SJW

Linear Algebra: Example Sheet 2 of 4

1. Write down the three types of elementary matrices and find their inverses. Show that an $n \times n$ matrix A is invertible if and only if it can be written as a product of elementary matrices. Use this method to find the inverse of

$$\begin{pmatrix} 1 & -1 & 0 \\ 0 & 0 & 1 \\ 0 & 3 & -1 \end{pmatrix}.$$

- 2. (Another proof of the row rank column rank equality.) Let A be an $m \times n$ matrix of (column) rank r. Show that r is the least integer for which A factorises as A = BC with $B \in \operatorname{Mat}_{m,r}(\mathbb{F})$ and $C \in \operatorname{Mat}_{r,n}(\mathbb{F})$. Using the fact that $(BC)^T = C^T B^T$, deduce that the (column) rank of A^T equals r.
- 3. Let V be a 4-dimensional vector space over \mathbb{R} , and let $\{\xi_1, \xi_2, \xi_3, \xi_4\}$ be the basis of V^* dual to the basis $\{\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_4\}$ for V. Determine, in terms of the ξ_i , the bases dual to each of the following:
 - (a) $\{\mathbf{x}_2, \mathbf{x}_1, \mathbf{x}_4, \mathbf{x}_3\}$;
 - (b) $\{\mathbf{x}_1, 2\mathbf{x}_2, \frac{1}{2}\mathbf{x}_3, \mathbf{x}_4\}$;

 - (c) $\{\mathbf{x}_1 + \mathbf{x}_2, \mathbf{x}_2 + \mathbf{x}_3, \mathbf{x}_3 + \mathbf{x}_4, \mathbf{x}_4\}$; (d) $\{\mathbf{x}_1, \mathbf{x}_2 \mathbf{x}_1, \mathbf{x}_3 \mathbf{x}_2 + \mathbf{x}_1, \mathbf{x}_4 \mathbf{x}_3 + \mathbf{x}_2 \mathbf{x}_1\}$.
- 4. (a) Show that if $\mathbf{x} \neq \mathbf{y}$ are vectors in the finite dimensional vector space V, then there is a linear functional $\theta \in V^*$ such that $\theta(\mathbf{x}) \neq \theta(\mathbf{y})$.
 - (b) Suppose that V is finite dimensional. Let $A, B \leq V$. Prove that $A \leq B$ if and only if $A^{\circ} \geq B^{\circ}$.
- 5. For $A \in \operatorname{Mat}_{n,m}(\mathbb{F})$ and $B \in \operatorname{Mat}_{m,n}(\mathbb{F})$, let $\tau_A(B)$ denote $\operatorname{tr} AB$. Show that, for each fixed A, $\tau_A: \mathrm{Mat}_{m,n}(\mathbb{F}) \to \mathbb{F}$ is linear. Show moreover that the mapping $A \mapsto \tau_A$ defines a linear isomorphism $\operatorname{Mat}_{n,m}(\mathbb{F}) \to \operatorname{Mat}_{m,n}(\mathbb{F})^*.$
- 6. (a) Let V be a non-zero finite dimensional real vector space. Show that there are no endomorphisms α, β of V with $\alpha\beta - \beta\alpha = \mathrm{id}_V$.
 - (b) Let V be the space of infinitely differentiable functions $\mathbb{R} \to \mathbb{R}$. Find endomorphisms α and β of V such that $\alpha\beta - \beta\alpha = id_V$.
- 7. Suppose that $\psi: U \times V \to \mathbb{F}$ is a bilinear form of rank r on finite dimensional vector spaces U and V over \mathbb{F} . Show that there exist bases e_1, \ldots, e_m for U and f_1, \ldots, f_n for V such that

$$\psi\left(\sum_{i=1}^{m} x_i e_i, \sum_{j=1}^{n} y_j f_j\right) = \sum_{k=1}^{r} x_k y_k$$

for all $x_1, \ldots, x_m, y_1, \ldots, y_n \in \mathbb{F}$. What are the dimensions of the left and right kernels of ψ ?

8. (a) Let $a_0, ..., a_n$ be distinct real numbers, and let

$$A = \begin{pmatrix} 1 & 1 & \cdots & 1 \\ a_0 & a_1 & \cdots & a_n \\ a_0^2 & a_1^2 & \cdots & a_n^2 \\ \vdots & \vdots & \ddots & \vdots \\ a_0^n & a_1^n & \cdots & a_n^n \end{pmatrix}.$$

Show that $det(A) \neq 0$.

- (b) Let P_n be the space of real polynomials of degree at most n. For $x \in \mathbf{R}$ define $e_x \in P_n^*$ by $e_x(p) = p(x)$. By considering the standard basis $(1, t, ..., t^n)$ for P_n , use (a) to show that $\{e_0, ..., e_n\}$ is linearly independent and hence forms a basis for P_n^* .
- (c) Identify the basis of P_n to which $(e_0, ..., e_n)$ is dual.

9. Let A and B be $n \times n$ matrices over a field F. By specifying a suitable sequence of elementary row operations show that the $2n \times 2n$ matrix

$$C = \begin{pmatrix} I & B \\ -A & 0 \end{pmatrix}$$
 can be transformed into $D = \begin{pmatrix} I & B \\ 0 & AB \end{pmatrix}$.

By considering the determinants of C and D, obtain another proof that $\det AB = \det A \det B$.

10. Let A, B be $n \times n$ matrices, where $n \ge 2$. Show that, if A and B are non-singular, then

(i)
$$adj(AB) = adj(B)adj(A)$$
, (ii) $det(adjA) = (det A)^{n-1}$, (iii) $adj(adjA) = (det A)^{n-2}A$.

Show that the rank of the adjugate matrix is
$$r(\text{adj }A) = \begin{cases} n & \text{if } r(A) = n \\ 1 & \text{if } r(A) = n-1 \\ 0 & \text{if } r(A) \leq n-2. \end{cases}$$

Do (i)-(iii) hold if A is singular? [Hint: for (i) consider $A + \lambda I$ for $\lambda \in \mathbb{F}$.]

- 11. Show that the dual of the space P of real polynomials is isomorphic to the space $\mathbb{R}^{\mathbb{N}}$ of all sequences of real numbers, via the mapping which sends a linear form $\xi: P \to \mathbb{R}$ to the sequence $(\xi(1), \xi(t), \xi(t^2), \ldots)$. In terms of this identification, describe the effect on a sequence (a_0, a_1, a_2, \ldots) of the linear maps dual to each of the following linear maps $P \to P$:
 - (a) The map D defined by D(p)(t) = p'(t).
 - (b) The map S defined by $S(p)(t) = p(t^2)$.
 - (c) The map E defined by E(p)(t) = p(t-1).
 - (d) The composite DS.
 - (e) The composite SD.

Verify that $(DS)^* = S^*D^*$ and $(SD)^* = D^*S^*$.

- 12. Suppose that $\psi: V \times V \to \mathbb{F}$ is a bilinear form on a finite dimensional vector space V. Take U a subspace of V with $U = W^{\perp}$ some subspace W of V. Suppose that $\psi|_{U \times U}$ is non-singular. Show that ψ is also non-singular.
- 13. Let V be a vector space. Suppose that $f_1, \ldots, f_n, g \in V^*$. Show that g is in the span of f_1, \ldots, f_n if and only if $\bigcap_{i=1}^n \ker f_i \subset \ker g$.
- 14. Let $\alpha: V \to V$ be an endomorphism of a real finite dimensional vector space V with $\operatorname{tr}(\alpha) = 0$.
 - (i) Show that, if $\alpha \neq 0$, there is a vector \mathbf{v} with $\mathbf{v}, \alpha(\mathbf{v})$ linearly independent. Deduce that there is a basis for V relative to which α is represented by a matrix A with all of its diagonal entries equal to 0.
 - (ii) Show that there are endomorphisms β, γ of V with $\alpha = \beta\gamma \gamma\beta$.