REPRESENTATION THEORY

SIMON WADSLEY

LECTURE 1
1. INTRODUCTION

Representation Theory is the study of how symmetries occur in nature; that is
the study of how groups act by linear transformations on vector spaces.

Recall that an action of a group G on aset X isamap -: GxX — X;(g,z) — g-x
such that

(i) e-z =z for all z € X

(ii) (gh)-x=g-(h-z) for all g,h € G and = € X.

Recall also that to define such an action is equivalent to defining a group ho-
momorphism p: G — S(X) where S(X) denotes the symmetric group on the set
X.

A representation p of a group G on a vector space V' is a group homomorphism
p: G — GL(V), the group of invertible linear transformations of V.

We want to understand all representations of G on finite dimensional vector
spaces. Of course, vector spaces do not come equipped with a notion of distance. If
we want to study distance preserving transformations of a (f.d.) real/complex inner
product space we should instead consider homomorphisms G — O(V), the group
of orthogonal transformations of V or G — U(V), the group of unitary transfor-
mations of V. We’ll see later that this restriction doesn’t make any difference to
the theory in a way we will make precise.

Recall that if G acts on a set X then X may be written as a disjoint union of
orbits X = |JX; with G acting transitively on each Xj.

Question. What is the equivalent notion for representations?

We'll see that disjoint union of sets should correspond to direct sum of vector
spaces and that there is a good equivalent notion when G is finite and k has char-
acteristic zero. However, it is less rigid because there are many ways to decompose
an n-dimensional vector spaces as a direct sum of 1-dimensional subspaces.

To understand all actions of G on sets X by using the decomposition into orbits
it is enough to consider transitive actions.

The Orbit-Stabiliser theorem says that if G acts on X and = € X then there is
a bijection

7: G/ Stabg(r) = Orbg(z)
given by
gStabg(z) — g - .
In fact this bijection is G-equivariant: if we given G/ Stabg(z) the left regular
action g - (h Stabg(x)) = gh Stabg(z) then gn(y) = w(gy) for all y € G/ Stabg(x).
Thus as a set with G-action Orbg(z) is determined by Stabg(x).
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Recall also that Stabg(g - ) = gStabg(z)g~! (IA Groups Ex Sheet 3). Thus
Orbg(z) is determined by the conjugacy class of Stabg(x); that is thereisa 1 —1
correspondance

{sets with a transitive G-action}/ ~«— {conj. classes of subgroups of G}
given by X +— {Stabg(x) | x € X} and {gHg™' | g € G} — G/H.
Question. What is the equivalent notion for representations?

Suppose that XY are two sets with G-action. We say that f: X — Y is G-
equivariant if g - f(z) = f(g-x) for all g € G and = € X. Note that if f is
G-equivariant and x € X then f(Orbg(z)) = Orbg(f(z)) (exercise). Notice also
that f|orbg(z) is determined by f(x) and Stabg(z) < Stabg(f(x)). In fact this
condition is also sufficient so

{G — equivariant functions Orbg(z) — Y} = [{y € Y | Stabg(x) < Stabg(y)}-
Question. What is the equivalent notion for representations

Our main goal is to classify all representations of a (finite) group G and un-
derstand maps between them. A secondary goal is to use this theory to better
understand groups (eg Burnside’s p®¢® theorem that says there are no finite simple
groups whose order has precisely two distinct prime factors).

1.1. Linear algebra revision. By wvector space we will always mean a finite di-
mensional vector space over a field k. For this course k will usually be algebraically
closed and of characteristic zero, for example C. However there are rich theories
for more general fields.
Given a vector space V, we define
GL(V)=Aut(V) ={f: V — V| f linear and invertible}

the general linear group of V; GL(V') is a group under composition of linear maps.
Because all our vector spaces are finite dimensional, V' & k¢ for some d > 0.
Such an isomorphism determines a basis eq,...,eq for V. Then

GL(V) = {A € Maty(k) | det(A) # 0}.
This isomorphism is given by the map that sends the linear map f to the matrix
A such that f(el) = Ajiej.

FEzercise. Check that this does indeed define an isomorphism of groups. ie check
that f is an isomorphism if and only if det A # 0; and that the given map is a
bijective group homomorphism.

If k = R? and (—, —) is an inner product on V' then
OV):={f e GL(V) | (f(v), f(w)) = (v,w) Yv,w € V}
Choosing an orthonormal basis defines an isomorphism
O(V) = {A € Maty(R) | AAT =T} =: O(d).
If k = C and (—, —) is a (Hermitian) inner product on V/,
U(V) = {f € GL(V) | {f(v), f(w)) = (v,w) Vo, € V}
This time choosing an o.n. basis defines an isomorphism
U(V) = {A € Maty(C) | AAT = I} =: U(d).
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LECTURE 2
1.2. Group representations.

Definition. A representation p of a group G on a vector space V is a group
homomorphism p: G — GL(V).

By abuse of notation we will sometimes refer to the representation by p, some-
times by the pair (p, V) and sometimes just by V' with the p implied. This can
sometimes be confusing but we have to live with it.

Thus defining a representation of G on V corresponds to assigning a linear map
p(g): V — V to each g € G such that

(i) ple) = idy;
(ii) p(gh) = p(g)p(h) for all g,h € G;
(iii) p(g=!) = p(g)~" for all g € G.

Ezercise. Show that (iii) is redundant in the above.

Given a basis for V' a representation p is an assignment of a matrix p(g) to each
g € G such that (i),(ii) and (iii) hold.

Definition. The degree of p or dimension of p is dim V.
Definition. We say a representation p is faithful if ker p = {e}.

Ezxamples.

(1) Let G be any group and V = k. Then p: G — Aut(V);g +— id is called the
trivial representation.
(2) Let G = Cy = {£1}, V = R?, then

=5 9= (3 9)

is a group rep of G on V.

(3) Let G = (Z,+), V a vector space, and p a representation of G on V. Then
necessarily p(0) = idy, and p(1) is some invertible linear map f on V. Now
p(2) = p(1 +1) = p(1)? = f2. Inductively we see p(n) = f™ for all n > 0.
Finally p(—n) = (f*)~! = (f~1)™. So p(n) = f" for all n € Z.

Notice that conversely given any invertible linear map f: V — V we may
define a representation of G on V' by p(n) = f".

Thus we see that there is a 1-1 correspondence between representations of Z
and invertible linear transformations given by p — p(1).

(4) Let G = (Z/N,+), and p: G — GL(V) arep. As before we see p(n) = p(1)™ for

all n € Z but now we have the additional constraint that p(N) = p(0) = idy.

Thus representations of Z/N correspond to invertible linear maps f such
that fV = idy. Of course any linear map such that f~ = idy is invertible so
we may drop the word invertible from this correspondence.

FExercise. Check the details

(5) If G is a group generated by x1,...,x, and with relations (words in xi,x;1
equal to the identity in G) r1(z1,...,Zpn), ..., "'m(x1,...,Ty,) , then there is a 1-
1 correspondence between representations of G on V' and n-tuples of invertible

linear maps (Aj,...,A,) on V such that r;(A4,...,4,) =idy.
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Let G = S3, the symmetric group of {1,2,3}, and V = R2. Take an equilateral
triangle in V' centred on 0; then G acts on the triangle by permuting the vertices.
Each such symmetry induces a linear transformation of V. For example g =
(12) induces the reflection through the vertex three and the midpoint of the
opposite side, and g = (123) corresponds to a rotation by 27/3.

Ezercise. Choose a basis for R2. Write the coordinates of the vertices of the
triangle in this basis. For each g € S3 write down the matrix of the corre-
sponding linear map. Check that this does define a representation of S3 on V.
Would the calculations be easier in a different basis?

Given a finite set X we may form the vector space kX of functions X to k with
basis (0, | « € X) where 65(y) = 0ay-

Then an action of G on X induces a representation p: G — Aut(kX) by
(p(9)f)(x) = f(g~' - ) called the permutation representation of G on X.

To check this is a representation we must check that each p(g) is linear, that
p(e) =id and p(gh) = p(g)p(h) for each g,h € G.

For the last observe that for each z € X,

p(9)(p(h)f) () = (p(h) f)(g~ x) = f(h™ g z) = p(gh) f ().

Notice that p(9)dz(y) = 65,4-1.y = dg.z,y 50 p(9)0s = dg.z. So by linearity
P(9) (X pex Aeb) = 3 Audy.
In particular if G is finite then the action of G on itself induces the regular
representation kG of G. The regular representation is always faithful because
gd. = O, implies that ge = e and so g = e.
If p: G — GL(V) is a representation of G then we can use p to define a
representation of G on V*

P (9)(f)w) = fplg~ " v); VfeViveW

Ezercise. Prove that p* is a representation of V. Moreover, show that if
€1,...,6en is a basis for V and e€1,...,€, is its dual basis then the matrices

representing p(g) and p*(g) are related by p(g)* = (p(g)~ 1)t

More generally, if (p, V'), (p/, W) are representations of G then («, Homy (V, W))
defined by

a(g9)(f)(w) = p'(9)f(p(9)""v); Vg€ G, feHomy(V,W),veV

is a rep of G.

Note that if W = k is the trivial rep. this reduces to example 9. If instead
V = k then Homy (k, W) =2 W; f — f(1) is an isomorphism of representations
in a sense to be defined next lecture.

LECTURE 3

1.3. The category of representations. We want to classify all representations

of

a group G but first we need a good notion of when two representations are the

same.

space isomorphism then we may define p’: G — GL(V’) by p'(9) = ¢ o p(g) oo™

Notice that if p: G — GL(V) is a representation and ¢: V — V' is a vector
1

Then p’ is also a representation.
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Definition. We say that p: G — GL(V) and p': G — GL(V') are isomorphic
representations if there is a linear isomorphism ¢: V' — V' such that

p'(g) =poplg)op forallge G
Le. if p'(g) o p = p o p(g). We say that ¢ intertwines p and p'.

Notice that if ¢ intertwines p and p’ and ¢’ intertwines p’ and p” then ¢’ inter-
twines p and p”" and ¢! intertwines p’ and p. Thus isomorphism is an equivalence
relation.

If p: G — GL4(k) is a matrix representation then an intertwining map k¢ — k¢
is an invertible matrix P and the matrices of the reps it intertwines are related
by p'(g) = Pp(g)P~'. Thus matrix representations are equivalent precisely if they
correspond to the same representation with respect to different bases.

FEzxzamples.

(1) If G = {e} then a representation of G is just a vector space and two vector
spaces are isomorphic as representations if and only if they have the same
dimension.

(2) If G = Z then p: G — GL(V) and p': G — GL(V') are isomorphic reps if
and only if there are bases of V and V’ such that p(1) and p'(1) are the same
matrix. In other words isomorphism classes of representations of Z correspond
to conjugacy classes of invertible matrices. Over C the latter is classified by
Jordan Normal Form (more generally by rational canonical form).

(3) If G = Cy = {1} then isomorphism classes of representations of G correspond
to conjugacy classes of matrices that square to the identity. Since the minimal
polynomial of such a matrix divides X? — 1 = (X — 1)(X + 1) provided the
field does not have characteristic 2 every such matrix is conjugate to a diagonal
matrix with diagonal entries all +1.

Ezercise. Show that there are precisely n + 1 isomorphism classes of represen-
tations of Cy of dimension n.

(4) If X, Y are finite sets with a G-action and f: X — Y is a G-equivariant bijection
then ¢: kX — kY defined by ¢(0)(y) = 0(f~'y) intertwines X and kY. (Note
that 50(693) = 5f(z))

Note that two isomorphic representations must have the same dimension but

that the converse is not true.

Definition. Suppose that p: G — GL(V) is a rep. We say that a k-linear subspace
W of V' is G-invariant if p(g)(W) C W for all g € G (ie p(g)(w) € W for all g € G
and w € W).

In that case we call W a subrepresentation of V; we may define a representation
pw: G — GL(W) by pw(g)(w) = p(g)(w) for w € W.

We call a subrepresentation W of V' proper if W # V and W # 0. We say that
V' # 0 is drreducible or simple if it has no proper subreps.

FEzxzamples.

(1) Any one-dimensional representation of a group is irreducible.
(2) Suppose that p: Z/2 — GL(k?) is given by —1 Bl (1) (char k # 2). Then

there are precisely two proper subreps spanned by (é) and <(1)) respectively.
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Proof. Tt is easy to see that these two subspaces are G-invariant. Any proper
subrep must be one dimensional and so by spanned by an eigenvector of p(—1).
But the eigenspaces of p(—1) are precisely those already described. O

(3) If G is C5 then the only irreducible representations are one-dimensional.

Proof. Suppose p: G — GL(V) is an irreducible rep. The minimal polynomial
of p(—1) divides X2 — 1 = (X — 1)(X 4+ 1). Thus p(—1) has an eigenvector v.
Now 0 # (v) is a subrep. of V. Thus V = (v). O

Notice we’ve shown along the way that there are precisely two simple reps
of G if k doesn’t have characteristic 2 and only one if it does.
(4) If G = Dg then every irreducible complex representation has dimension at most
2.

Proof. Suppose p: G — GL(V) is an irred. G-rep. Let r be a non-trivial
rotation and s a reflection in G. Then p(r) has a eigenvector v, say. So
p(r)v = Av for some A # 0. Consider W := (v, p(s)v) C V. Since p(s)p(s)v =v
and p(r)p(s)v = p(s)p(r)~tv = A"tp(s)v, W is G-invariant. Since V is irred,
w=V. O

Exercise. Classify all irred reps of Dg up to iso (Hint: A* = 1 above). Note in
particular that Dg has an irred. rep. of degree 2.

Lemma. Suppose p: G — GL(V) is a rep. and W C V. Then the following are
equivalent:

(i) W is a subrep;

(ii) there is a basis v1,...,vq of V such that vi,...,v, is a basis of W and the
matrices p(g) are all block upper triangular;
(iii) for every basis vy, ...,vq of V such that vy, ..., v, is a basis of W the matrices
p(g) are all block upper triangular.
Proof. Think about it! O

Definition. If W is a subrep of a rep (p,V) of G then we may define a quotient
representation by py,w: G — GL(V/W) by p(g)(v + W) = p(g)(v) + W. Since
p(g)W C W for all g € G this is well-defined.

Next time, we want to formulate a ‘first isomorphism theorem for representa-
tions’.
LECTURE 4
We'll start dropping p now and write g for p(g) where it won’t cause confusion.

Definition. If (p, V) and (p’, W) are reps of G we say a linear map ¢: V — W is

a G-linear map if pg = gy (ie p o p(g) = p'(g) o p) for all g € G. We write
Homg(V, W) = {¢ € Hom(V, W) | ¢ is G linear},

a k-vector space.

Remarks.

(1) If W < V is a subrep then the natural inclusion map ¢: W — V is in Homg (W, V)
and the natural projection map 7: V' — V/W is in Homg(V, V/W).
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(2) ¢ € Homg(V, W) is an intertwining map precisely if ¢ is a bijection and ¢ is in
Homg (V, W).

(3) Recall that Homy (V, W) is a G-rep via (g)(v) = g(p(g~1v)) for ¢ € Homy (V, W),
g€ Gand v eV. Then ¢ € Homg(V, W) precisely if gp = ¢ for all g € G.

Note if ¢ € Homg(V, W) is a vector space isomorphism then ¢ intertwines the
isomorphic reps V and W.

Lemma. Suppose (p, V') and (p', W) are representations of G and ¢ € Homg(V, W)
then

(i) ker  is a subrep of V.

(i) Imep is a subrep of W.

(iii) V/ker ¢ is isomorphic to Ime as reps of G.

Proof.
(i) if v € kerp and g € G then p(gv) = gp(v) =0
(ii) if w = ¢(v) € Imp and g € G then gw = ¢(gv) € Imep.
(iii) We know that the linear map ¢ induces a linear isomorphism

@: V/ker p — Imy; v + ker o — ¢(v)
then gip(v + ker o) = g(o(v)) = @(gv) = P(gv + ker @) O

2. COMPLETE REDUCIBILITY AND MASCHKE’S THEOREM

Question. Given a representation V and a subrepresentation W when can we find
a vector space complement of W that is also a subrepresentation?

Ezample. Suppose G = Cy, V = R? and p(—1) = <_01 (1)>, W = <(é>> has
many vector space complements but only one of them, <((1)> >, is a subrep.

Definition. We say a representation V' is a direct sum of U and W if U and W are
subreps of V such that V.= U@®W as vector spaces (ie V =U+W and UNW = 0).

Given two representations (p1,U) and (pa, W) we may define a representation of
G on U ® W by p(g)(u, w) = (p1(g)u, p2(g)w)-

FEzxzamples.

(1) If G acts on a finite set X so that X may be written as the disjoint union
of two G-invariant subsets X; and X,. Then kX = kX; ® kX5 under
[ (f|X1’f‘X2)'

That is kX ={f | f(z) =0Vx € Xo} & {f | f(x) =0Vzx € X;}.
More generally if the G-action on X decomposes into orbits as a disjoint
union X = JO; then kX = HEO,;.

(2) If G acts transitively on a finite set X then U := {f € kX | > .y f(z) = 0}
and W := {f € kX | f is constant} are subreps of kX. If k is charactersitic
0 then kX = U & W. What happens if k£ has characteristic p > 0?7

(3) (Exercise) Show that the C-rep of Z on (e, ..., e,) given by p(1)(e1) = e;
and p(1)(e;) = e; + e;—1 for i > 1 has precisely n — 1 proper subreps
(e1,...,ex) for 1 < k < n. Deduce that no proper subrep has a G-invariant
complement.
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Proposition. Suppose p: G — GL(V) is a rep. and V =U @ W as vector spaces.
Then the following are equivalent:

(1)) V=U®@®W as reps;

(ii) there is a basis vy, ..., vq of V such thatvy,..., v, is a basis of U and vy41, ... vq
is a basis for W and the matrices p(g) are all block diagonal;
(i) for every basis vy, ...,vq of V such thatvi,...,v, is a basis of U and vyy1,. .., 04

is a basis for W and the matrices p(g) are all block diagonal.

Proof. Think about it! O

But warning:

Ezample. p: Z/2 — GLa(R); 1 — -1 _2> defines a representation (check).

0 1
The representation R? breaks up as {(e1) @ (e; — ez) as subreps even though the
matrix is upper triangular but not diagonal.

We’ve seen by considering G = Z that it is not true that for every reperesentation
of a group G, every subrepresentation has a G-invariant complement. However, we
can prove the following remarkable theorem.

Theorem (Maschke’s Theorem). Let G be a finite group and (p,V') a represen-
tation of G over a field k of characteristic zero. Suppose W C V is an invariant
subspace. Then there is a G-invariant complement to W ie a G-invariant subspace
U of V such that V. =U & W.

Corollary (Complete reducibility). If G is a finite group, (p,V) a representation
over a field of characteristic zero. Then V. =2 Wy & --- W, is a direct sum of
representations with each W; irreducible.

Proof. By induction on dimV. If dimV = 0 or V is irreducible then the result is
clear. Otherwise V has a non-trivial G-invariant subspace W.

By the theorem there is a G-invariant complement U and V 2 U @ W as G-reps.
But dim U, dim W < dim V, so by induction they each break up as a direct sum of
irreducibles subreps. Thus V' does also. O

Ezample. We saw before that every representation of Z/2 over C is a direct sum
of 1-dimensional subreps as we may diagonalise p(—1). Let’s think about how this
might generalise:

Suppose that G is a finite abelian group, and (p, V') is a complex representation
of G. Each element g € G has finite order so has a minimal polynomial dividing
X" —1 for n = o(g). In particular it has distinct roots. Thus there is a basis for
V such that p(g) is diagonal. But because G is abelian p(g) and p(h) commute
for each pair g,h € G and so the p(g) may be simultaneously diagonalised (Sketch
proof: if each p(g) is a scalar matrix the result is clear. Otherwise pick g € G such
that p(g) is not a scalar matrix. Each eigenspace E()\) of p(g) will be G-invariant
since G is abelian. By induction on dimV we may solve the problem for each
subrep E()\) and then put these subreps back together). Thus V' decomposes as a
direct sum of one-dimensional reps. Of course, this technique can’t work in general
because (a) p(g) and p(h) won’t commute in general; (b) not every irreducible rep
is one-dimensional in general. Thus we’ll need a new idea.



REPRESENTATION THEORY 9

FEzxzample. Let G act on a finite set X, and consider the real permutation represen-
tation RX = {f: X — R} with (p(g)f)(x) = f(g~'x).

Idea: with respect to the given basis d, all the matrices p(g) are orthogonal; that
is they preserve distance. This is because the standard inner product with respect
to the basis is (f1, f2) = > cx fi(z)f2(x) and so for each g € G

(p(9) f1,p(9) f2) = D filg™ @) folg ™ x) = (f1, f2)

zeX

since g permutes the elements of X.

In particular if W is a subrep of RX and W+ := {v € RX | (v, W) = 0} then if
g € Gandv € W+ and w € W we have (suppressing the p) (w, gv) = (g~ 'w,v) =0
since g~'w € W. Thus G preserves W+ which is thus a G-invariant complement

to W.

LECTURE 5

Recall the statement of Maschke’s theorem.

Theorem (Maschke’s Theorem). Let G be a finite group and (p,V) a represen-
tation of G over a field k of characteristic zero. Suppose W C V is an invariant
subspace. Then there is a G-invariant complement to W ie a G-invariant subspace
U of V such that V. =U & W.

We're going to prove this first for & = C using inner products and the idea from
the example at the end of the last lecture and then adapt the proof to general
characteristic zero fields.

Recall, if V' is a complex vector space then a Hermitian inner product is a positive
definite Hermitian sesquilinear map (—, —): V x V — C that is a map satisfying

(i) (ax +by,2) =a(x,z)+b(y,2) and (z,ay + bz) = a(x,y) + b(x, 2) for a,b € C,
x,y,z € V (sesquilinear);
(ii) (z,y) = (y,x) (Hermitian);
(iii) (z,2) > 0 for all z € V\{0} (positive definite).
If W C V is a linear subspace of a complex vector space with a Hermitian inner

product and Wt = {v € V | (v,w) = 0Vw € W} then W+ is a vector space
complement to W in V.

Definition. A Hermitian inner product on a G-rep V is G-invariant if (gz, gy) =
(x,y) for all g € G and z,y € V; equivalently if (gz, gx) = (x, ) for all g € G and
zeV.

Lemma. If (—,—) is a G-invariant Hermitian inner product on a G-rep V and
W C V is a subrep then W+ is a G-invariant complement to W .

Proof. Tt suffices to prove that W+ is G-invariant since W+ is a complement to .
Suppose g € G, x € W+ and w € W. Then (gz,w) = (z,9 'w) = 0 since
g 'w € W. Thus gz € W+ as required. O

Proposition (Weyl’s unitary trick). If V' is a complex representation of a finite
group G, then there is a G-invariant Hermitian inner product on V.
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Proof. Pick any Hermitian inner product (—, —) on V' (e.g. choose a basis e1,..., e,
and take the standard inner product (> Aie;, > pie;) = > Aju;). Then define a
new inner product (—,—) on V by averaging:

gGG
It is easy to see that (—, —) is a Hermitian innder product because (—, —) is so. For
example if a,b € C and z,y,z € V, then
(x,ay +bz) = \G\ Z gz, g(ay + bz))
geG
= ‘G‘ > (gz,ag(y) + bg(2))
geaG
= @ Z algz, gy) + b(gz, g2))
geG

= a(z,y) +b(2,y)

as required.
But now if h € G and =z, yEVthen

1
(ha, hy) = |G| > (ghx, ghy) = @ > (g%, 9'y)
geG g'eG
and so (—, —) is G-invariant. O
Corollary. For every complex representation V of a finite group G, every sub-

representation has a G-invariant complement and so V splits as a direct sum of
irreducible subreps.

Proof. Apply the Proposition and then the Lemma.
O

Corollary (of Weyl’s unitary trick). Every finite subgroup G of GL,,(C) is conju-
gate to a subgroup of U(n).

Proof. First notice that G < U(n) if and only if (gz,gy) = (z,y) for all z,y € C”
and g € G — here (—, —) denotes the standard inner product with respect to the
standard basis of C".

By the unitary trick we can find a G-invariant Hermitian inner product (—, —)
and choose an orthonormal basis for C™ with respect to (—, —) using Gram-Schmidst,
say.

Let P be the change of basis matrix from the standard basis to the newly con-
structed basis. Then (Pa, Pb) = (a,b) for a,b € V. So for each g € G
(P~'gPa, P~*gPb) = (gPa, gPb) = (Pa, Pb) = (a,b).
Thus P~1gP € U(n) for each g € G as required. O

Thus studying all complex representations of a finite group G is equivalent to
studying unitary (ie distance preserving) ones.

We now adapt our proof of complete reducibility to handle any field of charac-
teristic k, even if there is no notion of inner product.
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Theorem (Maschke’s Theorem). Let G be a finite group and V' a representation of
G over a field k of characteristic zero. Then every subrep W of V has a G-invariant
complement.

Proof. Choose some projection w: V' — W; ie a k-linear map 7: V — W such that
m(w) =w for all w € W.

Now ker 7 is a vector space complement to W since (1) if v € kerm N W then
v=0and (2) 7(v —7w(v)) =0 for all v € V so V =W + ker m. Moreover ker 7 is
G-invariant if 7 € Homg(V, W). So we try to build a G-linear projection V- — W
by averaging .

Recall that Homy (V, W) is a rep of G via (gp)(v) = g(¢(g v)). Let #': V. — W

be defined by
1
= gm)
o1 2!

Then 7'(w) = ﬁ Ygec 9(m(g7 w)) = w since g(m(¢~'w)) = w for all g € G and

w € W. Moreover for h € G, (hr') = ﬁ >geclhg)m ="
Thus 7’ € Homg(V, W) and 7’ is a G-invariant projection V- — W. So ker 7’ is
the required G-invariant complement to W. O

Remarks.

(1) We can explicitly compute 7’ and ker 7’ given (p, V) and W.

(2) Notice that we only use char k = 0 when we invert |G|. So in fact we only need
that the characteristic of k& does not divide |G].

(3) For any G-reps V, W, the map

Hom(V, W) — Homg(V, W)

given by ¢ — \%I >_gec 9% when the characteristic of k does not divide |G| is
a k-linear projection.

(4) In fact every irreducible representation of G is a submodule of the regular
representation kG (see Ex Sheet 1 Q10 or the section on characters for a proof
in characteristic zero).

An observation that we should have made earlier: if §: H — G is a group homo-
morphism then every representation p: G — GL(V) of G induces a representation
pd: H— GL(V) of H.

If H is a subgroup of G and 0 is inclusion we call this restriction to H.

3. SCHUR’S LEMMA

We’ve proven in characteristic zero that every representation V of a finite group
G decomposed V = @V, with V; irreducible. We might ask how unique this is.
Three possible hopes:

(1) (uniqueness of decomposition) For each V there is only one way to decompose
V =@ V; with V; irreducible (cf orbit decomposition for group actions on sets).

(2) (uniqueness of isotypical decomposition) For each V there exist unique subreps
Wi,...,Wi st V=W, and if V; < W; and Vj’ < Wj are irred. subreps then
Vv, & Vj’ if and only if 7 = j (cf eigenspaces of a diagonalisable linear map).
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(3) (uniqueness of factors) If @le V; & @f;l V! with V;, V/ irreducible then k = £’
and there is o € S such that V! @) > V; (cf dimensions of eigenspaces of a
diagonalisable linear map).

LECTURE 6

We ended last time asking whether the following might be true for a represen-
tation V of a finite group G over k of characteristic zero:

(1) (uniqueness of decomposition) For each V' there is only one way to decompose
V =@ V; with V; irreducible (cf orbit decomposition for group actions on sets).

(2) (uniqueness of isotypical decomposition) For each V' there exist unique subreps
Wi,oo. , Wi st V=@ W, and if V; < W; and Vj’ < W are irred. subreps then
Vv, = Vj’ if and only if ¢ = j (cf eigenspaces of a diagonalisable linear map).

(3) (uniqueness of factors) If @le Vi = @f;l V! with V;, V/ irreducible then k = &’
and there is ¢ € Sj such that Vo/(i) >~ V; (cf dimensions of eigenspaces of a
diagonalisable linear map).

Notice that (1) is clearly too strong. For example if G is the trivial group and
dimV > 1 then every line in V gives an irreducible subrep. This non-uniqueness is
roughly measured in this case by GL(V).

Notice also that (2) (and so (3)) is true for Z/2Z — the W; are the eigenspaces

of p(1).

Theorem (Schur’s Lemma). Suppose that V. and W are irreducible reps of G over
k. Then

(i) every element of Homg(V, W) is either 0 or an isomorphism,
(ii) if k is algebraically closed then dimy Homeg(V, W) is either 0 or 1 .

In other words irreducible representations are rigid.

Proof. (i) Let ¢ be a non-zero G-linear map from V to W. Then ker¢p is a G-
invariant subspace of V. Thus ker¢ = 0, since it cannot be the whole of V.
Similarly im¢p is a subrep of W so imp = W since it cannot be 0. Thus ¢ is both
injective and surjective, so an isomorphism.

(ii) Suppose 1,2 € Homg(V,W) are non-zero. Then by (i) they are both
isomorphisms. Consider ¢ = gal_lcpg € Homg (V, V). Since k is algebraically closed
we may find A an eigenvalue of ¢ then ¢ — Aidy has non-trivial kernel and so is
zero. Thus cpflgag = Aidy and 9 = A1 as required. (]

Proposition. If V. Vi and Va5 are k-representations of G then
Homg (V, Vi & V2) & Homg(V, V1) & Homg(V, Va)

and
Homg(Vi, @V, V) =2 Homg(V1, V) @ Homeg(Va, V).

Proof. Let m;: V1 & Vo — V; be the G-linear projection onto V; with kernel V5_;.
Then the map Homg(V,V; @ V2) — Homg(V, V1) @ Homg(V, Va) given by ¢ —

(m1¢, m2p) has inverse (1, 1v2) — 1 + 2.
Similarly the map Homg(Vh, ®Va, V) = Home(V1, V) @ Home (Va, V) given by

@ = (¢lvi, ¢lv,) has inverse (¢1,102) = 171 + o, O
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Corollary. Suppose k is algebraically closed and

vy
i=1
is a decomposition of a k-rep. of G into irreducible components.
Then for each irreducible representation W of G,
[{i | V; 2% W}| = dim Homg (W, V).

Proof. By induction on r. If » = 0,1 we’re done.
If r > 1 consider V as (@:;11 VZ-) @ V,.. By the Proposition

r—1 r—1
dim Homg (W, (@ w) ® V) = dim Home (W, @ Vi) + dim Homg (W, V).
i=1 i=1
Now the result follows by the induction hypothesis. ([

Important question: How do we actually compute these numbers dim Homg (V, W).

Corollary. (of Schur’s Lemma) If a finite group G has a faithful complex irreducible
representation then the centre of G, Z(G) is cyclic.

Proof. Let V be a faithful complex irreducible rep of G, and let z € Z(G). Then
let ,: V — V be defined by ¢.(v) = zv. Since gz = zg for all g € G, ¢, €
Homg(V,V) = Cidy by Schur, ¢, = A, idy, say.

Now Z(G) — C;z — ), is a representation of Z(G) that must be faithful since
V is faithful. In particular Z(G) is isomorphic to a finite subgroup of C*. But
every such subgroup is cyclic. ([l

Corollary. (of Schur’s Lemma) Every irreducible complex representation of a finite
abelian group G is one-dimensional.

Proof. Let (p, V) be a complex irred. rep of G. Foreach g € G, p(g) € Homg(V, V).
So by Schur, p(g) = Agidy for some A, € C. Thus for v € V non-zero, (v) is a
subrep of V. O

Corollary. FEvery finite abelian group G has precisely |G| complex irreducible rep-
resentations.

Proof. Let p be an irred. complex rep of G. By the last corollary, dimp = 1. So
p: G — C* is a group homomorphism.

Since G is a finite abelian group G = C,, x --- x Cp, some nq,...,n;. Now
if G = G X G2 is the direct product of two groups then there is a 1-1 corre-
spondance between the set of group homomorphisms G — C* and the of pairs
(G1 — C*,G2 — C*) given by restriction ¢ — (¢|a,,¥|g,).- Thus we may reduce
to the case G = C,, = (x) is cyclic.

Now p is determined by p(z) and p(z)™ = 1 so p(x) must be an nth root of unity.
Moreover we may choose p(z) however we like amongst the nth roots of 1. (I
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FEzxzamples.
G:O4:<J?>. G:OQX02:<J?,ZJ>.
‘ 1 z 22 2 ‘ 1 x Yy Ty
p1 |1 1 1 1 p1 |1 1 1 1
p2 |1 i -1 —1 p2 |1 =1 1 -1
p3 |1 -1 1 1 ps |1 1 -1 -1
pe |1 —1 —1 i pa]1 -1 -1 1

Note there is no natural correspondence between elements of G and representa-
tions p.

Note too that the rows of these matrices are orthogonal with respect to the
standard Hermitian inner product: (v, w) = > Tw;.

Lemma. If (p1,V1) and (p2,Va) are non-isomorphic one-dimensional representa-
tions of a finite group G then 3 s p1(g)p2(g) =0

Proof. We've seen that Homy (Vi,Va) is a G-rep under go(v) = p2(g9)epi(g~t)
and >° . 9¢ € Homg(Vi,V2) = 0 by Schur. Since pi(g) is always a root of

unity, p1(¢~%) = pi(g). Pick an isomorphism ¢ € Homy(V;,V2). Then 0 =
Ygea P2(@)epi(97") = 2 e p1(9)p2(9)p as required. 0

LECTURE 7

Last time we finished by proving the following:

Lemma. If (p1,V1) and (p2, Vo) are non-isomorphic one-dimensional representa-
tions of a finite group G then 3 s p1(9)p2(g) =0

Corollary. Suppose G is a finite abelian group then every complex representation
V' of G has a unique isotypical decomposition.

Proof. For each homomorphism 6;: G — C* (i = 1,...,|G|) we can define W; to
be the subspace of V' defined by

W, ={v eV |plg)v=_0;(g)v for all g € G}.

Since V is completely reducible and every irreducible rep of G is one dimensional
V' =3_W;. We need to show that for each i W; N} ., W; = 0. It is equivalent to
show that Y w; = 0 with w; € W; implies w; = 0 for all 4.

But Y w; = 0 with w; in W; certainly implies 0 = p(g) > w; = > 0;(g)w;. By
choosing an ordering g1,...,g/q| of G we see that the |G| x |G| matrix 0;(g;) is
invertible by the lemma. Thus w; = 0 for all ¢ as required. (]

Summary so far. We want to classify all representations of groups G. We've
seen that if G is finite and k has characteristic zero then every representation V
decomposes as V = Pn;V; with V; irreducible and n; > 0. Moreover if k is also
algebraically closed, we’ve seen that n; = dim Homg (V;, V).

Our next goals arre to classify all irreducible representations of a finite group and
understand how to compute the n; given V. We're going to do this using character
theory.
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4. CHARACTERS

4.1. Definitions. We’ll now always assume k = C although almost always a field
of characteristic zero containing all nth roots of unity would suffice. We’ll also
assume that G is finite.

Definition. Given a representation p: G — GL(V), the character of p is the
function x = x, = xv: G — k given by g — tr p(g).

Since for matrices tr(AB) = tr(BA), the character does not depend on the choice
of basis for V [tr(X 1AX) = tr(AX X ~!) = tr(A)]. By the same argument we also
see that equivalent reps have the same character.

Ezample. Let G = Dg = (s,t | s> = 1,t3 = 1,sts7! = t71), the dihedral group of
order 6. This acts on R? by symmetries of the triangle; with ¢ acting by rotation
by 27/3 and s acting by a reflection. To compute the character of this rep we
just need to know the eigenvalues of the action of each element. Each reflection
(element of the form st*) will act by a matrix with eigenvalues 1. Thus x(st*) = 0
for all 4. The rotations t" act by matrices <Z?§ 577::;3 _Czlsn;:;%?)) thus x(t") =
2cos2nr/3 = —1 for r =1,2.

Proposition. Let (p,V) be a complex rep of G with character x
(i) x(e) =dimV;
(ii) x(g9) = x(hgh™1) for all g,h € G;
(iii) x(9~") = x(9);
(iv) If X' is the character of (p', V') then x + X' is the character of V& V'.
Proof.

(i) x(e) =tridy = dim V.

(i) p(hgh™) = p(h)p(g)p(h)~t. Thus p(hgh~!) and p(g) are conjugate and so
have the same trace.

(iii) if p(g) has eigenvalues A1, ..., A, (with multiplicity) then x(g) = > A;. But
as o(g) is finite each \; must be a root of unity. Thus x(g) = S\, = 3. A; " but of
course the A, L are the eigenvalues of g~ 1.

(iv) is clear. O

The proposition tells us that the character of p contains very little data; just a
complex number for each conjugacy class in G. The extraordinary thing that we
will see is that it contains all we need to know to reconstruct p up to isomorphism.

Definition. We say a function f: G — C is a class function if f(hgh™') = f(g)
for all g,h € G. We’ll write Cg for the complex vector space of class functions on

G.

Notice that if O1,...,0O, is a list of the conjugacy classes of G then the ‘delta
functions’ dp, : G — C given by y — 1 if y € O; and y — 0 otherwise form a basis
for Cg. In particular dim Cq is the number of conjugacy classes in G.

Example. G = Dg = (s,t | s = t3 = e,sts = t~!) has conjugacy classes
{e} {t,t7 1}, {s, st, st?}.

We make Cq into a Hermitian inner product space by defining

o f) = ‘—; S TG (9).
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It is easy to check that this does define an Hermitian inner product and that the
10| _

functions dp, are pairwise orthogonal. Notice that (dp,,d0,) = 1G] m for
any z; € O;.
Thus if z1,...,z, are conjugacy class representatives, then we can write

Z Co @ @),

Ezample. G = Dg as above, then (f, f') = % (e)f'(e) + 5 f(s)f'(s) + 5 fF(t) f'(¢).

N[

4.2. Orthogonality of characters.

Theorem (Orthogonality of characters). If V and V' are complex irreducible rep-
resentations of a finite group G then (xv,xv/) 18 1 if V=2V’ and 0 otherwise.

Notice that this theorem tells us that the characters of irreducible reps form part
of an orthonormal basis for Cq. In particular the number of irreducible represen-
tations is bounded above by the number of conjugacy classes of G. In fact we’ll
see that the characters span the space of class functions and so that the number
of irreps is precisely the number of conjugacy classes in G. We saw this when G is
abelian last time.

Lemma. If V and W are reps of a finite group G then

Xtom, (v,w)(9) = xv (9)xw (9)

for each g € G.

Proof. Given g € G we may choose bases v1,...,v, for V and wy,...,w,, for W
such that gv; = A\jv; and gw; = pjw;. Then the functions f;;(vi) = 0;xw; extend to
linear maps that form a basis for Hom(V, W) and (g.f;;)(vi) = A; 'pjw; thus gfi; =
>‘;1/~Ljfij and Xgom(v,w)(9) = Zi,j )\leﬁj =xv(g~xw(9) = xv(g)xw(9)- O
Lemma. If U is a rep of G then

dim{ueU|gu=uVgeG}=(1,xv) = ZXU
|Gl =

Proof. Define m: U — U by w(u) = ﬁdeGgm and UY := {u € U | gu = u}.

Then hr(u) = 7(u) for all u € U so m(u) € U for all u € U. Moreover mye = idye
by direct calculation. Thus

dimU% = tridgye = trm = a ZXU
1G] | %2

as required. O

LECTURE 8
Recall,
Lemma. If V,W are reps of a finite group G' then Xwom, (v,w) = XVXW -
Lemma. IfU is a rep of a finite group G then
dim{u e U | gu =g Vg € G} = (1, xv).

We can use these two lemmas to prove
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Proposition. If V and W are representations of G then
dim Homg (V, W) = (xv, xw)-

Proof. By the lemmas dim Homg(V, W) = (1,xvxw). But it is easy to see that
1, xvxw) = (xv,Xxw) as required. 0

Corollary (Orthogonality of characters). If x, x’ are characters of irreducible reps
then (X, X') = Oyx'-

Proof. Apply the Proposition and Schur’s Lemma O

Suppose now that Vq,...,V, is the list of all irreducible complex reps of G up
to isomorphism and the corresponding characters are xi, ..., xx. Then Maschke’s
Theorem tells us that any representation V may be written as a direct sum of copies
of the V;, V.2 @ n;V;. Thus x = n;xi.

As the x; are orthonormal we may compute (x, x;) = n;. This is another proof
that the decomposition factors of V' are determined by their composition factors.
However we get more: the composition factors of V' can be computed purely from
its character; that is if we have a record of each of the irreducible characters, then
we now have a practical way of calculating how a given representation breaks up
as a direct sum of its irreducible components. Our main goal now is to investigate
how we might produce such a record of the irreducible characters.

Corollary. If p and p’' are reps of G then they are isomorphic if and only if they
have the same character.

Proof. We have already seen that isomorphic reps have the same character. Sup-
pose that p and p’ have the same character y. Then they are each isomorphic to
(X1,X)p1 D -+ D {xk, X)pr and thus to each other. O

Notice that complete irreducibility was a key part of the proof of this corollary,
as well as orthogonality of characters. For example the two reps of Z given by

1+ idc2 and 1 +— are not isomorphic but have the same trace. Complete

1
0 1
irreducibility tells us we don’t need to worry about gluing.

Corollary. If p is a complex representation of G with character x then p is irre-
ducible if and only if {x,x) = 1.

Proof. One direction follows immediately from the theorem on orthogonality of
characters. For the other direction, assume that (x,x) = 1. Then we may write
X = Y_n;x; for some non-negative integers n;. By orthogonality of characters
1= (x,x) =Y. n? Thus y = x; for some j, and  is irreducible. O

This is a good way of calcuating whether a representation is irreducible.

FEzxzamples.

(1) Consider the action of S3 on C? by extending the symmetries of a triangle.
x(1) =2, x(12) = x(23) = x(13) =0, and x(123) = x(132) = —1. Now

6ox) = é(22+3'02+2.(71)2) =1

so this rep is irreducible.
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(2) Consider the action of Sy on CX for X = {1,2,3,4} induced from the

natural action of Sy on X. The conjugacy classes in Sy are 1 of size 1, (ab)

of size (;1) =6, (abc) of size 4.2 = 8, (ab)(cd) of size 3 and (abed) of size 6.
We can compute that the character of this rep is given by

x(g9) = #{fixed points of g}.

So x(1) =1, x((ab)) = 2, x((abc)) = 1 and x((ab)(cd) = x(abed) = 0. Thus
(x,x) = 1/24(4%+6-2248-1243-02) = 2. Thus if we decompose x = > n;;
into irreducibles we know Y n? = 2 then we must have y = x’ + x” with
X' and x” non-isomorphic irreps.

Notice that (1, x) =1/24(44+6-2+8-140) = 1 so one of the irreducible
constituents is the trivial rep. The other has character y — 1.

In fact we have seen these subreps explicitly in this case. The constant
functions gives a trivial subrep and the orthogonal complement with respect
to the standard inner product (that is the set of functions that sum to zero)
gives the other.

Theorem (The character table is square). The irreducible characters of a finite
group G form a basis for the space of class functions Cq on G.

Proof. We already know that the irreducible characters are linearly independent
(and orthonormal) we need to show that they span Cg. Let I = (x1,...,X,) be the
span of the irred. characters. We need to show that I+ = 0.

Suppose f € Cg. For each representation (p,V) of G we may define ¢ €

Hom(V,V) by ¢ = &1 2 ci [(9)0(9)-
Now,

p(h) " op(h) = %” > flg)p(h~ gh) = %” > F9)eld)

geG g’ eG

since f is a class function, and we see that in fact ¢ € Homg(V, V). Moreover, if
f €It then

tro = (f,trp) = 0.

Now if V' is an irreducible representation then Schur’s Lemma tells us that ¢ =
Aidy for some A € C. Since tr o = 0 it follows that A = 0 and so ¢ = 0.

But every representation breaks up as a direct sum of irreducible representations
V =@V, and ¢ breaks up as €p ;. So ¢ = 0 always.

But if we take V to be the regular representation CG then @0, = |G| ™1 >gec f(9)0g

f. Thus f =0. U

Corollary. The number of irreducible representations is the number of conjugacy
classes in the group.

Corollary. For each g € G, x(g) is real for every character x if and only if g is
1

conjugate to g~ .
Proof. Since x(g71) = x(g), x(g) is real for every character y if and only if x(g) =
x(g™1) for every character x. Since the irreducible characters span the space of class
functions this is equivalent to g and g~ living in the same conjugacy class. ([
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4.3. Character tables. We now want to classify all the irreducible representations
of a given finite group and we know that it suffices to write down the characters of
each one.

The character table of a group is defined as follows: we list the conjugacy classes

of G, Oy,...,0; (by convention always O; = {e}) and choose g; € O; we then list
the irreducible characters xi, ..., X (by convention x; = xc the character of the
trivial rep. Then we write the matrix

FEx
(1)

FEx

e g2 - 9i Ok
1| 1 1 ... 1 .1
XJ PR PRI PRI XJ (gl)
Xk
amples.
C3 = (z)
e z z°
il 1 1
xe |1l w w?
x3 |1l w? w

Notice that the rows are indeed orthogonal. The columns are too in this case.
S3

There are three conjugacy classes: the identity is in a class on its own Ox;
the three transpositions live in a another class Os; and the two 3-cycles live in
the third class Os.

There are three irreducible representations all together. We know that the
trivial representation 1 has character 1(g) = 1 for all g € G. We also know
another 1-dimensional representation e: S5 — {£1} given by g — 1 if g is even
and g — —1 if g is odd.

To compute the character y of the last representation we may use orthogo-
nality of characters. Let x(e) = a, x((12)) = b and x((123)) = ¢ (a, b and c are
each real since each g is conjugate to its inverse). We know that 0 = (1, x) =
FHa+3b+2c),0=(e,x) = ¢g(a—3b+2c), and 1 = (x,x) = §(a* +3b* + 2¢?).
Thus we see quickly that b = 0, a + 2c = 0 and a? + 2¢? = 0. We also know
that a is a positive integer. Thus a =2 and ¢ = —1.

1 3 2
e (12) (123)
11 1 1
el 1l -1 1
x|2 O -1
In fact we already knew about this 2-dimensional representation; it is the one
coming from the symmetries of a triangle inside R2.

LECTURE 9
Recall the character table of S3.

ample. Ss
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1 3 2

e (12) (123)
1)1 1 1
el1 -1 1
x|2 o -1

The rows are orthogonal under (f, ') = Z? mf(gi)f’(gi).
But the columns are also orthogonal with respect to the standard inner product.

If we compute their length we get:
12412422 =6 =53]
12 4+ (-1)2 4+ 0% = 2 = [Cs,((12))]
17 +1% + (—1)* = 3 = |C5,((123))|.

Proposition (Column Orthogonality). If G is a finite group and X1,...,Xr iS
complete list of the irreducible characters of G then for each g,h € G,

~—— 0
;Xi(g)){i(h) = {lCG(9)|

In particular Y_;_, dim V2 = |G].

if g and h are not conjugate in G

if g and h are conjugate in G.

Proof of Proposition. Let X be character table thought of as a matrix; X;; = xi(g;)
and let D be the diagonal matrix whose diagonal entries are |Cg(g;)|
Orthogonality of characters tell us that

Z |Calgr)| ™' Xir Xk = 0i
%

ie XD7'Xt =1.
Since X is square we may write this as D~'X' = X~!. Thus X X = D. That
is 25 xk(9:)xk(95) = 04| C(g:)| as required. O
Ezxamples.
G=25,
|Cc(w;)] | 24 8 3 4 4
|[23]] 1 3 8 6 6
e (12)(34) (123) (12) (1234)
1 1 1 1 1 1
1 1 1 —1 —1
s |3 -1 o 1 -1
€X3 3 -1 0 -1 1
s 2 P 1 0 0

The trivial 1 and sign € characters may be constructed in the same way as for Ss.
We calculated last time that the natural permuation character breaks up as the
sum of a trivial character and a character whose values x3(g) are the number of
fixed points of g minus 1.

We saw on Example Sheet 1 (Q2) that given a 1-dimensional represntation 6
and an irreducible representation p we may form another irreducible representation
0@ p by 0@ p(g) =0(g)p(g). It is not hard to see that xog,(9) = 0(9)x,(g). Thus
we get another irreducible character exs.
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We can then complete the character table using column orthogonality: We note
that 24 = 12+ 12 + 32 + 32 4 x5(e)? thus ys(e) = 2. Then using 37 x;(1)x:(g) = 0
we can construct the remaining values in the table.

Notice that the two dimensional representation corresponding to x5 may be

obtained by composing the surjective group homomorphism S; — Sz (with kernel
the Klein-4-group) with the irreducible two dimension rep of Ss.
G = A,. Each irreducible representation of S; may be restricted to A4 and its
character values on elements of A4 will be unchanged. In this way we get three
characters of A4, 1, 1o = x3|a, and ¢35 = xs5|4,. If we compute (1,1) we of course
get 1. If we compute (1hg,12) we get 75(3% + 3(—1)% + 8(0%)) = 1 so ¢ remains
irreducible. However (3,13) = 15(2% 4 3(22) + 8(—1)2) = 2 so 13 breaks up into
two non-isomorphic irreducible reps of Aj.

Ezercise. Use this infomation to construct the whole character table of A4.

4.4. Permuation representations. Suppose that X is a finite set with a G-
action. Recall that CX = {f: X — C} is a representation of G via gf(z) =

flg~"x).
Lemma. If x is the character of CX then x(g9) = |{z € X | gx = z}|.

Proof. If X = {x1,...,24} and gx; = x; then g0d,, = 0., so the ith column of g has
a 1 in the jth entry and zeros elsewhere. So it contributes 1 to the trace precisely

Corollary. If Vi,..., Vi is a complete list of irreducible reps of a finite group
G then the regular representation decomposes as CG = niVi @ --- @ ng Vi with
n; = dimV; = y;(e). In particular |G| = > (dim V;)2.

Proof. xca(e) = |G| and xra(g) = 0 for g # e. Thus if we decompose kG we

obtain )
n; = (Xcas Xi) = @|G|Xi(€) = xi(e)

as required. O

Proposition (Burnside’s Lemma). Let G be a finite group and X a finite set with
a G-action and x the character of CX. Then (1,X) is the number of orbits of G
on X.

Proof. If we decompose X into a disjoint of orbits X; U - U X}, then we've seen
that CX = @le CX;. So xx = Zle Xx, and we may reduce to the case that
G-acts transitively on X.

Now

Gl{xx,1) =Y xx(9)=> HreX|gr=x}

geG geG
=[{(g.2) eGx X |gz=a}|=> {geG|gx=n}
rzeX
= |Stabg(x)| = |X||Staba (X)| = |G
xeX

as required. [
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If X is a set with a G-action we may view X x X as a set with a G-action via
(9, (z,9)) — (g2, 9y).
Corollary. If G is a finite group and X is a finite set with a G-action and x is

the character of the permutation representation CX then {x,x) is the number of
G-orbits on X x X.

Proof. Notice that (z,y) is fixed by g € G if and only if both z and y are fixed.
Thus xxxx(g9) = X( )xx (g) by the lemma.

Now (xx,Xxx) = |Cl;‘ > gec Xx(9)xx(9) = (1, xxxx) and the result follows from
Burnside’s Lemma. (]

Remark. If X is any set with a G-action with |X| > 1 then {(z,z)|r € X} C X x X
is G-stable and so is the complement {(z,y) € X x X | « # y}.

We say that G acts 2-transitively on X if G has only two orbits on X x X. Given
a 2-transitive action of G on X we’ve seen that the character x of the permutation
representation satisfies (x,x) = 2 and (1,x) = 1. Thus CX has two irreducible
summands — the constant functions and the functions f such that ) __ f(z) = 0.

Ezercise. If G = GLy(F,) then decompose the permutation rep of G coming from
the action of G on F, U {oco} by Mobius transformations.

LECTURE 10
5. THE CHARACTER RING

Given a finite group G, the set of class functions Cg comes equipped with certain
algebraic structures: it is a commutative ring under pointwise addition and multipli-

cation — ie (fi+/f2)(9) = f1(9)+f2(g) and fif2(g) = fi(9)f2(g) for each g € G, the
additive identity is the constant function value 0 and the multiplicative identity con-
stant value 1; there is a ring automorphism * of order two given by f*(g) = f(g');

and there is an inner product given by (fi, f2) = ﬁ > gec 11(9) f2(9).

We will see that all this structure is related to structure on the category of
representations: we have already seen some of this. If V4 and V5 are representations
with characters x1 and x2 then x14+x2 = xviev, and (x1, x2) = dim Homg (V7, V2).

Definition. The character ring R(G) of a group G is defined by
R(G) :={x1 — x2 | x1, x2 are characters of reps of G} C Cq.

We’ll see that the character ring inherits all the algebraic structure of Cg men-
tioned above.

5.1. Duality. Recall,

Definition. If G is group and (p, V) is a representatlon of G then the dual repre-
sentation (p*,V*) of G is given by (p*(g)0)(v) = 0(p(g~')v) for 6 € V*, g € G and
veV.

Lemma. xy» = x*(V).

Proof. This is a special case of our earlier computation Xom, (v,w) = XvXw with
W the trivial representation. O

Definition. We say that V is self-dual if V= V* as representations of G.
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Over C, V is self-dual if and only if xy(g) € R for all g € G.

FEzxzamples.

(1) G=Cs=(z)and V = C. Ifp is given by p(z) = w = e’5" then p*(z) = w? =@
so V is not self-dual

(2) G = S,: since g is always conjugate to its inverse in S,,, x* = x always and so
every representation is self-dual.

(3) Permuatation representations CX are always self-dual.

5.2. Tensor products. Suppose that V and W are vector spaces over a field k,

with bases v1,...,v,, and wy,...,w, respectively. We may view V & W either as

the vector space with basis v1, ..., Um, w1, ..., w, (S0 diM VAW = dim V 4+dim W)

or more abstractly as the vector space of pairs (v,w) with v € V and w € W and

pointwise operations.

Ezample. If X and Y are sets then kX ® kY has basis 0, ®0, forz € X andy € Y.
Identifying this element with the function d,, on X x Y given by 9, ,(z',vy') =
O Oyyr = 02(2) 0y (y/')-
Definition. The tensor product V@ W of V and W is the vector space with basis
given by symobls v; ® w; for 1 <i<m and 1 < j < n and so
dmV W =dimV - dim W.

Notice that now kX ® kY is isomorphic to kX x Y under 9, ® 0y — 0.

fo=> ANv;, € Vand w=> pjw; € W, it is common to write v ® w for the
element 3, (Aipj)v; ® w; € V. @ W. But note that usually not every element of
V ® W may be written in the form v ® w (eg v1 ® wy + v3 ® w3).

Lemma. There is a bilinear map V. x W — V @ W given by (v,w) — v @ w.
Proof. First, we should prove that if x, 1,22 € V and y,y1,y2 € W then
TR (Y1 +y2) =T @Y1 +T QY2
and
(T1+22)@y=21RYy+12®Y.
We'll just do the first; the second is symmetric.
Write = Y, \ivi, yr = Zj ,ué?wj for K =1,2. Then

2@ (Y1 +ye) = D Nilu) + 1o ® w;
i,
and
TRY + TR Yz = ZAiH;Ui@)wj +Z)\iu?vi®wj.
,J 4,J

These are equal.

We should also prove that for A € k and v € V and w € W then

(W) ew=Aveow)=v (Aw).

The proof is similar to the above. O

Ezxercise. Show that given vector spaces U,V and W there is a 1 — 1 correspondence
between

{linear maps V@ W — U} < {bilinear maps V x W — U}

given by composition with the bilinear map (v, w) — v ® w above.
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Lemma. If x1,...,xy is any basis of V and y1,...,Yym is any basis of W then
i Qy; for L<i<m and 1< j < nisabasis for Ve W. Thus the definition of
V @ W does not depend on the choice of bases.

Proof. Tt suffices to prove that the set {z; ® y;} spans V @ W since it has size mn.
But if v; =), Ariz, and w; = ), Bsjys then v; ® w; = Zm A;Bgjzr ®@ys. O

Remark. In fact we could have defined V ® W in a basis independent way in the
first place: let F be the (infinite dimensional) vector space with basis v ® w for
every v € V and w € W; and R be the subspace generated by (Av) @ w — A(v @ w),
R (Aw)—A(v@w) forv € V, w € W and A € k along with (z14+22)Q@y—21Qy—2Qy
and z® (y1 + y¥2) — 2 @ y1 — ¢ ® yo for z,xz1,20 € V and y,y1,y2 € W; then
V @ W = F/R naturally.

Ezercise. Show that for vector spaces U,V and W there is a natural (basis inde-
pendent) isomorphism

UaV)oW - (UW)a (Ve W).
LECTURE 11

Definition. Suppose that V and W are vector spaces with bases vy,...,v, and
wi,...,w, and @: V — V and ¢: W — W are linear maps. We can define
pRY: VW =V W as follows:

(P @) (vi @ wy) = (i) @ Ph(wy).
Ezxample. If ¢ is represented by the matrix A;; and v is represented by the matrix

B;; and we order the basis v; ® w; lexicographically (ie v1 ® wi,v1 @ wa,...,v1 @
W, Uy @ W, . .., Um ® wy,) then ¢ ® 1 is represented by the block matrix
AnB ApB

Agl B AQQB

Lemma. The linear map ¢ @ ¥ does not depend on the choice of bases.
Proof. Tt suffices to show that for any v € V and w € W,

(P @P)(vew) = p(v) @P(w).

Writing v = >~ A\jv; and w = ) pjw; we see
(p@v)(v@w) =Y Aipjp(v:) @ P(w;) = ¢(v) @ (w)
,J
as required. O
Remark. The proof really just says VxW — V@W defined by (v,w) — ¢(v)®v(w)
is bilinear and ¢ ® 9 is its correspondent in the bijection
{linear maps V@ W — V ® W} — {bilinear maps V x W — V @ W}

from last time.

Lemma. Suppose that ¢, 1,2 € Homg(V, V) and 1, 1,12 € Homy (W, W)
(i) (p1p2) @ (Y1th2) = (p1 @ Y1) (P2 @ 2) € Homy(V @ W,V @ W);
(’LZ) idy ®idy = id\/@W,’ and

(i) tr(e ® ) =tro-tr.
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Proof. Given v € V, w € W we can use the previous lemma to compute

(P19p2) @ (Y1102) (v @ W) = P1pa(v) © Yreha(w) = (p1 @ P1)(P2 ® P2)(v @ W).
Since elements of the form v ® w span V ® W and all maps are linear it follows that

(P102) ® (V192) = (1 ® V1) (02 @ P2)
as required.
(ii) is clear.
For the formula relating traces it suffices to stare at the example above:
AnB AxB
tr AQlB A22B :ZB”A]] :tI'AtI'B
: : : i.j
O

Definition. Given two representation (p, V') and (p’, W) of a group G we can define
the representation (p ® p/,V @ W) by (p® p’)(g) = p(g) @ p'(g).

Proposition. If (p,V) and (p', W) are representations of G then (p® p',V @ W)
is a representation of G and Xpep = Xp * Xp'-

Proof. This is an straightforward consequence of the lemma. O

Remarks.

(1) Tt follows that R(G) is closed under multiplication.

(2) Tensor product of representations defined here is consistent with our earlier
notion when one of the representations is one-dimensional.

(3) Tt follows from the lemma that if (p, V') is a representation of G and (p’, W)
is a representation of another group H then we may make V ® W into a
rep of G x H via

pvew (g, h) = p(g) @ p'(h).
In the proposition we take the case G = H and then restrict this represen-
tation to the diagonal subgroup G = {(g,9)} C G x G.
(4) If X,Y are finite sets with G-action it is easy to verify that kX ® kY =
kX x Y as representations of G (or even of G x G).

Now return to our assumption that k = C.

Proposition. Suppose G and H are finite groups.

Let (p1,V1),...,(pr, Vi) be a complete list of the irreducible complex represen-
tations of G and (p}, Wh),...,(ps, Ws) a complete list of the irreducible complex
representations of H. For each 1 < i < r and 1 < j < s, (pi ® p}, Vi @ Wy)
is an irreducible complex representation of G x H. Moreover, all the irreducible
representations of G x H arise in this way.

We have seen this before when G and H are abelian since then all these repre-
sentations are 1-dimensional.

Proof. Let x1,...,Xxr be the characters of Vi,...,V,. and 41, ..., the characters
0fW1,...,WS.
The character of V; @ Wj is x; ® ¥;: (g, h) — x:(g)¥;(h). Then

(Xi @ V5, Xk @U)axa = (Xis Xk)a(Vj, Y1) 1 = 0ir0j1.-
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So the x; ® 9, are irreducible and pairwise distinct.
Now », ;dim(V; ® wW;)? = (X, dime)(Zj dim W?) = |G[||H| = |G x H| so
we must have them all. (I

Ezercise. Show both directly and using characters that if U, V, W are representa-
tions of G then V@W = Homy (V*, W) and Homy (V@W, U) = Homy (V, Homy (W, U))
as representations of G.

Question. If V and W are irreducible then must V' ® W be irreducible?

We’ve seen the answer is yes is one of V' and W is one-dimensional but it is not
usually true.

Ezample. G = S;

1 3 2

e (12) (123)
11 1 1
el1 -1 1
viz o -1

Clearly, 1@ W = W always. e®e=1,e¢®V =V and V ® V has character x?
given by x2(1) = 4, x?(12) = 0 and x?(123) = 1. Thus x? decomposes as 1 + ¢+ x.

Infact VR V,V®V ®V,...are never irreducible if dimV > 1.

Given a vector space V, define c =oy: VRV -V @V byoc(v@w) — wwv
for all v,w € V (exercise: check this does uniquely define a linear map). Notice
that 02 = id and so ¢ decomposes V ® V into two eigenspaces:

SV :={acVaV|oa=a}
AV :={a€eV@V|oa=—a}

Lemma. Suppose vi,...,vn, is a basis for V.
(i) S*V has a basis v;vj = %(vi ®@vj+v;Qu;) for 1 <i<j<d.
(ii) A%V has a basis v; Avj = %(vl Qv —v; ®v;) for 1 <i<j<d.
Thus dim S?V = im(m + 1) and dim A?V = Im(m —1).
Remark. We usually write v; A v; := —v; Av; for j <4 and v; Av; =0.

Proof. 1t is easy to check that the union of the two claimed bases form a basis for
V ® V, that the v;v; do all live in S2V and that the v; A v; do all live in A?V.
Everything follows. O

Proposition. Let (p,V) be a representation of G.
(i) S?V and A?V are subreps of V@V and V@V = S?V @& A?V.
(i1) for g € G,

xswv(9) = 5 (x(9)? + x(6)
xaev () = 5((0)? ~ x(6)-

Proof. For (i) we need to show that if a € V ® V and oy (a) = Aa for A = £1 then
ovp(g)(a) = Ap(g)(a) for each g € G. For this it suffices to prove that g = go (ie
o € Homg(V@V,VeV)). But coglv®@w)=gw®gv=goo(v@w).
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To compute (ii), let vq, ..., v, be a basis of eigenvectors for p(g) with eigenvalues
)\1, ceey >\m Then g(’l}ﬂ}j) = ()\Z‘)\j)’l)ﬂ)j and g(’Uz A Uj) = (/\1/\1)'1}2 AN Vj.
Thus xs2v(9) = >_;<; AiAj, whereas

X(@)7+x(0%) = QN+ DA =2D M
i i i<j
Similarly xazy (g9) = ZK]_ AiA;, and

x(9)? = x(g%) = (Z Xi)? — Z/\? =D A

1<j

LECTURE 12

Recall that given a representation V of G we’ve defined subrepresentations S?V
and A2V of V ® V such that

xs2v(g) = %(x(g)2 +x(9%))
xazv(g) = %(X(Q)Q —x(g%)).
FEzxzample. Sy
1 3 8 6 6
e (12)(34) (123) (12) (1234)
1 |1 1 1 1 1
e |1 1 1 -1 -1
s |3 -1 0 1 —1
€X3 3 -1 0 -1 1
X5 2 2 -1 0 0
X5 |9 1 0 1 1
xs(9%) | 3 3 0 3 -1
S%ys | 6 2 0 2 0
Ay |3 —1 0o -1 1

Thus S%x3 = x5 + x3 + 1 and A%y3 = eys. Notice that given 1 and e and x3
we could’ve constructed the remaining two irreducible characters using S?y3 and
A2X3.

Ezercise. Show that if V is self-dual then either (1,ygz2y) # 0 or (1, xpzy) # 0.

Last time we thought about S2V and A%V by considering the ’swap’ action of
Coom VeV, v®w+— w®v. More generally, for any vector space V we may
consider V" = V ® --- ® V. Then for any ¢ € S,, we can define a linear map
p(o): Ve — Ven by

p(o’): VI ® Uy = Vgm1(1) @ Vg1 (p)
for vy,...,v, €V
Ezercise. Show that this defines a representation of S,, on V&".
If V is a representation of a group G then the action of G on V& via

vl®~-~®vnr—>gv1®~~~®gvn
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commutes with the S,-action. Thus we can decompose V®" as a rep of S,, and
each isotypical component should be a G-invariant subspace of V®™. In particular
we can make the following definition.

Definition. Suppose that V' is a vector space we define

(i) the n'" symmetric power of V to be
SV :={aeV® |o,(a) =aforalweS,}

and
(ii) the n'* exterior (or alternating) power of V to be

A"V i={a e V¥ | o,(a) = €(w)a for all w € S, }.

Note that S"V @ A"V = {a € V®" | o,(a) =a for allw € A, } C V™.
We also define the following notation for vy,...,v, € V,

1
V1 Up ::ﬁ Z Vo(1) @+ & Vg (n) es"v

" o€eS,
and
1
A A Z €(0)Vg(1) ® - @ Vg(n) € A"V
n!
oceS,
Ezercise. Show that if vy,...,v4 is a basis for V' then

{viy =i, [ 1< i <0 <y < d}
is a basis for S™V and
{vig ANovv Ay, [ 1< <o <dyy, < d}

is a basis for A”V. Hence given g € V, compute the character values xgny (g) and
XAy in terms of the eigenvalues of g on V.

For any vector space V, A™V = L and A"V =0 if n > dim V.

Ezercise. Show that if (p, V) is a representation of G then the representation of G
on AMmVY =k is given by g + det p(g); ie the dim V*" exterior power of V is
isomorphic to det p.

In characteristic zero, we may stick these vector spaces together to form algebras.
Definition. Given a vector space V' we may define the tensor algebra of V,
TV := ©psoVE"

(where V®% = k). Then TV is a (non-commutative) graded ring with the product
of vy ®--®@uv, € VO and wy ® -+ ® ws € VO given by

MR QU QW ®- - @uws € VI,
with graded quotient rings the symmetric algebra of V,

SV =TV/(z@y—yQz|z,yeV),
and the exterior algebra of V,

AV =TV/(z@y+yRzx|z,yeV).
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One can show that SV = @7@0 S™V under 1 ® - ® &, — x1-- T, and
AV = @n>OA”V under 11 ® -+ - Q@ xp, — Ty A -+ A Ty,

Now SV is a commutive ring and AV is graded-commutative; that is if z € A"V
and y € AV then z Ay = (—1)"y A z.

We’ve now got a number of ways to build representations:

e permutation representations coming from group actions;

e via representations of quotient groups and groups containing our group
(restriction);

tensor products;

symmetric and exterior powers;

decomposition of these into irreducible components;

character theoretically using orthogonality of characters.

We’re now going to discuss one more way related to restriction.

6. INDUCTION

Suppose that H is a subgroup of G. Restriction turns representations of G into
representations of H. We would like a way of building representations of G from
representations of H. There is a good way of doing so called induction although it
is a little more delicate than restriction.

If G is a finite group and W is a k-vector space we may define Hom(G, W) to
be the vector space of all functions G — W under pointwise addition and scalar
multiplication. This may be made into a representation of G by defining

(9- )(z) = flg~"x)
for each g,z € G. If wy, ..., w, is a basis for W then {dyw; | g € G,1 < i < n}is
a basis for Hom(G, W). So dim Hom(G, W) = |G|dim W.
Lemma. Hom(G, W) = (dim W)kG as representations of G.

Proof. Given a basis w1, ..., w, for W, define the linear map

0: (P kG — Hom(G, W)

i=1

by
O((fi)iz1)(z) = Zfi(x)wi.
=1

It is easy to see that © is injective because the w; are linearly independent so by
comparing dimensions we see that © is a vector-space isomorphism.
It remains to prove that © is G=linear. If g, x € G then

n

g- Of)ie))@) =Y filg™ z)wi = O(g - (fi)izy) (@)

i=1

as required. O

Ezercise. Use the basis of Hom(G, W) given above to find a character-theoretic
proof of the lemmma.
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Now, if H is a subgroup of G and W is a representation of H then we can define
Homp (G, W) := {f € Hom(G, W) | f(zh) = h™ ' f(2) Vz € G,h € H},
a k-linear subspace of Hom(G, W).

Ezample. If W = 1 is the trivial representation of H and f € Hom(G, 1), then
f € Hompg(G,1) if and only if f(xh) = f(z) for h € H and = € G. That is
Hompy (G, 1) consists of the functions that are constant on each left coset in G/H.
Thus Hompyg (G, 1) can be identified with kG/H. One can check that this identifi-
cation is G-linear.

Lemma. Hompy (G, W) is a G-invariant subspace of Hom(G, W).
Proof. Let f € Hompy(G,W), g, € G and h € H we must show that
(g- f)ah) =h" (g f)(=).
But (g- f)(zh) = f(g txh) = h=1f(g7'z) = h~1(g - f)(x) as required. O

Definition. Suppose that H is a subgroup of G of finite index and W is a represen-
tation of H. We define the induced representation to be Indg W := Hompg (G, W)

LECTURE 13

Recall from last time:

Definition. Suppose that H is a subgroup of G and W is a representation of H.
We define the induced representation by

d$ W = Hompy (G, W) = {f: G — W | f(zh) = h™ f(x) for all z € G, h € H}

Remark. Since Indfl 1=kG/H, Indfl does not send irreducibles to irreducibles in
general.

Proposition. Suppose W is a representation of H then

(i) dim Indf; W = {5} dim W;
(i) for g € G,
1 _
XInd§ wlg) = ﬁ Z xw(z ™ gx).
m*ngrGEH
Remarks.

(1) x~'gz € H if and only if grH = xH so if W is the trivial representation
the rhs of formula in (ii) becomes |{zH € G/H | gxH = xH}| and we get
the permutation character of kG/H as required.

(2) If we write xj, for the function on G such that x3,(9) = xw(g) if x € H
and x9(g9) =01if g € H, then the formula in (ii) becomes

1 o s _
XInd§ wl(g) = =l Z Xiv (2~ gz);
| | reG

this is clearly a class function.



REPRESENTATION THEORY 31

(3) If [h1],- .-, [hm] is a list of the H-conjugacy classes such that 2= *gx € [h]
some x € (G then we can write this as
|CG
Xlndg W Z | h’L)

This is the most useful formula for computation.

Ezample. G = S3 and H = A3z = {1,(123),(132)}.
If W is any rep of H then

XInd§ we) =2x ( ),
XIndg W(( 2

) =0,
Xtnag w((123)) = ((123)) +xw((132)).
As |1 (123) (132) Ss |1 (12) (123)
g, X1 1 1 1 Indx; | 2 0 2
x2 | 1 w w? Indxs | 2 0 -1
x3 |1 w? w Indys | 2 0 —1
So Indg X2 = Indg X3 is the 2-dimensional irreducible character of S3 and

Indg x1 = 1 + € as expected.

Proof of Proposition. Let x1,...,x, be left coset representatives in G/H. Then
f € Hompy (G, W) is determined by the values of f(x1),..., f(x,) € W.

Moreover, given wy,...,w, € W we can define f € Homgy (G, W) via f(x;h) =
h~w; fori=1,...,r and h € H. Thus

©: Homp (G, W) — @W

defined by f — (f(x;))f_; is an isomorphism of vector spaces and part (i) is done.

Following this argument, we see that given w € W, and 1 < i < r, we can define

iw € Hompy (G, W) by
gDi’w(l'jh) = 6Z‘jh_1’w
foreach he Hand 1 <j<r.

Now given g € G, let’s consider how g acts on a ¢; ,,. For each coset represen-
tative x; there is a unique o(i) and h; € H such that g~ la; = o(iyhi € ToyH,
and

(9 Piw)(wj) = %,w(g_lxj) = ¢iw(To() i) = Big(jyhy M.
Thus g Piw = Py 1(3), hi,l( )

Thus g acts on @;_, W via a block permutation matrix and we only get con-
tributions to the trace from the non-zero diagonal blocks which correspond to the
fixed points of o. Moreover if (i) = i then g acts on W; via h; ' = z; ' gz;

Thus

T grnag w = Zx%(mjlgxi).
K3
Since G = {x;h | h € H} and x5, (h~'gh) = X3 (g) for all g € G and h € H we
may rewrite this as

t-/rglndc w = |H| Z XW rgx 1)
zeG
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as required. O

If V is a representation of G, we’ll write Resg V for the representation of H
obtained by restriction.

Proposition (Frobenius reciprocity). Let V' be a representation of G, and W a
representation of H, then

(i) (xv,Indf xw)a = (Resf; xv, xw)u;

(i) Homg(V,Ind% W) = Hompy (Res$ V, W).
Proof. We’ve already seen that (i) implies (ii).

Now

(xv,Ind§ xw)a |G| Z XV (9)Xtmag w(9)
gEG

|G|| 2 2 v o)

gGG zeG

Z > xv(zg'z Dxiy(g) (¢ =a2"gx)

mEGg €eG

> xv(@)xw(g)
|H|

g’'€eH

= <RCSH XV, XW>H

as required. O

Ezercise. Prove (ii) directly by considering
©: Homeg(V,Hompy (G, W)) — Hompg (V, W)
defined by O(f)(v) = f(v)(e).

6.1. Mackey Theory. This is the study of representations like Res& Indg W for
H, K subgroups of G and W a representation of H. We can (and will) use it to
characterise when Indg W is irreducible.

Recall that if G acts transitively on a set X then for z € X there is a bijection
G/ Stabg(z)=X given by gStabg(x) — gz that commutes with the G-action (ie
g'(gStabg(x)) = (¢'g) Stabg () — g'gr = ¢'(g)).

If H, K are subgroups of G we can restrict the action of G on G/H to K

K xG/H — G/H; (k,gh) — kgH.

The the union of an orbit of this action is called a double coset. The union of the
K-orbit of gH is written KgH := {kgh |k € K,h € H}.

Definition. K\G/H := {KgH | g € G} is the set of double cosets.

The double cosets K\G/H partition G.
Notice that kgH = gH if and only if k € gHg~!. Thus as a set with a K-action,
KgH=K/(KNgHg™1).

Proposition. If G, H, K as above then

Resindf12= P Indfy,1qx 1.
9eK\G/H
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Proof. This follows from the discussion above, together with the general facts that
d% 1 = kG/H and that if X = |JX; is a decomposition of X into orbits then
EX 2 PEX;. O

LECTURE 14
Recall from last time,
Proposition. If G is a finite group and H,K are subgroups of G, then
Res$ Ind% 1 = @ Ind;(Hg—an 1.
geK\G/H

Given any representation (p, W) of H and g € G, we can define (9p,9 W) to be
the representation of YH := gHg~' < G on the underlying vector space W given
by (9p)(ghg™") = p(h) for h € H.

Theorem (Mackey’s Restriction Formula). If G is a finite group with subgroups
H and K, and W is a representation of H then

Resfi Indf W= P  Indjgne g Resfing ‘W.
geK\G/H
Proof. For each double coset KgH we can define
Vy={femdf W | f(zx)=0forall x ¢ KgH}.

Then V, is a K-invariant subspace of Ind$ W since we always have (kf)(z) =
f(k~1z). Thus there is a decomposition

Res$ Ind§ W = @ Ve
geK\G/H
and it suffices to show that for each g,
V, = Ind% .5 Res, B o IW
as representations of K.

Note dim V, = dim W|Orbg (gH)| = dim W gzis by = dim W el and
9H

this last is dimIndb ., ResyH 5 9W. So it suffices to find an injective K-linear
map ©: V, — Homgnog (K,9W).
Define such a © by O(f)(k) = f(kg). If ghg™! € K for some h € H,
O(f)(kghg™") = f(kgh)
= p(h™")f(kg)
= (“p)(ghg™") ' O(f)(K)
Thus Im © < Ind% ., ;; Resi L, 7 9W.
Also, if k¥’ € K then
(K'©(f)(k) = f(K''kg) = (K'f)(kg) = O f) (k)
and so © is K-linear. O
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Corollary (Character version of Mackey’s Restriction Formula). If x is a character
of a representation of H then

Res$ Ind$ y = Z IndZy Ak X
geK\G/H

where 9 is the class function on 9H N K given by Ix(z) = x(g7'zg).

FEzxercise. Prove this corollary directly with characters

Corollary (Mackey’s irreducibility criterion). If H is a subgroup of G and W is a
representation of H, then Ind% W is irreducible if and only if
(i) W is irreducible and
(ii) for each g € G\H, the two representations Resyih, ; IW and Restyy W of
H N9 H have no irreducible factors in common.

Proof.
Frob. recip.
Homg (Ind% W, Ind% W) =  Hompg (W, Res% Ind% W)
Mackey
= @ Homy (W, Ind ., ; Resy 1 IW)
geH\G/H
Frob. recip.

@ Hom g (Rest g i W, Res i 1 IW)
geH\G/H

We know that Ind% W is irreducible precisely if this space has dimension 1. The
summand corresponding to the coset HeH = H is Homy (W, W) which has dimen-
sion 1 precisely if W is irreducible and the other summands are all zero precisely if
condition (ii) of the statement holds. O

Corollary. If H is a normal subgroup of G ,and W is an irreducible rep of H then
Indg W is irreducible if and only if Ixw # xw for all g € G\H.

Proof. Since H is normal, gHg~! = H for all g € G. Moreover W is irreducible
since W is irreducible.
So by Mackey’s irreducibility criterion, Indg W irreducible precisely if W 22 9W
for all g € G\H. This last is equivalent to xw # 9xw as required.
O

FEzamples.

(1) H = (r) = C,, the rotations in G = Da,. The irreducible characters x of H
are all of the form y(r’) = e™5 | We see that Ind$, x is irreducible if and only
if x(r7) # x(r~7) for some j. This is equivalent to y not being real valued.

(2) G=S,and H=A,. If g €5, is a cycle type that splits into two conjugacy
classes in A, and x is an irreducible character of A,, that takes different values
of the two classes then Indg X is irreducible.

(3) (Exercise) Let G = GLy(F,) be the group of invertible 2 x 2-matrices with
coefficients in the field with p elements and let B be the subgroup of upper-
triangular matrices. Show that B\G/B has two elements B and BsB where

(0 )
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Deduce that if x is a character of B given by x ((g Z)) = x1(a)x2(b)

with x1, x2 characters F’ — C then Indg x is irreducible if and only if x1 # 2.

LECTURE 15
6.2. Frobenius groups.

Definition. A Frobenius group is a finite group G that has a transitive action on
a set X with |X| > 1 such that each g € G\{e} fixes at most one z € X and
Stabg(x) # {e} for some (all) z € X.

FExamples.
(a) G = Da,, with n odd acting naturally on the vertices of an n-gon.

(b) G = {(g (1)> |a,b€IE‘p,a7$0} acting on X = {(f) mEFP} by matrix

multiplication.

Lemma. G is a Frobenius group if and only if G has a proper subgroup H such
that HNgHg™ ' = {e} for all g € G\H.

Proof. Suppose the action of G on X shows G to be Frobenius and pick = € X.
Let H := Stabg(x) for some fixed z € X, a proper subgroup of G. Then
gHg™! = Stabg(gr) for each ¢ € G. Since no element of G\{e} fixes more than
one x € X it follows that gHg~! N H = {e} for each g € G\H.
Conversely, let X = G/H with the left regular action. O

Theorem. (Frobenius) Let G be a finite group acting transitively on a set X. If
each g € G\{e} fizes at most one element of X then

K={1}U{geG|gx#x foralzecX}
is a normal subgroup of G of order |X|.

Remarks.

(1) Any Frobenius group satisfies the conditions of the theorem. The normal
subgroup K is called the Frobenius kernel and the group H is called the
Frobenius complement.

(2) No proof of the theorem is known that does not use representation theory.

(3) In his thesis Thompson proved, amongst other things, that the Frobenius
kernel must be a direct product of its Sylow subgroups.

Proof. For x € X, let H = Stabg(x).
We know that Stabg(gz) = gHg~!. But by the hypothesis on the action

Stabg(gx) N Stabg(x) = {e}

whenever gz # x. Thus H has | X| conjugates and G has (|H| — 1)|X| elements
that fix precisely one element of X.
But |G| = |H||X| by the orbit-stabiliser theorem, and so

[K| = [H[[X]| = ([H] - 1| X] = |X]

as required. We must show that it is a normal subgroup of G.
Our strategy will be to prove that it is the kernel of some representation of G.
Suppose e # h € H and that h = gh/g~! for some ¢ € G and h' € H then
h € Stabg(x) N Stabg(gz), so gr =z and g € H. Thus



36 SIMON WADSLEY

e h and b/ in H are conjugate in G if and only if they are conjugate in H.
o |Ca(h)|=|Cy(h)| fore#he H

Now if x is a character of H we can compute Indg X:

[ X|x(e) ifg=e
Indf x(9) = { x(h)  if g=he H\{e}
0 if g € K\{e}

Suppose now that xi,..., X, is a list of the irreducible characters of H and let
0; = Ind% x; + xi(e)1g — xi(e) nd% 15 € R(G) for i = 1,...,r and so

xi(e) ifg=e
0:(g) =< xi(h) ifg=heH
xi(e) ifge K
If 6; were a character then the corresponding representation would have ker-
nel containing K. Since #; € R(G) we can write it as a Z-linear combination of

irreducible characters 6; = > n;1);, say.
Now we can compute

1 2
(05,0i)c = Gl > 10:(9)]

g€eG
1
el > XIba( P+ ) xile)?
heH\{e} keK
X
LKZMW@
heH
= (X, xiym =1

But on the other hand it must be > n?. Thus 6; is £ for some character 1 of G.
Since 6;(e) > 0 it must actually be an irreducible character.

To finish we write 8 = > x;(e)f; and so 0(h) = " xi(e)xi(h) = 0 for h € H\{e}
by column orthogonality, and (k) = 3" xi(e)? = |H| for k € K. Thus K = ker 0 is
a normal subgroup of G. O

7. ARITHMETIC PROPERTIES OF CHARACTERS

In this section we’ll investigate how arithmetic properties of characters produce
a suprising interplay between the structure of the group and properties of the
character table. The highlight of this will be the proof of Burnside’s famous p®q®-
theorem that says that the order of a simple group cannot have precisely two distinct
prime factors.

We'll need to quote some results about arithmetic without proof; proofs should
be provided in the Number Fields course (or in one case Galois Theory). We'll
continue with our assumption that £ = C and also assume that our groups are
finite.
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7.1. Arithmetic results.

Definition. x € C is an algebraic integer if it is a root of a monic polynomial with
integer coefficients.

Facts.

Fact 1 The algebraic integers form a subring of C

Fact 2 If x € Q is an algebraic integer then z € Z (cf Numbers and Sets 2010
Example Sheet 3 Q12)

Fact 3 Any subring of C that is finitely generated as an abelian group consists of
algebraic integers.

Lemma. If y is the character of a representation of a finite group G, then x(g) is
an algebraic integer for all g € G.

Proof. We know that x(g) is a sum of n*" roots of unity for n = |G|. Since each n'"
root of unity is by defintion a root of X™ — 1 the lemma follows from Fact 1. [

7.2. The group algebra. Before we go further we need to explain how to make
the vector space kG into a ring. There are in fact two sensible ways to do this. The
first of these is by pointwise multiplication: fif2(g) = f1(g)f2(g) for all g € G will
make kG into a commutative ring. But more usefully for our immediate purposes
we have the convolution product

fifa(9) =Y filgx) fala™)
z€G

that makes kG into a (possibly) non-commutative ring. Notice in particular that
with this product 0y, 0g, = 04,4, and so we may rephrase the multiplication as

(D A0) (D 1n0n) =Y (Y Aghn)Ok.
9eC heG keG gh=r

From now on this will be the product we have in mind when we think of kG as a
ring.

We notice in passing that a kG-module is the ‘same’ as a representation of G:
given a representation (p, V') of G we can make it into a kG-module via

fo=">" f(9)r(g)(v).
geG
for f € kG and v € V. Conversely, given a finitely generated kG-module M we can
view M as a representation of G via p(g)(m) = 9,m.

Ezercise. Suppose that kX is a permutation representation of G. Calculate the
action of f € kG on kX under this correspondance.

LECTURE 16

For the sake of the rest of the section, we need to understand the centre Z(kG)
of kGj; that is the set of f € kG such that fh = hf for all h € kG.

Lemma. Suppose that f € kG. Then f is in Z(kG) if and only if f € Cq, the
set of class functions on G. In particular dimy, Z(kG) is the number of conjugacy
classes in G.
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Proof. Suppose f € kG. Notice that fh = hf for all h € kG if and only if fO, = 0, f
for all g € G, since then

fh="Y " fh(9)0y =Y h(9)dyf = hf.

geG geG
But 0, f = f0, if and only if 9, f0,-+ = f and
(9.f0y-1) () = (94f)(xg) = (g™ xg).
So if f € Z(kG) if and only if f € Cg as required. O

Remark. The multiplication on Z(kG) is not the same as the multiplication on Cg
that we have seen before even though both have the same additive groups and both
are commutative rings.

Definition. Suppose O = {e},..., O, are the conjugacy classes of G, define the

class sums C1,...,C) to be the class functions on G so that
1 i
o = geO
0 g¢0..

We called these 0o, before. Also we'll fix g; € O; for simplicity.
We've seen that the class sums form a basis for Z(kG).

Proposition. There are non-negative integers a;j, such that C;C; = 3, a;;1Ck
fori,j ke {l,...,r}.

The a;;i are called the structure constants for Z(kG).

Proof. Since Z(kG) is a ring, we can certainly write C;C; = )" a;;xC}, for some
ik € k.
However, we can explicitly compute for g; € Oy,
(CiCy)(gr) = Y Cilgr)Ci(x™") = [{(z,y) € O; x O; | 2y = gi},
zeG
a non-negative integer. ([

Suppose now that (p, V') is an irreducible representation of G. Then if z € Z(kG)
we see that z: V — V given by 20 =" - 2(9)p(g9)v € Home(V, V).

By Schur’s Lemma it follows that z acts by a scalar A, € k on V. In this way
we get an algebra homomorphism w,: Z(kG) — k;z — A..

Taking traces we see that

dimV - X, = > 2(g)xv(9)-
geG

So

N xX91) o
w,(C;) = © |O;| for g; € O;.

We now see that w, only depends on x, (and so on the isomorphism class of p)
and we write w, = w,,.
Lemma. The values wy(C;) are algebraic integers.

Note this isn’t a priori obvious since ﬁ will not be an algebraic integer for

x(e) # 1.
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Proof. Since w, is an algebra homomorphism Z(kG) — k,
wy (Cwy (C) =Y agjewy (Ch).
k

So the subring of C gencrated by w, (C;) for i = 1,...,r is a finitely generated
abelian group. The result follows from Fact 3 above. (]

Ezercise. Show that

|G| ngz X(95 ).

Qg =
Y |CG gz HCG gj |

(Hint: use column orthogonality, the last lemma and its proof.)
7.3. Degrees of irreducibles.

Theorem. If V is an irreducible representation of a group G then dimV divides
Gl

Proof. Let x be the character of V. We’ll show that ‘(el) is an algebraic integer
and so (since it is rational) an actual integer by Fact 2 above.

)'fe') = ﬁ > x(g)x(g™)
geG

_ Z ﬁ\@lx(gi)x(gfl)

But the set of algebraic integers form a ring (by Fact 1 above) and each w, (C})

and x(g; 1) is an algebraic integer so % is an algebraic integer as required. [

FEzxzamples.

(1) If G is a p-group and x is an irreducible character then x(e) is always a
power of p. In particular if |G| = p? then, since >ox x(e)? = p?, every
irreducible rep is 1-dimensional and so G is abelian.

(2) f G= A, or S, and p > n is a prime, then p cannot divide the dimension
of an irreducible rep.

In fact a stronger result is true:

Theorem (Burnside (1904)). If (p,V) is an irreducible representation then dim 'V
divides |G/Z(G)|.

You should compare this with |O;| = |G|/|Cs(g;)| divides |G/Z(G)).

Proof. If z € Z = Z(QG) then by Schur’s Lemma z acts on V' by A.I for some
Az €k
For each m > 2, consisder the irreducible representation of G™ given by

pem" G™ — GL(VE™).
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If 2= (21,...,2m) € Z™ then z acts on VO™ via []7"; \,,I. Thusif [[]" 2 =1
then z € ker p®™.

Let Z' = {(21,.,2m € Z™ | [[/2, 2: = 1} so |Z'| = | Z|™~1. We may view p®™
as a degree (dim V)™ irreducible representation of G™/Z’.

Since |G™/Z'| = |G|™/|Z|™~! we can use the previous theorem to deduce that
(dim V)™ divides |G|™/|Z|™~ 1.

By choosing m very large and considering prime factors we can deduce the result:
if p" divides dim V then p™™ divides |G/Z|™|Z] for all m and so p” divides |G/Z|. O

Proposition. If G is a simple group then G has no irreducible representations of
degree 2.

Proof. If G is cyclic then G has no irreducible representations of degree bigger than
1, so we may assume G is non-abelian.

If |G| is odd then we may apply the theorem above.

If |G| is even then G has an element x of order 2. By example sheet 2 Q2,
for every irreducible x, x(x) = x(e) mod 4. So if x(e) = 2 then x(x) = £2, and
p(z) = £I. Thus p(z) € Z(p(G)), a contradiction since G is non-abelian simple. O

LECTURE 17

7.4. Burnside’s p?¢® Theorem.

Theorem (Burnside (1904)). Let p,q be primes and G a group of order p®q® with
a, b non-negative integers such that a +b > 2, then G is not simple.

Remarks.

(1) It follows that every group of order p®q® is soluble. That is, there is a chain
of subgroups G = Go > G; > -+ > G, = {e} with G;11 normal in G; and
G;/Gi+1 abelian for all i.

(2) Note that |As| = 22-3-5 so the order of a simple group can have precisely
3 prime factors.

(3) If b = 0 then we’ve seen this before; Z(G) has an element of order p which
generates a proper normal subgroup.

(4) The first purely group theoretic proof of the p®q®-theorem appeared in 1972.

(5) In 1963 Feit and Thompson published a 255 page paper proving that every
group of odd order in soluble.

The key step in the proof of the p®qP-theorem is the following:

Proposition. If G is a non-cyclic finite group with a conjugacy class O; # {e}
such that |O;| has prime power order then |G| is not simple.

Granting the Proposition we can prove the theorem as follows: if a,b > 0, then
let @ be a Sylow-g-subgroup of G. Since Z(Q) # 1 we can find e # g € Z(Q).
Then ¢° divides |Cg(g)|, so the conjugacy class containing g has order p” for some
0 < r < a. The theorem now follows immediately from the Proposition.

To prove the Proposition we need some Lemmas

Lemma. Suppose 0 # o = + Yo A with all A n* roots of 1 is an algebraic

m
integer. Then |a| = 1.
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Sketch proof (non-ezaminable). By assumption a € Q(e) where € = e2™/™,
Let G = Gal(Q(€)/Q). It is known that {6 € Q(e) | o(5) = § for all 0 € G} = Q.
Consider N(a) := [[,cg (). Since N(a) is fixed by every element of G, N(a) €
Q. Moreover N(a) is an algebraic integer since Galois conjugates of algebraic
integers are algebraic integers — they satisfy the same integer polynomials. Thus
N(a) € Z.
But for each o € G, ()| = |2 > o(\;)| < 1. Thus N(a) = +1, and |a| =1 as
required. (I

Lemma. Suppose x is an irreducible character of G, and O is a conjugacy class
in G such that x(e) and |O| are coprime. For g € O, |x(g)| = x(e) or 0.

Proof. By Bezout, we can find z,y € Z such that ax(e) + b|O| = 1. Define

x(9) x(9)
o= =ax(g) +b==|0
xe) ~ DO
Then « satisfies the conditions of the previous lemma (or is zero) and so this lemma
follows. O

Proof of Proposition. Suppose for contradication that G is simple and has an ele-
ment g € G\{e} that lives in a conjugacy class O of order p".

If x is a non-trivial irreducible character of G then |x(g)| < x(1) since otherwise
p(g) is a scalar matrix and so lies in Z(p(G)) = Z(G).

Thus by the last lemma, for every non-trivial irreducible character, either p
divides x(e) or |x(g)] =0 . By column orthogonality,

0="> x(e)x(g)-

Thus % = ZX?ﬂ %X(g) is an algebraic integer in Q. Thus % in Z the desired

contradiction. O

8. TOPOLOGICAL GROUPS

Consider S* =U;(C) = {g € C* | |g| =1} 2 R/Z.
By considering R as a Q-vector space we see that as a group

s'=qQ/ze P
zeX
for an an uncountable set X.
Thus we see that as an abstract group S! has uncountably many irreducible
representations: for each A € R we can define a one-dimensional representation by

; 1 p & QA
2mipy
p/\(e ) {627”.# e Q)\

Then py = py if and only if QXA = Q). In this way we get uncountably many
irreducible representations of S* (we haven’t listed them all). We don’t really have
any control over the situation.

However, S! is not just a group; it comes with a topology as a subset of C.
Moreover S! acts naturally on complex vector spaces in a continuous way.
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Definition. A topological group G is a group G which is also a topological space
such that the multiplication map G x G — G;(g,h) — gh and the inverse map
G — G; g+ g~ are continuous maps.

E:mmples

(1) GL,(C) with topology from c.

(2) G finite — with the discrete topology.

(3) O(n) ={A € GL,(R) | ATA=1}; SO(n) ={A € O(n)|det A= 1}.

(4) Un)={A e GL,(C) | ATA=1}; SU(n)={Ae€U(n)|det A=1}.

(5) *@ profinite such as Z,, the completion of Z with respect to the p-adic metric.

Definition. A representation of a topological group G on a vector space V is a
continuous group homomorphism G — GL(V).

Remarks.

(1) If X is a topological space then a: X — GL,(C) is continuous if and only if
the maps « — «a;;(z) = a(z);; are continuous for all 4, j.

(2) If G is a finite group with the discrete topology. Then continous function
G — X just means function G — X.

Theorem. Every one dimensional (cts) representation of S is of the form z — 2"
for somen € Z.

It is easy to see that the given maps are representations, we must show that they
are the only ones.

LECTURE 18

Lemma. If¢: (R,+) — (R,+) is a continous group homomorphism then there is
some X € R such that ¥(x) = Az for all x € R.

Proof. Let A = (1). Since % is a group homomorphism, ¥(n) = An for all n € Z.
Then my(n/m) = (n) = An and so (n/m) = An/m. That is ¢(z) = Az for all
z € Q. But Q is dense in R and % is continuous so ¥ (x) = Az for all z € R. ]

Lemma. If ¢: (R,+) — S is a continuous group homomorphism then 1(x) =
2™ for some \ € R.

Proof. Claim: if ¢: R — S! is any continuous function with ¢(0) = 1 then there
is a unique continuous function a: R — R such that «(0) = 0 and t(x) = e2™(®),
(Sketch proof of claim: locally a(z) = 5 logt(z) we can choose the branches of
log to make the pieces glue together continuously).

Now given the claim, if v is a group homomorphism and « is the map defined
by the claim we can define a continuous function R? — R by

Aa,b) := ala+b) — ala) — ab).

Since 2™ (@0 = 4)(a + b)yp(a) " *p(b)~' = 1, A only takes values in Z. Thus A
is constant. Since A(a,0) = 0 for all a we see that A = 0 and so « is a group
homomorphism. By the previous lemma we see a(z) = Az for some A € R and so
P(x) = €2 as required. O

Theorem. Every one dimensional (cts) representation of S* is of the form z — 2™
for somen € Z.
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Proof. Let p: St — GL;(C) be a continuous representation. Since S! is compact,
p(S1) has closed and bounded image. Since p(2") = p(z)" for n € Z, it follows that
p(SY) c St.
Now let ¢: R — S be defined by 1 (x) = p(e*™*®), a continuous homomorphism.
By the most recent Lemma, p(e2™*) = 1)(x) = €2™** for some \ € R.
Since also p(e?™) =1 we see \ € Z. O

Our most powerful idea for studying representations of finite groups has been
averaging over the group; that is the operation ﬁ > er When considering more
general topological groups we should replace Y by [.

Definition. Let G be a topological group. Let C(G) = {f G — C/| f is continuous}.

Then a linear map [: C(G) — C (write [, f = [,f(g)dg) is called a Haar mea-
sure if

i) [,1=1 (so [ is normalised so total volume is 1);
(i) [of(zg)dg = [5f(9)dg = [, f(gx)dg for all z € G (so [, is translation
invariant).

FEzxzamples.
(1) If G finite, then fo = ﬁ deG f(9).
(2) IfG:Sl,fo 1 o f( 9 d6.

Theorem. If G is a compact Hausdorff group, then there is a unique Haar measure
on G.

Proof. Omitted 0

All the examples of topological groups from last time are compact Hausdorff
except GL(C™) which is not compact. We've seen a Haar measure on S and will
compute one on SU(2) later. We'll follow standard practice and write ‘compact
group’ instead of ‘compact Hausdorff group’.

Corollary (Weyl’s Unitary Trick). If G is a compact group then every representa-
tion (p, V) has a G-invariant invariant Hermitian inner product.

Proof. Same as for finite groups: let (—, —) be any inner product on V', then

(v, 0) = /G (p(g)v, plg)w) dg

is the required G-invariant inner product. (Il

Thus every representation of a compact group is equivalent to a unitary repre-
sentation.

Corollary (Maschke’s Theorem). If G is a compact group then every representation
of G is completely reducible.

Proof. Same as for finite groups: Given a rep (p,V) choose a G-invariant inner
product. If W is a subrep of V then W+ is a G-invariant complement. O

We can use the Haar measure to put an inner product on the space Cq of (con-

tinuous) class functions:
- [ T @ag



44 SIMON WADSLEY

If p: G — GL(V) is a representation then x, := tr p is a continuous class function
since each p(g);; is continuous.

Corollary (Orthogonality of Characters). If G is a compact group and V and W
are irreducible reps of G then
1 fvVvew

xv, xw) = {0 if xv # xw-

Proof. Same as for finite groups:

(xv,xw) = /G xv(9)xw(g)dg

= dim Homg (1, Hom(V, W))
= dim Homg (V, W).

Then apply Schur’s Lemma.

Note along the way we require that yy(¢~!) = xv(g) which follows from the
fact that we may assume that py (G) C U(V) and so the eigenvalues of py (g) are
contained in S* for all g € G.

We also need to define a projection maps 7: U — U% for U = Homy,(V, W). For
this we choose a basis u1, ..., u, of U and define 7 to be the linear map represented
by the matrix m;; = [ p(g)i; dg. O

It is also possible to make sense of ‘the characters are a basis for the space of
class functions’ but this requires a little knowledge of Hilbert space.

Ezample. G = S*.

We've already seen that the one-dimensional reps of S! are all of the form z + 2"
for n € Z. Since S! is abelian we can use our usual argument to see that these
are all irreducible reps — given any rep p we can find a simultaneous eigenvector
for each p(g). Thus the ‘character table’ of S' has rows Y, indexed by Z with
Xn(ew) — einf

Now if V is any rep of S' then by Machke’s Theorem V breaks up as a direct
sum of one dimensional subreps and so its character xy is of the form

xv(z) = Z anz"
nez

with a,, non-negative integers and only finitely many non-zero. As usual a,, is the
number of copies of p,,: z — z" in the decomposition of V. Thus we can compute

1 27‘(‘ . —in
an = (Xn,XV) = %/ xv(e)e ™ do.
0

Thus

4 1 [%7 e 4
Xv(ezé) — Z <27T/0 XV(ele )e—an dgl) elnH.
nez

So Fourier decomposition gives the decomposition of yy into irreducible charac-
ters and the Fourier mode is the multiplicity of an irreducible character.

Remark. In fact by the theory of Fourier series any continuous function on S* can
be uniformly approximated by a finite C-linear combination of the .
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Moreover the x,, form a complete orthonormal set in the Hilbert space of square-
integrable complex-valued functions on S!. That is every function f on S' such
that f027r| f(e?)]? df exists has a unique series expansion

f(eia) _ Z (1 ZTrf(eiO')e—inG' d9/> eind

neZ 2m 0
converging in the norm || f|| = & ()27T\J‘(ezw)|2 deé.

LECTURE 19

8.1. Conjugacy classes of SU(2).
Recall that SU(2) = {A € GL2(C) | ATA=1,det A =1}.

If A= (a b) € SU(2) then since det A =1, A=! = ( d _b>.
c d —c a
Thus d = @ and ¢ = —b. Moreover a@ + bb = 1. In this way we see that
SU(2) = {(ab Z) | a,b € C and |a]* + |b]* = 1}
which may be viewed topologically as S® C C? = R%.
More precisely if

H::R-SU(z)z{( “ f) |w,ze<C}CM2((C).

—w

Then ||A]|> = det A defines a norm on H = R* and SU(2) is the unit sphere in H. If
A€ SU(2) and X € H then ||AX]|| = ||X|| since ||A|| = 1. So, after normalisation,
usual integration of functions on S* defines a Haar measure on SU(2).

a

Definition. Let T = {<O

SU(2).

0 . .
a_1> |a€C,lal = 1} ~ S'a mazimal torus in

Also define s = (_01 é) € SU(2)

Lemma.
(i) ift €T then sts~1 =t71;
(ii) 82 = -1 € Z(SU(2))

0 0
(i) Novay () =TUs={ (5 ). (L1 §) lacclal=1}

Proof. All three parts follow from direct computation (exercise). O

Proposition.

(i) Every conjugacy class O in SUy contains an element of T
(ii) More precisely. if O is a conjugacy class then ONT = {t,t~1} for somet € T
—t=1t"1 if and only if t = £1 when O = {t}.
(iii) There is a bijection
{conjugacy classes in SU(2)} — [—1,1]
given by A — %trA.
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Proof. (i) For every unitary matrix A there is an orthonormal basis of eigenvectors
of A; that is there is a unitary matrix P such that PAP~! is diagonal. We want
to arrange that det P = 1. But we can replace P by QQ = vdet PP. Thus every
conjugacy class O in SU(2) contains a diagonal matrix t. Since additionally ¢ €
SU(2),teT.

(ii) If £1 € O the result is clear.

Suppose t € ONT for some t # +I. Then

O={gtg~" | g€ SU?2)}.

We've seen before that sts™! =t=1 so ONT D {t, ¢t 1}.

Conversely, if t’ € ONT then ¢’ and ¢ must have the same eigenvalues since they
are conjugate. This suffices to see that ¢ € {t*1}.

(iii) To see the given function is injective, suppose that %trA = %tr B. Then
since det A = det B = 1, A and B must have the same eigenvalues. By part (i)
they are both diagonalisable and by the proof of part (ii) this suffices to see that
they are conjugate. .
X3
0
has image [—1,1] the given function is surjective.

o I . 0 .
To see that it is surjective notice that % tr (e e“’) =cosf. Sincecos: R — R

Let’s write O, = {A € SU(2) | 1 tr A = z} for « € [-1,1]. We’ve proven that
the O, are the conjugacy classes in SU(2). Clearly O7 = {I} and O_; = {-I}.

Proposition. If —1 < z < 1 then O, is homeomorphic to S2.
Proof. First we observe that O, = SU(2)/T for each —1 < x < 1. To see this it

suffices to show that T = Cgy, ((6\ )\01>) for A # AL, But

a b A 0 _( Aa Ab
¢ d)\0o X1) 7 \\le A4
A 0 a b\ (X A71b
0 A1 c d) ~ \ e X))

For these to be equal for A # A~! we require b = ¢ = 0.
Next we recall that SU(2) acts on S? = C U {oo} by Mobius transformations:

a b z_az—l—b
c d T ez+4d

This action is transitive since for each z € C there are a,b € C such that |a|?+|b]* =

and

1 and a/b = z (exercise). Then (Z _ab) <00 = a/b.
But Stabgy(2)(c0) =T so SU(2)/T = S2. O

8.2. Representations of SU(2).
Now we understand the conjugacy classes of SU(2), we’ll try to work out its
representation theory.

Let V,, be the complex vectorspace of homogeneous polynomials in two variables
x,y. So dimV,, = n + 1. Then GL(C?) acts on V,, via

pn: GL(C?) — GL(V,,)
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given by
P ((i Z)) f(x,y) = flax + cy, ba + dy).

FEzxzamples.

Vo = C has the trivial action.

V34 = C? is the standard representation of GL(C?) on C? with basis x,y.
Vo = C? has basis 22, 2y, y? then

o b a? ab b?
02 (( d)) = | 2ac ad+bc 2bd
¢ c? cd d?
Since SU(2) is a subgroup of GLo(C) we can view V,, as a representation of

SU(2) by restriction. In fact as we’ll see, the V,, are all irreducible reps of SU(2)
and every irreducible rep of SU(2) is isomorphic to one of these.

Lemma. A (continuous) class function f: SU(2) — C is determined by its restric-

tion to T and f|r is even ie f (<g z91>> =/ <<Zo1 2)) :

Proof. We've seen that each conjugacy class in SU(2) meets T and so a class
fucntion is determined by its restriction to 7. Then evenness follows from the
additional fact that TN O = {t*!} for some t € T. O

Thus we can view the character of a representation p of SU(2) as an even function
Xp: St — C.

Lemma. If x is a character of a representation of SU(2) then x|r is a Laurent
polynomial ie a finite N linear combination of functions

<g 291> — 2" forn € Z.

Proof. If V is a representation of SU(2) then ResiU@) V is a representation of T
and XResy v is the restriction of xy to T. But we’'ve proven already that every
representation of 7" has character of the given form. O

LECTURE 20

Write

N[z, 271 = {Z an2" | an € N and only finitely many a,, # 0}
nez

and
N[z, 27 = {f € N[z,27'] | f(2) = f(="1)}.
We showed last time that for every continuous representation V' of SU(2), the
character xy € N[z, 271 after identifying it with its restriction to T
The next thing to do is compute the character x,, of (p,, V4,), the representation
consisting of degree n homogeneous polynomials in = and y.

n ((O 0)) (wiy?) = ()i (e Yy) = iy

z
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So z'y’ is an eigenvector for each t € T and T acts on V,, via

22—71
Z—?’L
Thus
n+l _ —(n+1)
w((5 )= et = T e
zZ—z

Theorem. V,, is irreducible as a reperesentation of SU(2).

Proof. Let 0 # W < V,, be a SU(2)-invariant subspace. We want to show that
W =1V,.

Let 0 # w =Y \j(z" " y") € W. We claim that 2" 'y’ € W whenever \; # 0.

We prove the claim by induction on k = [{i | \; # 0}

If £ = 1 then w is a non-zero scalar multiple of "%y’ and we’re done.

If k£ > 1 choose i such that \; # 0 and z € S such that {z", 2772 ... 227" 2"}
are distict complex numbers. Then

Pn ((g 291>) w — Zn72iw = Z )\j(zn72j — Zn72i)(xnijj) cW

since W is SU(2)-invariant. Now A\;(2"72%/ — 2"=2%) = 0 precisely if \; # 0 and
j # i. Thus by the induction hypothesis z7y" =7 € W for all j # i with A\; # 0. It
follows that also zfy"~% = )\i(w =D iz Njziy"I) € W as required.

Now we know that z'y"~% € W for some i. Since

2 (4 1) = Sl ew
we can use the claim to deduce that 2™ € W. Repeating the same calculation for
i =n, we see that (x + y)™ € W and so, by the claim again, ziy"~¢ € W for all i.

Thus W =V,,. |

Alternative proof:

We can identify Ocosg = {A € SU(2) | 2trA = cos@} with the two-sphere
{(Im(a))? + |b|? = sin® A} of radius |sin@|. Thus if f is a class-function on SU(2),
since f is constant on each Oy,

[ swag= g [ (5 %)) amsntean= 1 [T e snoas
. 9)dg =55 5 0 it 7 sin == e") sin .

0 0
Note this is normalised correctly, since % f02 "sin? @ df = 1. So it suffices to prove
that %fohbwn (€9))?sin? 0 df = 1 for 2 = . (exercise: verify this).
Theorem. Fvery irreducible representation of SU(2) is isomorphic to V,, for some

n = 0.

Proof. Let V be an irreducible representation of SU(2) so xv € N[z, 27 1]¢*. Now
Xo=1,x1 =2+2z"1, xa =22 +1+272 ... form a basis of Q[z,27!]¢* as (non-f.d.)
Q-vector spaces. Thus xy = >_ a;x; for some a; € Q, only finitely many non-zero.
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Clearing denominators and moving negative terms to the left-hand-side, we get

a formula
mxv + Z miXi = Z m;X;j
iel jeJ

for some disjoint finite subsets I,J C N and m,m; € N. By orthogonality of
characters and complete reducibility we obtain

mVEB@miVi = EijVj
icl jeJ
since V' is irreducible, V' = V; some j € J. (]

8.3. Tensor products of representations of SU(2). We've seen that if VW

are representations of SU(2) such that ResiU(Q) = ReS;U(z) W then V= W. We
want to understand ® for representations of SU(2).

Proposition. If G =2 SU(2) or S* and V,W are representations of G then
XVeWw = XV * XW-

Proof. By the discussion above we only need to consider G = S*.
If V and W have eigenbases e1,...,e, and f1,..., f, such that ze; = z™e; and
zf; = 2™ f; then z(e; ® f;) = z™1™i(e; ® f;). So

Xvew(z) =Y 2"t = <Z Z") o2 = xv(@)xw(2)

,J i J
as required. O

Let’s compute some examples for SU(2):
Xvievi (2) = (z+27 )2 =22+ 14+ 272 + 1= xv, +xv
and
.2 -2 —1y _ .3 -1 -3 _
Xvaovi (2) = (22 +14+27)(z+2")=2"+22+4+22"" +27° = xv, + X15-
Proposition (Clebsch-Gordan rule). For n,m € N,
Vi@V EVoimn @ Viym—2 @ -+ & V\n—mH—Z @ V\n—m|'

Proof. Without loss of generality, n > m. Then

ZnJrl _ anfl

(Xn - xm)(2) = I E— ("2 2T

Zn+m+1f2j o Zf(n+m+172j)

1

M-

zZ—Zz

<.
Il
o

NE

Xn,+m—2j (Z)

<.
Il
=}
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8.4. Representations of SO(3).
Proposition. There is an isomorphism of topological groups SU(2) /{£I} = SO(3).

Corollary. Every irreducible representation of SO(3) is of the form Va, for some
n > 0.

Proof. 1t follows from the Proposition that irreducible representations of SO(3)
correspond to irreducible representations of SU(2) such that —I acts trivially. But
we saw before that —I acts on V,, as —1 when n is odd and as 1 when n is even. [

LECTURE 21
Let’s prove the proposition from the end of last time:

Proposition. There is an isomorphism of topological groups SU(2)/{£I} = SO(3).

Proof. Consider H° = {A € H | trA = 0} = R((é 0.> ) (_01 (1)> , (0 é))

—i i

equipped with the norm ||A[|? = det A.

SU(2) acts by isometries on H° via (X, A) — X AX ~! giving a group homomor-
phism

¢: SU(2) — O(3)

with kernel Z(SU(2)) = {£I}. Since SU(2) is compact and O(3) is Hausdorff the
continuous group isomorphism ¢: SU(2)/{£I} — Im¢ is a homeomorphism so it
suffices to prove that Im¢ = SO(3). Since SU(2) is connected, Im¢ C SO(3).

e 0 ai b\ (e 0\ [ ai €
0 e ) \-b —ai 0 €9  \—e " —ai

i0
SO (60 691-9) acts on R(i, j, k) by rotation in the jk-plane through an angle 26.

cosf)  sin@

Ezercise. Show that .
—sinf cos6

) acts by rotation through 26 in the ik-plane,

cosf isiné . . .
and ising  cos 0) acts by rotation through 26 in the ij-plane. Deduce that
Imf = SO(3).

O

9. CHARACTER TABLE OF GLs(FF,) AND RELATED GROUPS

9.1. F,. Let p > 2 be a prime, ¢ = p* a power of p for some a > 0, and F, be the
field with ¢ elements. We know that F; = C;_;.

Notice that Fy — Fiz — 22 is a group homomorphism with kernel £1. Thus
half the elements of F are squares and half are not. Let ¢ € F be a fixed non-
square and let F2 := {a + b\/e | a,b € F,}, the field with ¢ elements under the
obvious operations.

Every element of F, has a square root in 2 since if A is non-square then /e = 1
is a square, and (y/ep)? = A. It follows by completing the square that every
quadratic polynomial in F, factorizes in F.

Notice that (a + by/€)? = a? + b%“s /e = (a — by/e). Thus the roots of an
irreducible quadratic over F, are of the form A, A4

2
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9.2. GLy(F,). We want to compute the character table of the group

G = GLy(F,) = {(OC‘ Z) | a,b,c,d € F, and ad—bcyéo}.

The order of G is the number of bases for F2 over F,. This is (¢> —1)(¢* — ).

First, we compute the conjugacy classes in G. We know from linear algebra that
2 x 2-matrices are determined by their minimal polynomials up to conjugation. By
Cayley—Hamilton each element A of GL2(F,) has minimal polynomial m4(X) of
degree at most 2 and m4(0) # 0.

There are four cases.

Case 1: ma = X — A for some A\ € F,*. Then A = A\l. So Cg(A4) = G, and A
lives in a conjugacy class of size 1. There are ¢ — 1 such classes.

Case 2: my = (X — A\)? for some A\ € F,* so A is conjugate to <(>)\ i) Now

l(d D) 2)serenss)

a(g—1)(¢*—1)

(a—1)q =¢?> — 1. There are ¢ — 1

A1) .. .
50 { o ) isina conjugacy class of order

such classes.
Case 3: A has minimal polynomial (X — \)(X — ) for some distinct A\, p € F, ™.

L A0 pw 0
Then A is conjugate to (0 #> and to (0 A)' Moreover

@ D)6 esers)r

So (g\ 2) is in a conjugacy class of order %(lq;_l) =¢q(g+1). There are (qgl)

such classes.
Case 4: A has minimal polynomial (X — a)(X —a?), a = A+ uy/e, A, p € Fy,

. . A € A —€el
@ # 0. Then A is conjugate to (M )\) and (—M A\ > Now

()1 1o

K.
If a? = €b? then € is a square or a = b= 0. So |K| = ¢*> — 1 and (2 E)/\”L) lives in
a(a—=1)(¢°~1)

a conjugacy class of size L= q(q —1). There are g(q — 1)/2 such classes.
In summary

Representative Cq No of elts | No of such classes
(3 ?\) G 1 qg—1
G3) |G o] ar ] e
(6o | T | ('3
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The groups T and K are both maximal tori. That is they are maximal subgroups
of G subject to the fact that they are conjugate to a subgroup of the group of
diagonal matrices over some field extension. T is called split and K is called non-
split.

Some other important subgroups of G are Z which is the subgroup of scalar

matrices (the centre). N := {(é ll)> |be ]P‘q} a Sylow p-subgroup of G' and

0 d
B and B/N 2 F,* xF,* 2 Cy_1 x Cy_1.
G acts transitively on F, U {oo} via Mobius transformations

a b az+b
< d)(z)z +dforz€IFq

a b
<c d) () =a/c
so B = Stabg(o0). Thus |G| = |B|(¢ + 1).

1
Writing s = (O ) we see that

10
a b\ (1 B\ (b a+bB
6 20705

and these elements are all distinct. Hence BsN contains ¢|B| elements so must be
G\B. Thus BsN = BsB and B\G/B has two double cosets B and BsB (this is
called Bruhat decomposition).

B := {(a b) |beF, a,de qu} a Borel subgroup of G. Then N is normal in

and

LECTURE 22

Recall our notation from last time. G = GLy(Fy) > B = { <a b) } has normal

0 d
o= { (1 )]
R () R ) R (| O

fixed non-square ¢ in F,,.
Finally s = ((E (1)> and G = BU BsB.

By Mackey’s irreduciblity criterion it follows that if W is an irreducible rep-
resentation of B, then Indg W is an irreducible representation of G precisely if
Resgms g W and Res;‘%s g °W have no irreducible factors in common. Since s swaps
0,00 € Fy U {oo},

s B = Stabg(0) = {(‘CL 2) la,d €F,*,ce Fq}

and BN*B=T.
The conjugacy classes in GLo(F,) are
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Representative | Ci | No of elts | No of such classes
OO el 1 |
(g i) ZN ¢ -1 q—1
(5 0) |7 | ('3
(2 9) | x| - ©

Let’s warm ourselves up by computing the character table of B.
If x,y € B are conjugate in G then because G = B U BsB either x is conjugate

to y in B or x is conjugate to sys~! (or both). So classes in G split into at most
two pieces when restricted to B.
The conjugacy classes in B are

Representative | Cp | No of elts | No of such classes
<())\ g) B 1 qg—1
(())\ i\) ZN q—1 q—1
62 |7] « | @-ve-2

Now B/N =T =TF,* xF,*. So if ©, := {characters of F) of degree 1}, then O,
is a cyclic group of order ¢ — 1 under pointwise operations. Moreover, for each pair
0,¢ € O4, we have a 1-dimensional representation of B given by

we (5 5)) = oot

giving (¢ — 1)? linear reps.
Fix v a non-trivial 1-dimensional representation of (Fy, +). Then for each 6 € O,
we can define a 1-dimensional representation of ZN by

w((5 1)) =oano.

Defining sy to be the character of IndZ y pg we see that

1o ((3 2)) = (g —1)o(N),

w((y 1)) = X oono

bEF %
=0(\)(¢(1,7)r, — 1)

(6 0) -0
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So (g, pe) = ﬁ ((g=1)(¢g—1)*+ (¢ —1)(¢—1)1) = 1 and the character

table of B is
A0 A1 A0
0 X 0 A 0 u

0N)P(A) | 0(A)o(A) | 0(N) (k)
(=1 | —b6(N) 0

Let’s start computing some representations of G.

As det: G — F,* is a surjective group homomorphism, for each i =0,...,q—2,
Xi := 0; o det is a 1-dimensional representation of G.

Let’s start by inducing xg,, from B to G. Notice that

X0, ((2\ 2)) = X0.¢ ((i 2)) = 0(d)¢(a)

and so Res;B X0, = Resg Xo,4 if and only if 0 = ¢. So Wy 4 = Indg X6,p 1S
irreducible precisely if 8 # ¢.
Now

X6,¢
Ho

wie (3 1)) = @+ noen.

we (3 1)) = o,

e (3 0)) = 009800 + 0000 and
(D) - o

Notice that Wy o = Wy ¢ so we get (qgl) irreducible representations in this way.
They are known as principal series representations.

We consider also Wy 1 22 Ind§ 1 = C(F, U {co}). Since G acts 2-transitively
on Fy, U oo, Wy 1 decomposes as 1 @ Vq, with Vj irreducible of degree g. This
representation is known as the Steinberg representation.

By tensoring W7 1 by xs we also obtain Wy g = x4y @ Vy with Vp irreducible of
degree gq.

So far we have
()\ eu) # of reps

L) G G |G

Xo ()2 (N2 606 (1) 002 —en?) | q—1
Vo af(\)* 0 0(N) (1) =0\ —ep?) | g1
Wous | (@+10NSN) | 606N | (N (1) + $(\)0(1) 0 le=fe-2)
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LECTURE 23

The next natural thing to do is compute Indg ;. It has character given by

1ndS ((A 2)) —(g+ 1)(g - DB,

>
> =
N———

Indg i (

;
win (3 1)+
<

d$ p (A

o
=

Thus
1

(Ind$ 11;, Indf p1;) el ((g+1)*(q—1)*(g—1) + (¢ —1)(¢* — 1))

(q2—1)+1)=q

SH Rl

) Indg 1; has many irreducible factors.
Our next strategy is to induce characters from K. We write a = A + u+/e for
A0

the matrix Aep . Notice that Z < K with
wooA 0 A

Suppose that ¢: K — C* is a 1-dimensional character of K. Then ® := Indg %)
has character given by ®(A) = ¢(q — 1)p(}), ®(a) = ¢(a) + ¢(af) for a € F; and
® = (0 away from these conjugacy classes.

Let’s compute

) = )\ in our new notation.

(@, @) =

@ (= D= 17+ T2 5 o) + o

But

dlew)+ e = D (pw) + o) (p(v™") + (v )

veK\Z
= D 2+ + o)
veK\Z
=2 —q)+2) ¢ ) =2 p(A1h)

veK AEZ

But if 977! # 1 then the middle term in the last sum is 0 since (p9=1,1) = 0.
Since A\?7! =1 for A € F, the third term is also easy to compute. Putting this
together we get (®,®) = ¢ — 1 when @971 # 1.



We similarly compute

(Ind$ g, ) = ﬁ S (@2 = )0a(g — (V)

SIMON WADSLEY

AeZ
= (¢~ 1){0, Resz ¢)z

Thus Indg o and ® have many factors in common when ¢|z = 6.
Now, for each ¢ such that 7! # 1 (there are ¢>—q such choices) let 6 := Resk ¢
then our calculations tell us that if 3, = Ind$ ug — ® € R(G) then

(BerBe) =q—2(q—1)+ (g —1)=1.
Since also f,(1) = ¢ —1 > 0 it follows that (3, is an irreducible character. Since

By = Bpa (and 7 = ) we get (4) characters in this way and the character table
of GLy(F,) is complete.

# classes qg—1 q—1 (131 )
A0 Al A0
rep <0 )\) (0 /\) (0 M) a, o # of reps
X6 0(N)? 0())? 0(A)0(k) () q—1
Vo go(N)? 0 O(A\)0(p) —0(a™h) q—1
Wos | (@+1)0(N)o(N) | 0(N)p(N) | 0(N)p(k) + 0(N)d() 0 (3
B (@=Dp(N) | —p(N) 0 —(e+¢9) | (9




