Linear Algebra: Example Sheet 3 of 4

1. Find the eigenvalues and give bases for the eigenspaces of the following complex matrices:

$$
\left(\begin{array}{ccc}
1 & 1 & 0 \\
0 & 3 & -2 \\
0 & 1 & 0
\end{array}\right), \quad\left(\begin{array}{ccc}
1 & 1 & -1 \\
0 & 3 & -2 \\
0 & 1 & 0
\end{array}\right), \quad\left(\begin{array}{ccc}
1 & 1 & -1 \\
-1 & 3 & -1 \\
-1 & 1 & 1
\end{array}\right) .
$$

The second and third matrices commute; find a basis with respect to which they are both diagonal.
2. By considering the rank of a suitable matrix, find the eigenvalues of the $n \times n$ matrix A with each diagonal entry equal to λ and all other entries 1 . Hence write down the determinant of A.
3. Let α be an endomorphism of the finite dimensional vector space V over \mathbb{C}, with characteristic polynomial $\chi_{\alpha}(t)=t^{n}+c_{n-1} t^{n-1}+\cdots+c_{0}$. Show that $\operatorname{det}(\alpha)=(-1)^{n} c_{0}$ and $\operatorname{tr}(\alpha)=-c_{n-1}$. What happens over \mathbb{R} ?
4. (i) Let V be a vector space, let $\pi_{1}, \pi_{2}, \ldots, \pi_{k}$ be endomorphisms of V such that $\mathrm{id}_{V}=\pi_{1}+\cdots+\pi_{k}$ and $\pi_{i} \pi_{j}=0$ for any $i \neq j$. Show that $V=U_{1} \oplus \cdots \oplus U_{k}$, where $U_{j}=\operatorname{Im}\left(\pi_{j}\right)$.
(ii) Let α be an endomorphism of V satisfying the equation $\alpha^{3}=\alpha$. By finding suitable endomorphisms of V depending on α, use (i) to prove that $V=V_{0} \oplus V_{1} \oplus V_{-1}$, where V_{λ} is the λ-eigenspace of α.
5. Let α be an endomorphism of a finite dimensional complex vector space. Show that if λ is an eigenvalue for α then λ^{2} is an eigenvalue for α^{2}. Show further that every eigenvalue of α^{2} arises in this way. Are the eigenspaces $\operatorname{Ker}(\alpha-\lambda \iota)$ and $\operatorname{Ker}\left(\alpha^{2}-\lambda^{2} \iota\right)$ necessarily the same?
6. (Another proof of the Diagonalisability Theorem.) Let V be a vector space of finite dimension. Show that if α_{1} and α_{2} are endomorphisms of V, then the nullity $n\left(\alpha_{1} \alpha_{2}\right)$ satisfies $n\left(\alpha_{1} \alpha_{2}\right) \leq n\left(\alpha_{1}\right)+n\left(\alpha_{2}\right)$. Deduce that if α is an endomorphism of V such that $p(\alpha)=0$ for some polynomial $p(t)$ which is a product of distinct linear factors, then α is diagonalisable.
7. Let A be a square complex matrix of finite order - that is, $A^{m}=I$ for some $m>0$. Show that A can be diagonalised.
8. Without appealing directly to the uniqueness of Jordan Normal Form show that none of the following matrices are similar:

$$
\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right), \quad\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right), \quad\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) .
$$

Is the matrix

$$
\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right)
$$

similar to any of them? If so, which?
9. Find a basis with respect to which $\left(\begin{array}{cc}0 & -1 \\ 1 & 2\end{array}\right)$ is in Jordan normal form. Hence compute $\left(\begin{array}{cc}0 & -1 \\ 1 & 2\end{array}\right)^{n}$.
10. (a) Recall that the Jordan normal form of a 3×3 complex matrix can be deduced from its characteristic and minimal polynomials. Give an example to show that this is not so for 4×4 complex matrices.
(b) Let A be a 5×5 complex matrix with $A^{4}=A^{2} \neq A$. What are the possible minimal and characteristic polynomials? If A is not diagonalisable, how many possible JNFs are there for A ?
11. Let V be a vector space of dimension n and α an endomorphism of V with $\alpha^{n}=0$ but $\alpha^{n-1} \neq 0$. Show that there is a vector y such that $\left(y, \alpha(y), \alpha^{2}(y), \ldots, \alpha^{n-1}(y)\right)$ is a basis for V.

Show that if β is an endomorphism of V which commutes with α, then $\beta=p(\alpha)$ for some polynomial p. [Hint: consider $\beta(y)$.] What is the form of the matrix for β with respect to the above basis?
12. Let α be an endomorphism of the finite-dimensional vector space V, and assume that α is invertible. Describe the eigenvalues and the characteristic and minimal polynomial of α^{-1} in terms of those of α.
13. Prove that that the inverse of a Jordan block $J_{m}(\lambda)$ with $\lambda \neq 0$ has Jordan normal form a Jordan block $J_{m}\left(\lambda^{-1}\right)$. For an arbitrary invertible square matrix A, describe the Jordan normal form of A^{-1} in terms of that of A.
Prove that any square complex matrix is similar to its transpose.
14. Let C be an $n \times n$ matrix over \mathbb{C}, and write $C=A+i B$, where A and B are real $n \times n$ matrices. By considering $\operatorname{det}(A+\lambda B)$ as a function of λ, show that if C is invertible then there exists a real number λ such that $A+\lambda B$ is invertible. Deduce that if two $n \times n$ real matrices P and Q are similar when regarded as matrices over \mathbb{C}, then they are similar as matrices over \mathbb{R}.
15. Let $f(x)=a_{0}+a_{1} x+\ldots+a_{n} x^{n}$, with $a_{i} \in \mathbb{C}$, and let C be the circulant matrix

$$
\left(\begin{array}{ccccc}
a_{0} & a_{1} & a_{2} & \ldots & a_{n} \\
a_{n} & a_{0} & a_{1} & \ldots & a_{n-1} \\
a_{n-1} & a_{n} & a_{0} & \ldots & a_{n-2} \\
\vdots & & & \ddots & \vdots \\
a_{1} & a_{2} & a_{3} & \ldots & a_{0}
\end{array}\right)
$$

Show that the determinant of C is $\operatorname{det} C=\prod_{j=0}^{n} f\left(\zeta^{j}\right)$, where $\zeta=\exp (2 \pi i /(n+1))$.
16. Let V denote the space of all infinitely differentiable functions $\mathbb{R} \rightarrow \mathbb{R}$ and let α be the differentiation endomorphism $f \mapsto f^{\prime}$.
(i) Show that every real number λ is an eigenvalue of α. Show also that $\operatorname{ker}(\alpha-\lambda \iota)$ has dimension 1 .
(ii) Show that $\alpha-\lambda \iota$ is surjective for every real number λ.

