
REPRESENTATION THEORY

SIMON WADSLEY

Lecture 1

1. Introduction

Representation Theory is the study of how symmetries occur in nature; that is
the study of how groups act by linear transformations on vector spaces.

Recall that an action of a groupG on a setX is a map · : G×X → X; (g, x) 7→ g·x
such that

(i) e · x = x for all x ∈ X;
(ii) (gh) · x = g · (h · x) for all g, h ∈ G and x ∈ X.

Recall also that to define such an action is equivalent to defining a group ho-
momorphism ρ : G → S(X) where S(X) denotes the symmetric group on the set
X.

A representation ρ of a group G on a vector space V is a group homomorphism
ρ : G→ GL(V ), the group of invertible linear transformations of V .

We want to understand all representations of G on finite dimensional vector
spaces. Of course, vector spaces do not come equipped with a notion of distance. If
we want to study distance preserving transformations of a (f.d.) real/complex inner
product space we should instead consider homomorphisms G → O(V ), the group
of orthogonal transformations of V or G → U(V ), the group of unitary transfor-
mations of V . We’ll see later that this restriction doesn’t make any difference to
the theory in a way we will make precise.

Recall that if G acts on a set X then X may be written as a disjoint union of
orbits X =

⋃

Xi with G acting transitively on each Xi.

Question. What is the equivalent notion for representations?

We’ll see that disjoint union of sets should correspond to direct sum of vector
spaces and that there is a good equivalent notion when G is finite and k has char-
acteristic zero. However, it is less rigid because there are many ways to decompose
an n-dimensional vector spaces as a direct sum of 1-dimensional subspaces.

To understand all actions of G on sets X by using the decomposition into orbits
it is enough to consider transitive actions.

The Orbit-Stabiliser theorem says that if G acts on X and x ∈ X then there is
a bijection

π : G/StabG(x)
∼→ OrbG(x)

given by
g StabG(x) 7→ g · x.

In fact this bijection is G-equivariant: if we given G/StabG(x) the left regular
action g · (hStabG(x)) = ghStabG(x) then gπ(y) = π(gy) for all y ∈ G/StabG(x).
Thus as a set with G-action OrbG(x) is determined by StabG(x).
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Recall also that StabG(g · x) = g StabG(x)g−1 (IA Groups Ex Sheet 3). Thus
OrbG(x) is determined by the conjugacy class of StabG(x); that is there is a 1− 1
correspondance

{sets with a transitive G-action}/ ∼←→ {conj. classes of subgroups of G}
given by X 7→ {StabG(x) | x ∈ X} and {gHg−1 | g ∈ G} 7→ G/H.

Question. What is the equivalent notion for representations?

Suppose that X,Y are two sets with G-action. We say that f : X → Y is G-
equivariant if g · f(x) = f(g · x) for all g ∈ G and x ∈ X. Note that if f is
G-equivariant and x ∈ X then f(OrbG(x)) = OrbG(f(x)) (exercise). Notice also
that f |OrbG(x) is determined by f(x) and StabG(x) 6 StabG(f(x)). In fact this
condition is also sufficient so

|{G− equivariant functions OrbG(x)→ Y }| = |{y ∈ Y | StabG(x) 6 StabG(y)}.
Question. What is the equivalent notion for representations

Our main goal is to classify all representations of a (finite) group G and un-
derstand maps between them. A secondary goal is to use this theory to better
understand groups (eg Burnside’s paqb theorem that says there are no finite simple
groups whose order has precisely two distinct prime factors).

1.1. Linear algebra revision. By vector space we will always mean a finite di-
mensional vector space over a field k. For this course k will usually be algebraically
closed and of characteristic zero, for example C. However there are rich theories
for more general fields.

Given a vector space V , we define

GL(V ) = Aut(V ) = {f : V → V | f linear and invertible}
the general linear group of V ; GL(V ) is a group under composition of linear maps.

Because all our vector spaces are finite dimensional, V ∼= kd for some d > 0.
Such an isomorphism determines a basis e1, . . . , ed for V . Then

GL(V ) ∼= {A ∈ Matd(k) | det(A) 6= 0}.
This isomorphism is given by the map that sends the linear map f to the matrix
A such that f(ei) = Ajiej .

Exercise. Check that this does indeed define an isomorphism of groups. ie check
that f is an isomorphism if and only if detA 6= 0; and that the given map is a
bijective group homomorphism.

If k = Rd and 〈−,−〉 is an inner product on V then

O(V ) := {f ∈ GL(V ) | 〈f(v), f(w)〉 = 〈v, w〉 ∀v, w ∈ V }
Choosing an orthonormal basis defines an isomorphism

O(V ) ∼= {A ∈ Matd(R) | AAT = I} =: O(d).

If k = C and 〈−,−〉 is a (Hermitian) inner product on V ,

U(V ) := {f ∈ GL(V ) | 〈f(v), f(w)〉 = 〈v, w〉 ∀v, w ∈ V }
This time choosing an o.n. basis defines an isomorphism

U(V ) ∼= {A ∈ Matd(C) | AĀT = I} =: U(d).
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Lecture 2

1.2. Group representations.

Definition. A representation ρ of a group G on a vector space V is a group
homomorphism ρ : G→ GL(V ).

By abuse of notation we will sometimes refer to the representation by ρ, some-
times by the pair (ρ, V ) and sometimes just by V with the ρ implied. This can
sometimes be confusing but we have to live with it.

Thus defining a representation of G on V corresponds to assigning a linear map
ρ(g) : V → V to each g ∈ G such that

(i) ρ(e) = idV ;
(ii) ρ(gh) = ρ(g)ρ(h) for all g, h ∈ G;
(iii) ρ(g−1) = ρ(g)−1 for all g ∈ G.

Exercise. Show that (iii) is redundant in the above.

Given a basis for V a representation ρ is an assignment of a matrix ρ(g) to each
g ∈ G such that (i),(ii) and (iii) hold.

Definition. The degree of ρ or dimension of ρ is dimV .

Definition. We say a representation ρ is faithful if ker ρ = {e}.
Examples.

(1) Let G be any group and V = k. Then ρ : G → Aut(V ); g 7→ id is called the
trivial representation.

(2) Let G = C2 = {±1}, V = R2, then

ρ(1) =

(

1 0
0 1

)

; ρ(−1) =

(

−1 0
0 1

)

is a group rep of G on V .
(3) Let G = (Z,+), V a vector space, and ρ a representation of G on V . Then

necessarily ρ(0) = idV , and ρ(1) is some invertible linear map f on V . Now
ρ(2) = ρ(1 + 1) = ρ(1)2 = f2. Inductively we see ρ(n) = fn for all n > 0.
Finally ρ(−n) = (fn)−1 = (f−1)n. So ρ(n) = fn for all n ∈ Z.

Notice that conversely given any invertible linear map f : V → V we may
define a representation of G on V by ρ(n) = fn.

Thus we see that there is a 1-1 correspondence between representations of Z

and invertible linear transformations given by ρ 7→ ρ(1).
(4) Let G = (Z/N,+), and ρ : G→ GL(V ) a rep. As before we see ρ(n) = ρ(1)n for

all n ∈ Z but now we have the additional constraint that ρ(N) = ρ(0) = idV .
Thus representations of Z/N correspond to invertible linear maps f such

that fN = idV . Of course any linear map such that fN = idV is invertible so
we may drop the word invertible from this correspondence.

Exercise. Check the details

(5) If G is a group generated by x1, . . . , xn and with relations (words in xi, x
−1
i

equal to the identity in G) r1(x1, . . . , xn), . . . , rm(x1, . . . , xn) , then there is a 1-
1 correspondence between representations of G on V and n-tuples of invertible
linear maps (A1, . . . , An) on V such that ri(A1, . . . , An) = idV .
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(6) Let G = S3, the symmetric group of {1, 2, 3}, and V = R2. Take an equilateral
triangle in V centred on 0; thenG acts on the triangle by permuting the vertices.
Each such symmetry induces a linear transformation of V . For example g =
(12) induces the reflection through the vertex three and the midpoint of the
opposite side, and g = (123) corresponds to a rotation by 2π/3.

Exercise. Choose a basis for R2. Write the coordinates of the vertices of the
triangle in this basis. For each g ∈ S3 write down the matrix of the corre-
sponding linear map. Check that this does define a representation of S3 on V .
Would the calculations be easier in a different basis?

(7) Given a finite set X we may form the vector space kX of functions X to k with
basis 〈δx | x ∈ X〉 where δx(y) = δxy.

Then an action of G on X induces a representation ρ : G → Aut(kX) by
(ρ(g)f)(x) = f(g−1 · x) called the permutation representation of G on X.

To check this is a representation we must check that each ρ(g) is linear, that
ρ(e) = id and ρ(gh) = ρ(g)ρ(h) for each g, h ∈ G.

For the last observe that for each x ∈ X,

ρ(g)(ρ(h)f)(x) = (ρ(h)f)(g−1x) = f(h−1g−1x) = ρ(gh)f(x).

Notice that ρ(g)δx(y) = δx,g−1·y = δg·x,y so ρ(g)δx = δg·x. So by linearity
ρ(g)(

∑

x∈X λxδx) =
∑

λxδg·x.
(8) In particular if G is finite then the action of G on itself induces the regular

representation kG of G. The regular representation is always faithful because
gδe = δe implies that ge = e and so g = e.

(9) If ρ : G → GL(V ) is a representation of G then we can use ρ to define a
representation of G on V ∗

ρ∗(g)(f)(v) = f(ρ(g−1)v); ∀f ∈ V ∗, v ∈ V.

Exercise. Prove that ρ∗ is a representation of V . Moreover, show that if
e1, . . . , en is a basis for V and ǫ1, . . . , ǫn is its dual basis then the matrices
representing ρ(g) and ρ∗(g) are related by ρ(g)∗ = (ρ(g)−1)t.

(10) More generally, if (ρ, V ), (ρ′,W ) are representations of G then (α,Homk(V,W ))
defined by

α(g)(f)(v) = ρ′(g)f(ρ(g)−1v); ∀g ∈ G, f ∈ Homk(V,W ), v ∈ V
is a rep of G.

Note that if W = k is the trivial rep. this reduces to example 9. If instead
V = k then Homk(k,W ) ∼= W ; f 7→ f(1) is an isomorphism of representations
in a sense to be defined next lecture.

Lecture 3

1.3. The category of representations. We want to classify all representations
of a group G but first we need a good notion of when two representations are the
same.

Notice that if ρ : G → GL(V ) is a representation and ϕ : V → V ′ is a vector
space isomorphism then we may define ρ′ : G→ GL(V ′) by ρ′(g) = ϕ ◦ ρ(g) ◦ ϕ−1.
Then ρ′ is also a representation.
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Definition. We say that ρ : G → GL(V ) and ρ′ : G → GL(V ′) are isomorphic
representations if there is a linear isomorphism ϕ : V → V ′ such that

ρ′(g) = ϕ ◦ ρ(g) ◦ ϕ−1 for all g ∈ G
i.e. if ρ′(g) ◦ ϕ = ϕ ◦ ρ(g). We say that ϕ intertwines ρ and ρ′.

Notice that if ϕ intertwines ρ and ρ′ and ϕ′ intertwines ρ′ and ρ′′ then ϕ′ϕ inter-
twines ρ and ρ′′ and ϕ−1 intertwines ρ′ and ρ. Thus isomorphism is an equivalence
relation.

If ρ : G→ GLd(k) is a matrix representation then an intertwining map kd → kd

is an invertible matrix P and the matrices of the reps it intertwines are related
by ρ′(g) = Pρ(g)P−1. Thus matrix representations are equivalent precisely if they
correspond to the same representation with respect to different bases.

Examples.

(1) If G = {e} then a representation of G is just a vector space and two vector
spaces are isomorphic as representations if and only if they have the same
dimension.

(2) If G = Z then ρ : G → GL(V ) and ρ′ : G → GL(V ′) are isomorphic reps if
and only if there are bases of V and V ′ such that ρ(1) and ρ′(1) are the same
matrix. In other words isomorphism classes of representations of Z correspond
to conjugacy classes of invertible matrices. Over C the latter is classified by
Jordan Normal Form (more generally by rational canonical form).

(3) If G = C2 = {±1} then isomorphism classes of representations of G correspond
to conjugacy classes of matrices that square to the identity. Since the minimal
polynomial of such a matrix divides X2 − 1 = (X − 1)(X + 1) provided the
field does not have characteristic 2 every such matrix is conjugate to a diagonal
matrix with diagonal entries all ±1.

Exercise. Show that there are precisely n+ 1 isomorphism classes of represen-
tations of C2 of dimension n.

(4) IfX,Y are finite sets with aG-action and f : X → Y is aG-equivariant bijection
then ϕ : kX → kY defined by ϕ(θ)(y) = θ(f−1y) intertwines kX and kY . (Note
that ϕ(δx) = δf(x))

Note that two isomorphic representations must have the same dimension but
that the converse is not true.

Definition. Suppose that ρ : G→ GL(V ) is a rep. We say that a k-linear subspace
W of V is G-invariant if ρ(g)(W ) ⊂W for all g ∈ G (ie ρ(g)(w) ∈W for all g ∈ G
and w ∈W ).

In that case we call W a subrepresentation of V ; we may define a representation
ρW : G→ GL(W ) by ρW (g)(w) = ρ(g)(w) for w ∈W .

We call a subrepresentation W of V proper if W 6= V and W 6= 0. We say that
V 6= 0 is irreducible or simple if it has no proper subreps.

Examples.

(1) Any one-dimensional representation of a group is irreducible.

(2) Suppose that ρ : Z/2→ GL(k2) is given by −1 7→
(

−1 0
0 1

)

(char k 6= 2). Then

there are precisely two proper subreps spanned by

(

1
0

)

and

(

0
1

)

respectively.
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Proof. It is easy to see that these two subspaces are G-invariant. Any proper
subrep must be one dimensional and so by spanned by an eigenvector of ρ(−1).
But the eigenspaces of ρ(−1) are precisely those already described. �

(3) If G is C2 then the only irreducible representations are one-dimensional.

Proof. Suppose ρ : G→ GL(V ) is an irreducible rep. The minimal polynomial
of ρ(−1) divides X2 − 1 = (X − 1)(X + 1). Thus ρ(−1) has an eigenvector v.
Now 0 6= 〈v〉 is a subrep. of V . Thus V = 〈v〉. �

Notice we’ve shown along the way that there are precisely two simple reps
of G if k doesn’t have characteristic 2 and only one if it does.

(4) If G = D6 then every irreducible complex representation has dimension at most
2.

Proof. Suppose ρ : G → GL(V ) is an irred. G-rep. Let r be a non-trivial
rotation and s a reflection in G. Then ρ(r) has a eigenvector v, say. So
ρ(r)v = λv for some λ 6= 0. Consider W := 〈v, ρ(s)v〉 ⊂ V . Since ρ(s)ρ(s)v = v
and ρ(r)ρ(s)v = ρ(s)ρ(r)−1v = λ−1ρ(s)v, W is G-invariant. Since V is irred,
W = V . �

Exercise. Classify all irred reps of D6 up to iso (Hint: λ3 = 1 above). Note in
particular that D6 has an irred. rep. of degree 2.

Lemma. Suppose ρ : G → GL(V ) is a rep. and W ⊂ V . Then the following are
equivalent:

(i) W is a subrep;
(ii) there is a basis v1, . . . , vd of V such that v1, . . . , vr is a basis of W and the

matrices ρ(g) are all block upper triangular;
(iii) for every basis v1, . . . , vd of V such that v1, . . . , vr is a basis of W the matrices

ρ(g) are all block upper triangular.

Proof. Think about it! �

Definition. If W is a subrep of a rep (ρ, V ) of G then we may define a quotient
representation by ρV/W : G → GL(V/W ) by ρ(g)(v + W ) = ρ(g)(v) + W . Since
ρ(g)W ⊂W for all g ∈ G this is well-defined.

Next time, we want to formulate a ‘first isomorphism theorem for representa-
tions’.

Lecture 4

We’ll start dropping ρ now and write g for ρ(g) where it won’t cause confusion.

Definition. If (ρ, V ) and (ρ′,W ) are reps of G we say a linear map ϕ : V →W is
a G-linear map if ϕg = gϕ (ie ϕ ◦ ρ(g) = ρ′(g) ◦ ϕ) for all g ∈ G. We write

HomG(V,W ) = {ϕ ∈ Homk(V,W ) | ϕ is G linear},
a k-vector space.

Remarks.

(1) IfW 6 V is a subrep then the natural inclusion map ι : W → V is in HomG(W,V )
and the natural projection map π : V → V/W is in HomG(V, V/W ).
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(2) ϕ ∈ Homk(V,W ) is an intertwining map precisely if φ is a bijection and φ is in
HomG(V,W ).

(3) Recall that Homk(V,W ) is aG-rep via (gϕ)(v) = g(ϕ(g−1v)) for ϕ ∈ Homk(V,W ),
g ∈ G and v ∈ V . Then ϕ ∈ HomG(V,W ) precisely if gϕ = ϕ for all g ∈ G.

Note if ϕ ∈ HomG(V,W ) is a vector space isomorphism then ϕ intertwines the
isomorphic reps V and W .

Lemma. Suppose (ρ, V ) and (ρ′,W ) are representations of G and ϕ ∈ HomG(V,W )
then

(i) kerϕ is a subrep of V .
(ii) Imϕ is a subrep of W .
(iii) V/ kerϕ is isomorphic to Imϕ as reps of G.

Proof.
(i) if v ∈ kerϕ and g ∈ G then ϕ(gv) = gϕ(v) = 0
(ii) if w = ϕ(v) ∈ Imϕ and g ∈ G then gw = ϕ(gv) ∈ Imϕ.
(iii) We know that the linear map ϕ induces a linear isomorphism

ϕ : V/ kerϕ→ Imϕ; v + kerϕ 7→ ϕ(v)

then gϕ(v + kerϕ) = g(ϕ(v)) = ϕ(gv) = ϕ(gv + kerϕ) �

2. Complete reducibility and Maschke’s Theorem

Question. Given a representation V and a subrepresentation W when can we find
a vector space complement of W that is also a subrepresentation?

Example. Suppose G = C2, V = R2 and ρ(−1) =

(

−1 0
0 1

)

, W =

〈(

1
0

)〉

has

many vector space complements but only one of them,

〈(

0
1

)〉

, is a subrep.

Definition. We say a representation V is a direct sum of U and W if U and W are
subreps of V such that V = U⊕W as vector spaces (ie V = U+W and U∩W = 0).

Given two representations (ρ1, U) and (ρ2,W ) we may define a representation of
G on U ⊕W by ρ(g)(u,w) = (ρ1(g)u, ρ2(g)w).

Examples.

(1) If G acts on a finite set X so that X may be written as the disjoint union
of two G-invariant subsets X1 and X2. Then kX ∼= kX1 ⊕ kX2 under
f 7→ (f |X1

, f |X2
).

That is kX = {f | f(x) = 0 ∀x ∈ X2} ⊕ {f | f(x) = 0 ∀x ∈ X1}.
More generally if the G-action on X decomposes into orbits as a disjoint

union X =
⋃Oi then kX ∼=

⊕

kOi.
(2) IfG acts transitively on a finite setX then U := {f ∈ kX |∑x∈X f(x) = 0}

and W := {f ∈ kX | f is constant} are subreps of kX. If k is charactersitic
0 then kX = U ⊕W . What happens if k has characteristic p > 0?

(3) (Exercise) Show that the C-rep of Z on 〈e1, . . . , en〉 given by ρ(1)(e1) = e1
and ρ(1)(ei) = ei + ei−1 for i > 1 has precisely n − 1 proper subreps
〈e1, . . . , ek〉 for 1 6 k < n. Deduce that no proper subrep has a G-invariant
complement.
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Proposition. Suppose ρ : G→ GL(V ) is a rep. and V = U ⊕W as vector spaces.
Then the following are equivalent:

(i) V = U ⊕W as reps;
(ii) there is a basis v1, . . . , vd of V such that v1, . . . , vr is a basis of U and vr+1, . . . vd

is a basis for W and the matrices ρ(g) are all block diagonal;
(iii) for every basis v1, . . . , vd of V such that v1, . . . , vr is a basis of U and vr+1, . . . , vd

is a basis for W and the matrices ρ(g) are all block diagonal.

Proof. Think about it! �

But warning:

Example. ρ : Z/2 → GL2(R); 1 7→
(

−1 −2
0 1

)

defines a representation (check).

The representation R2 breaks up as 〈e1〉 ⊕ 〈e1 − e2〉 as subreps even though the
matrix is upper triangular but not diagonal.

We’ve seen by considering G = Z that it is not true that for every reperesentation
of a group G, every subrepresentation has a G-invariant complement. However, we
can prove the following remarkable theorem.

Theorem (Maschke’s Theorem). Let G be a finite group and (ρ, V ) a represen-
tation of G over a field k of characteristic zero. Suppose W ⊂ V is an invariant
subspace. Then there is a G-invariant complement to W ie a G-invariant subspace
U of V such that V = U ⊕W .

Corollary (Complete reducibility). If G is a finite group, (ρ, V ) a representation
over a field of characteristic zero. Then V ∼= W1 ⊕ · · ·Wr is a direct sum of
representations with each Wi irreducible.

Proof. By induction on dimV . If dimV = 0 or V is irreducible then the result is
clear. Otherwise V has a non-trivial G-invariant subspace W .

By the theorem there is a G-invariant complement U and V ∼= U ⊕W as G-reps.
But dimU,dimW < dimV , so by induction they each break up as a direct sum of
irreducibles subreps. Thus V does also. �

Example. We saw before that every representation of Z/2 over C is a direct sum
of 1-dimensional subreps as we may diagonalise ρ(−1). Let’s think about how this
might generalise:

Suppose that G is a finite abelian group, and (ρ, V ) is a complex representation
of G. Each element g ∈ G has finite order so has a minimal polynomial dividing
Xn − 1 for n = o(g). In particular it has distinct roots. Thus there is a basis for
V such that ρ(g) is diagonal. But because G is abelian ρ(g) and ρ(h) commute
for each pair g, h ∈ G and so the ρ(g) may be simultaneously diagonalised (Sketch
proof: if each ρ(g) is a scalar matrix the result is clear. Otherwise pick g ∈ G such
that ρ(g) is not a scalar matrix. Each eigenspace E(λ) of ρ(g) will be G-invariant
since G is abelian. By induction on dimV we may solve the problem for each
subrep E(λ) and then put these subreps back together). Thus V decomposes as a
direct sum of one-dimensional reps. Of course, this technique can’t work in general
because (a) ρ(g) and ρ(h) won’t commute in general; (b) not every irreducible rep
is one-dimensional in general. Thus we’ll need a new idea.
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Example. Let G act on a finite set X, and consider the real permutation represen-
tation RX = {f : X → R} with (ρ(g)f)(x) = f(g−1x).

Idea: with respect to the given basis δx all the matrices ρ(g) are orthogonal; that
is they preserve distance. This is because the standard inner product with respect
to the basis is 〈f1, f2〉 =

∑

x∈X f1(x)f2(x) and so for each g ∈ G

〈ρ(g)f1, ρ(g)f2〉 =
∑

x∈X

f1(g
−1x)f2(g

−1x) = 〈f1, f2〉

since g permutes the elements of X.
In particular if W is a subrep of RX and W⊥ := {v ∈ RX | 〈v,W 〉 = 0} then if

g ∈ G and v ∈W⊥ and w ∈W we have (suppressing the ρ) 〈w, gv〉 = 〈g−1w, v〉 = 0
since g−1w ∈ W . Thus G preserves W⊥ which is thus a G-invariant complement
to W .

Lecture 5

Recall the statement of Maschke’s theorem.

Theorem (Maschke’s Theorem). Let G be a finite group and (ρ, V ) a represen-
tation of G over a field k of characteristic zero. Suppose W ⊂ V is an invariant
subspace. Then there is a G-invariant complement to W ie a G-invariant subspace
U of V such that V = U ⊕W .

We’re going to prove this first for k = C using inner products and the idea from
the example at the end of the last lecture and then adapt the proof to general
characteristic zero fields.

Recall, if V is a complex vector space then a Hermitian inner product is a positive
definite Hermitian sesquilinear map (−,−) : V × V → C that is a map satisfying

(i) (ax+ by, z) = a(x, z) + b(y, z) and (x, ay+ bz) = a(x, y) + b(x, z) for a, b ∈ C,
x, y, z ∈ V (sesquilinear);

(ii) (x, y) = (y, x) (Hermitian);
(iii) (x, x) > 0 for all x ∈ V \{0} (positive definite).

If W ⊂ V is a linear subspace of a complex vector space with a Hermitian inner
product and W⊥ = {v ∈ V | (v, w) = 0 ∀w ∈ W} then W⊥ is a vector space
complement to W in V .

Definition. A Hermitian inner product on a G-rep V is G-invariant if (gx, gy) =
(x, y) for all g ∈ G and x, y ∈ V ; equivalently if (gx, gx) = (x, x) for all g ∈ G and
x ∈ V .

Lemma. If (−,−) is a G-invariant Hermitian inner product on a G-rep V and
W ⊂ V is a subrep then W⊥ is a G-invariant complement to W .

Proof. It suffices to prove that W⊥ is G-invariant since W⊥ is a complement to W .
Suppose g ∈ G, x ∈ W⊥ and w ∈ W . Then (gx,w) = (x, g−1w) = 0 since

g−1w ∈W . Thus gx ∈W⊥ as required. �

Proposition (Weyl’s unitary trick). If V is a complex representation of a finite
group G, then there is a G-invariant Hermitian inner product on V .
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Proof. Pick any Hermitian inner product 〈−,−〉 on V (e.g. choose a basis e1, . . . , en

and take the standard inner product 〈∑λiei,
∑

µiei〉 =
∑

λiµi). Then define a
new inner product (−,−) on V by averaging:

(x, y) :=
1

|G|
∑

g∈G

〈gx, gy〉.

It is easy to see that (−,−) is a Hermitian innder product because 〈−,−〉 is so. For
example if a, b ∈ C and x, y, z ∈ V , then

(x, ay + bz) =
1

|G|
∑

g∈G

〈gx, g(ay + bz)〉

=
1

|G|
∑

g∈G

〈gx, ag(y) + bg(z)〉

=
1

|G|
∑

g∈G

(a〈gx, gy〉+ b〈gx, gz〉)

= a(x, y) + b(z, y)

as required.
But now if h ∈ G and x, y ∈ V then

(hx, hy) =
1

|G|
∑

g∈G

〈ghx, ghy〉 =
1

|G|
∑

g′∈G

〈g′x, g′y〉

and so (−,−) is G-invariant. �

Corollary. For every complex representation V of a finite group G, every sub-
representation has a G-invariant complement and so V splits as a direct sum of
irreducible subreps.

Proof. Apply the Proposition and then the Lemma.
�

Corollary (of Weyl’s unitary trick). Every finite subgroup G of GLn(C) is conju-
gate to a subgroup of U(n).

Proof. First notice that G 6 U(n) if and only if (gx, gy) = (x, y) for all x, y ∈ Cn

and g ∈ G — here (−,−) denotes the standard inner product with respect to the
standard basis of Cn.

By the unitary trick we can find a G-invariant Hermitian inner product 〈−,−〉
and choose an orthonormal basis for Cn with respect to 〈−,−〉 using Gram-Schmidt,
say.

Let P be the change of basis matrix from the standard basis to the newly con-
structed basis. Then 〈Pa, Pb〉 = (a, b) for a, b ∈ V . So for each g ∈ G

(P−1gPa, P−1gPb) = 〈gPa, gPb〉 = 〈Pa, Pb〉 = (a, b).

Thus P−1gP ∈ U(n) for each g ∈ G as required. �

Thus studying all complex representations of a finite group G is equivalent to
studying unitary (ie distance preserving) ones.

We now adapt our proof of complete reducibility to handle any field of charac-
teristic k, even if there is no notion of inner product.
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Theorem (Maschke’s Theorem). Let G be a finite group and V a representation of
G over a field k of characteristic zero. Then every subrep W of V has a G-invariant
complement.

Proof. Choose some projection π : V →W ; ie a k-linear map π : V →W such that
π(w) = w for all w ∈W .

Now kerπ is a vector space complement to W since (1) if v ∈ kerπ ∩W then
v = 0 and (2) π(v − π(v)) = 0 for all v ∈ V so V = W + kerπ. Moreover kerπ is
G-invariant if π ∈ HomG(V,W ). So we try to build a G-linear projection V → W
by averaging π.

Recall that Homk(V,W ) is a rep of G via (gϕ)(v) = g(ϕ(g−1v)). Let π′ : V →W
be defined by

π′ :=
1

|G|
∑

g∈G

(gπ)

Then π′(w) = 1
|G|

∑

g∈G g(π(g−1w)) = w since g(π(g−1w)) = w for all g ∈ G and

w ∈W . Moreover for h ∈ G, (hπ′) = 1
|G|

∑

g∈G(hg)π = π′.

Thus π′ ∈ HomG(V,W ) and π′ is a G-invariant projection V → W . So kerπ′ is
the required G-invariant complement to W . �

Remarks.

(1) We can explicitly compute π′ and kerπ′ given (ρ, V ) and W .
(2) Notice that we only use char k = 0 when we invert |G|. So in fact we only need

that the characteristic of k does not divide |G|.
(3) For any G-reps V,W , the map

Hom(V,W )→ HomG(V,W )

given by ϕ 7→ 1
|G|

∑

g∈G gϕ when the characteristic of k does not divide |G| is
a k-linear projection.

(4) In fact every irreducible representation of G is a submodule of the regular
representation kG (see Ex Sheet 1 Q10 or the section on characters for a proof
in characteristic zero).

An observation that we should have made earlier: if θ : H → G is a group homo-
morphism then every representation ρ : G→ GL(V ) of G induces a representation
ρθ : H → GL(V ) of H.

If H is a subgroup of G and θ is inclusion we call this restriction to H.

3. Schur’s Lemma

We’ve proven in characteristic zero that every representation V of a finite group
G decomposed V =

⊕

Vi with Vi irreducible. We might ask how unique this is.
Three possible hopes:

(1) (uniqueness of decomposition) For each V there is only one way to decompose
V =

⊕

Vi with Vi irreducible (cf orbit decomposition for group actions on sets).
(2) (uniqueness of isotypical decomposition) For each V there exist unique subreps

W1, . . . ,Wk st V =
⊕

Wi and if Vi 6 Wi and V ′
j 6 Wj are irred. subreps then

Vi
∼= V ′

j if and only if i = j (cf eigenspaces of a diagonalisable linear map).
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(3) (uniqueness of factors) If
⊕k

i=1 Vi
∼=
⊕k′

i=1 V
′
i with Vi, V

′
i irreducible then k = k′

and there is σ ∈ Sk such that V ′
σ(i)
∼= Vi (cf dimensions of eigenspaces of a

diagonalisable linear map).

Lecture 6

We ended last time asking whether the following might be true for a represen-
tation V of a finite group G over k of characteristic zero:

(1) (uniqueness of decomposition) For each V there is only one way to decompose
V =

⊕

Vi with Vi irreducible (cf orbit decomposition for group actions on sets).
(2) (uniqueness of isotypical decomposition) For each V there exist unique subreps

W1, . . . ,Wk st V =
⊕

Wi and if Vi 6 Wi and V ′
j 6 Wj are irred. subreps then

Vi
∼= V ′

j if and only if i = j (cf eigenspaces of a diagonalisable linear map).

(3) (uniqueness of factors) If
⊕k

i=1 Vi
∼=
⊕k′

i=1 V
′
i with Vi, V

′
i irreducible then k = k′

and there is σ ∈ Sk such that V ′
σ(i)
∼= Vi (cf dimensions of eigenspaces of a

diagonalisable linear map).

Notice that (1) is clearly too strong. For example if G is the trivial group and
dimV > 1 then every line in V gives an irreducible subrep. This non-uniqueness is
roughly measured in this case by GL(V ).

Notice also that (2) (and so (3)) is true for Z/2Z — the Wi are the eigenspaces
of ρ(1).

Theorem (Schur’s Lemma). Suppose that V and W are irreducible reps of G over
k. Then

(i) every element of HomG(V,W ) is either 0 or an isomorphism,
(ii) if k is algebraically closed then dimk HomG(V,W ) is either 0 or 1 .

In other words irreducible representations are rigid.

Proof. (i) Let ϕ be a non-zero G-linear map from V to W . Then kerϕ is a G-
invariant subspace of V . Thus kerϕ = 0, since it cannot be the whole of V .
Similarly imϕ is a subrep of W so imϕ = W since it cannot be 0. Thus ϕ is both
injective and surjective, so an isomorphism.

(ii) Suppose ϕ1, ϕ2 ∈ HomG(V,W ) are non-zero. Then by (i) they are both
isomorphisms. Consider ϕ = ϕ−1

1 ϕ2 ∈ HomG(V, V ). Since k is algebraically closed
we may find λ an eigenvalue of ϕ then ϕ − λ idV has non-trivial kernel and so is
zero. Thus ϕ−1

1 ϕ2 = λ idV and ϕ2 = λϕ1 as required. �

Proposition. If V, V1 and V2 are k-representations of G then

HomG(V, V1 ⊕ V2) ∼= HomG(V, V1)⊕HomG(V, V2)

and

HomG(V1,⊕V2, V ) ∼= HomG(V1, V )⊕HomG(V2, V ).

Proof. Let πi : V1 ⊕ V2 → Vi be the G-linear projection onto Vi with kernel V3−i.
Then the map HomG(V, V1 ⊕ V2) → HomG(V, V1) ⊕ HomG(V, V2) given by ϕ 7→
(π1ϕ, π2ϕ) has inverse (ψ1, ψ2) 7→ ψ1 + ψ2.

Similarly the map HomG(V1,⊕V2, V ) ∼= HomG(V1, V ) ⊕ HomG(V2, V ) given by
ϕ 7→ (ϕ|V1

, ϕ|V2
) has inverse (ψ1, ψ2) 7→ ψ1π1 + ψ2π2. �
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Corollary. Suppose k is algebraically closed and

V ∼=
r
⊕

i=1

Vi

is a decomposition of a k-rep. of G into irreducible components.
Then for each irreducible representation W of G,

|{i | Vi
∼= W}| = dim HomG(W,V ).

Proof. By induction on r. If r = 0, 1 we’re done.

If r > 1 consider V as
(

⊕r−1
i=1 Vi

)

⊕ Vr. By the Proposition

dim HomG(W,

(

r−1
⊕

i=1

Vi

)

⊕ Vr) = dim HomG(W,

r−1
⊕

i=1

Vi) + dim HomG(W,Vr).

Now the result follows by the induction hypothesis. �

Important question: How do we actually compute these numbers dim HomG(V,W ).

Corollary. (of Schur’s Lemma) If a finite group G has a faithful complex irreducible
representation then the centre of G, Z(G) is cyclic.

Proof. Let V be a faithful complex irreducible rep of G, and let z ∈ Z(G). Then
let ϕz : V → V be defined by ϕz(v) = zv. Since gz = zg for all g ∈ G, ϕz ∈
HomG(V, V ) = C idV by Schur, ϕz = λz idV , say.

Now Z(G) → C; z 7→ λz is a representation of Z(G) that must be faithful since
V is faithful. In particular Z(G) is isomorphic to a finite subgroup of C×. But
every such subgroup is cyclic. �

Corollary. (of Schur’s Lemma) Every irreducible complex representation of a finite
abelian group G is one-dimensional.

Proof. Let (ρ, V ) be a complex irred. rep of G. For each g ∈ G, ρ(g) ∈ HomG(V, V ).
So by Schur, ρ(g) = λg idV for some λg ∈ C. Thus for v ∈ V non-zero, 〈v〉 is a
subrep of V . �

Corollary. Every finite abelian group G has precisely |G| complex irreducible rep-
resentations.

Proof. Let ρ be an irred. complex rep of G. By the last corollary, dim ρ = 1. So
ρ : G→ C× is a group homomorphism.

Since G is a finite abelian group G ∼= Cn1
× · · · × Cnk

some n1, . . . , nk. Now
if G = G1 × G2 is the direct product of two groups then there is a 1-1 corre-
spondance between the set of group homomorphisms G → C× and the of pairs
(G1 → C×, G2 → C×) given by restriction ϕ 7→ (ϕ|G1

, ϕ|G2
). Thus we may reduce

to the case G = Cn = 〈x〉 is cyclic.
Now ρ is determined by ρ(x) and ρ(x)n = 1 so ρ(x) must be an nth root of unity.

Moreover we may choose ρ(x) however we like amongst the nth roots of 1. �
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Examples.
G = C4 = 〈x〉. G = C2 × C2 = 〈x, y〉.
1 x x2 x3

ρ1 1 1 1 1
ρ2 1 i −1 −i
ρ3 1 −1 1 1
ρ4 1 −i −1 i

1 x y xy
ρ1 1 1 1 1
ρ2 1 −1 1 −1
ρ3 1 1 −1 −1
ρ4 1 −1 −1 1

Note there is no natural correspondence between elements of G and representa-
tions ρ.

Note too that the rows of these matrices are orthogonal with respect to the
standard Hermitian inner product: 〈v, w〉 =

∑

viwi.

Lemma. If (ρ1, V1) and (ρ2, V2) are non-isomorphic one-dimensional representa-

tions of a finite group G then
∑

g∈G ρ1(g)ρ2(g) = 0

Proof. We’ve seen that Homk(V1, V2) is a G-rep under gϕ(v) = ρ2(g)ϕρ1(g
−1)

and
∑

g∈G gϕ ∈ HomG(V1, V2) = 0 by Schur. Since ρ1(g) is always a root of

unity, ρ1(g
−1) = ρ1(g). Pick an isomorphism ϕ ∈ Homk(V1, V2). Then 0 =

∑

g∈G ρ2(g)ϕρ1(g
−1) =

∑

g∈G ρ1(g)ρ2(g)ϕ as required. �

Lecture 7

Last time we finished by proving the following:

Lemma. If (ρ1, V1) and (ρ2, V2) are non-isomorphic one-dimensional representa-

tions of a finite group G then
∑

g∈G ρ1(g)ρ2(g) = 0

Corollary. Suppose G is a finite abelian group then every complex representation
V of G has a unique isotypical decomposition.

Proof. For each homomorphism θi : G → C× (i = 1, . . . , |G|) we can define Wi to
be the subspace of V defined by

Wi = {v ∈ V | ρ(g)v = θi(g)v for all g ∈ G}.

Since V is completely reducible and every irreducible rep of G is one dimensional
V =

∑

Wi. We need to show that for each i Wi ∩
∑

j 6=iWj = 0. It is equivalent to

show that
∑

wi = 0 with wi ∈Wi implies wi = 0 for all i.
But

∑

wi = 0 with wi in Wi certainly implies 0 = ρ(g)
∑

wi =
∑

θi(g)wi. By
choosing an ordering g1, . . . , g|G| of G we see that the |G| × |G| matrix θi(gj) is
invertible by the lemma. Thus wi = 0 for all i as required. �

Summary so far. We want to classify all representations of groups G. We’ve
seen that if G is finite and k has characteristic zero then every representation V
decomposes as V ∼=

⊕

niVi with Vi irreducible and ni > 0. Moreover if k is also
algebraically closed, we’ve seen that ni = dim HomG(Vi, V ).

Our next goals arre to classify all irreducible representations of a finite group and
understand how to compute the ni given V . We’re going to do this using character
theory.
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4. Characters

4.1. Definitions. We’ll now always assume k = C although almost always a field
of characteristic zero containing all nth roots of unity would suffice. We’ll also
assume that G is finite.

Definition. Given a representation ρ : G → GL(V ), the character of ρ is the
function χ = χρ = χV : G→ k given by g 7→ tr ρ(g).

Since for matrices tr(AB) = tr(BA), the character does not depend on the choice
of basis for V [tr(X−1AX) = tr(AXX−1) = tr(A)]. By the same argument we also
see that equivalent reps have the same character.

Example. Let G = D6 = 〈s, t | s2 = 1, t3 = 1, sts−1 = t−1〉, the dihedral group of
order 6. This acts on R2 by symmetries of the triangle; with t acting by rotation
by 2π/3 and s acting by a reflection. To compute the character of this rep we
just need to know the eigenvalues of the action of each element. Each reflection
(element of the form sti) will act by a matrix with eigenvalues ±1. Thus χ(sti) = 0

for all i. The rotations tr act by matrices

(

cos 2πr/3 − sin 2πr/3
sin 2πr/3 cos 2πr/3

)

thus χ(tr) =

2 cos 2πr/3 = −1 for r = 1, 2.

Proposition. Let (ρ, V ) be a complex rep of G with character χ

(i) χ(e) = dimV ;
(ii) χ(g) = χ(hgh−1) for all g, h ∈ G;

(iii) χ(g−1) = χ(g);
(iv) If χ′ is the character of (ρ′, V ′) then χ+ χ′ is the character of V ⊕ V ′.

Proof.
(i) χ(e) = tr idV = dimV .
(ii) ρ(hgh−1) = ρ(h)ρ(g)ρ(h)−1. Thus ρ(hgh−1) and ρ(g) are conjugate and so

have the same trace.
(iii) if ρ(g) has eigenvalues λ1, . . . , λn (with multiplicity) then χ(g) =

∑

λi. But

as o(g) is finite each λi must be a root of unity. Thus χ(g) =
∑

λi =
∑

λ−1
i but of

course the λ−1
i are the eigenvalues of g−1.

(iv) is clear. �

The proposition tells us that the character of ρ contains very little data; just a
complex number for each conjugacy class in G. The extraordinary thing that we
will see is that it contains all we need to know to reconstruct ρ up to isomorphism.

Definition. We say a function f : G → C is a class function if f(hgh−1) = f(g)
for all g, h ∈ G. We’ll write CG for the complex vector space of class functions on
G.

Notice that if O1, . . . ,Or is a list of the conjugacy classes of G then the ‘delta
functions’ δOi

: G→ C given by y 7→ 1 if y ∈ Oi and y 7→ 0 otherwise form a basis
for CG. In particular dim CG is the number of conjugacy classes in G.

Example. G = D6 = 〈s, t | s2 = t3 = e, sts = t−1〉 has conjugacy classes
{e}, {t, t−1}, {s, st, st2}.

We make CG into a Hermitian inner product space by defining

〈f, f ′〉 =
1

|G|
∑

f(g)f ′(g).
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It is easy to check that this does define an Hermitian inner product and that the

functions δOi
are pairwise orthogonal. Notice that 〈δOi

, δOi
〉 = |Oi|

|G| = 1
|CG(xi)|

for

any xi ∈ Oi.
Thus if x1, . . . , xr are conjugacy class representatives, then we can write

〈f, f ′〉 =

r
∑

i=1

1

|CG(xi)|
f(xi)f

′(xi).

Example. G = D6 as above, then 〈f, f ′〉 = 1
6f(e)f ′(e) + 1

2f(s)f ′(s) + 1
3f(t)f ′(t).

4.2. Orthogonality of characters.

Theorem (Orthogonality of characters). If V and V ′ are complex irreducible rep-
resentations of a finite group G then 〈χV , χV ′〉 is 1 if V ∼= V ′ and 0 otherwise.

Notice that this theorem tells us that the characters of irreducible reps form part
of an orthonormal basis for CG. In particular the number of irreducible represen-
tations is bounded above by the number of conjugacy classes of G. In fact we’ll
see that the characters span the space of class functions and so that the number
of irreps is precisely the number of conjugacy classes in G. We saw this when G is
abelian last time.

Lemma. If V and W are reps of a finite group G then

χHomk(V,W )(g) = χV (g)χW (g)

for each g ∈ G.

Proof. Given g ∈ G we may choose bases v1, . . . , vn for V and w1, . . . , wm for W
such that gvi = λivi and gwj = µjwj . Then the functions fij(vk) = ∂ikwj extend to

linear maps that form a basis for Hom(V,W ) and (g.fij)(vi) = λ−1
i µjwj thus gfij =

λ−1
i µjfij and χHom(V,W )(g) =

∑

i,j λ
−1
i µj = χV (g−1)χW (g) = χV (g)χW (g). �

Lemma. If U is a rep of G then

dim{u ∈ U | gu = u ∀g ∈ G} = 〈1, χU 〉 =
1

|G|
∑

g∈G

χU (g).

Proof. Define π : U → U by π(u) = 1
|G|

∑

g∈G gu, and UG := {u ∈ U | gu = u}.
Then hπ(u) = π(u) for all u ∈ U so π(u) ∈ UG for all u ∈ U . Moreover πUG = idUG

by direct calculation. Thus

dimUG = tr idUG = trπ =
1

|G|
∑

g∈G

χU (g)

as required. �

Lecture 8

Recall,

Lemma. If V,W are reps of a finite group G then χHomk(V,W ) = χV χW .

Lemma. If U is a rep of a finite group G then

dim{u ∈ U | gu = g ∀g ∈ G} = 〈1, χU 〉.
We can use these two lemmas to prove
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Proposition. If V and W are representations of G then

dim HomG(V,W ) = 〈χV , χW 〉.

Proof. By the lemmas dim HomG(V,W ) = 〈1, χV χW 〉. But it is easy to see that
〈1, χV χW 〉 = 〈χV , χW 〉 as required. �

Corollary (Orthogonality of characters). If χ, χ′ are characters of irreducible reps
then 〈χ, χ′〉 = δχ,χ′ .

Proof. Apply the Proposition and Schur’s Lemma �

Suppose now that V1, . . . , Vk is the list of all irreducible complex reps of G up
to isomorphism and the corresponding characters are χ1, . . . , χk. Then Maschke’s
Theorem tells us that any representation V may be written as a direct sum of copies
of the Vi, V ∼=

⊕

niVi. Thus χ =
∑

niχi.
As the χi are orthonormal we may compute 〈χ, χi〉 = ni. This is another proof

that the decomposition factors of V are determined by their composition factors.
However we get more: the composition factors of V can be computed purely from
its character; that is if we have a record of each of the irreducible characters, then
we now have a practical way of calculating how a given representation breaks up
as a direct sum of its irreducible components. Our main goal now is to investigate
how we might produce such a record of the irreducible characters.

Corollary. If ρ and ρ′ are reps of G then they are isomorphic if and only if they
have the same character.

Proof. We have already seen that isomorphic reps have the same character. Sup-
pose that ρ and ρ′ have the same character χ. Then they are each isomorphic to
〈χ1, χ〉ρ1 ⊕ · · · ⊕ 〈χk, χ〉ρk and thus to each other. �

Notice that complete irreducibility was a key part of the proof of this corollary,
as well as orthogonality of characters. For example the two reps of Z given by

1 7→ idC2 and 1 7→
(

1 1
0 1

)

are not isomorphic but have the same trace. Complete

irreducibility tells us we don’t need to worry about gluing.

Corollary. If ρ is a complex representation of G with character χ then ρ is irre-
ducible if and only if 〈χ, χ〉 = 1.

Proof. One direction follows immediately from the theorem on orthogonality of
characters. For the other direction, assume that 〈χ, χ〉 = 1. Then we may write
χ =

∑

niχi for some non-negative integers ni. By orthogonality of characters
1 = 〈χ, χ〉 =

∑

n2
i . Thus χ = χj for some j, and χ is irreducible. �

This is a good way of calcuating whether a representation is irreducible.

Examples.

(1) Consider the action of S3 on C2 by extending the symmetries of a triangle.
χ(1) = 2, χ(12) = χ(23) = χ(13) = 0, and χ(123) = χ(132) = −1. Now

〈χ, χ〉 =
1

6
(22 + 3 · 02 + 2 · (−1)2) = 1

so this rep is irreducible.
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(2) Consider the action of S4 on CX for X = {1, 2, 3, 4} induced from the
natural action of S4 on X. The conjugacy classes in S4 are 1 of size 1, (ab)
of size

(

4
2

)

= 6, (abc) of size 4.2 = 8, (ab)(cd) of size 3 and (abcd) of size 6.
We can compute that the character of this rep is given by

χ(g) = #{fixed points of g}.

So χ(1) = 1, χ((ab)) = 2, χ((abc)) = 1 and χ((ab)(cd) = χ(abcd) = 0. Thus
〈χ, χ〉 = 1/24(42+6·22+8·12+3·02) = 2. Thus if we decompose χ =

∑

niχi

into irreducibles we know
∑

n2
i = 2 then we must have χ = χ′ + χ′′ with

χ′ and χ′′ non-isomorphic irreps.
Notice that 〈1, χ〉 = 1/24(4+6 ·2+8 ·1+0) = 1 so one of the irreducible

constituents is the trivial rep. The other has character χ− 1.
In fact we have seen these subreps explicitly in this case. The constant

functions gives a trivial subrep and the orthogonal complement with respect
to the standard inner product (that is the set of functions that sum to zero)
gives the other.

Theorem (The character table is square). The irreducible characters of a finite
group G form a basis for the space of class functions CG on G.

Proof. We already know that the irreducible characters are linearly independent
(and orthonormal) we need to show that they span CG. Let I = 〈χ1, . . . , χr〉 be the
span of the irred. characters. We need to show that I⊥ = 0.

Suppose f ∈ CG. For each representation (ρ, V ) of G we may define ϕ ∈
Hom(V, V ) by ϕ = 1

|G|

∑

g∈G f(g)ρ(g).

Now,

ρ(h)−1ϕρ(h) =
1

|G|
∑

g∈G

f(g)ρ(h−1gh) =
1

|G|
∑

g′∈G

f(g′)ρ(g′)

since f is a class function, and we see that in fact ϕ ∈ HomG(V, V ). Moreover, if
f ∈ I⊥, then

trϕ = 〈f, tr ρ〉 = 0.

Now if V is an irreducible representation then Schur’s Lemma tells us that ϕ =
λ idV for some λ ∈ C. Since trϕ = 0 it follows that λ = 0 and so ϕ = 0.

But every representation breaks up as a direct sum of irreducible representations
V =

⊕

Vi and ϕ breaks up as
⊕

ϕi. So ϕ = 0 always.

But if we take V to be the regular representation CG then ϕ∂e = |G|−1
∑

g∈G f(g)∂g =

f . Thus f = 0. �

Corollary. The number of irreducible representations is the number of conjugacy
classes in the group.

Corollary. For each g ∈ G, χ(g) is real for every character χ if and only if g is
conjugate to g−1.

Proof. Since χ(g−1) = χ(g), χ(g) is real for every character χ if and only if χ(g) =
χ(g−1) for every character χ. Since the irreducible characters span the space of class
functions this is equivalent to g and g−1 living in the same conjugacy class. �
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4.3. Character tables. We now want to classify all the irreducible representations
of a given finite group and we know that it suffices to write down the characters of
each one.

The character table of a group is defined as follows: we list the conjugacy classes
of G, O1, . . . ,Ok (by convention always O1 = {e}) and choose gi ∈ Oi we then list
the irreducible characters χ1, . . . , χk (by convention χ1 = χC the character of the
trivial rep. Then we write the matrix

e g2 · · · gi · · · gk

χ1 1 1 · · · 1 · · · 1
...

...
χj · · · · · · · · · χj(gi) · · · · · ·
...

...

χk

...

Examples.

(1) C3 = 〈x〉
e x x2

χ1 1 1 1
χ2 1 ω ω2

χ3 1 ω2 ω

Notice that the rows are indeed orthogonal. The columns are too in this case.
(2) S3

There are three conjugacy classes: the identity is in a class on its own O1;
the three transpositions live in a another class O2; and the two 3-cycles live in
the third class O3.

There are three irreducible representations all together. We know that the
trivial representation 1 has character 1(g) = 1 for all g ∈ G. We also know
another 1-dimensional representation ǫ : S3 → {±1} given by g 7→ 1 if g is even
and g 7→ −1 if g is odd.

To compute the character χ of the last representation we may use orthogo-
nality of characters. Let χ(e) = a, χ((12)) = b and χ((123)) = c (a, b and c are
each real since each g is conjugate to its inverse). We know that 0 = 〈1, χ〉 =
1
6 (a+ 3b+ 2c), 0 = 〈ǫ, χ〉 = 1

6 (a− 3b+ 2c), and 1 = 〈χ, χ〉 = 1
6 (a2 + 3b2 + 2c2).

Thus we see quickly that b = 0, a + 2c = 0 and a2 + 2c2 = 0. We also know
that a is a positive integer. Thus a = 2 and c = −1.

1 3 2
e (12) (123)

1 1 1 1
ǫ 1 −1 1
χ 2 0 −1

In fact we already knew about this 2-dimensional representation; it is the one
coming from the symmetries of a triangle inside R2.

Lecture 9

Recall the character table of S3.

Example. S3
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1 3 2
e (12) (123)

1 1 1 1
ǫ 1 −1 1
χ 2 0 −1

The rows are orthogonal under 〈f, f ′〉 =
∑3

1
1

|CG(gi)|
f(gi)f

′(gi).

But the columns are also orthogonal with respect to the standard inner product.
If we compute their length we get:

12 + 12 + 22 = 6 = |S3|
12 + (−1)2 + 02 = 2 = |CS3

((12))|
12 + 12 + (−1)2 = 3 = |CS3

((123))|.

Proposition (Column Orthogonality). If G is a finite group and χ1, . . . , χr is a
complete list of the irreducible characters of G then for each g, h ∈ G,

r
∑

i=1

χi(g)χi(h) =

{

0 if g and h are not conjugate in G

|CG(g)| if g and h are conjugate in G.

In particular
∑r

i=1 dimV 2
i = |G|.

Proof of Proposition. LetX be character table thought of as a matrix; Xij = χi(gj)
and let D be the diagonal matrix whose diagonal entries are |CG(gi)|

Orthogonality of characters tell us that
∑

k

|CG(gk)|−1XikXjk = ∂ij

ie XD−1Xt = I.
Since X is square we may write this as D−1X

t
= X−1. Thus X

t
X = D. That

is
∑

k χk(gi)χk(gj) = ∂ij |CG(gi)| as required. �

Examples.
G = S4

|CG(xi)| 24 8 3 4 4
|[xi]| 1 3 8 6 6

e (12)(34) (123) (12) (1234)
1 1 1 1 1 1
ǫ 1 1 1 −1 −1
χ3 3 −1 0 1 −1
ǫχ3 3 −1 0 −1 1
χ5 2 2 −1 0 0

The trivial 1 and sign ǫ characters may be constructed in the same way as for S3.
We calculated last time that the natural permuation character breaks up as the
sum of a trivial character and a character whose values χ3(g) are the number of
fixed points of g minus 1.

We saw on Example Sheet 1 (Q2) that given a 1-dimensional represntation θ
and an irreducible representation ρ we may form another irreducible representation
θ⊗ ρ by θ⊗ ρ(g) = θ(g)ρ(g). It is not hard to see that χθ⊗ρ(g) = θ(g)χρ(g). Thus
we get another irreducible character ǫχ3.
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We can then complete the character table using column orthogonality: We note
that 24 = 12 + 12 + 32 + 32 +χ5(e)

2 thus χ5(e) = 2. Then using
∑5

1 χi(1)χi(g) = 0
we can construct the remaining values in the table.

Notice that the two dimensional representation corresponding to χ5 may be
obtained by composing the surjective group homomorphism S4 → S3 (with kernel
the Klein-4-group) with the irreducible two dimension rep of S3.
G = A4. Each irreducible representation of S4 may be restricted to A4 and its
character values on elements of A4 will be unchanged. In this way we get three
characters of A4, 1, ψ2 = χ3|A4

and ψ3 = χ5|A4
. If we compute 〈1,1〉 we of course

get 1. If we compute 〈ψ2, ψ2〉 we get 1
12 (32 + 3(−1)2 + 8(02)) = 1 so ψ2 remains

irreducible. However 〈ψ3, ψ3〉 = 1
12 (22 + 3(22) + 8(−1)2) = 2 so ψ3 breaks up into

two non-isomorphic irreducible reps of A4.

Exercise. Use this infomation to construct the whole character table of A4.

4.4. Permuation representations. Suppose that X is a finite set with a G-
action. Recall that CX = {f : X → C} is a representation of G via gf(x) =
f(g−1x).

Lemma. If χ is the character of CX then χ(g) = |{x ∈ X | gx = x}|.
Proof. If X = {x1, . . . , xd} and gxi = xj then g∂xi

= ∂xj
so the ith column of g has

a 1 in the jth entry and zeros elsewhere. So it contributes 1 to the trace precisely
if xi = xj . �

Corollary. If V1, . . . , Vk is a complete list of irreducible reps of a finite group
G then the regular representation decomposes as CG ∼= n1V1 ⊕ · · · ⊕ nkVk with
ni = dimVi = χi(e). In particular |G| =∑(dimVi)

2.

Proof. χCG(e) = |G| and χkG(g) = 0 for g 6= e. Thus if we decompose kG we
obtain

ni = 〈χCG, χi〉 =
1

|G| |G|χi(e) = χi(e)

as required. �

Proposition (Burnside’s Lemma). Let G be a finite group and X a finite set with
a G-action and χ the character of CX. Then 〈1, χ〉 is the number of orbits of G
on X.

Proof. If we decompose X into a disjoint of orbits X1 ∪ · · · ∪Xk then we’ve seen

that CX =
⊕k

i=1 CXi. So χX =
∑k

i=1 χXi
and we may reduce to the case that

G-acts transitively on X.
Now

|G|〈χX , 1〉 =
∑

g∈G

χX(g) =
∑

g∈G

|{x ∈ X | gx = x}

= |{(g, x) ∈ G×X | gx = x}| =
∑

x∈X

|{g ∈ G | gx = x}

=
∑

x∈X

|StabG(x)| = |X||StabG(X)| = |G|

as required. �
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If X is a set with a G-action we may view X ×X as a set with a G-action via
(g, (x, y)) 7→ (gx, gy).

Corollary. If G is a finite group and X is a finite set with a G-action and χ is
the character of the permutation representation CX then 〈χ, χ〉 is the number of
G-orbits on X ×X.

Proof. Notice that (x, y) is fixed by g ∈ G if and only if both x and y are fixed.
Thus χX×X(g) = χX(g)χX(g) by the lemma.

Now 〈χX , χX〉 = 1
|G|

∑

g∈G χX(g)χX(g) = 〈1, χX×X〉 and the result follows from

Burnside’s Lemma. �

Remark. If X is any set with a G-action with |X| > 1 then {(x, x)|x ∈ X} ⊂ X×X
is G-stable and so is the complement {(x, y) ∈ X ×X | x 6= y}.

We say that G acts 2-transitively on X if G has only two orbits on X×X. Given
a 2-transitive action of G on X we’ve seen that the character χ of the permutation
representation satisfies 〈χ, χ〉 = 2 and 〈1, χ〉 = 1. Thus CX has two irreducible
summands — the constant functions and the functions f such that

∑

x∈X f(x) = 0.

Exercise. If G = GL2(Fp) then decompose the permutation rep of G coming from
the action of G on Fp ∪ {∞} by Mobius transformations.

Lecture 10

5. The character ring

Given a finite group G, the set of class functions CG comes equipped with certain
algebraic structures: it is a commutative ring under pointwise addition and multipli-
cation — ie (f1+f2)(g) = f1(g)+f2(g) and f1f2(g) = f1(g)f2(g) for each g ∈ G, the
additive identity is the constant function value 0 and the multiplicative identity con-
stant value 1; there is a ring automorphism ∗ of order two given by f∗(g) = f(g−1);
and there is an inner product given by 〈f1, f2〉 = 1

|G|

∑

g∈G f
∗
1 (g)f2(g).

We will see that all this structure is related to structure on the category of
representations: we have already seen some of this. If V1 and V2 are representations
with characters χ1 and χ2 then χ1+χ2 = χV1⊕V2

and 〈χ1, χ2〉 = dim HomG(V1, V2).

Definition. The character ring R(G) of a group G is defined by

R(G) := {χ1 − χ2 | χ1, χ2 are characters of reps of G} ⊂ CG.
We’ll see that the character ring inherits all the algebraic structure of CG men-

tioned above.

5.1. Duality. Recall,

Definition. If G is group and (ρ, V ) is a representation of G then the dual repre-
sentation (ρ∗, V ∗) of G is given by (ρ∗(g)θ)(v) = θ(ρ(g−1)v) for θ ∈ V ∗, g ∈ G and
v ∈ V .

Lemma. χV ∗ = χ∗(V ).

Proof. This is a special case of our earlier computation χHomk(V,W ) = χV χW with
W the trivial representation. �

Definition. We say that V is self-dual if V ∼= V ∗ as representations of G.
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Over C, V is self-dual if and only if χV (g) ∈ R for all g ∈ G.

Examples.

(1) G = C3 = 〈x〉 and V = C. Ifρ is given by ρ(x) = ω = e
2πi
3 then ρ∗(x) = ω2 = ω

so V is not self-dual
(2) G = Sn: since g is always conjugate to its inverse in Sn, χ∗ = χ always and so

every representation is self-dual.
(3) Permuatation representations CX are always self-dual.

5.2. Tensor products. Suppose that V and W are vector spaces over a field k,
with bases v1, . . . , vm and w1, . . . , wn respectively. We may view V ⊕W either as
the vector space with basis v1, . . . , vm, w1, . . . , wn (so dimV ⊕W = dimV +dimW )
or more abstractly as the vector space of pairs (v, w) with v ∈ V and w ∈ W and
pointwise operations.

Example. If X and Y are sets then kX⊗kY has basis ∂x⊗∂y for x ∈ X and y ∈ Y .
Identifying this element with the function ∂x,y on X × Y given by ∂x,y(x′, y′) =
∂xx′∂yy′ = ∂x(x′)∂y(y′).

Definition. The tensor product V ⊗W of V and W is the vector space with basis
given by symobls vi ⊗ wj for 1 6 i 6 m and 1 6 j 6 n and so

dimV ⊗W = dimV · dimW.

Notice that now kX ⊗ kY is isomorphic to kX × Y under ∂x ⊗ ∂y 7→ ∂x,y.
If v =

∑

λivi ∈ V and w =
∑

µjwj ∈ W , it is common to write v ⊗ w for the
element

∑

i,j(λiµj)vi ⊗ wj ∈ V ⊗W . But note that usually not every element of

V ⊗W may be written in the form v ⊗ w (eg v1 ⊗ w1 + v2 ⊗ w2).

Lemma. There is a bilinear map V ×W → V ⊗W given by (v, w) 7→ v ⊗ w.

Proof. First, we should prove that if x, x1, x2 ∈ V and y, y1, y2 ∈W then

x⊗ (y1 + y2) = x⊗ y1 + x⊗ y2
and

(x1 + x2)⊗ y = x1 ⊗ y + x2 ⊗ y.
We’ll just do the first; the second is symmetric.

Write x =
∑

i λivi, yk =
∑

j µ
k
jwj for k = 1, 2. Then

x⊗ (y1 + y2) =
∑

i,j

λi(µ
1
j + µ2

j )vi ⊗ wj

and
x⊗ y1 + x⊗ y2 =

∑

i,j

λiµ
1
jvi ⊗ wj +

∑

i,j

λiµ
2
jvi ⊗ wj .

These are equal.
We should also prove that for λ ∈ k and v ∈ V and w ∈W then

(λv)⊗ w = λ(v ⊗ w) = v ⊗ (λw).

The proof is similar to the above. �

Exercise. Show that given vector spaces U, V and W there is a 1−1 correspondence
between

{linear maps V ⊗W → U} ↔ {bilinear maps V ×W → U}
given by composition with the bilinear map (v, w)→ v ⊗ w above.
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Lemma. If x1, . . . , xm is any basis of V and y1, . . . , ym is any basis of W then
xi ⊗ yj for 1 6 i 6 m and 1 6 j 6 n is a basis for V ⊗W . Thus the definition of
V ⊗W does not depend on the choice of bases.

Proof. It suffices to prove that the set {xi ⊗ yj} spans V ⊗W since it has size mn.
But if vi =

∑

r Arixr and wj =
∑

sBsjys then vi ⊗ wj =
∑

r,sAriBsjxr ⊗ ys. �

Remark. In fact we could have defined V ⊗W in a basis independent way in the
first place: let F be the (infinite dimensional) vector space with basis v ⊗ w for
every v ∈ V and w ∈W ; and R be the subspace generated by (λv)⊗w−λ(v⊗w),
v⊗(λw)−λ(v⊗w) for v ∈ V , w ∈W and λ ∈ k along with (x1+x2)⊗y−x1⊗y−x2⊗y
and x ⊗ (y1 + y2) − x ⊗ y1 − x ⊗ y2 for x, x1, x2 ∈ V and y, y1, y2 ∈ W ; then
V ⊗W ∼= F/R naturally.

Exercise. Show that for vector spaces U, V and W there is a natural (basis inde-
pendent) isomorphism

(U ⊕ V )⊗W → (U ⊗W )⊕ (V ⊗W ).

Lecture 11

Definition. Suppose that V and W are vector spaces with bases v1, . . . , vn and
w1, . . . , wn and ϕ : V → V and ψ : W → W are linear maps. We can define
ϕ⊗ ψ : V ⊗W → V ⊗W as follows:

(ϕ⊗ ψ)(vi ⊗ wj) = ϕ(vi)⊗ ψ(wj).

Example. If ϕ is represented by the matrix Aij and ψ is represented by the matrix
Bij and we order the basis vi ⊗ wj lexicographically (ie v1 ⊗ w1, v1 ⊗ w2, . . . , v1 ⊗
wn, v2 ⊗ w1, . . . , vm ⊗ wn) then ϕ⊗ ψ is represented by the block matrix







A11B A12B · · ·
A21B A22B · · ·

...
...

. . .







Lemma. The linear map ϕ⊗ ψ does not depend on the choice of bases.

Proof. It suffices to show that for any v ∈ V and w ∈W ,

(ϕ⊗ ψ)(v ⊗ w) = ϕ(v)⊗ ψ(w).

Writing v =
∑

λivi and w =
∑

µjwj we see

(ϕ⊗ ψ)(v ⊗ w) =
∑

i,j

λiµjϕ(vi)⊗ ψ(wj) = ϕ(v)⊗ ψ(w)

as required. �

Remark. The proof really just says V ×W → V ⊗W defined by (v, w) 7→ ϕ(v)⊗ψ(w)
is bilinear and ϕ⊗ ψ is its correspondent in the bijection

{linear maps V ⊗W → V ⊗W} → {bilinear maps V ×W → V ⊗W}
from last time.

Lemma. Suppose that ϕ,ϕ1, ϕ2 ∈ Homk(V, V ) and ψ,ψ1, ψ2 ∈ Homk(W,W )

(i) (ϕ1ϕ2)⊗ (ψ1ψ2) = (ϕ1 ⊗ ψ1)(ϕ2 ⊗ ψ2) ∈ Homk(V ⊗W,V ⊗W );
(ii) idV ⊗ idW = idV ⊗W ; and
(iii) tr(ϕ⊗ ψ) = trϕ · trψ.
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Proof. Given v ∈ V , w ∈W we can use the previous lemma to compute

(ϕ1ϕ2)⊗ (ψ1ψ2)(v ⊗ w) = ϕ1ϕ2(v)⊗ ψ1ψ2(w) = (ϕ1 ⊗ ψ1)(ϕ2 ⊗ ψ2)(v ⊗ w).

Since elements of the form v⊗w span V ⊗W and all maps are linear it follows that

(ϕ1ϕ2)⊗ (ψ1ψ2) = (ϕ1 ⊗ ψ1)(ϕ2 ⊗ ψ2)

as required.
(ii) is clear.
For the formula relating traces it suffices to stare at the example above:

tr







A11B A12B · · ·
A21B A22B · · ·

...
...

. . .






=
∑

i,j

BiiAjj = trA trB.

�

Definition. Given two representation (ρ, V ) and (ρ′,W ) of a group G we can define
the representation (ρ⊗ ρ′, V ⊗W ) by (ρ⊗ ρ′)(g) = ρ(g)⊗ ρ′(g).
Proposition. If (ρ, V ) and (ρ′,W ) are representations of G then (ρ⊗ ρ′, V ⊗W )
is a representation of G and χρ⊗ρ′ = χρ · χρ′ .

Proof. This is an straightforward consequence of the lemma. �

Remarks.

(1) It follows that R(G) is closed under multiplication.
(2) Tensor product of representations defined here is consistent with our earlier

notion when one of the representations is one-dimensional.
(3) It follows from the lemma that if (ρ, V ) is a representation of G and (ρ′,W )

is a representation of another group H then we may make V ⊗W into a
rep of G×H via

ρV ⊗W (g, h) = ρ(g)⊗ ρ′(h).
In the proposition we take the case G = H and then restrict this represen-
tation to the diagonal subgroup G ∼= {(g, g)} ⊂ G×G.

(4) If X,Y are finite sets with G-action it is easy to verify that kX ⊗ kY ∼=
kX × Y as representations of G (or even of G×G).

Now return to our assumption that k = C.

Proposition. Suppose G and H are finite groups.
Let (ρ1, V1), . . . , (ρr, Vr) be a complete list of the irreducible complex represen-

tations of G and (ρ′1,W1), . . . , (ρ
′
s,Ws) a complete list of the irreducible complex

representations of H. For each 1 6 i 6 r and 1 6 j 6 s, (ρi ⊗ ρ′j , Vi ⊗ Wj)
is an irreducible complex representation of G × H. Moreover, all the irreducible
representations of G×H arise in this way.

We have seen this before when G and H are abelian since then all these repre-
sentations are 1-dimensional.

Proof. Let χ1, . . . , χr be the characters of V1, . . . , Vr and ψ1, . . . , ψs the characters
of W1, . . . ,Ws.

The character of Vi ⊗Wj is χi ⊗ ψj : (g, h) 7→ χi(g)ψj(h). Then

〈χi ⊗ ψj , χk ⊗ ψl〉G×H = 〈χi, χk〉G〈ψj , ψl〉H = ∂ik∂jl.
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So the χi ⊗ ψj are irreducible and pairwise distinct.
Now

∑

i,j dim(Vi ⊗Wj)
2 = (

∑

i dimV 2
i )(
∑

j dimW 2
j ) = |G|||H| = |G × H| so

we must have them all. �

Exercise. Show both directly and using characters that if U, V,W are representa-
tions ofG then V⊗W ∼= Homk(V ∗,W ) and Homk(V⊗W,U) ∼= Homk(V,Homk(W,U))
as representations of G.

Question. If V and W are irreducible then must V ⊗W be irreducible?

We’ve seen the answer is yes is one of V and W is one-dimensional but it is not
usually true.

Example. G = S3

1 3 2
e (12) (123)

1 1 1 1
ǫ 1 −1 1
V 2 0 −1

Clearly, 1 ⊗W = W always. ǫ ⊗ ǫ = 1, ǫ ⊗ V = V and V ⊗ V has character χ2

given by χ2(1) = 4, χ2(12) = 0 and χ2(123) = 1. Thus χ2 decomposes as 1+ ǫ+χ.

In fact V ⊗ V, V ⊗ V ⊗ V, . . . are never irreducible if dimV > 1.
Given a vector space V , define σ = σV : V ⊗ V → V ⊗ V by σ(v ⊗ w) 7→ w ⊗ v

for all v, w ∈ V (exercise: check this does uniquely define a linear map). Notice
that σ2 = id and so σ decomposes V ⊗ V into two eigenspaces:

S2V := {a ∈ V ⊗ V | σa = a}
Λ2V := {a ∈ V ⊗ V | σa = −a}

Lemma. Suppose v1, . . . , vm is a basis for V .

(i) S2V has a basis vivj := 1
2 (vi ⊗ vj + vj ⊗ vi) for 1 6 i 6 j 6 d.

(ii) Λ2V has a basis vi ∧ vj := 1
2 (vi ⊗ vj − vj ⊗ vi) for 1 6 i < j 6 d.

Thus dimS2V = 1
2m(m+ 1) and dim Λ2V = 1

2m(m− 1).

Remark. We usually write vi ∧ vj := −vj ∧ vi for j < i and vi ∧ vi = 0.

Proof. It is easy to check that the union of the two claimed bases form a basis for
V ⊗ V , that the vivj do all live in S2V and that the vi ∧ vj do all live in Λ2V .
Everything follows. �

Proposition. Let (ρ, V ) be a representation of G.

(i) S2V and Λ2V are subreps of V ⊗ V and V ⊗ V = S2V ⊕ Λ2V .
(ii) for g ∈ G,

χS2V (g) =
1

2
(χ(g)2 + χ(g2))

χΛ2V (g) =
1

2
(χ(g)2 − χ(g2)).

Proof. For (i) we need to show that if a ∈ V ⊗ V and σV (a) = λa for λ = ±1 then
σV ρ(g)(a) = λρ(g)(a) for each g ∈ G. For this it suffices to prove that σg = gσ (ie
σ ∈ HomG(V ⊗ V, V ⊗ V )). But σ ◦ g(v ⊗ w) = gw ⊗ gv = g ◦ σ(v ⊗ w).
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To compute (ii), let v1, . . . , vm be a basis of eigenvectors for ρ(g) with eigenvalues
λ1, . . . , λm. Then g(vivj) = (λiλj)vivj and g(vi ∧ vj) = (λiλj)vi ∧ vj .

Thus χS2V (g) =
∑

i6j λiλj, whereas

χ(g)2 + χ(g2) = (
∑

i

λi)
2 +

∑

i

λ2
i = 2

∑

i6j

λiλj.

Similarly χΛ2V (g) =
∑

i<j λiλj , and

χ(g)2 − χ(g2) = (
∑

i

λi)
2 −

∑

i

λ2
i =

∑

i<j

λiλj .

�

Lecture 12

Recall that given a representation V of G we’ve defined subrepresentations S2V
and Λ2V of V ⊗ V such that

χS2V (g) =
1

2
(χ(g)2 + χ(g2))

χΛ2V (g) =
1

2
(χ(g)2 − χ(g2)).

Example. S4

1 3 8 6 6
e (12)(34) (123) (12) (1234)

1 1 1 1 1 1
ǫ 1 1 1 −1 −1
χ3 3 −1 0 1 −1
ǫχ3 3 −1 0 −1 1
χ5 2 2 −1 0 0
χ2

3 9 1 0 1 1
χ3(g

2) 3 3 0 3 −1
S2χ3 6 2 0 2 0
Λ2χ3 3 −1 0 −1 1

Thus S2χ3 = χ5 + χ3 + 1 and Λ2χ3 = ǫχ3. Notice that given 1 and ǫ and χ3

we could’ve constructed the remaining two irreducible characters using S2χ3 and
Λ2χ3.

Exercise. Show that if V is self-dual then either 〈1, χS2V 〉 6= 0 or 〈1, χΛ2V 〉 6= 0.

Last time we thought about S2V and Λ2V by considering the ’swap’ action of
C2 on V ⊗ V ; v ⊗ w 7→ w ⊗ v. More generally, for any vector space V we may
consider V ⊗n = V ⊗ · · · ⊗ V . Then for any σ ∈ Sn we can define a linear map
ρ(σ) : V ⊗n → V ⊗n by

ρ(σ) : v1 ⊗ · · · vn 7→ vσ−1(1) ⊗ · · · vσ−1(n)

for v1, . . . , vn ∈ V
Exercise. Show that this defines a representation of Sn on V ⊗n.

If V is a representation of a group G then the action of G on V ⊗n via

v1 ⊗ · · · ⊗ vn 7→ gv1 ⊗ · · · ⊗ gvn
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commutes with the Sn-action. Thus we can decompose V ⊗n as a rep of Sn and
each isotypical component should be a G-invariant subspace of V ⊗n. In particular
we can make the following definition.

Definition. Suppose that V is a vector space we define

(i) the nth symmetric power of V to be

SnV := {a ∈ V ⊗n | σω(a) = a for all ω ∈ Sn}
and

(ii) the nth exterior (or alternating) power of V to be

ΛnV := {a ∈ V ⊗n | σω(a) = ǫ(ω)a for all ω ∈ Sn}.

Note that SnV ⊕ ΛnV = {a ∈ V ⊗n | σω(a) = a for all ω ∈ An} ( V ⊗n.
We also define the following notation for v1, . . . , vn ∈ V ,

v1 · · · vn :=
1

n!

∑

σ∈Sn

vσ(1) ⊗ · · · ⊗ vσ(n) ∈ SnV

and

v1 ∧ · · · ∧ vn :=
1

n!

∑

σ∈Sn

ǫ(σ)vσ(1) ⊗ · · · ⊗ vσ(n) ∈ ΛnV.

Exercise. Show that if v1, . . . , vd is a basis for V then

{vi1 · · · vin
| 1 6 i1 6 · · · 6 in 6 d}

is a basis for SnV and

{vi1 ∧ · · · ∧ vin
| 1 6 i1 < · · · < in 6 d}

is a basis for ΛnV . Hence given g ∈ V , compute the character values χSnV (g) and
χΛnV in terms of the eigenvalues of g on V .

For any vector space V , Λdim V ∼= k and ΛnV = 0 if n > dimV .

Exercise. Show that if (ρ, V ) is a representation of G then the representation of G
on Λdim V V ∼= k is given by g 7→ det ρ(g); ie the dimV th exterior power of V is
isomorphic to det ρ.

In characteristic zero, we may stick these vector spaces together to form algebras.

Definition. Given a vector space V we may define the tensor algebra of V ,

TV := ⊕n>0V
⊗n

(where V ⊗0 = k). Then TV is a (non-commutative) graded ring with the product
of v1 ⊗ · · · ⊗ vr ∈ V ⊗r and w1 ⊗ · · · ⊗ ws ∈ V ⊗s given by

v1 ⊗ · · · ⊗ vr ⊗ w1 ⊗ · · · ⊗ ws ∈ V ⊗r+s.

with graded quotient rings the symmetric algebra of V ,

SV := TV/(x⊗ y − y ⊗ x | x, y ∈ V ),

and the exterior algebra of V ,

ΛV := TV/(x⊗ y + y ⊗ x | x, y ∈ V ).
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One can show that SV ∼=
⊕

n>0 S
nV under x1 ⊗ · · · ⊗ xn 7→ x1 · · ·xn and

ΛV ∼=
⊕

n>0 ΛnV under x1 ⊗ · · · ⊗ xn 7→ x1 ∧ · · · ∧ xn.
Now SV is a commutive ring and ΛV is graded-commutative; that is if x ∈ ΛrV

and y ∈ ΛsV then x ∧ y = (−1)rsy ∧ x.
We’ve now got a number of ways to build representations:

• permutation representations coming from group actions;
• via representations of quotient groups and groups containing our group

(restriction);
• tensor products;
• symmetric and exterior powers;
• decomposition of these into irreducible components;
• character theoretically using orthogonality of characters.

We’re now going to discuss one more way related to restriction.

6. Induction

Suppose that H is a subgroup of G. Restriction turns representations of G into
representations of H. We would like a way of building representations of G from
representations of H. There is a good way of doing so called induction although it
is a little more delicate than restriction.

If G is a finite group and W is a k-vector space we may define Hom(G,W ) to
be the vector space of all functions G → W under pointwise addition and scalar
multiplication. This may be made into a representation of G by defining

(g · f)(x) := f(g−1x)

for each g, x ∈ G. If w1, . . . , wn is a basis for W then {∂gwi | g ∈ G, 1 6 i 6 n} is
a basis for Hom(G,W ). So dim Hom(G,W ) = |G|dimW .

Lemma. Hom(G,W ) ∼= (dimW )kG as representations of G.

Proof. Given a basis w1, . . . , wn for W , define the linear map

Θ:
n
⊕

i=1

kG→ Hom(G,W )

by

Θ((fi)
n
i=1)(x) =

n
∑

i=1

fi(x)wi.

It is easy to see that Θ is injective because the wi are linearly independent so by
comparing dimensions we see that Θ is a vector-space isomorphism.

It remains to prove that Θ is G=linear. If g, x ∈ G then

g · (Θ((fi)
n
i=1))(x) =

n
∑

i=1

fi(g
−1x)wi = Θ(g · (fi)

n
i=1)(x)

as required. �

Exercise. Use the basis of Hom(G,W ) given above to find a character-theoretic
proof of the lemmma.



30 SIMON WADSLEY

Now, if H is a subgroup of G and W is a representation of H then we can define

HomH(G,W ) := {f ∈ Hom(G,W ) | f(xh) = h−1f(x) ∀x ∈ G,h ∈ H},

a k-linear subspace of Hom(G,W ).

Example. If W = 1 is the trivial representation of H and f ∈ Hom(G,1), then
f ∈ HomH(G,1) if and only if f(xh) = f(x) for h ∈ H and x ∈ G. That is
HomH(G,1) consists of the functions that are constant on each left coset in G/H.
Thus HomH(G,1) can be identified with kG/H. One can check that this identifi-
cation is G-linear.

Lemma. HomH(G,W ) is a G-invariant subspace of Hom(G,W ).

Proof. Let f ∈ HomH(G,W ), g, x ∈ G and h ∈ H we must show that

(g · f)(xh) = h−1(g · f)(x).

But (g · f)(xh) = f(g−1xh) = h−1f(g−1x) = h−1(g · f)(x) as required. �

Definition. Suppose that H is a subgroup of G of finite index and W is a represen-
tation of H. We define the induced representation to be IndG

H W := HomH(G,W )

Lecture 13

Recall from last time:

Definition. Suppose that H is a subgroup of G and W is a representation of H.
We define the induced representation by

IndG
H W := HomH(G,W ) = {f : G→W | f(xh) = h−1f(x) for all x ∈ G,h ∈ H}

Remark. Since IndG
H 1 = kG/H, IndG

H does not send irreducibles to irreducibles in
general.

Proposition. Suppose W is a representation of H then

(i) dim IndG
H W = |G|

|H| dimW ;

(ii) for g ∈ G,

χIndG
H

W (g) =
1

|H|
∑

x∈G

x−1gx∈H

χW (x−1gx).

Remarks.

(1) x−1gx ∈ H if and only if gxH = xH so if W is the trivial representation
the rhs of formula in (ii) becomes |{xH ∈ G/H | gxH = xH}| and we get
the permutation character of kG/H as required.

(2) If we write χ◦
W for the function on G such that χ◦

W (g) = χW (g) if x ∈ H
and χ◦

W (g) = 0 if g 6∈ H, then the formula in (ii) becomes

χIndG
H

W (g) =
1

|H|
∑

x∈G

χ◦
W (x−1gx);

this is clearly a class function.



REPRESENTATION THEORY 31

(3) If [h1], . . . , [hm] is a list of the H-conjugacy classes such that x−1gx ∈ [hi]
some x ∈ G then we can write this as

χIndG
H

W (g) =

m
∑

i=1

|CG(g)|
|CH(hi)|

χW (hi).

This is the most useful formula for computation.

Example. G = S3 and H = A3 = {1, (123), (132)}.
If W is any rep of H then

χIndG
H

W (e) = 2χW (e),

χIndG
H

W ((12)) = 0, and

χIndG
H

W ((123)) = χW ((123)) + χW ((132)).

So

A3 1 (123) (132)
χ1 1 1 1
χ2 1 w w2

χ3 1 w2 w

S3 1 (12) (123)
Indχ1 2 0 2
Indχ2 2 0 −1
Indχ3 2 0 −1

So IndG
H χ2 = IndG

H χ3 is the 2-dimensional irreducible character of S3 and

IndG
H χ1 = 1 + ǫ as expected.

Proof of Proposition. Let x1, . . . , xr be left coset representatives in G/H. Then
f ∈ HomH(G,W ) is determined by the values of f(x1), . . . , f(xr) ∈W .

Moreover, given w1, . . . , wr ∈ W we can define f ∈ HomH(G,W ) via f(xih) =
h−1wi for i = 1, . . . , r and h ∈ H. Thus

Θ: HomH(G,W )→
r
⊕

i=1

W

defined by f 7→ (f(xi))
r
i=1 is an isomorphism of vector spaces and part (i) is done.

Following this argument, we see that given w ∈W , and 1 6 i 6 r, we can define
ϕi,w ∈ HomH(G,W ) by

ϕi,w(xjh) = ∂ijh
−1w

for each h ∈ H and 1 6 j 6 r.
Now given g ∈ G, let’s consider how g acts on a ϕi,w. For each coset represen-

tative xi there is a unique σ(i) and hi ∈ H such that g−1xi = xσ(i)hi ∈ xσ(i)H,
and

(g · ϕi,w)(xj) = ϕi,w(g−1xj) = ϕi,w(xσ(j)hj) = ∂iσ(j)h
−1
j w.

Thus g · ϕi,w = ϕσ−1(i),h−1

σ−1(i)
w.

Thus g acts on
⊕r

i=1W via a block permutation matrix and we only get con-
tributions to the trace from the non-zero diagonal blocks which correspond to the
fixed points of σ. Moreover if σ(i) = i then g acts on Wi via h−1

i = x−1
i gxi

Thus
tr gIndG

H
W =

∑

i

χ◦
W (x−1

i gxi).

Since G = {xih | h ∈ H} and χ◦
W (h−1gh) = χ◦

W (g) for all g ∈ G and h ∈ H we
may rewrite this as

tr gIndG
H

W =
1

|H|
∑

x∈G

χ◦
W (xgx−1)
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as required. �

If V is a representation of G, we’ll write ResG
H V for the representation of H

obtained by restriction.

Proposition (Frobenius reciprocity). Let V be a representation of G, and W a
representation of H, then

(i) 〈χV , IndG
H χW 〉G = 〈ResG

H χV , χW 〉H ;

(ii) HomG(V, IndG
H W ) ∼= HomH(ResG

H V,W ).

Proof. We’ve already seen that (i) implies (ii).
Now

〈χV , IndG
H χW 〉G =

1

|G|
∑

g∈G

χV (g)χIndG
H

W (g)

=
1

|G||H|
∑

g∈G

∑

x∈G

χV (g)χ◦
W (x−1gx)

=
1

|G|
∑

x∈G

∑

g′∈G

χV (xg′x−1)χ◦
W (g′) (g′ = x−1gx)

=
1

|H|
∑

g′∈H

χV (g′)χW (g′)

= 〈ResG
H χV , χW 〉H

as required. �

Exercise. Prove (ii) directly by considering

Θ: HomG(V,HomH(G,W ))→ HomH(V,W )

defined by Θ(f)(v) = f(v)(e).

6.1. Mackey Theory. This is the study of representations like ResG
K IndG

H W for
H,K subgroups of G and W a representation of H. We can (and will) use it to

characterise when IndG
H W is irreducible.

Recall that if G acts transitively on a set X then for x ∈ X there is a bijection
G/StabG(x)→̃X given by g StabG(x) 7→ gx that commutes with the G-action (ie
g′(g StabG(x)) = (g′g) StabG(x) 7→ g′gx = g′(gx)).

If H,K are subgroups of G we can restrict the action of G on G/H to K

K ×G/H → G/H; (k, gh) 7→ kgH.

The the union of an orbit of this action is called a double coset. The union of the
K-orbit of gH is written KgH := {kgh | k ∈ K,h ∈ H}.
Definition. K\G/H := {KgH | g ∈ G} is the set of double cosets.

The double cosets K\G/H partition G.
Notice that kgH = gH if and only if k ∈ gHg−1. Thus as a set with a K-action,

KgH→̃K/(K ∩ gHg−1).

Proposition. If G,H,K as above then

ResG
K IndG

H 1 ∼=
⊕

g∈K\G/H

IndK
gHg−1∩K 1.
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Proof. This follows from the discussion above, together with the general facts that
IndG

H 1 = kG/H and that if X =
⋃

Xi is a decomposition of X into orbits then
kX ∼=

⊕

kXi. �

Lecture 14

Recall from last time,

Proposition. If G is a finite group and H,K are subgroups of G, then

ResG
K IndG

H 1 ∼=
⊕

g∈K\G/H

IndK
gHg−1∩K 1.

Given any representation (ρ,W ) of H and g ∈ G, we can define (gρ,g W ) to be
the representation of gH := gHg−1 6 G on the underlying vector space W given
by (gρ)(ghg−1) = ρ(h) for h ∈ H.

Theorem (Mackey’s Restriction Formula). If G is a finite group with subgroups
H and K, and W is a representation of H then

ResG
K IndG

H W ∼=
⊕

g∈K\G/H

IndK
K∩gH Res

gH
gH∩K

gW.

Proof. For each double coset KgH we can define

Vg = {f ∈ IndG
H W | f(x) = 0 for all x 6∈ KgH}.

Then Vg is a K-invariant subspace of IndG
H W since we always have (kf)(x) =

f(k−1x). Thus there is a decomposition

ResG
K IndG

H W ∼=
⊕

g∈K\G/H

Vg

and it suffices to show that for each g,

Vg
∼= IndK

K∩gH Res
gH
gH∩K

gW

as representations of K.

Note dimVg = dimW |OrbK(gH)| = dimW |K|
|StabK(gH)| = dimW |K|

|K∩gHg−1| and

this last is dim IndK
K∩gH Res

gH
gH∩K

gW . So it suffices to find an injective K-linear
map Θ: Vg → HomK∩gH(K,g W ).

Define such a Θ by Θ(f)(k) = f(kg). If ghg−1 ∈ K for some h ∈ H,

Θ(f)(kghg−1) = f(kgh)

= ρ(h−1)f(kg)

= (gρ)(ghg−1)−1Θ(f)(k)

Thus Im Θ 6 IndK
K∩gH Res

gH
K∩gH

gW .
Also, if k′ ∈ K then

(k′Θ(f))(k) = f(k′−1kg) = (k′f)(kg) = Θ(k′f)(k)

and so Θ is K-linear. �
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Corollary (Character version of Mackey’s Restriction Formula). If χ is a character
of a representation of H then

ResG
K IndG

H χ =
∑

g∈K\G/H

IndK
gH∩K

gχ.

where gχ is the class function on gH ∩K given by gχ(x) = χ(g−1xg).

Exercise. Prove this corollary directly with characters

Corollary (Mackey’s irreducibility criterion). If H is a subgroup of G and W is a

representation of H, then IndG
H W is irreducible if and only if

(i) W is irreducible and

(ii) for each g ∈ G\H, the two representations Res
gH
H∩gH

gW and ResH
gH∩H W of

H ∩g H have no irreducible factors in common.

Proof.

HomG(IndG
H W, IndG

H W )
Frob. recip.∼= HomH(W,ResG

H IndG
H W )

Mackey∼=
⊕

g∈H\G/H

HomH(W, IndH
H∩gH Res

gH
H∩gH

gW )

Frob. recip.∼=
⊕

g∈H\G/H

HomH∩gH(ResH
H∩gH W,Res

gH
H∩gH

gW )

We know that IndG
H W is irreducible precisely if this space has dimension 1. The

summand corresponding to the coset HeH = H is HomH(W,W ) which has dimen-
sion 1 precisely if W is irreducible and the other summands are all zero precisely if
condition (ii) of the statement holds. �

Corollary. If H is a normal subgroup of G ,and W is an irreducible rep of H then
IndG

H W is irreducible if and only if gχW 6= χW for all g ∈ G\H.

Proof. Since H is normal, gHg−1 = H for all g ∈ G. Moreover gW is irreducible
since W is irreducible.

So by Mackey’s irreducibility criterion, IndG
H W irreducible precisely if W 6∼= gW

for all g ∈ G\H. This last is equivalent to χW 6= gχW as required.
�

Examples.
(1) H = 〈r〉 ∼= Cn, the rotations in G = D2n. The irreducible characters χ of H

are all of the form χ(rj) = e
2πijk

n . We see that IndG
H χ is irreducible if and only

if χ(rj) 6= χ(r−j) for some j. This is equivalent to χ not being real valued.
(2) G = Sn and H = An. If g ∈ Sn is a cycle type that splits into two conjugacy

classes in An and χ is an irreducible character of An that takes different values
of the two classes then IndG

H χ is irreducible.
(3) (Exercise) Let G = GL2(Fp) be the group of invertible 2 × 2-matrices with

coefficients in the field with p elements and let B be the subgroup of upper-
triangular matrices. Show that B\G/B has two elements B and BsB where

s =

(

0 1
1 0

)

.
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Deduce that if χ is a character of B given by χ

((

a b
0 d

))

= χ1(a)χ2(b)

with χ1, χ2 characters F×
p → C then IndG

B χ is irreducible if and only if χ1 6= χ2.

Lecture 15

6.2. Frobenius groups.

Definition. A Frobenius group is a finite group G that has a transitive action on
a set X with |X| > 1 such that each g ∈ G\{e} fixes at most one x ∈ X and
StabG(x) 6= {e} for some (all) x ∈ X.

Examples.

(a) G = D2n with n odd acting naturally on the vertices of an n-gon.

(b) G =

{(

a b
0 1

)

| a, b ∈ Fp, a 6= 0

}

acting on X =

{(

x
1

)

| x ∈ Fp

}

by matrix

multiplication.

Lemma. G is a Frobenius group if and only if G has a proper subgroup H such
that H ∩ gHg−1 = {e} for all g ∈ G\H.

Proof. Suppose the action of G on X shows G to be Frobenius and pick x ∈ X.
Let H := StabG(x) for some fixed x ∈ X, a proper subgroup of G. Then

gHg−1 = StabG(gx) for each g ∈ G. Since no element of G\{e} fixes more than
one x ∈ X it follows that gHg−1 ∩H = {e} for each g ∈ G\H.

Conversely, let X = G/H with the left regular action. �

Theorem. (Frobenius) Let G be a finite group acting transitively on a set X. If
each g ∈ G\{e} fixes at most one element of X then

K = {1} ∪ {g ∈ G | gx 6= x for all x ∈ X}
is a normal subgroup of G of order |X|.
Remarks.

(1) Any Frobenius group satisfies the conditions of the theorem. The normal
subgroup K is called the Frobenius kernel and the group H is called the
Frobenius complement.

(2) No proof of the theorem is known that does not use representation theory.
(3) In his thesis Thompson proved, amongst other things, that the Frobenius

kernel must be a direct product of its Sylow subgroups.

Proof. For x ∈ X, let H = StabG(x).
We know that StabG(gx) = gHg−1. But by the hypothesis on the action

StabG(gx) ∩ StabG(x) = {e}
whenever gx 6= x. Thus H has |X| conjugates and G has (|H| − 1)|X| elements
that fix precisely one element of X.

But |G| = |H||X| by the orbit-stabiliser theorem, and so

|K| = |H||X| − (|H| − 1)|X| = |X|
as required. We must show that it is a normal subgroup of G.

Our strategy will be to prove that it is the kernel of some representation of G.
Suppose e 6= h ∈ H and that h = gh′g−1 for some g ∈ G and h′ ∈ H then

h ∈ StabG(x) ∩ StabG(gx), so gx = x and g ∈ H. Thus
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• h and h′ in H are conjugate in G if and only if they are conjugate in H.
• |CG(h)| = |CH(h)| for e 6= h ∈ H

Now if χ is a character of H we can compute IndG
H χ:

IndG
H χ(g) =











|X|χ(e) if g = e

χ(h) if g = h ∈ H\{e}
0 if g ∈ K\{e}

Suppose now that χ1, . . . , χr is a list of the irreducible characters of H and let
θi = IndG

H χi + χi(e)1G − χi(e) IndG
H 1H ∈ R(G) for i = 1, . . . , r and so

θi(g) =











χi(e) if g = e

χi(h) if g = h ∈ H
χi(e) if g ∈ K

If θi were a character then the corresponding representation would have ker-
nel containing K. Since θi ∈ R(G) we can write it as a Z-linear combination of
irreducible characters θi =

∑

niψi, say.
Now we can compute

〈θi, θi〉G =
1

|G|
∑

g∈G

|θi(g)|2

=
1

|G|





∑

h∈H\{e}

|X||χi(h)|2 +
∑

k∈K

χi(e)
2





=
|X|
|G|

(

∑

h∈H

|χi(h)|2
)

= 〈χi, χi〉H = 1

But on the other hand it must be
∑

n2
i . Thus θi is ±ψ for some character ψ of G.

Since θi(e) > 0 it must actually be an irreducible character.
To finish we write θ =

∑

χi(e)θi and so θ(h) =
∑

χi(e)χi(h) = 0 for h ∈ H\{e}
by column orthogonality, and θ(k) =

∑

χi(e)
2 = |H| for k ∈ K. Thus K = ker θ is

a normal subgroup of G. �

7. Arithmetic properties of characters

In this section we’ll investigate how arithmetic properties of characters produce
a suprising interplay between the structure of the group and properties of the
character table. The highlight of this will be the proof of Burnside’s famous paqb-
theorem that says that the order of a simple group cannot have precisely two distinct
prime factors.

We’ll need to quote some results about arithmetic without proof; proofs should
be provided in the Number Fields course (or in one case Galois Theory). We’ll
continue with our assumption that k = C and also assume that our groups are
finite.
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7.1. Arithmetic results.

Definition. x ∈ C is an algebraic integer if it is a root of a monic polynomial with
integer coefficients.

Facts.

Fact 1 The algebraic integers form a subring of C

Fact 2 If x ∈ Q is an algebraic integer then x ∈ Z (cf Numbers and Sets 2010
Example Sheet 3 Q12)

Fact 3 Any subring of C that is finitely generated as an abelian group consists of
algebraic integers.

Lemma. If χ is the character of a representation of a finite group G, then χ(g) is
an algebraic integer for all g ∈ G.

Proof. We know that χ(g) is a sum of nth roots of unity for n = |G|. Since each nth

root of unity is by defintion a root of Xn − 1 the lemma follows from Fact 1. �

7.2. The group algebra. Before we go further we need to explain how to make
the vector space kG into a ring. There are in fact two sensible ways to do this. The
first of these is by pointwise multiplication: f1f2(g) = f1(g)f2(g) for all g ∈ G will
make kG into a commutative ring. But more usefully for our immediate purposes
we have the convolution product

f1f2(g) :=
∑

x∈G

f1(gx)f2(x
−1)

that makes kG into a (possibly) non-commutative ring. Notice in particular that
with this product ∂g1

∂g2
= ∂g1g2

and so we may rephrase the multiplication as

(
∑

g∈G

λg∂g)(
∑

h∈G

µh∂h) =
∑

k∈G

(
∑

gh=k

λgµh)∂k.

From now on this will be the product we have in mind when we think of kG as a
ring.

We notice in passing that a kG-module is the ‘same’ as a representation of G:
given a representation (ρ, V ) of G we can make it into a kG-module via

fv =
∑

g∈G

f(g)ρ(g)(v).

for f ∈ kG and v ∈ V . Conversely, given a finitely generated kG-module M we can
view M as a representation of G via ρ(g)(m) = ∂gm.

Exercise. Suppose that kX is a permutation representation of G. Calculate the
action of f ∈ kG on kX under this correspondance.

Lecture 16

For the sake of the rest of the section, we need to understand the centre Z(kG)
of kG; that is the set of f ∈ kG such that fh = hf for all h ∈ kG.

Lemma. Suppose that f ∈ kG. Then f is in Z(kG) if and only if f ∈ CG, the
set of class functions on G. In particular dimk Z(kG) is the number of conjugacy
classes in G.
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Proof. Suppose f ∈ kG. Notice that fh = hf for all h ∈ kG if and only if f∂g = ∂gf
for all g ∈ G, since then

fh =
∑

g∈G

fh(g)∂g =
∑

g∈G

h(g)∂gf = hf.

But ∂gf = f∂g if and only if ∂gf∂g−1 = f and

(∂gf∂g−1)(x) = (∂gf)(xg) = f(g−1xg).

So if f ∈ Z(kG) if and only if f ∈ CG as required. �

Remark. The multiplication on Z(kG) is not the same as the multiplication on CG
that we have seen before even though both have the same additive groups and both
are commutative rings.

Definition. Suppose O1 = {e}, . . . ,Or are the conjugacy classes of G, define the
class sums C1, . . . , Cr to be the class functions on G so that

Ci =

{

1 g ∈ Oi

0 g 6∈ Oi.

We called these ∂Oi
before. Also we’ll fix gi ∈ Oi for simplicity.

We’ve seen that the class sums form a basis for Z(kG).

Proposition. There are non-negative integers aijk such that CiCj =
∑

k aijkCk

for i, j, k ∈ {1, . . . , r}.
The aijk are called the structure constants for Z(kG).

Proof. Since Z(kG) is a ring, we can certainly write CiCj =
∑

aijkCk for some
aijk ∈ k.

However, we can explicitly compute for gk ∈ Ok,

(CiCj)(gk) =
∑

x∈G

Ci(gkx)Cj(x
−1) = |{(x, y) ∈ Oi ×Oj | xy = gk}|,

a non-negative integer. �

Suppose now that (ρ, V ) is an irreducible representation of G. Then if z ∈ Z(kG)
we see that z : V → V given by zv =

∑

g∈G z(g)ρ(g)v ∈ HomG(V, V ).
By Schur’s Lemma it follows that z acts by a scalar λz ∈ k on V . In this way

we get an algebra homomorphism wρ : Z(kG)→ k; z 7→ λz.
Taking traces we see that

dimV · λz =
∑

g∈G

z(g)χV (g).

So

wρ(Ci) =
χ(gi)

χ(e)
|Oi| for gi ∈ Oi.

We now see that wρ only depends on χρ (and so on the isomorphism class of ρ)
and we write wχ = wρ.

Lemma. The values wχ(Ci) are algebraic integers.

Note this isn’t a priori obvious since 1
χ(e) will not be an algebraic integer for

χ(e) 6= 1.
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Proof. Since wχ is an algebra homomorphism Z(kG)→ k,

wχ(Ci)wχ(Cj) =
∑

k

aijkwχ(Ck).

So the subring of C generated by wχ(Ci) for i = 1, . . . , r is a finitely generated
abelian group. The result follows from Fact 3 above. �

Exercise. Show that

aijk =
|G|

|CG(gi)||CG(gj)|
∑

χ

χ(gi)χ(gj)χ(g−1
k )

χ(1)
.

(Hint: use column orthogonality, the last lemma and its proof.)

7.3. Degrees of irreducibles.

Theorem. If V is an irreducible representation of a group G then dimV divides
|G|.

Proof. Let χ be the character of V . We’ll show that |G|
χ(e) is an algebraic integer

and so (since it is rational) an actual integer by Fact 2 above.

|G|
χ(e)

=
1

χ(e)

∑

g∈G

χ(g)χ(g−1)

=

r
∑

i=1

1

χ(e)
|Oi|χ(gi)χ(g−1

i )

=

r
∑

i=1

wχ(Ci)χ(g−1
i )

But the set of algebraic integers form a ring (by Fact 1 above) and each wχ(Ci)

and χ(g−1
i ) is an algebraic integer so |G|

χ(e) is an algebraic integer as required. �

Examples.

(1) If G is a p-group and χ is an irreducible character then χ(e) is always a
power of p. In particular if |G| = p2 then, since

∑

χ χ(e)2 = p2, every
irreducible rep is 1-dimensional and so G is abelian.

(2) If G = An or Sn and p > n is a prime, then p cannot divide the dimension
of an irreducible rep.

In fact a stronger result is true:

Theorem (Burnside (1904)). If (ρ, V ) is an irreducible representation then dimV
divides |G/Z(G)|.

You should compare this with |Oi| = |G|/|CG(gi)| divides |G/Z(G)|.

Proof. If z ∈ Z = Z(G) then by Schur’s Lemma z acts on V by λzI for some
λz ∈ k.

For each m > 2, consisder the irreducible representation of Gm given by

ρ⊗m : Gm → GL(V ⊗m).
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If z = (z1, . . . , zm) ∈ Zm then z acts on V ⊗m via
∏m

i=1 λzi
I. Thus if

∏m
1 zi = 1

then z ∈ ker ρ⊗m.
Let Z ′ = {(z1, . . . , zm ∈ Zm |∏m

i=1 zi = 1} so |Z ′| = |Z|m−1. We may view ρ⊗m

as a degree (dimV )m irreducible representation of Gm/Z ′.
Since |Gm/Z ′| = |G|m/|Z|m−1 we can use the previous theorem to deduce that

(dimV )m divides |G|m/|Z|m−1.
By choosing m very large and considering prime factors we can deduce the result:

if pr divides dimV then prm divides |G/Z|m|Z| for allm and so pr divides |G/Z|. �

Proposition. If G is a simple group then G has no irreducible representations of
degree 2.

Proof. If G is cyclic then G has no irreducible representations of degree bigger than
1, so we may assume G is non-abelian.

If |G| is odd then we may apply the theorem above.
If |G| is even then G has an element x of order 2. By example sheet 2 Q2,

for every irreducible χ, χ(x) ≡ χ(e) mod 4. So if χ(e) = 2 then χ(x) = ±2, and
ρ(x) = ±I. Thus ρ(x) ∈ Z(ρ(G)), a contradiction sinceG is non-abelian simple. �

Lecture 17

7.4. Burnside’s paqb Theorem.

Theorem (Burnside (1904)). Let p, q be primes and G a group of order paqb with
a, b non-negative integers such that a+ b > 2, then G is not simple.

Remarks.

(1) It follows that every group of order paqb is soluble. That is, there is a chain
of subgroups G = G0 > G1 > · · · > Gr = {e} with Gi+1 normal in Gi and
Gi/Gi+1 abelian for all i.

(2) Note that |A5| = 22 · 3 · 5 so the order of a simple group can have precisely
3 prime factors.

(3) If b = 0 then we’ve seen this before; Z(G) has an element of order p which
generates a proper normal subgroup.

(4) The first purely group theoretic proof of the paqb-theorem appeared in 1972.
(5) In 1963 Feit and Thompson published a 255 page paper proving that every

group of odd order in soluble.

The key step in the proof of the paqb-theorem is the following:

Proposition. If G is a non-cyclic finite group with a conjugacy class Oi 6= {e}
such that |Oi| has prime power order then |G| is not simple.

Granting the Proposition we can prove the theorem as follows: if a, b > 0, then
let Q be a Sylow-q-subgroup of G. Since Z(Q) 6= 1 we can find e 6= g ∈ Z(Q).
Then qb divides |CG(g)|, so the conjugacy class containing g has order pr for some
0 6 r 6 a. The theorem now follows immediately from the Proposition.

To prove the Proposition we need some Lemmas

Lemma. Suppose 0 6= α = 1
m

∑m
i=1 λi with all λi n

th roots of 1 is an algebraic
integer. Then |α| = 1.
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Sketch proof (non-examinable). By assumption α ∈ Q(ǫ) where ǫ = e2πi/n.
Let G = Gal(Q(ǫ)/Q). It is known that {β ∈ Q(ǫ) | σ(β) = β for all σ ∈ G} = Q.
Consider N(α) :=

∏

σ∈G σ(α). Since N(α) is fixed by every element of G, N(α) ∈
Q. Moreover N(α) is an algebraic integer since Galois conjugates of algebraic
integers are algebraic integers — they satisfy the same integer polynomials. Thus
N(α) ∈ Z.

But for each σ ∈ G, |σ(α)| = | 1m
∑

σ(λi)| 6 1. Thus N(α) = ±1, and |α| = 1 as
required. �

Lemma. Suppose χ is an irreducible character of G, and O is a conjugacy class
in G such that χ(e) and |O| are coprime. For g ∈ O, |χ(g)| = χ(e) or 0.

Proof. By Bezout, we can find x, y ∈ Z such that aχ(e) + b|O| = 1. Define

α :=
χ(g)

χ(e)
= aχ(g) + b

χ(g)

χ(e)
|O|

Then α satisfies the conditions of the previous lemma (or is zero) and so this lemma
follows. �

Proof of Proposition. Suppose for contradication that G is simple and has an ele-
ment g ∈ G\{e} that lives in a conjugacy class O of order pr.

If χ is a non-trivial irreducible character of G then |χ(g)| < χ(1) since otherwise
ρ(g) is a scalar matrix and so lies in Z(ρ(G)) ∼= Z(G).

Thus by the last lemma, for every non-trivial irreducible character, either p
divides χ(e) or |χ(g)| = 0 . By column orthogonality,

0 =
∑

χ

χ(e)χ(g).

Thus −1
p =

∑

χ6=1

χ(e)
p χ(g) is an algebraic integer in Q. Thus 1

p in Z the desired

contradiction. �

8. Topological groups

Consider S1 = U1(C) = {g ∈ C× | |g| = 1} ∼= R/Z.
By considering R as a Q-vector space we see that as a group

S1 ∼= Q/Z⊕
⊕

x∈X

Q

for an an uncountable set X.
Thus we see that as an abstract group S1 has uncountably many irreducible

representations: for each λ ∈ R we can define a one-dimensional representation by

ρλ(e2πiµ) =

{

1 µ 6∈ Qλ

e2πiµ µ ∈ Qλ

Then ρλ = ρλ′ if and only if Qλ = Qλ′. In this way we get uncountably many
irreducible representations of S1 (we haven’t listed them all). We don’t really have
any control over the situation.

However, S1 is not just a group; it comes with a topology as a subset of C.
Moreover S1 acts naturally on complex vector spaces in a continuous way.
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Definition. A topological group G is a group G which is also a topological space
such that the multiplication map G × G → G; (g, h) 7→ gh and the inverse map
G→ G; g 7→ g−1 are continuous maps.

Examples.

(1) GLn(C) with topology from Cn2

.
(2) G finite — with the discrete topology.
(3) O(n) = {A ∈ GLn(R) | ATA = I}; SO(n) = {A ∈ O(n) | detA = 1}.
(4) U(n) = {A ∈ GLn(C) | ATA = I}; SU(n) = {A ∈ U(n) | detA = 1}.
(5) *G profinite such as Zp, the completion of Z with respect to the p-adic metric.

Definition. A representation of a topological group G on a vector space V is a
continuous group homomorphism G→ GL(V ).

Remarks.

(1) If X is a topological space then α : X → GLn(C) is continuous if and only if
the maps x 7→ αij(x) = α(x)ij are continuous for all i, j.

(2) If G is a finite group with the discrete topology. Then continous function
G→ X just means function G→ X.

Theorem. Every one dimensional (cts) representation of S1 is of the form z 7→ zn

for some n ∈ Z.

It is easy to see that the given maps are representations, we must show that they
are the only ones.

Lecture 18

Lemma. If ψ : (R,+)→ (R,+) is a continous group homomorphism then there is
some λ ∈ R such that ψ(x) = λx for all x ∈ R.

Proof. Let λ = ψ(1). Since ψ is a group homomorphism, ψ(n) = λn for all n ∈ Z.
Then mψ(n/m) = ψ(n) = λn and so ψ(n/m) = λn/m. That is ψ(x) = λx for all
x ∈ Q. But Q is dense in R and ψ is continuous so ψ(x) = λx for all x ∈ R. �

Lemma. If ψ : (R,+) → S1 is a continuous group homomorphism then ψ(x) =
e2πiλx for some λ ∈ R.

Proof. Claim: if ψ : R → S1 is any continuous function with ψ(0) = 1 then there
is a unique continuous function α : R→ R such that α(0) = 0 and ψ(x) = e2πiα(x).
(Sketch proof of claim: locally α(x) = 1

2πi logψ(x) we can choose the branches of
log to make the pieces glue together continuously).

Now given the claim, if ψ is a group homomorphism and α is the map defined
by the claim we can define a continuous function R2 → R by

∆(a, b) := α(a+ b)− α(a)− α(b).

Since e2πi∆(a,b) = ψ(a + b)ψ(a)−1ψ(b)−1 = 1, ∆ only takes values in Z. Thus ∆
is constant. Since ∆(a, 0) = 0 for all a we see that ∆ ≡ 0 and so α is a group
homomorphism. By the previous lemma we see α(x) = λx for some λ ∈ R and so
ψ(x) = e2πiλx as required. �

Theorem. Every one dimensional (cts) representation of S1 is of the form z 7→ zn

for some n ∈ Z.
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Proof. Let ρ : S1 → GL1(C) be a continuous representation. Since S1 is compact,
ρ(S1) has closed and bounded image. Since ρ(zn) = ρ(z)n for n ∈ Z, it follows that
ρ(S1) ⊂ S1.

Now let ψ : R→ S1 be defined by ψ(x) = ρ(e2πix), a continuous homomorphism.
By the most recent Lemma, ρ(e2πix) = ψ(x) = e2πiλx for some λ ∈ R.

Since also ρ(e2πi) = 1 we see λ ∈ Z. �

Our most powerful idea for studying representations of finite groups has been
averaging over the group; that is the operation 1

|G|

∑

g∈G. When considering more

general topological groups we should replace
∑

by
∫

.

Definition. LetG be a topological group. Let C(G) = {f : G→ C | f is continuous}.
Then a linear map

∫

G
: C(G) → C (write

∫

G
f =

∫

G
f(g) dg) is called a Haar mea-

sure if

(i)
∫

G
1 = 1 (so

∫

G
is normalised so total volume is 1);

(ii)
∫

G
f(xg) dg =

∫

G
f(g) dg =

∫

G
f(gx) dg for all x ∈ G (so

∫

G
is translation

invariant).

Examples.

(1) If G finite, then
∫

G
f = 1

|G|

∑

g∈G f(g).

(2) If G = S1,
∫

G
f = 1

2π

∫ 2π

0
f(eiθ) dθ.

Theorem. If G is a compact Hausdorff group, then there is a unique Haar measure
on G.

Proof. Omitted �

All the examples of topological groups from last time are compact Hausdorff
except GL(Cn) which is not compact. We’ve seen a Haar measure on S1 and will
compute one on SU(2) later. We’ll follow standard practice and write ‘compact
group’ instead of ‘compact Hausdorff group’.

Corollary (Weyl’s Unitary Trick). If G is a compact group then every representa-
tion (ρ, V ) has a G-invariant invariant Hermitian inner product.

Proof. Same as for finite groups: let (−,−) be any inner product on V , then

〈v, w〉 =

∫

G

(ρ(g)v, ρ(g)w) dg

is the required G-invariant inner product. �

Thus every representation of a compact group is equivalent to a unitary repre-
sentation.

Corollary (Maschke’s Theorem). If G is a compact group then every representation
of G is completely reducible.

Proof. Same as for finite groups: Given a rep (ρ, V ) choose a G-invariant inner
product. If W is a subrep of V then W⊥ is a G-invariant complement. �

We can use the Haar measure to put an inner product on the space CG of (con-
tinuous) class functions:

〈f, f ′〉 :=

∫

G

f(g)f ′(g) dg.
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If ρ : G→ GL(V ) is a representation then χρ := tr ρ is a continuous class function
since each ρ(g)ii is continuous.

Corollary (Orthogonality of Characters). If G is a compact group and V and W
are irreducible reps of G then

〈χV , χW 〉 =

{

1 if V ∼= W

0 if χV 6= χW .

Proof. Same as for finite groups:

〈χV , χW 〉 =

∫

G

χV (g)χW (g) dg

= dim HomG(1,Hom(V,W ))

= dim HomG(V,W ).

Then apply Schur’s Lemma.
Note along the way we require that χV (g−1) = χV (g) which follows from the

fact that we may assume that ρV (G) ⊂ U(V ) and so the eigenvalues of ρV (g) are
contained in S1 for all g ∈ G.

We also need to define a projection maps π : U → UG for U = Homk(V,W ). For
this we choose a basis u1, . . . , un of U and define π to be the linear map represented
by the matrix πij =

∫

G
ρ(g)ij dg. �

It is also possible to make sense of ‘the characters are a basis for the space of
class functions’ but this requires a little knowledge of Hilbert space.

Example. G = S1.
We’ve already seen that the one-dimensional reps of S1 are all of the form z 7→ zn

for n ∈ Z. Since S1 is abelian we can use our usual argument to see that these
are all irreducible reps — given any rep ρ we can find a simultaneous eigenvector
for each ρ(g). Thus the ‘character table’ of S1 has rows χn indexed by Z with
χn(eiθ) = einθ.

Now if V is any rep of S1 then by Machke’s Theorem V breaks up as a direct
sum of one dimensional subreps and so its character χV is of the form

χV (z) =
∑

n∈Z

anz
n

with an non-negative integers and only finitely many non-zero. As usual an is the
number of copies of ρn : z 7→ zn in the decomposition of V . Thus we can compute

an = 〈χn, χV 〉 =
1

2π

∫ 2π

0

χV (eiθ)e−inθ dθ.

Thus

χV (eiθ) =
∑

n∈Z

(

1

2π

∫ 2π

0

χV (eiθ′

)e−inθ′

dθ′
)

einθ.

So Fourier decomposition gives the decomposition of χV into irreducible charac-
ters and the Fourier mode is the multiplicity of an irreducible character.

Remark. In fact by the theory of Fourier series any continuous function on S1 can
be uniformly approximated by a finite C-linear combination of the χn.



REPRESENTATION THEORY 45

Moreover the χn form a complete orthonormal set in the Hilbert space of square-
integrable complex-valued functions on S1. That is every function f on S1 such

that
∫ 2π

0
|f(eiθ)|2 dθ exists has a unique series expansion

f(eiθ) =
∑

n∈Z

(

1

2π

∫ 2π

0

f(eiθ′

)e−inθ′

dθ′
)

einθ

converging in the norm ||f || = 1
2π

∫ 2π

0
|f(eiθ)|2 dθ.

Lecture 19

8.1. Conjugacy classes of SU(2).

Recall that SU(2) = {A ∈ GL2(C) | ATA = I,detA = 1}.
If A =

(

a b
c d

)

∈ SU(2) then since detA = 1, A−1 =

(

d −b
−c a

)

.

Thus d = a and c = −b. Moreover aa+ bb = 1. In this way we see that

SU(2) =

{(

a b

−b a

)

| a, b ∈ C and |a|2 + |b|2 = 1

}

which may be viewed topologically as S3 ⊂ C2 ∼= R4.
More precisely if

H := R · SU(2) =

{(

z w
−w z

)

| w, z ∈ C

}

⊂M2(C).

Then ||A||2 = detA defines a norm on H ∼= R4 and SU(2) is the unit sphere in H. If
A ∈ SU(2) and X ∈ H then ||AX|| = ||X|| since ||A|| = 1. So, after normalisation,
usual integration of functions on S3 defines a Haar measure on SU(2).

Definition. Let T =

{(

a 0
0 a−1

)

| a ∈ C, |a| = 1

}

∼= S1, a maximal torus in

SU(2).

Also define s =

(

0 1
−1 0

)

∈ SU(2)

Lemma.

(i) if t ∈ T then sts−1 = t−1;
(ii) s2 = −I ∈ Z(SU(2))

(iii) NSU(2)(T ) = T ∪ sT =

{(

a 0
0 a−1

)

,

(

0 a
−a−1 0

)

| a ∈ C, |a| = 1

}

Proof. All three parts follow from direct computation (exercise). �

Proposition.

(i) Every conjugacy class O in SU2 contains an element of T .
(ii) More precisely. if O is a conjugacy class then O∩T = {t, t−1} for some t ∈ T

— t = t−1 if and only if t = ±I when O = {t}.
(iii) There is a bijection

{conjugacy classes in SU(2)} → [−1, 1]

given by A 7→ 1
2 trA.
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Proof. (i) For every unitary matrix A there is an orthonormal basis of eigenvectors
of A; that is there is a unitary matrix P such that PAP−1 is diagonal. We want
to arrange that detP = 1. But we can replace P by Q =

√
detPP . Thus every

conjugacy class O in SU(2) contains a diagonal matrix t. Since additionally t ∈
SU(2), t ∈ T .

(ii) If ±I ∈ O the result is clear.
Suppose t ∈ O ∩ T for some t 6= ±I. Then

O = {gtg−1 | g ∈ SU(2)}.
We’ve seen before that sts−1 = t−1 so O ∩ T ⊃ {t, t−1}.

Conversely, if t′ ∈ O∩T then t′ and t must have the same eigenvalues since they
are conjugate. This suffices to see that t′ ∈ {t±1}.

(iii) To see the given function is injective, suppose that 1
2 trA = 1

2 trB. Then
since detA = detB = 1, A and B must have the same eigenvalues. By part (i)
they are both diagonalisable and by the proof of part (ii) this suffices to see that
they are conjugate.

To see that it is surjective notice that 1
2 tr

(

eiθ 0
0 e−iθ

)

= cos θ. Since cos : R→ R

has image [−1, 1] the given function is surjective. �

Let’s write Ox = {A ∈ SU(2) | 1
2 trA = x} for x ∈ [−1, 1]. We’ve proven that

the Ox are the conjugacy classes in SU(2). Clearly O1 = {I} and O−1 = {−I}.
Proposition. If −1 < x < 1 then Ox is homeomorphic to S2.

Proof. First we observe that Ox
∼= SU(2)/T for each −1 < x < 1. To see this it

suffices to show that T = CSU2

((

λ 0
0 λ−1

))

for λ 6= λ−1. But

(

a b
c d

)(

λ 0
0 λ−1

)

=

(

λa λb
λ−1c λ−1d

)

and
(

λ 0
0 λ−1

)(

a b
c d

)

=

(

λa λ−1b
λc λ−1d

)

.

For these to be equal for λ 6= λ−1 we require b = c = 0.
Next we recall that SU(2) acts on S2 ∼= C ∪ {∞} by Mobius transformations:

(

a b
c d

)

· z =
az + b

cz + d
.

This action is transitive since for each z ∈ C there are a, b ∈ C such that |a|2+|b|2 =

1 and a/b = z (exercise). Then

(

a −b
b a

)

· ∞ = a/b.

But StabSU(2)(∞) = T so SU(2)/T ∼= S2. �

8.2. Representations of SU(2).
Now we understand the conjugacy classes of SU(2), we’ll try to work out its

representation theory.
Let Vn be the complex vectorspace of homogeneous polynomials in two variables

x, y. So dimVn = n+ 1. Then GL(C2) acts on Vn via

ρn : GL(C2)→ GL(Vn)
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given by

ρn

((

a b
c d

))

f(x, y) = f(ax+ cy, bx+ dy).

Examples.
V0 = C has the trivial action.
V1 = C2 is the standard representation of GL(C2) on C2 with basis x, y.
V2 = C3 has basis x2, xy, y2 then

ρ2

((

a b
c d

))

=





a2 ab b2

2ac ad+ bc 2bd
c2 cd d2





Since SU(2) is a subgroup of GL2(C) we can view Vn as a representation of
SU(2) by restriction. In fact as we’ll see, the Vn are all irreducible reps of SU(2)
and every irreducible rep of SU(2) is isomorphic to one of these.

Lemma. A (continuous) class function f : SU(2)→ C is determined by its restric-

tion to T and f |T is even ie f

((

z 0
0 z−1

))

= f

((

z−1 0
0 z

))

.

Proof. We’ve seen that each conjugacy class in SU(2) meets T and so a class
fucntion is determined by its restriction to T . Then evenness follows from the
additional fact that T ∩ O = {t±1} for some t ∈ T . �

Thus we can view the character of a representation ρ of SU(2) as an even function
χρ : S1 → C.

Lemma. If χ is a character of a representation of SU(2) then χ|T is a Laurent
polynomial ie a finite N linear combination of functions

(

z 0
0 z−1

)

7→ zn for n ∈ Z.

Proof. If V is a representation of SU(2) then Res
SU(2)
T V is a representation of T

and χResT V is the restriction of χV to T . But we’ve proven already that every
representation of T has character of the given form. �

Lecture 20

Write

N[z, z−1] :=

{

∑

n∈Z

anz
n | an ∈ N and only finitely many an 6= 0

}

and

N[z, z−1]ev = {f ∈ N[z, z−1] | f(z) = f(z−1)}.
We showed last time that for every continuous representation V of SU(2), the

character χV ∈ N[z, z−1]ev after identifying it with its restriction to T .
The next thing to do is compute the character χn of (ρn, Vn), the representation

consisting of degree n homogeneous polynomials in x and y.

ρn

((

z 0
0 z−1

))

(xiyj) = (zx)i(z−1y)j = zi−jxiyj .
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So xiyj is an eigenvector for each t ∈ T and T acts on Vn via

ρn

((

z 0
0 z−1

))

=



















zn

zn−2

zn−4

. . .

z2−n

z−n



















.

Thus

χn

((

z 0
0 z−1

))

= zn + zn−2 + · · ·+ z2−n + z−n =
zn+1 − z−(n+1)

z − z−1
∈ N[z, z−1]ev.

Theorem. Vn is irreducible as a reperesentation of SU(2).

Proof. Let 0 6= W 6 Vn be a SU(2)-invariant subspace. We want to show that
W = Vn.

Let 0 6= w =
∑

λi(x
n−iyi) ∈W . We claim that xn−iyi ∈W whenever λi 6= 0.

We prove the claim by induction on k = |{i | λi 6= 0}|.
If k = 1 then w is a non-zero scalar multiple of xn−iyi and we’re done.
If k > 1 choose i such that λi 6= 0 and z ∈ S1 such that {zn, zn−2, . . . , z2−n, zn}

are distict complex numbers. Then

ρn

((

z 0
0 z−1

))

w − zn−2iw =
∑

λj(z
n−2j − zn−2i)(xn−jyj) ∈W

since W is SU(2)-invariant. Now λj(z
n−2j − zn−2i) 6= 0 precisely if λj 6= 0 and

j 6= i. Thus by the induction hypothesis xjyn−j ∈ W for all j 6= i with λj 6= 0. It
follows that also xiyn−i = 1

λi
(w −∑j 6=i λjx

jyn−j) ∈W as required.

Now we know that xiyn−i ∈W for some i. Since

1√
2

(

1 1
−1 1

)

xiyn−i =
1√
2
((x− y)i(x+ y)n−i) ∈W

we can use the claim to deduce that xn ∈ W . Repeating the same calculation for
i = n, we see that (x+ y)n ∈W and so, by the claim again, xiyn−i ∈W for all i.

Thus W = Vn. �

Alternative proof:
We can identify Ocos θ = {A ∈ SU(2) | 1

2 trA = cos θ} with the two-sphere

{(Im(a))2 + |b|2 = sin2 θ} of radius | sin θ|. Thus if f is a class-function on SU(2),
since f is constant on each Ocos θ,
∫

SU(2)

f(g) dg =
1

2π2

∫ 2π

0

1

2
f

((

eiθ 0
0 e−iθ

))

4π sin2 θ dθ =
1

π

∫ 2π

0

f(eiθ) sin2 θ dθ.

Note this is normalised correctly, since 1
π

∫ 2π

0
sin2 θ dθ = 1. So it suffices to prove

that 1
π

∫ 2π

0
|χVn

(eiθ)|2 sin2 θ dθ = 1 for z = eiθ. (exercise: verify this).

Theorem. Every irreducible representation of SU(2) is isomorphic to Vn for some
n > 0.

Proof. Let V be an irreducible representation of SU(2) so χV ∈ N[z, z−1]ev. Now
χ0 = 1, χ1 = z+ z−1, χ2 = z2 +1+ z−2, . . . form a basis of Q[z, z−1]ev as (non-f.d.)
Q-vector spaces. Thus χV =

∑

aiχi for some ai ∈ Q, only finitely many non-zero.
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Clearing denominators and moving negative terms to the left-hand-side, we get
a formula

mχV +
∑

i∈I

miχi =
∑

j∈J

mjχj

for some disjoint finite subsets I, J ⊂ N and m,mi ∈ N. By orthogonality of
characters and complete reducibility we obtain

mV ⊕
⊕

i∈I

miVi
∼=
⊕

j∈J

mjVj

since V is irreducible, V ∼= Vj some j ∈ J . �

8.3. Tensor products of representations of SU(2). We’ve seen that if V,W

are representations of SU(2) such that Res
SU(2)
T V ∼= Res

SU(2)
T W then V ∼= W . We

want to understand ⊗ for representations of SU(2).

Proposition. If G ∼= SU(2) or S1 and V,W are representations of G then

χV ⊗W = χV · χW .

Proof. By the discussion above we only need to consider G ∼= S1.
If V and W have eigenbases e1, . . . , en and f1, . . . , fm such that zei = zniei and

zfj = zmjfj then z(ei ⊗ fj) = zni+mj (ei ⊗ fj). So

χV ⊗W (z) =
∑

i,j

zni+mj =

(

∑

i

zni

)





∑

j

zmj



 = χV (z)χW (z)

as required. �

Let’s compute some examples for SU(2):

χV1⊗V1
(z) = (z + z−1)2 = z2 + 1 + z−2 + 1 = χV2

+ χV0

and

χV2⊗V1
(z) = (z2 + 1 + z−2)(z + z−1) = z3 + 2z + 2z−1 + z−3 = χV3

+ χV1
.

Proposition (Clebsch–Gordan rule). For n,m ∈ N,

Vn ⊗ Vm
∼= Vn+m ⊕ Vn+m−2 ⊕ · · · ⊕ V|n−m|+2 ⊕ V|n−m|.

Proof. Without loss of generality, n > m. Then

(χn · χm)(z) =
zn+1 − z−n−1

z − z−1
· (zm + zm−2 + · · ·+ z−m)

=

m
∑

j=0

zn+m+1−2j − z−(n+m+1−2j)

z − z−1

=

m
∑

j=0

χn+m−2j(z)

�
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8.4. Representations of SO(3).

Proposition. There is an isomorphism of topological groups SU(2)/{±I} ∼= SO(3).

Corollary. Every irreducible representation of SO(3) is of the form V2n for some
n > 0.

Proof. It follows from the Proposition that irreducible representations of SO(3)
correspond to irreducible representations of SU(2) such that −I acts trivially. But
we saw before that −I acts on Vn as −1 when n is odd and as 1 when n is even. �

Lecture 21

Let’s prove the proposition from the end of last time:

Proposition. There is an isomorphism of topological groups SU(2)/{±I} ∼= SO(3).

Proof. Consider H◦ = {A ∈ H | trA = 0} = R〈
(

i 0
0 −i

)

,

(

0 1
−1 0

)

,

(

0 i
i 0

)

〉
equipped with the norm ||A||2 = detA.
SU(2) acts by isometries on H◦ via (X,A) 7→ XAX−1 giving a group homomor-

phism
φ : SU(2)→ O(3)

with kernel Z(SU(2)) = {±I}. Since SU(2) is compact and O(3) is Hausdorff the
continuous group isomorphism φ̄ : SU(2)/{±I} → Imφ is a homeomorphism so it
suffices to prove that Imφ = SO(3). Since SU(2) is connected, Imφ ⊂ SO(3).

Now
(

eiθ 0
0 e−iθ

)(

ai b

−b −ai

)(

e−iθ 0
0 eiθ

)

=

(

ai e2iθb

−e−iθb −ai

)

so

(

eiθ 0
0 e−iθ

)

acts on R〈i, j,k〉 by rotation in the jk-plane through an angle 2θ.

Exercise. Show that

(

cos θ sin θ
− sin θ cos θ

)

acts by rotation through 2θ in the ik-plane,

and

(

cos θ i sin θ
i sin θ cos θ

)

acts by rotation through 2θ in the ij-plane. Deduce that

Imθ = SO(3).

�

9. Character table of GL2(Fq) and related groups

9.1. Fq. Let p > 2 be a prime, q = pa a power of p for some a > 0, and Fq be the
field with q elements. We know that F×

q
∼= Cq−1.

Notice that F×
q → F×

q ;x 7→ x2 is a group homomorphism with kernel ±1. Thus

half the elements of F×
q are squares and half are not. Let ǫ ∈ F×

q be a fixed non-

square and let Fq2 := {a + b
√
ǫ | a, b ∈ Fp}, the field with q elements under the

obvious operations.
Every element of Fq has a square root in Fq2 since if λ is non-square then λ/ǫ = µ2

is a square, and (
√
ǫµ)2 = λ. It follows by completing the square that every

quadratic polynomial in Fq factorizes in Fq2 .

Notice that (a + b
√
ǫ)q = aq + bqǫ

q−1
2
√
ǫ = (a − b

√
ǫ). Thus the roots of an

irreducible quadratic over Fq are of the form λ, λq.
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9.2. GL2(Fq). We want to compute the character table of the group

G := GL2(Fq) =

{(

a b
c d

)

| a, b, c, d ∈ Fq and ad− bc 6= 0

}

.

The order of G is the number of bases for F2
q over Fq. This is (q2 − 1)(q2 − q).

First, we compute the conjugacy classes in G. We know from linear algebra that
2× 2-matrices are determined by their minimal polynomials up to conjugation. By
Cayley–Hamilton each element A of GL2(Fq) has minimal polynomial mA(X) of
degree at most 2 and mA(0) 6= 0.

There are four cases.
Case 1: mA = X − λ for some λ ∈ Fq

×. Then A = λI. So CG(A) = G, and A
lives in a conjugacy class of size 1. There are q − 1 such classes.

Case 2: mA = (X − λ)2 for some λ ∈ Fq
× so A is conjugate to

(

λ 1
0 λ

)

. Now

CG

((

λ 1
0 λ

))

=

{(

a b
0 a

)

| a, b ∈ Fq, a 6= 0

}

so

(

λ 1
0 λ

)

is in a conjugacy class of order q(q−1)(q2−1)
(q−1)q = q2 − 1. There are q − 1

such classes.
Case 3: A has minimal polynomial (X −λ)(X −µ) for some distinct λ, µ ∈ Fq

×.

Then A is conjugate to

(

λ 0
0 µ

)

and to

(

µ 0
0 λ

)

. Moreover

CG

((

λ 0
0 µ

))

=

{(

a 0
0 d

)

| a, d ∈ F×
q

}

=: T.

So

(

λ 0
0 µ

)

is in a conjugacy class of order q(q−1)(q2−1)
(q−1)2 = q(q+1). There are

(

q−1
2

)

such classes.
Case 4: A has minimal polynomial (X − α)(X − αq), α = λ + µ

√
ǫ, λ, µ ∈ Fq,

µ 6= 0. Then A is conjugate to

(

λ ǫµ
µ λ

)

and

(

λ −ǫµ
−µ λ

)

. Now

CG

((

λ ǫµ
µ λ

))

=

{(

a ǫb
b a

)

| a2 − ǫb2 6= 0

}

=: K.

If a2 = ǫb2 then ǫ is a square or a = b = 0. So |K| = q2 − 1 and

(

λ ǫµ
µ λ

)

lives in

a conjugacy class of size q(q−1)(q2−1)
q2−1 = q(q− 1). There are q(q− 1)/2 such classes.

In summary

Representative CG No of elts No of such classes
(

λ 0

0 λ

)

G 1 q − 1
(

λ 1

0 λ

) (

a b

0 a

)

q2 − 1 q − 1
(

λ 0

0 µ

)

T q(q + 1)
(

q−1
2

)

(

λ ǫµ

µ λ

)

K q(q − 1)
(

q
2

)
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The groups T and K are both maximal tori. That is they are maximal subgroups
of G subject to the fact that they are conjugate to a subgroup of the group of
diagonal matrices over some field extension. T is called split and K is called non-
split.

Some other important subgroups of G are Z which is the subgroup of scalar

matrices (the centre). N :=

{(

1 b

0 1

)

| b ∈ Fq

}

a Sylow p-subgroup of G and

B :=

{(

a b

0 d

)

| b ∈ Fq, a, d ∈ Fq
×

}

a Borel subgroup of G. Then N is normal in

B and B/N ∼= Fq
× × Fq

× ∼= Cq−1 × Cq−1.
G acts transitively on Fq ∪ {∞} via Mobius transformations

(

a b

c d

)

(z) =
az + b

cz + d
for z ∈ Fq

and
(

a b

c d

)

(∞) = a/c

so B = StabG(∞). Thus |G| = |B|(q + 1).

Writing s =

(

0 1

1 0

)

we see that

(

a b

0 d

)

s

(

1 β

0 1

)

=

(

b a+ bβ

d βd

)

and these elements are all distinct. Hence BsN contains q|B| elements so must be
G\B. Thus BsN = BsB and B\G/B has two double cosets B and BsB (this is
called Bruhat decomposition).

Lecture 22

Recall our notation from last time. G = GL2(Fq) > B =

{(

a b

0 d

)}

has normal

subgroup N =

{(

1 b

0 1

)}

.

Then Z = Z(G) =

{(

a 0

0 a

)}

, T =

{(

a 0

0 d

)}

, K =

{(

x ǫy

y x

)}

for some

fixed non-square ǫ in Fq.

Finally s =

(

0 1

1 0

)

and G = B ∪BsB.

By Mackey’s irreduciblity criterion it follows that if W is an irreducible rep-
resentation of B, then IndG

B W is an irreducible representation of G precisely if

ResB
B∩sB W and Res

sB
B∩sB

sW have no irreducible factors in common. Since s swaps
0,∞ ∈ Fq ∪ {∞},

sB = StabG(0) =

{(

a 0

c d

)

| a, d ∈ Fq
×, c ∈ Fq

}

and B ∩ sB = T .
The conjugacy classes in GL2(Fq) are
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Representative CG No of elts No of such classes
(

λ 0

0 λ

)

G 1 q − 1
(

λ 1

0 λ

)

ZN q2 − 1 q − 1
(

λ 0

0 µ

)

T q(q + 1)
(

q−1
2

)

(

λ ǫµ

µ λ

)

K q(q − 1)
(

q
2

)

Let’s warm ourselves up by computing the character table of B.
If x, y ∈ B are conjugate in G then because G = B ∪BsB either x is conjugate

to y in B or x is conjugate to sys−1 (or both). So classes in G split into at most
two pieces when restricted to B.

The conjugacy classes in B are

Representative CB No of elts No of such classes
(

λ 0

0 λ

)

B 1 q − 1
(

λ 1

0 λ

)

ZN q − 1 q − 1
(

λ 0

0 µ

)

T q (q − 1)(q − 2)

Now B/N ∼= T ∼= Fq
× × Fq

×. So if Θq := {characters of F×
q of degree 1}, then Θq

is a cyclic group of order q− 1 under pointwise operations. Moreover, for each pair
θ, φ ∈ Θq, we have a 1-dimensional representation of B given by

χθ,φ

((

a b

0 d

))

= θ(a)φ(d)

giving (q − 1)2 linear reps.
Fix γ a non-trivial 1-dimensional representation of (Fq,+). Then for each θ ∈ Θq

we can define a 1-dimensional representation of ZN by

ρθ

((

a b

0 a

))

= θ(a)γ(b).

Defining µθ to be the character of IndB
ZN ρθ we see that

µθ

((

λ 0

0 λ

))

= (q − 1)θ(λ),

µθ

((

λ 1

0 λ

))

=
∑

b∈Fq
×

θ(λ)γ(b)

= θ(λ)(q〈1, γ〉Fq
− 1)

= −θ(λ)

µθ

((

λ 0

0 µ

))

= 0
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So 〈µθ, µθ〉 = 1
q(q−1)2

(

(q − 1)(q − 1)2 + (q − 1)(q − 1)1
)

= 1 and the character

table of B is
(

λ 0

0 λ

) (

λ 1

0 λ

) (

λ 0

0 µ

)

χθ,φ θ(λ)φ(λ) θ(λ)φ(λ) θ(λ)φ(µ)

µθ (q − 1)θ(λ) −θ(λ) 0

Let’s start computing some representations of G.
As det : G→ Fq

× is a surjective group homomorphism, for each i = 0, . . . , q− 2,
χi := θi ◦ det is a 1-dimensional representation of G.

Let’s start by inducing χθ,φ from B to G. Notice that

sχθ,φ

((

λ 0

c d

))

= χθ,φ

((

d 0

c a

))

= θ(d)φ(a)

and so Res
sB
T

sχθ,φ = ResB
T χθ,φ if and only if θ = φ. So Wθ,φ := IndG

B χθ,φ is
irreducible precisely if θ 6= φ.

Now

χWθ,φ

((

λ 0

0 λ

))

= (q + 1)θ(λ)φ(λ),

χWθ,φ

((

λ 1

0 λ

))

= θ(λ)φ(λ),

χWθ,φ

((

λ 0

0 µ

))

= θ(λ)φ(µ) + φ(λ)θ(µ) and

χWθ,φ

((

λ ǫµ

µ λ

))

= 0.

Notice that Wθ,φ
∼= Wφ,θ so we get

(

q−1
2

)

irreducible representations in this way.
They are known as principal series representations.

We consider also W1,1
∼= IndG

B 1 = C(Fq ∪ {∞}). Since G acts 2-transitively
on Fq ∪ ∞, W1,1 decomposes as 1 ⊕ V1, with V1 irreducible of degree q. This
representation is known as the Steinberg representation.

By tensoring W1,1 by χθ we also obtain Wθ,θ
∼= χθ ⊕ Vθ with Vθ irreducible of

degree q.
So far we have

(

λ 0

0 λ

) (

λ 1

0 λ

) (

λ 0

0 µ

) (

λ ǫµ

µ λ

)

# of reps

χθ θ(λ)2 θ(λ)2 θ(λ)θ(µ) θ(λ2 − ǫµ2) q − 1

Vθ qθ(λ)2 0 θ(λ)θ(µ) −θ(λ2 − ǫµ2) q − 1

Wθ,φ (q + 1)θ(λ)φ(λ) θ(λ)φ(λ) θ(λ)φ(µ) + φ(λ)θ(µ) 0 (q−1)(q−2)
2
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Lecture 23

The next natural thing to do is compute IndG
B µi. It has character given by

IndG
B µi

((

λ 0

0 λ

))

=(q + 1)(q − 1)θi(λ),

IndG
B µi

((

λ 1

0 λ

))

=− θi(λ),

IndG
B µi

((

λ 0

0 µ

))

=0 and

IndG
B µi

((

λ ǫµ

µ λ

))

= 0.

Thus

〈IndG
B µi, IndG

B µi〉 =
1

|G|
(

(q + 1)2(q − 1)2(q − 1) + (q − 1)(q2 − 1)
)

1

q

(

q2 − 1) + 1
)

= q

so IndG
B µi has many irreducible factors.

Our next strategy is to induce characters from K. We write α = λ + µ
√
ǫ for

the matrix

(

λ ǫµ

µ λ

)

. Notice that Z 6 K with

(

λ 0

0 λ

)

= λ in our new notation.

Suppose that ϕ : K → C× is a 1-dimensional character of K. Then Φ := IndG
K ϕ

has character given by Φ(λ) = q(q − 1)ϕ(λ), Φ(α) = ϕ(α) + ϕ(αq) for α ∈ F×
q2 and

Φ = 0 away from these conjugacy classes.
Let’s compute

〈Φ,Φ〉 =
1

|G|



(q − 1)q2(q − 1)2 +
q(q − 1)

2

∑

ν∈K\Z

|ϕ(ν) + ϕ(νq)|2




But

∑

|ϕ(ν) + ϕ(νq)|2 =
∑

ν∈K\Z

(ϕ(ν) + ϕ(νq)
(

ϕ(ν−1) + ϕ(ν−q)
)

=
∑

ν∈K\Z

(

2 + ϕ(νq−1) + ϕ(ν1−q)
)

= 2(q2 − q) + 2
∑

ν∈K

ϕq−1(ν)− 2
∑

λ∈Z

ϕ(λq−1)

But if ϕq−1 6= 1 then the middle term in the last sum is 0 since 〈ϕq−1,1〉 = 0.
Since λq−1 = 1 for λ ∈ Fq the third term is also easy to compute. Putting this
together we get 〈Φ,Φ〉 = q − 1 when ϕq−1 6= 1.
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We similarly compute

〈IndG
B µθ,Φ〉 =

1

|G|
∑

λ∈Z

(q2 − 1)θ(λ)q(q − 1)ϕ(λ)

= (q − 1)〈θ,ResK
Z ϕ〉Z

Thus IndG
B µθ and Φ have many factors in common when φ|Z = θ.

Now, for each ϕ such that ϕq−1 6= 1 (there are q2−q such choices) let θ := ResK
Z ϕ

then our calculations tell us that if βϕ = IndG
B µθ − Φ ∈ R(G) then

〈βϕ, βϕ〉 = q − 2(q − 1) + (q − 1) = 1.

Since also βϕ(1) = q − 1 > 0 it follows that βϕ is an irreducible character. Since

βϕ = βϕq (and ϕq2

= ϕ) we get
(

q
2

)

characters in this way and the character table
of GL2(Fq) is complete.

# classes q − 1 q − 1
(

q−1
2

) (

q
2

)

rep

(

λ 0

0 λ

) (

λ 1

0 λ

) (

λ 0

0 µ

)

α, αq # of reps

χθ θ(λ)2 θ(λ)2 θ(λ)θ(µ) θ(αq+1) q − 1

Vθ qθ(λ)2 0 θ(λ)θ(µ) −θ(αq+1) q − 1

Wθ,φ (q + 1)θ(λ)φ(λ) θ(λ)φ(λ) θ(λ)φ(µ) + θ(λ)φ(µ) 0
(

q−1
2

)

βϕ (q − 1)ϕ(λ) −ϕ(λ) 0 −(ϕ+ ϕq)(α)
(

q
2

)


