivation

...
ψ ψ→ ψ+

ψ+

with a derivation using the ambiguity rule.
Note, too, that in that proof we used ambiguity propagating as-it-were down-

wards. We could have done a proof using ambiguity that propagated upwards
but we would have proved the contrapositive of the conditional and construc-
tively that’s different.

If we have classical logic then there is no difference between upward prop-
agation and downward propagation. The same holds for TCT of course. If we
don’t have classical logic then the upward and downward schemes seem to be
inequivalent. Each implies the other for negative formulæ.

One has the feeling that downward propagation should be stronger than
upward.

Presumbly the two restrictions, of downward-propagating ambiguity and
upward-propagating ambiguity to negative formulæ in the range of the negative
interpretation are equivalent!

Presumably the L(TZT) version of SF has cut-elimination. Let’s think
about this theory with upward and downward ambiguity. Is there a difference
in strength?

20.1 Analogues for other syntactic disciplines

There are other syntactic disciplines we need to consider:
Stratification-mod-n and acyclicity. Try, for example,

(∀)((∀y ∈ )(¬(y ∈2 y))→ ¬( ∈2 ))→ (∀)(¬( ∈2 ))

This is stratifiable-mod-2 and has a cut-free globally-stratifiable-mod-2 proof.
It is also a logical truth of the stratifiable-mod-2 version of L(∈,=).

So far soo good.

20.1.1 Acyclic Analogues

When acyclicity turned up as a genuinely useful idea many of us thought that
the extra discipline imposed by acyclicity might make the proof theory easier.
The above discussion is probably a good context for an airing of these possibil-
ities. Acyclic comprehension. Presumably we have an exact analogue of weakly
stratified called something like ‘weakly acyclic’. We should get straight what



the closure is of the class of acyclic formulæ under subformula, or rather: what
is the closure of the set of acyclic formulæ under subformula. And we can rerun
the above analysis with ‘stratifiable’ replaced passim by ‘acyclic’.

A message to Randall, Nathan and Zuhair:

I’m thinking again about acyclicity. This is because i have dusted off my
notes on stratification and cut-elimination; this is stuff Marcel Crabbé wrote
about years ago, and i may now finally be approaching the level of understanding
he had then.

It’s the proof theory of NF that gives rise to the notion of weakly stratifiable
formula, the point being that the subformula property for cut-free proofs alerts
us to the fact that subformulæ of stratifiable formulæ are not always stratifi-
able. The class of weakly stratifiable formulæ is the smallest class containing all
stratifiable formulæ that is closed under subformula. That’s why, in a natural
deduction formulation of NF, one has ∈-introduction and elimination for weakly
stratifiable formulæ not just stratifiable formulæ.

When acyclicity came up, some of us thought that the extra discipline im-
posed by the stronger condition (than stratifiability) might make the proof the-
ory easier. I now think that those hopes were exaggerated, but it’s still a good
idea to sort that out. The first step is to think about the closure of the set
of acyclic formulæ under the subformula relation. I’m guessing that this is
precisely the set of weakly stratifiable formulæ. Does that sound correct?

Then one might expect to be able to prove—using Marcel’s methods—an
acyclic analogue of what Marcel proved (and i re-proved, as an exercise) namely
that every stratifiable theorem has a cut-free proof wherein every formula is
weakly stratifiable, and that from that proof one can obtain a proof-with-cut
wherein every formula is stratifiable, and which gives us back our original proof
when one eliminates the cuts. Thus i predict that:

“every acyclic theorem has a cut-free proof wherein every formula is weakly
stratifiable, and that from that proof one can obtain a proof-with-cut wherein
every formula is acyclic, and which gives us back our original proof when one
eliminates the cuts.”

Does that sound correct. . . ?

Actually i think Marcel did this years ago. . .

A Message from Marcel in 1993

“Thomas,

Let’s be precise. Consider the sequent calculus for classical first order logic.
Then, a cut free derivation of a weakly stratified sequent contains only weakly
stratified sequents. This follows trivially from the subformula principle (every
formula in a cut free derivation is a subformula of a formula in the final sequent)
and the observation that a subformula of a weakly stratified formula is always
weakly stratified: this is not true for stratified formulas,  ∈  → (∀y)(y ∈
)→⊥) is a weakly stratified and unstratified [sub]formula of (∀)( ∈ →
(∀y)(y ∈)→⊥).



When I proved “jadis” that every stratified theorem of the predicate calculus
has a stratified (but not necessarily normal!) proof, I proceeded as follows: first
I took a cut free proof of the stratified sequent, this proof is weakly stratified
but could be unstratified as in your example, then I gave a method to introduce
suitable cuts in order to obtain a stratified proof. The resulting derivation has
moreover the property that if you remove the cuts of it in Gentzen’s way you
get (almost) the original cut free derivation.

Now if you take natural deduction and/or intuitionistic logic you have the
same results with normal instead of cut free (you can even drop the “(almost)”).

The situation is similar in the logic with terms { : A}. But here you have
to be a little more careful to avoid triviality.”

Marcel

Jan Ekman says there is no normal proof of the nonexistence of V

Let’s try to get a normal derivation of (∀y)(y ∈ →⊥) from (∀)( ∈ →
(∀y)(y ∈  → ⊥)). The last line can only be the result of an introduction
rule, and this is presumably the ∀y. So we have

...

y ∈ →⊥

(∀y)(y ∈ →⊥)

and the y ∈ → ⊥ can only be an →-introduction (How can i be sure?) so it
must be

...

⊥
y ∈ →⊥

(∀y)(y ∈ →⊥)

and then, since there is no rule to introduce ⊥, the preceding step must have
been an elimination . . .

20.2 leftovers

I asked: Is there any relation between lurking non-normalisability and the pres-
ence of contraction?

Thanks to Torkel, for the proofs.
I’d like to elaborate a bit on the role of contraction. I’ll leave comments

about the relation between natural deduction and sequent calculus for another
time.

Let’s assume a na¨ive comprehension scheme.
Let { : ϕ} be a name such that ∀y(y ∈ { : ϕ}←→ ϕ(y))
Let  = { :  ∈ → A} for any sentence A



1.  ∈ ←→ ( ∈ → A) by comprehension

2.  ∈ → ( ∈ → A) from 1

3.  ∈ → A contraction on 2

4. ( ∈ → A)→  ∈  from 1

5.  ∈  3,4 modus ponens

6. A 3,5 modus ponens

The sentence A can be anything. We could, like Fitch is supposed to have
urged, give up modus ponens. But if we want naive comprehension, I think
it better to give up contraction rather than modus ponens. In terms of naive
plausibility, modus ponens is surely more naively plausible than is contraction.

Note: Löb’s “paradoxical” tautology is (B←→ (B→ A))←→ (B∧ A)
Now consider the usual formulation of the Russell paradox, which involves

negation. We have A←→ −A and derive A and −A.

1. A←→ −A

2. A→ −A from 1

3. (A→ −A)→ −A minimal negation

4. −A 2,3 modus ponens

5. −A→ A from 1

6. A 4,5 modus ponens

Minimal negation looks to be the weakest assumption available to derive the
contradiction.

Is contraction at work here?
I noticed as a result of this thread that (B ←→ (B → A)) ←→ (B∧ A) is

odd in some way, and now Graham says this is Löb’s ‘paradoxical tautology’.
What did he say about it?

Thomas

From phil-logic@bucknell.edu Fri Apr 4 00:30:12 1997

From: g.solomon@phil.canterbury.ac.nz (Graham Solomon)

Let me re-write the tautology as (A←→ (A→ B))←→ (A∧B) so it’s more
easily comparable with (A ←→ −A) ←→ (A∧ −A) which this thread started
with. The former is connected to Curry’s paradox and the (better known?)
related Lob’s theorem. Lob didn’t say anything specifically about the tautology
(at least not that I recall), but keeping the tautology in mind can help one see
that there’s no real trickery going on. At this level of analysis, the former is a
negation-free variant of the latter. I think it’s interesting (but not surprising)
that contraction shows up explicitly in the negation-free “paradoxes”.



Re: Neil’s comments, which I won’t quote
1. You can write contraction as a tautology, though I like to use it as the

rule “from A→ (A→ B) infer A→ B”. In so far as we are concerned with the
consistency of naive comprehension and contraction, we’d probably like to look
at a generalization which reduces n+ 1 As to n As, as well as which applies to
any arrow-like connective. Greg Restall discusses this in print somewhere.

2. I suspect if you think about it carefully you’ll realize that your suggested
“ ∈ → ( ∈ (→ A))” is not well-formed.

Torkel replied:
¿ Well, as I usually understand minimal logic, −A is short for A → ⊥,

which ¿makes the validity of (A→ −A)→ −A a special case of the validity ¿of
contraction (in your sense). How would you explain minimal negation?

I hope we aren’t talking at cross-purposes. I had in mind an axiomatization
of minimal logic using negation rather than F.

At any rate, it’s helpful for me to think of (A → −A) → −A as a special
case of contraction. Then, is it alright with you to claim that contraction does
indeed play a significant role in both the derivation of B from A←→ (A→ B)
and of A∧ −A from A ←→ −A, in the usual axiomatics? The use of - in the
latter just buries contraction a bit.

My speculation about the normalisation stuff is that the puzzle shows up
because of contraction (which shows up whenever there’s multiple use of the
same assumption)*, and that sequent calculus handles contraction better than
does natural deduction. But “handles” has to be given some content.

* Like Thomas I’ve been wondering if it isn’t “always the case that where
something doesn’t normalise there must be a premiss that is introduced twice?
And doesn’t this mean that contraction is used somehow?”

From phil-logic@bucknell.edu Wed Apr 9 09:03:21 1997

From: Torkel Franzen <torkel@sm.luth.se>

Graham says:
¿I suppose this should really be under the subject heading: Curry sequents

¿and contraction. But here goes. Following is a sequent calculus proof of ¿
p → (p → q), (p → q) → p ` q ¿written up using Gentzen’s original rules
(for sequents regarded as lists ¿rather than sets). I hope it doesn’t break up in
transmission (and survives ¿close scrutiny!).

The proof as written can’t be quite what you are after. Look at the first 9
lines:

1. p ` p Axiom

2. q ` q Axiom

3. p→ q, p ` q 1, thinning left

4. p, q ` q 2, thinning left

5. q, p ` q 4, interchange left



6. p→ q, p→ q, p, p ` q 3,5, →-left

7. p→ q, p, p ` q 6, contraction left

8. p, p, p→ q ` q 7, interchange left (twice)

9. p, p→ q ` q 8, contraction left

Line 3 is not obtainable from line 1 by thinning.
A correct proof of p, p→ q ` q would be

1. p ` p Axiom

2. q ` q Axiom

3. p→ q, p ` q 1,2 → left

4. p, p→ q ` q 3, interchange left

From phil-logic@bucknell.edu Fri Apr 11 00:54:43 1997

From: g.solomon@phil.canterbury.ac.nz (Graham Solomon)

Charlie:
> I am completely lost about what is going on here. Is it at all relevant

>to the discussion for me to observe that on the lines below, all sentences
>to the left of the turnstiles can be true and the one to the right false?

Here’s a quick sketch.
Let W, X, Y, Z, be finite, possibly empty, sequences of formulas. Let A, B,

be arbitrary formulas.
The sequent X ` Y informally reads: if all formulas in X are true then at

least one formula in Y is true; or, for X ` A : there’s a natural deduction proof
of A from X.

Tree proofs are basically inverted sequent proofs. So formulas on the left of
` map to formulas signed with T and formulas on the right map to formulas
signed with F, when moving from sequent-style to tree-style. In classical logic
by trees the Ts and Fs are eliminable, but seem to be essential for nonclassical
logics.

For many logics you can regard X, Y, etc as sets. But doing so will auto-
matically give you various structural rules you might want to reject. So I think
it’s better to make them explicit. But, like Torkel notes in a recent message, for
some kinds of investigations you don’t need this degree of explicitness.

Algebraists will recognize the groupoid aspects of sequent systems.
We start derivations wth axioms of the form A ` A
Structural rules:
from X ` Y infer A,X ` Y thinning left
from X ` Y infer X ` Y,A thinning right
from A,A, X ` Y infer A,X ` Y contraction left
from X ` Y,A, A infer X ` Y,A contraction right



from W,A,B, X ` Y infer W,B,A, X ` Y interchange left
from X ` Y,A, B, Z infer X ` Y,B, A, Z interchange right
from X `W,A and A,Z ` Y infer X,Z `W,Y cut
Operational rules:
from X `W,A and B,Z ` Y infer A→ B,X,Z `W,Y → left
from A,X ` Y,B infer X ` Y,A→ B → right
I’ll skip the other rules. You can distinguish intuitionistic logic from classical

by the number of formulas allowed on the right of ` (I’ll let you figure it out
yourself).

Here’s a proof for p→ (p→ q) ` p→ q

1. p ` p Axiom

2. q ` q Axiom

3. p→ q, p ` q 1,2, → left

4. p→ (p→ q), p, p ` q 1,3, → left

5. p, p, p→ (p→ q) ` q 4, interchange left (twice)

6. p, p→ (p→ q) ` q 5, contraction left

7. p→ (p→ q) ` p→ q 6, → right

which shows how contraction as a structural rule underlies the natural deduction
rule. One more step gives us

8. ` [p→ (p→ q)] → (p→ q) 7, → right
Okay, (given that I’ve typed everything in properly!), what does this tell

us about the normalization business? I’m not at all sure. I’ve been doing this
exercise in order to figure out where contraction shows up in the sequent system
proofs of the paradoxical sentences. It seems to me that sometimes natural
deduction doesn’t handle multiple uses of one premise well. But I want to think
about Peter Milne’s remark about choice of rules and also chew over Tennant’s
article.

”To seek knowledge one must prefer uncertainty” – the first Bayesian koan.

From phil-logic@bucknell.edu Fri Apr 11 09:39:17 1997

From: Torkel Franzen <torkel@sm.luth.se>

Graham says:
For many logics you can regard X, Y, etc as sets. But doing so will auto-

matically give you various structural rules you might want to reject. So I think
it’s better to make them explicit. But, like Torkel notes in a recent message, for
some kinds of investigations you don’t need this degree of explicitness.

Although it isn’t at all relevant to the question about the proof of −(A←→
−A), I would like to add that the degree of explicitness embodied in the rule I
mentioned, i.e.
[A→ B], ` AB, ` C



———————————–
A→ B, ` C
lies in between treating Gamma etc as sets and the full use of structural

rules. B,Gamma is not a set in the rule above, but a multi-set. We can only
use a formula on the left of a sequent as many times, *in any one branch of the
proof*, as it has occurrences. In classical propositional logic, we we need never
use any formula more than once in any one branch. In intuitionistic logic, reuse
of A→ B n times is sometimes necessary.

From phil-logic@bucknell.edu Sat Apr 12 01:56:54 1997

From: g.solomon@phil.canterbury.ac.nz (Graham Solomon)

A small remark about Lemmon’s natural deduction system. Peter Milne
gave it as an example of a system with a case where an assumption is used only
once but the proof can’t be normalized.

Lemmon’s system doesn’t allow us to infer directly from B to A → B. We
need instead to do something along the following lines: assume A and B and
do ∧-introduction, then eliminate for B, and on that basis infer A → B. The
assumption A is used only once but the proof isn’t normalizable. Let’s look at
the sequent calculus proof (with the original Gentzen rules).

1. B ` B Axiom

2. A,B ` B 1, Thinning left

3. B ` A→ B 2, → left

Not much to it. Contraction isn’t needed, so it isn’t the case that non-
normalisability must have something to do with contraction. So what’s Lem-
mon doing? He must be admitting non-normalisable proofs instead of using
thinning as a structural rule. Indeed, John Slaney, in his reconstruction of
Lemmon’s system as a sequent system, explicitly draws the connection between
non-normalisability and the absence of thinning as a primitive rule (”A General
Logic” AJP 68 (1990):74-88).

From phil-logic@bucknell.edu Mon Apr 21 14:21:43 1997

From: IrvAnellis@aol.com

In 1985, Alexander Abian proposed the following expression:
(1) for all x, A is an element of x iff x is not an element of x
and the equivalent expression:
(2) for all x, A is not an element of x iff x is an element of x
By unrestricted universal instantiation, we get
(1’) A is an element of A iff A is not an element of A
and
(2’) A is not an element of A iff A is an element of A.
Looking at (1), we see that A can be neither a set nor a class because

replacing x by the empty set in (1), we get



(1”) A is an element of the empty set iff the empty set is not an element of
the empty set.

and of course “A is an element of the empty set” is always false – whether
A is a class or a set – and “the empty set is not an element of the empty set”
is of course always true, so that we have

(1”’) False iff True
which Abian regards as a paradox.
Whether (1) – or for that matter (1”’) – is a paradox or a simple contradiction

will probably depend upon one’s outlook. G. E. Mints pointed out, however,
that the so-called Abian paradox has the same structure as Curry’s paradox.
For his part, Abian sees the expression as indicating that neither sets nor classes
should be formulated in terms of arbitrary unrestricted properties, and that set
theory requires some axioms for prescribing some rules for formation of sets and
classes.

Irving H. Anellis
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