Representation Theory - Examples Sheet 1

1. Let ρ be a representation of a group G. Show that $\operatorname{det} \rho$ is a representation of G. What is its degree?
2. Let θ be a one-dimensional representation of a group G and $\rho: G \rightarrow G L(V)$ another representation of G. Show that $\theta \otimes \rho: G \rightarrow G L(V)$ given by $\theta \otimes \rho(g)=\theta(g) \cdot \rho(g)$ defines a representation of G. If ρ is irreducible, must $\theta \otimes \rho$ also be irreducible?
3. Suppose that N is a normal subgroup of a group G. Given a representation of the quotient group G / N on a vector space V, explain how to construct an associated representation of G on V. Which representations of G arise in the way? Recall that G^{\prime} is the normal subgroup of G generated by all elements of the form $g h g^{-1} h^{-1}$ with $g, h \in G$. Show that the 1-dimensional representations of G are precisely those that arise from 1-dimensional representations of G / G^{\prime}.
4. Suppose that (ρ, V) and (σ, W) are representations of a group G. Show that $(\tau, \operatorname{Hom}(V, W))$ is a representation of G where $\tau(g)(f)(v):=\sigma(g) f\left(\rho\left(g^{-1}\right) v\right)$ for all $g \in G, f \in \operatorname{Hom}(V, W)$ and $v \in V$.
5. Let $\rho: \mathbb{Z} \rightarrow G L_{2}(\mathbb{C})$ be the representation defined by $\rho(1)=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$. Show that ρ is not completely reducible. By a similar construction, show that if k is a field of characteristic p there is a two dimensional k-representation of C_{p} that is not completely reducible.
6. Let C_{n} be the cyclic group of order n. Explicitly decompose the complex regular representation $\mathbb{C} C_{n}$ as a direct sum of irreducible subrepresentations.
7. Let D_{10} be the dihedral group of order 10 . Show that every irreducible \mathbb{C}-representation of D_{10} has degree 1 or 2 . By describing them explictly, show that there are precisely four such representations up to isomorphism. Show moreover that for each such representation it is possible to choose a basis so that all the representing matrices have real entries.
8. What are the irreducible real representions $\rho: C_{n} \rightarrow G L(V)$ of a cyclic group of order n ? Compute $\operatorname{Hom}_{G}(V, V)$ in each case. How does the real regular representation $\mathbb{R} C_{n}$ of C_{n} break up as a direct sum of irreducible representations?
9. Write down a presentation of the quaternion group Q_{8} of order 8 . Show that (up to isomorphism) there is only one irreducible complex representation of Q_{8} of dimension at least two. Show that this representation cannot be realised over \mathbb{R} and deduce that that Q_{8} is not isomorphic to a subgroup of $G L_{2}(\mathbb{R})$. Find a four-dimensional irreducible real representation V of Q_{8}. Compute $\operatorname{Hom}_{G}(V, V)$ in this case.
10. Suppose that k is algebraically closed. Using Schur's Lemma, show that if G is a finite group with trivial centre and H is a subgroup of G with non-trivial centre, then any faithful representation of G is reducible after restriction to H. What happens for $k=\mathbb{R}$?
11. Let (ρ, V) be an irreducible complex representation of a finite group G. For each $v \in V$, show that the \mathbb{C}-linear map $\mathbb{C} G \rightarrow V$ given by $\delta_{g} \mapsto \rho(g)(v)$ is G-linear and deduce that V is isomorphic to a subrepresentation of $\mathbb{C} G$. What is $\operatorname{dim} \operatorname{Hom}_{G}(\mathbb{C} G, V)$?
12. Let G be the subgroup of the symmetric group S_{6} generated by (123), (456) and (23)(56). Show that G has an index two subgroup of order 9 and four normal subgroups of order 3. By considering quotients show that G has two complex representations of degree 1, and four pairwise non-isomorphic irreducible complex representations of degree 2 , none of which is faithful. Does G have a faithful irreducible complex representation?
13. Show that if $\rho: G \rightarrow G L(V)$ is a representation of a finite group G on a real vector space V then there is a basis for V with repect to which the matrix representing $\rho(g)$ is orthogonal for every $g \in G$. Which finite groups have a faithful two-dimensional real representation?

Comments and Corrections to S.J.Wadsley@dpmms.cam.ac.uk.

