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2 SIMON WADSLEY

LECTURE 1
1. VECTOR SPACES

Linear algebra can be summarised as the study of vector spaces and linear maps
between them. This is a second ‘first course’ in Linear Algebra. That is to say, we
will define everything we use but will assume some familiarity with the concepts
(picked up from the IA course Vectors and Matrices for example).

1.1. Definitions and examples.

FEzxzamples.

(1) For each non-negative integer n, the set R™ of column vectors of length n with
real entries is a vector space (over R). An (m X n)-matrix A with real entries
can be viewed as a linear map R™ — R™ via v — Av. In fact, as we will see,
every linear map from R™ — R™ is of this form.

(2) Let X be a set and RX := {f: X — R} be equipped with an addition given
by (f + g)(z) := f(z) + g(z) and a multiplication by scalars (in R) given by
(Af)(x) = A(f(x)). Then RX is a vector space (over R).

(3) If[a,b] is a closed interval in R then C([a, b], R) := {f € RI*! | f is continuous}
is an R-vector space by restricting the operations on RI%?!. Similarly

C*([a,b],R) :=={f € C([a,b],R) | f is infinitely differentiable}

is an R-vector space.
(4) The set of (m x n)-matrices with real entries is a vector space over R.

Convention. In this course we will use F to denote either R or C. Most of
the results will be true for any field F; but since general fields are not officially
defined until Groups, Rings and Modules next term we follow the schedules in not
addressing that.

What do our examples of vector spaces above have in common? In each case
we have a notion of addition of ‘vectors’ and scalar multiplication of ‘vectors’ by
elements in R.

Definition. An F-vector space is an abelian group (V, +) equipped with a function
FxV = V; (\v)— Av such that

(a) A(pv) = (Ap)v for all \, p € F and v € V;

(b) AMu+wv) =Au+ M for all A € F and u,v € V;
() A+ pv=Xw+pvforall \,ueF and v € V;
(d) lv=wvforalveV.

Note that this means that we can add, subtract and rescale elements in a vector
space and these operations behave in the ways that we are used to. Note also
that in general a vector space does not come equipped with notions of length or of
angle. We will discuss how to recover these at the end of the course. At that point
particular properties of the field F will be important.

Convention. We will always write 0 to denote the additive identity of a vector
space V. By slight abuse of notation we will also write 0 to denote the vector space

{0}
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FExercise.

(1) Convince yourself that all the vector spaces mentioned thus far do indeed satisfy
the axioms for a vector space.
(2) Show that for any v in any vector space V, Ov =0 and (—1)v = —v

Definition. Suppose that V is a vector space over F. A subset U C V is a (linear)
subspace if

(a) for all uy,us € U, uy + us € U;

(b) for all A€ F and u € U, Au € U,

(¢c) 0eU.

Remarks.

(1) Tt is straightforward to see that U C V is a subspace if and only if U # () and
Aug + pug € U for all uy,ug € U and A\, pu € F.

(2) If U is a subspace of V then U is a vector space under the inherited operations.

Ezxamples.
T

(1) 9 | € R3: 21+ 29+ 23 =1y is a subspace of R3 if and only if ¢t = 0.
T3

(2) Let X be a set. We define the support of a function f: X — F to be
suppf :={z € X : f(x) # 0}.
Then {f € F¥ : |suppf| < oo} is a subspace of FX.

Definition. Let V' be a vector space over F and S C V a subset of V. Then the

span of S in'V,
<S> = {Z)\lsl T\ E F,Si S S,n > 0}

i=1
Remark. For any subset S C V, (S) is the smallest subspace of V' containing S.
Ezample. Suppose that V is R3.

1 0 1 a
IfsS= 0,(1],12 then (S) = bl:abeR
0 1 2 b

Note also that every subset of S of order 2 has the same span as S.
Ezxample. Let X be a set and for each x € X, define d,.: X — F by
lify==x
6:(y) = .
0ify # .
Then (6, : € X) = {f € FX : |[suppf| < oo}.

Definition. Suppose that U and W are subspaces of a vector space V over F.
Then the sum of U and W is the set

U+W:={ut+w:uelUweW}

Proposition. If U and W are subspaces of a vector space V. over ¥ then U NW
and U + W are also subspaces of V.
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Proof. Certainly both U N W and U + W contain 0. Suppose that v1,vo € UNW,
uy,ug € U, wy,wy € Wiand A\, p € F. Then Avi + pve € UNW and
Aug 4+ wr) + plug + we) = (Aug + puz) + (Awy + pwe) € U + W.
So UNW and U + W are subspaces of V. O

*Quotient spaces*. Suppose that V is a vector space over F and U is a subspace
of V. Then the quotient group V/U can be made into a vector space over F by
definining

Av+U)=M)+U
for Ae Fandv e V.

Ezercise. Justify the claim that this makes V/U into a vector space over F.

LECTURE 2
1.2. Linear independence, bases and the Steinitz exchange lemma.

Definition. Let V be a vector space over F and S C V.

(a) We say that S spans V if V = (S).
(b) We say that S is linearly independent (LI) if, whenever

i )\182 =0
=1

with \; € F, and s; distinct elements of S, it follows that \; = 0 for all 4. If S
is not linearly independent then we say that S is linearly dependent (LD).
(c) We say that S is a basis for V if S spans and is linearly independent.

1 0 1
Ezample. Suppose that V is R3 and S = 01,({1],(2 . Then S is linearly
0 1 2

0 1
dependent since 1l [0 | +2 [ 1| 4+(=1) | 2 ] = 0. Moreover S does not span V since
0 1 2
0
0] is not in (S). However, every subset of S of order 2 is linearly independent
1
and forms a basis for (S).

Remark. Note that no linearly independent set can contain the zero vector since
1-0=0.

Convention. The span of the empty set (f)) is the zero subspace 0. Thus the
empty set is a basis of 0. One may consider this to not be so much a convention as
the only reasonable interpretation of the definitions of span, linearly independent
and basis in this case.

Lemma. A subset S of a vector space V over F is linearly dependent if and only if
there exist sg, $1,...,8, € S distinct and \1,..., )\, € F such that sg = Z?:l i S; -
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Proof. Suppose that S is linearly dependent so that > A;s; = 0 for some s; € S
distinct and A; € F with A; # 0 say. Then

-\
S5 = Z IV S;-

i#j Y
Conversely, if so = Y| \is; then (=1)sg + > i, Ais; = 0. O
Proposition. Let V be a vector space over F. Then {e1,...,e,} is a basis for V

if and only if every element v € V can be written uniquely as v =Y ., Aie; with

X € F.

Proof. First we observe that by definition {ey,...,e,} spans V if and only if every
element v of V' can be written in at least one way as v = > A\;e; with \; € F.

So it suffices to show that {eq,..., ey} is linearly independent if and only if there
is at most one such expression for every v € V.

Suppose that {eg,...,e,} is linearly independent and v = > A\;je; = > pie; with
Xi, 1t € F. Then, > (A\; — u;)e; = 0. Thus by definition of linear independence,
Ai—pu;=0fori=1,...,n and so \; = u; for all 7.

Conversely if {e1,...,e,} is linearly dependent then we can write

Z)\Z-ei :O:ZOei

for some \; € F not all zero. Thus there are two ways to write 0 as an F-linear
combination of the e;. O

The following result is necessary for a good notion of dimension for vector spaces.

Theorem (Steinitz exchange lemma). Let V' be a vector space over F. Suppose
that S = {e1,...,en} is a linearly independent subset of V and T C V spans V.
Then there is a subset T' of T of order n such that (T\T')US spans V. In particular
n < |T|.

This is sometimes stated as follows (with the assumption that T is finite).

Corollary. If {e1,...,en} CV is linearly independent and {f1,..., fm} spans V.
Then n < m and, possibly after reordering the f;, {e1,...,en, fut1,---, fm} spans
V.

We prove the theorem by replacing elements of T" by elements of S one by one.

Proof of the Theorem. Suppose that we’ve already found a subset T of T of order
0 < r < nsuch that T,. := (T\T)) U {e1,...,e.} spans V. Then we can write

k
ery1 = Z Aits
i=1

with \; € F and ¢; € T,.. Since {e,...,e,+1} is linearly independent there must be
some 1 < j <k such that A\j # 0 and t; € {e1,...,e,}. Let T}, = T/ U {t;} and

Try1 = (T\T;11) Ufer, .y erpa} = (T\{t;}) U{era }

Now

1 Ai
tj = et T Z Yti,
J i#£j J



6 SIMON WADSLEY

sotj € (Trq1) and (Tr41) = (T U{L;}) D (L) = V.
Now we can inductively construct 7/ = T} with the required properties. ([

Corollary. Let V' be a vector space with a basis of order n.

(a) Every basis of V has order n.

(b) Every basis of a subspace U of V' has order at most n.

(¢) Any n LI vectors in V' form a basis for V.

(d) Any n vectors in V that span V' form a basis for V.

(e) Any set of linearly independent vectors in V' can be extended to a basis.

Proof. Suppose that S = {e1,...,e,} is a basis for V.

(a) Suppose that T is another basis of V. Since S spans V and any finite subset
of T is linearly independent |T| < n. Since T spans and S is linearly independent
|T| = n. Thus |T| = n as required.

(b) Suppose T is a basis for U. Since T is a linearly independent subset of V,
IT| < n.

(¢) Suppose T is a LI subset of V of order n. If T did not span we could choose
v € V\(T). Then T U {v} is a LI subset of V of order n + 1, a contradiction.

(d) Suppose T is spans V and has order n. If T were LD we could find
to,t1,. .. tm in T distinct such that to = >..-; \it; with \; € F. Thus V =
(T) = (T\{to}) so T\{to} is a spanning set for V of order n — 1, a contradiction.

(e) Let T = {t1,...,tm} be a linearly independent subset of V. Since S spans
V we can find sq,..., 8, in S such that (S\{s1,...,8m})UT spans V. Since this
set has order (at most) n it is a basis containing 7. O

LECTURE 3

Definition. If a vector space V over F has a finite basis S then we say that V is
finite dimensional (or f. d.). Moreover, we define the dimension of V by

dimp V =dimV = |S].
If V' does not have a finite basis then we will say that V is infinite dimensional.

Lemma. IfV is f.d. andU C V is a proper subspace then U is also f.d.. Moreover,
dimU < dim V.

Proof. Let S C U be a LI subset of U of maximal possible size. Then |S| < dim V'
(by the last Corollary).

Suppose that v € V\(S) and Agv + > i0; Ajs;=0 with Xg...,\,, € F, and
S1y--.,8m 18 S distinct. Then A\g = 0 since v € (S). So Ay,..., Ay = 0 since S is
LI. Thus S U{v} is LI for every v € V\(S). In particular U = (S), else S does not
have maximal size. Moreover since U # V, there is some v € V\(S) and |S U {v}|
is a LI subset of order |S| + 1. So |S| < dim V' as required. O

Remarks.

(1) By the last corollary the dimension of a finite dimensional space V' does not
depend on the choice of basis S. However the dimension does depend on F.
For example C has dimension 1 viewed as a vector space over C (since {1} is a
basis) but dimension 2 viewed as a vector space over R (since {1,4} is a basis).
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(2) If we wanted to be more precise then we could define the dimension of an
infinite dimensional space to be the cardinality of any basis for V. But we have
not proven enough to see that this would be well-defined; in fact there are no
problems.

Proposition. Let U and W be subspaces of a finite dimensional vector space V
over F. Then

dim(U + W) + dim(U N W) = dim U + dim W.

Proof. Since dimension is defined in terms of bases and we have no way to compute
it at present except by finding bases and counting the number of elements we must
find suitable bases. The key idea is to be careful about how we choose our bases.

’ Slogan When choosing bases always choose the right basis for the job.

Let R := {v1,...,v,} be a basis for UNW. Since UNW is a subspace of U we can
extend R to a basis S := {v1,..., 00, Ups1,...,us} for U. Similary we can extend
R to a basis T := {v1,...,0p, Wrt1,...,ws} for W. We claim that X := SUT is a
basis for U + W. This will suffice, since then

dm(U+W)=|X|=s+t—r=dimU 4+ dim W — dim(U N W).

Suppose u+w € U+ W with w € U and w € W. Then v € (S) and w € (T).
Thus U 4+ W is contained in the span of X = SUT. It is clear that (X) C U + W
so X does span U 4+ W and it now suffices to show that X is linearly independent.
Suppose that

T s t

Z)\ivi + Z iy + Z vpwy = 0.

=1 j=r+1 k=r+1
Then we can write > pju; = —> vy — y vpwr € UNW. Since the R spans
UNW and T is linearly independent it follows that all the vy are zero. Then
Y Aivi + > pju; = 0 and so all the A\; and p; are also zero since S is linearly
independent. U

Lemma. If S CV is a finite spanning set then S contains a basis for V.

Proof. By induction on —S—. If S is LI we’re done. Otherwise there are sg, ..., s, €
S and Ai,..., A\, € F such that s = Y., Ais;. Thus (S) = (S\{so}). By the
induction hypothesis S\{so} contains a basis. O

Ezercise (non-examinable). Show that if V' is a finite dimensional vector space over
F and U is a subspace then

dimV = dim U + dim V/U.

Hint. Show that if {uy,...,u:} is a basis for U and {v; + U, ..., v, + U} is a basis
for V/U then {uy,...,um,v1,...,v,} is a basis for V.

1.3. Direct sum. There are two related notions of direct sum of vector spaces
and the distinction between them can often cause confusion to newcomers to the
subject. The first is sometimes known as the internal direct sum and the latter as
the external direct sum. However it is common to gloss over the difference between
them.
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Definition. Suppose that V is a vector space over F and U and W are subspaces
of V. Recall that sum of U and W is defined to be

U+W={u+w:uelUweW}

We say that V' is the (internal) direct sum of U and W, written V = U & W, if
V=U+Wand UNW = 0. Equivalently V =U @ V if every element v € V can
be written uniquely as v + w with v € U and w € W.

We also say that U and W are complementary subspaces in V.

Example. Suppose that V = R? and
1 1 1
U= To | iz +22+23=0 ,W1=< 1 >andW2:< 0 >
T3 1 0

then V=U®W; =U @ Ws.
Note in particular that U does not have only one complementary subspace in V.

Definition. Given any two vector spaces U and W over F the (external) direct
sum U & W of U and W is defined to be the set of pairs

{(u,w) :u e U,we W}
with addition given by
(u1,w1) + (uz,wa) = (ur + uz, wy + wa)
and scalar multiplication given by
Au, w) = (A, Aw).

Exercise. Show that U @ W is a vector space over F with the given operations and
that it is the internal direct sum of its subspaces

{(u,0) :uw e U} and {(0,w) : w € W}.
More generally we can make the following definitions.

Definition. If Uy,...,U, are subspaces of V then V is the (internal) direct sum
of Uy, ..., U, written

V=Ui® ol :éw
i=1

if every element v of V' can be written uniquely as v = > | u; with u; € U;.

Definition. If Uy, ..., U, are any vector spaces over F their (external) direct sum
is the vector space

@UZ = {(u17'~'7un) |u’b € UZ}
=1

with natural coordinate-wise operations.

From now on we will drop the adjectives ‘internal’ and ‘external’ from ‘direct
)

sum-.
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LECTURE 4
2. LINEAR MAPS

2.1. Definitions and examples.

Definition. Suppose that U and V are vector spaces over a field F. Then a function
a: U — V is a linear map if

(a) a(u + u2) = a(ur) + a(ug) for all uy,us € U;

(b) a(Au) = Aa(u) for all w € U and X € F.

Notation. We write L(U, V') for the set of linear maps U — V.

Remarks.

(1) We can combine the two parts of the definition into one as: « is linear if and
only if a(Aug + pug) = Aa(ur) + pa(ug) for all A\, € F and ug,us € U. Linear
maps should be viewed as functions between vector spaces that respect their
structure as vector spaces.

(2) If v is linear map then « is a homomorphism of the underlying abelian groups.
In particular «(0) = 0.

(3) If we want to stress the field F then we will say a map is F-linear. For example,
complex conjugation defines an R-linear map from C to C but it is not C-linear.

FEzxamples.
(1) Let A be an nxm matrix with coefficients in F. Then a: F™ — F"; a(v) = Av
is a linear map.

To see this let A\, € F and w,v € F™. As usual, let A;; denote the ijth
entry of A and w;, (resp. v;) the jth coordinate of u (resp. v). Then for
1<i<n,

m
(@l + o)) = 3 Ay (huy + ;) = Aalu); + pa(v);
j=1
so a(Au + pv) = da(u) + pa(v) as required.
(2) If X is any set and g € FX then g: FX — FX; (gf)(x) := g(2)f(z) for v € X
is linear.
) For all « € [a,b], §,: C([a,b],R) = R; f — f(z) is linear.
) I: C(la,b],R) = C([a,b],R); I(f)(z) = [ f(t)dt is linear.
) D: C*([a,b],R) = C*°([a,b],R); (Df)(t) = f'(¢) is linear.
) If o, 8: U — V are linear and A € F then a+ 3: U — V given by (a4 8)(u) =
a(u) + B(u) and da: U — V given by (Aa)(u) = Ma(u)) are linear. In this
way L(U,V) is a vector space over F.

(3
(4
(5
(6

Definition. We say that a linear map a: U — V is an isomorphism if there is a
linear map B: V — U such that fa = idy and af = idy.

Lemma. Suppose that U and V' are vector spaces over F. A linear map a: U — V
s an isomorphism if and only if « is a bijection.

Proof. Certainly an isomorphism «: U — V is a bijection since it has an inverse
as a function between the underlying sets U and V. Suppose that a: U — V is a

linear bijection and let B: V' — U be its inverse as a function. We must show that
B is also linear. Let A, € F and vy,v9 € V. Then

af (A1 + pv2) = Aaf(v) + paB(v2) = a (AB(v1) + pB(v2)) .
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Since « is injective it follows that [ is linear as required. O

Definition. Suppose that a: U — V is a linear map.
e The image of o, Im v := {a(u) : w € U}.
e The kernel of a, kera := {u € U : a(u) = 0}.
FEzxzamples.

(1) Let A be an n x m-matrix with coefficients in F and let a: F™ — F"™ be the
linear map defined by x — Ax. Then the system of equations

m
ZAija:jzbi; 1<i<n
j=1

by
has a solution if and only if | : € Ima. The kernel of a consists of the
bn
Z1
solutions | : | to the homogeneous equations
Tm

m
ZAijxj:(); 1<z<n
j=1

(2) Let g: C*(R,R) — C>*(R,R) be given by

BUAE) = () + p) f'(t) + q(t) f(2)

for some p,qg € C*(R,R). A function g € C*(R,R) is in the image of
precisely if

f1@) +p@)f(t) + at) = g(t)
has a solution in C*°(R,R). Moreover, ker 8 consists of the solutions to the
differential equation

F1@) +p()f(t) + a(t) f(t) = 0
in C*(R,R).
Note that « is injective if and only if kera = 0 and that « is surjective if and
only if Imna = V.
Proposition. Suppose that a: U — V is an F-linear map.

(a) If « is injective and S C U is linearly independent then a(S) C V is linearly
independent.

(b) If a is surjective and S C U spans U then a(S) spans V.

(¢) If « is an isomorphism and S is a basis then a(S) is a basis.

Proof. (a) Suppose « is injective, S C U and «(S) is linearly dependent. Then
there are sq,...,s, € S distinct and Aq1,...,\, € F such that

asg) = Z Aia(s) =« (Z )\isi> .

Since « is injective it follows that sg = Z? Ais; and S is LD.
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(b) Now suppose that « is surjective, S C U spans U and let v in V. There is
u € U such that a(u) = v and there are s1,...,s, € S and A\1,..., A\, € F such
that > A;s; = u. Then > A\;a(s;) =v. Thus «(S) spans V.

(c) Follows immediately from (a) and (b). O

Corollary. If two finite dimensional vector spaces are isomorphic then they have
the same dimension.

Proof. If a: U — V is an isomorphism and S is a finite basis for U then «(S) is a
basis of V' by the proposition. Since « is an injection |S| = |a(S)]. O

Proposition. Suppose that V is a vector space over F of dimension n < oo.
Writing ey, .. ., e for the standard basis for F™, there is a bijection ® between the
set of isomorphisms F* — V and the set of (ordered) bases for V that sends the
isomorphism o: F™" — V to the (ordered) basis (a(e1),...,a(ey)).

Proof. That the map @ is well-defined follows immediately from part (c) of the last
Proposition.
If ®(a) = ®(B) then

T n n Ty
o : = wale) =) wifle) =B
z, i=1 i=1 T,
T
forall | : | € F" so a = 3 and ® is injective.
In
Suppose now that (vq,...,v,) is an ordered basis for V' and define a: F* — V
by
I n
« = Z XTiV;.
T, i=1
Then « is injective since vy, ..., v, are LI and « is surjective since vq, ..., v, span
V and « is easily seen to be linear. Thus « is an isomorphism such that ®(a) =
(v1,...,vy,) and @ is surjective as required. a

Thus choosing a basis for an n-dimensional vector space V' corresponds to choos-
ing an identification of V' with F”.

LECTURE 5

2.2. Linear maps and matrices.

Proposition. Suppose that U and V are vector spaces over F and S :={e1,...,e,}
is a basis for U. Then every function f: S — V extends uniquely to a linear map
a:U—V.

’ Slogan To define a linear map it suffices to specify its values on a basis. ‘
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Proof. First we prove uniqueness: suppose that f: S — V and a andd g are two
linear maps U — V extending f. Let u € U so that u = ) u;e; for some u; € F.

Then
a(u) =« <Z uiel) = Zuia(ei).
i=1 i=1

Similarly, 8(u) = >°7 wiB(e;). Since a(e;) = f(e;) = B(e;) for each 1 < i < n we
see that a(u) = B(u) for all w € U and so o = S.

That argument also shows us how to construct a linear map « that extends f.
Every u € U can be written uniquely as u = Y. | u;e; with u; € F. Thus we can
define a(u) = 3 u;f(e;) without ambiguity. Certainly « extends f so it remains
to show that « is linear. So we compute for u = > u;e; and v =Y v;e;,

a(M+w) = « (Z()\Ui + M%‘)ﬁ')

=1
n

= Z(/\Ui + ;) f(€;)

=1
— )\Zuif(ei) + szif(ei)
i=1 =1

= Aa(u) + pa(v)
as required. (I

Remarks.

(1) With a little care the proof of the proposition can be extended to the case U
is not assumed finite dimensional.

(2) Tt is not hard to see that the only subsets S of U that satisfy the conclusions
of the proposition are bases: spanning is necessary for the uniqueness part and
linear independence is necessary for the existence part. The proposition should
be considered a key justification for the definition of a basis.

Corollary. If U and V are finite dimensional vector spaces over F with (ordered)
bases (e1,...,em) and (f1,..., fn) respectively then there is a bijection

Mat,, n (F) < L(U, V)

that sends o matriz A to the unique linear map o such that a(e;) =" ajif;.

Interpretation The ith column of the matrix A tells where the ith basis
vector of U goes (as a linear combination of the basis vectors of V).

Proof. If a: U — V is a linear map then for each 1 < i < m we can write a(e;)
uniquely as a(e;) = Y ajif; with aj; € F. The proposition tells us that every
matrix A = (a;;) arises in this way from some linear map and that « is determined
by A. a

Definition. We call the matrix corresponding to a linear map « € L(U, V) under
this corollary the matrix representing o with respect to {e1, ... ,em) and (fi,..., fn).

Ezxercise. The bijection given by the corollary is even an isomorphism of vector
spaces. Thus dim £(U,V) = dimU dim V.
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Proposition. Suppose that U,V and W are finite dimensional vector spaces over
F with bases R := (u1,...,u.), S:= (v1,...,0s) and T := (wy, ..., w;) respectively.
If a: U — V is a linear map represented by the matriz A with respect to R and S
and B:V — W is a linear map represented by the matriz B with respect to S and
T then Ba is the linear map U — W represented by BA with respect to R and T .

Proof. Verifying that S« is linear is straightforward: suppose x,y € U and A\, u € F
then

Ba(Ax + py) = B(Aa(z) + pa(y)) = Aa(z) + pfaly).
Next we compute Sa(u;) as a linear combination of w;.

Ba(u;) = B <Z Akﬂk) =Y AwiB(or) =Y AriBjrw; = Y _(BA)jiw;
K K kg

J

as required.
O

2.3. The first isomorphism theorem and the rank-nullity theorem. The
following analogue of the first isomorphism theorem for groups holds for vector
spaces.

Lemma (The first isomorphism theorem). Let a: U — V' be a linear map between
vector spaces over F. Then ker « is a subspace of U and Im « is a subspace of V.
Moreover « induces an isomorphism U/ker « — Im « given by

a(u + ker o) = a(u).
Proof. Certainly 0 € ker a. Suppose that u;,us € kera and A\, u € F. Then
a(Aug + pug) = Aa(ur) + pa(ug) =0+ 0 = 0.
Thus ker «v is a subspace of U. Similarly 0 € Im « and for uy,us € U,
Aa(uy) + po(uz) = a(Mug + puz) € Im(a).

The remainder is left as a (straightforward yet non-examinable) exercise. [Hint: the
first isomorphism theorem for groups gives that @ is a bijective homomorphism of
the underlying abelian groups so it remains to verify that @ respects multiplication
by scalars.] O

Definition. Suppose that a: U — V is a linear map between finite dimensional
vector spaces.

e The number n(a) := dimker « is called the nullity of «.

e The number r(a) := dimIm« is called the rank of a.

Corollary (The rank-nullity theorem). If a: U — V is a linear map between f.d.
vector spaces over F then

r(a) + n(a) = dimU.
Proof. Since U/ ker o & Im « this follows immediately from an earlier exercise. [

We are about to give another proof of the rank-nullity theorem not using quotient
spaces or the first isomorphism theorem. However, the proof above is illustrative
of the power of considering quotients.
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Proposition. Suppose that a: U — V is a linear map between finite dimensional
vector spaces then there are bases {e1,...,en} for U and {f1,..., fm} for V such
that the matrix representing o is

I, 0

0 0

Proof. Let egy1,...,e, be a basis for ker o (here n(a) = n — k) and extend it to
a basis eq,...,e, for U (we're being careful about ordering now so that we don’t
have to change it later). Let f; = a(e;) for 1 <i < k.

We claim that {fi,..., fi} form a basis for Im « (so that k¥ = r(«)). Suppose first

that Zle Aifi = 0 for some \; € F. Then « (Zle /\iei> = 0 and so Zle Aie; €
ker . But keraw N {ey,...,e;) = 0 by construction and so Zle Aie; = 0. Since

e1,...,e, are LI each A; = 0. Thus we have shown that {f1,..., fi} is LL

Now suppose that v € Ima, so that v = a(} ;- pie;) for some y; € F. Since
ale;) =0 for i > k and ay(e;) = f; for i < k, v = Zle wifi € {fi,..., fx). So
{f1,-.-, fx} is a basis for Im« as claimed (and k = r).

We can extend {fi,..., fr} to a basis {f1,..., fm} for V.

Now
fi 1<i<r
ale;) = .
0 r+1<71<m

where r = r(a).

so the matrix representing « with respect to our choice of basis is as in the state-
ment. ([l

The proposition says that the rank of a linear map between two finite dimensional
vector spaces is its only basis-independent invariant (or more precisely any other
invariant can be deduced from it).

Corollary (The rank-nullity theorem). If a: U — V is a linear map between finite
dimensional vector spaces then

r(a) + n(a) = dimU.

Proof. This can easily be read off from either the statement or the proof of the
Proposition. (Il

LECTURE 6
Recall the statement of the rank-nullity theorem.

Theorem (The rank-nullity theorem). If a: U — V is a linear map between finite
dimensional vector spaces then

r(a) + n(a) = dimU.

This result is very useful for computing dimensions of vector spaces in terms of
known dimensions of other spaces.

Example. Let W = {x € R® | 1 + 72 + 25 = 0 and 23 — 24 — x5 = 0}. What is
dim W?
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r1 + 2o + x5

Consider a: R® — R? given by a(x) = (
T3 — T4 — Th

> . Then « is a linear map

with image R? (since

O = O O
|
Y
=)
~_
\._/

o
oo o

1
= (O) and o

and ker o = W. Thus dimW =n(a) =5 —r(a) =5—-2=3.

=]
o

More generally, one can use the rank-nullity theorem to see that m linear equa-
tions in n unknowns have a space of solutions of dimension at least n — m.

Ezample. Suppose that U and W are subspaces of a finite dimensional vector space
V then let a: U @ W — V be the linear map given by a((u,w)) = v+ w. Then
kera={(u,—u) |lueUNW}=UNW, and Ima = U + W. Thus

dmU e W =dim (U + W) +dim (UNW).
We can then recover dimU + dim W = dim (U + W) 4+ dim (U N W).

Corollary (of the rank-nullity theorem). Suppose that «: U — V is a linear map
between two vector spaces of dimension n < oo. Then the following are equivalent:
(a) « is injective;

(b) « is surjective;

(c) a is an isomorphism.

Proof. Tt suffices to see that (a) is equivalent to (b) since these two together are
already known to be equivalent to (c). Now « is injective if and only if n(a) = 0.
By the rank-nullity theorem n(a) = 0 if and only if r(a) = n and the latter is
equivalent to « being surjective. (|

This enables us to prove the following fact about matrices.

Lemma. Let A be an n X n matriz over F. The following are equivalent

(i) there is a matriz B such that BA = I,,;

(i) there is a matriz C such that AC = I,,.
Moreover, if (i) and (ii) hold then B = C and we write A= = B = C; we say A is
invertible.

Proof. Let a, 3,7,t: F* — F™ be the linear maps represented by A, B,C and I,
respectively (with respect to the standard basis for F™). Then (i) implies that
Ba = ¢ thus « is injective and so an isomorphism. Thus a~! = § is represented
by B with respect to the standard basis and AB = I,,. Similarly (ii) implies that
ay = ¢ thus « is surjective and so an isomorphism. Thus a~! = v is represented
by C with respect to the standard basis and CA = I,,.

Finally C = I,C = BAC = BI,, = B. O

2.4. Change of basis.

Theorem. Suppose that (e1,...,em) and (u1,...,uny) are two bases for a vector
space U over ¥ and (f1,..., fn) and (v1,...,v,) are two bases of another veector
space V. Let a: U — V be a linear map, A be the matriz representing o with
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respect to (e1,...,em) and (f1,..., fm) and B be the matriz representing o with
respect to (uy, ..., Un) and (vi,...,Uy) then
B=Q 'AP

where u; =Y Prie fori=1,...,mandv; => Qi fi forj=1,...,n.

Note that one can view P as the matrix representing the identity map from U
with basis (u1, ..., um) to U with basis (e1, ..., en) and @ as the matrix represent-
ing the identity map from V with basis (v1,...,v,) to V with basis (fi,..., fn)-
Thus both are invertible with inverses represented by the identity maps going in
the opposite directions.

Proof. On the one hand, by definition
a(u;) =Y Bjw; = BjiQiifi=Y (QB)ifi.
J gl l

On the other hand, also by definition

a(u;) = (Z Pkin) = PuiAufi =) (AP)ifi.
k Kl

1
Thus QB = AP as the f; are LI. Since @ is invertible the result follows. ([

Definition. We say two matrices A, B € Mat,, ,,(F) are equivalent if there are
invertible matrices P € Mat,,,(F) and Q € Mat,,(F) such that QAP = B.

Note that equivalence is an equivalence relation. It can be reinterpreted as
follows: two matrices are equivalent precisely if they respresent the same linear
map with respect to different bases.

We saw earlier that for every linear map « between f.d. vector spaces there are
bases for the domain and codomain such that « is represented by a matrix of the

form
I, 0
(5 o)
Moreover r = r(«) is independent of the choice of bases. We can now rephrase this
as follows.

Corollary. If A € Mat,, ,,(F) there are invertible matrices P € Mat,,(F) and
Q € Mat,,(F) such that QAP is of the form

I, 0

0 0)°
Moreover r is uniquely determined by A. 1i.e. every equivalence class contains
precisely one matriz of this form. O

Definition. If A € Mat,, ,,,(F) then

e column rank of A, written r(A) is the dimension of the subspace of F"
spanned by the columns of A;
e the row rank of A is the column rank of A7,

Note that if we take a to be a linear map represented by A with respect to
the standard bases of F™ and F” then r(A) = r(a). i.e. ‘column rank=rank’.
Moreover, since 7(«) is defined in a basis-invariant way, the column rank of A is
constant on equivalence classes.



LINEAR ALGEBRA 17

Corollary (Row rank equals column rank). If A € Mat,, ,,(F) then r(A) = r(AT).
Proof. Let 7 = r(A). There exist P, @ such that

_ I. 0
Q 1AP:(O o)‘

T AT(-1\T _ (Ir 0
and so 7 = r(AT). Thus A and AT have the same rank. O

Thus

LECTURE 7

2.5. Elementary matrix operations.

Definition. We call the following three types of invertible nxn matrices elementary
matrices

i J
1 0
0 1
S?j = . for i # j,
1 0
0 1
i J
1 0
1 A
E?J()\) = . for i # j, A € F and
0 1
0 1
i
1 0
TN = RN for A € F\{0}.
0 1
0 1

We make the following observations: if A is an m x n matrix then AS} (resp.
Si7A) is obtained from A by swapping the ith and jth columns (resp. rows),
AE}(N) (vesp. EJY(A)A) is obtained from A by adding A - (column 4) to column j
(resp. adding A - (row j) to row i) and AT/*(A) (resp. T;™"(M\)A) is obtained from A
by multiplying column (resp. row) i by A.

Recall the following result.

Proposition. If A € Mat,, ,,(F) there are invertible matrices P € Mat,,(F) and
Q € Mat,,(F) such that Q=1 AP is of the form

(5 2)
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Pure matrix proof of the Proposition. We claim that there are elementary matrices

t,... B} and F{*, ..., Fy" such that E} .- - EJAF{™--- F" is of the required
form. This suffices since all the elementary matrices are invertible and products of
invertible matrices are invertible.

Moreover, to prove the claim it suffices to show that there is a sequence of
elementary row and column operations that reduces A to the required form.

If A = 0 there is nothing to do. Otherwise, we can find a pair ,j such that
Aij # 0. By swapping rows 1 and ¢ and then swapping rows 1 and j we can reduce
to the case that A1, # 0. By multiplying row 1 by A%l we can further assume that
A11 =1.

Now, given A;; = 1 we can add —A;; times column 1 to column j for each
1 < j < m and then add —A;; times row 1 to row ¢ for each 1 < i < n to reduce
further to the case that A is of the form

1 0
0 B/’
Now by induction on the size of A we can find elementary row and column operations

that reduces B to the required form. Applying these ‘same’ operations to A we
complete the proof. O

Note that the algorithm described in the proof can easily be implemented on a
computer in order to actually compute the matrices P and Q.

Ezercise. Show that elementary row and column operations do not alter r(A) or
r(AT). Conclude that the r in the statement of the proposition is thus equal to
r(A) and to r(AT).

3. DETERMINANTS OF MATRICES

Recall that S,, is the group of permutations of the set {1,...,n}. Moreover we
can define a group homomorphism e: S,, — {£1} such that e(c) = 1 whenever o
is a product of an even number of transpositions and ¢(o0) = —1 whenever o is a

product of an odd number of transpositions.
Definition. If A € Mat,, (F) then the determinant of A

det A= ¢(0) (H Aw(i)> :

oSy
Example. If n =2 then det A = A11A22 — A12A21.

Lemma. det A = det AT
Proof.
det AT = Z (o) HAU(Z-)Z-
i=1

gESy

= Z e(o) H Az‘afl(i)
i=1

oeSy,

= Z 6(7'_1) HA”-(Z)
TES, i=1
= detA
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Lemma. Let A € Mat,,(F) be upper triangular ie
ay  x  x
A=1¢9 -
0 0 ap
then det A =17, a;.
Proof.

det A = Z 6(0') ﬁA,m.(l)
i=1

oESy
Now Ay = 0if i > o(i). So T, Aioiy = 0 unless i < o(7) for all i =1,...,n.
Since o is a permutation H?:l Aw(i) is only non-zero when o = id. The result

follows immediately. O
Definition. A volume form d on F" is a function F* x F"* x ... x F* — F;
(v1,...,0,) — d(v1,...,v,) such that

(i) dis multi-linear i.e. for each 1 <i < n
d(v1y ..y A+ pvh, o vn) = A1, Vg On)  pd(V1, .V U);
(i) d is alternating i.e. whenever v; = v; for some i # j then d(vi,...,v,) =0.

Note that one may view a matrix A € Mat,,(F) as an n-tuple of elements of F"
given by its columns A = (AW ... AM) with AM) ... AN ¢ Fr,

Lemma. det: F* x ---F* - F; (A ..., AM™) 1 det A is a volume form.

Proof. To see that det is multilinear it suffices to see that [];-_, Ao iy is multilinear
for each o € S, since a sum of (multi)-linear functions is (multi)-linear. Since one
term from each column appears in each such product this is easy to see.

Suppose now that A% = A® for some k # [. Let 7 be the transposition (kl).

Then a;; = a;r(;) for every 4,7 in {1,...,n}. We can write S, is a disjoint union of
cosets A, [[7A4n.
Then
Z Haio’(i) = Z Hai'rcr(i) = Z Haia(i)
oEA, o€EA, ocETA,
Thus det A = LHS — RHS = 0. O
LECTURE 8

We continue thinking about volume forms.
Lemma. Let d be a volume form. Swapping two entries changes the sign. i.e.
d(vr, .. VeV, Un) = —d(V1, e Uy, gy V)

Proof. Consider d(v1,...,v;+vj,...,v;+j,...,v,) = 0. Expanding the left-hand-
side using linearity of the ith and jth coordinates we obtain
d(v1, .. Ve Ve, ) F AV, Vi, Vg U )

d(vi, .. 05,0, U U,) (0, 0,0, 0,) = 0L
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Since the first and last terms on the left are zero, the statement follows immediately.
O

Corollary. If o € S, then d(vVo(1); -+, Vo(n)) = €(0)d(v1, ... ,v5). |

Theorem. Let d be a volume form on F™. Let A be a matriz with ith column
A® € F". Then
d(AD . AMY =det A-d(ey, ..., en).

In order words det is the unique volume form d such that d(eq, ..., e,) = 1.

Proof. We compute
d(AM .. Ay = d(z Aire;, AP AM)
i=1
= Z Aild(6i7 A(2)7 s 7A(n))

= Z /11'114342(1(61‘7 Bj, . 7fl(n))

i,J
n
= E HAijj d(eil,...,ein)
i1yeerin \j=1
But d(e;,,...,e;,) = 0 unless 41,...,4, are distinct. That is unless there is some

o € Sy, such that i; = ¢(j). Thus

n
d(AD, . A™) = S ] Aoy | dleoqrys-- - eotmy)-

o€S, \J=1
But d(eg(1); - -+, €om) = €(a)d(e1, ..., e,) so we're done. O

Remark. We can interpret this as saying that for every matrix A,
d(Aey,...,Ae,) =det A-d(eq,...,en).

The same proof gives d(Avy, ..., Av,) =det A-d(vy,...,v,) for all vy,..., v, € F™.
We can view this result as the motivation for the formula defining the determinant;

det A is the unique way to define the ‘volume scaling factor’ of the linear map given
by A.

Theorem. Let A, B € Mat,(F). Then det(AB) = det Adet B.

Proof. Let d be a non-zero volume form on F”, for example det. Then we can
compute

d(ABey,...,ABe,) = det(AB) - d(ey, ..., en)
by the last theorem. But we can also compute

d(ABey,...,ABe,) =det A-d(Bej....,Be,) =det Adet B - d(eq,...,e,)

by the remark extending the last theorem. Thus as d(e,...,e,) # 0 we can see
that det(AB) = det Adet B O

Corollary. If A is invertible then det A # 0 and det(A™!) = 1.
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Proof. We can compute
1 =detI, =det(AA™') = det Adet A~
Thus det A=! = dei + as required. O

Theorem. Let A € Mat,(F). The following statements are equivalent:
(a) A is invertible;

(b) det A # 0;

(c) r(A) = n.

Proof. We've seen that (a) implies (b) above.

Suppose that 7(A) < n. Then by the rank-nullity theorem n(A) >q and so there
is some A € F"\0 such that A\ = 0 i.e. there is a linear relation between the
columns of A; 2?21 M AW =0 for some \; € F not all zero.

Suppose that A\ # 0 and let B be the matrix with ith column e; for i # k£ and
kth column A. Then AB has kth column 0. Thus det AB = 0. But we can compute
det AB = det Adet B = A det A. Since A # 0, det A = 0. Thus (b) implies (c).

Finally (c) implies (a) by the rank-nullity theorem: r(A) = n implies n(A4) = 0
and the linear map corresponding to A is bijective as required. O

Notation. Let Z; denote the submatrix of A obtained by deleting the ith row
and the jth column.

Lemma. Let A € Mat,(F). Then

(a) expanding determinant along the jth column det A =7  (—1)"7A;; ge\tzi\j;
(b) expanding determinant along the ith row det A = 377, (—1)"7 Aj; det Aj;.
Proof. Since det A = det AT it suffices to verify (a).

Now
detA = det(A(1)7.__7A(n))
det(A(1)7--~,ZAZ']'€Z‘7...,A(”))
ZAzjdet(A(l),...,ei,...,A(”))
= ZAij(—l)i+jdetB
where

_ (45 0
B= ( - 1) .
Finally for o € S,,, [T}, Bis(i) = 0 unless o(n) = n and we see easily that det B =

det Z; as required. (I

Definition. Let A € Mat,(F). The adjugate matriz adj A is the element of
Mat,, (F) such that

(adj A); = (—1)"*7 det A,
Theorem. Let A € Mat,(F). Then
(adj A)A = A(adj A) = (det A)L,.
Thus if det A # 0 then A~' = ﬁadj A



22 SIMON WADSLEY

Proof. We compute

(adj A)A)e = > (adjA);Au
i=1
(—1)j+i det Z;Aik
=1

i

The right-hand-side is det A if & = j. If kK # j then the right-hand-side is the
determinant of the matrix obtained by replacing the jth column of A by the kth
column. Since the resulting matrix has two identical columns ((adj A)A);x = 0 in
this case. Therefoe (adj A)A = (det A)I,, as required.

We can now obtain AadjA = (det A)I,, either by using a similar argument
using the rows or by considering the transpose of Aadj A. The final part follows
immediately. (]

Remark. Note that the entries of the adjugate matrix are all given polynomials in
the entries of A. Since the determinant is also a polynomial, it follows that the
entries of the inverse of an invertible square matrix are given by a rational function
(i.e. a ratio of two polynomial functions) in the entries of A. Whilst this is a very
useful fact from a theoretical point of view, computationally there are better ways
of computing the determinant and inverse of a matrix than using these formulae.

LECTURE 9

We’ll complete this section on determinants of matrices with a couple of results
about block triangular matrices.

Lemma. Let A and B be square matrices. Then

0 B
Proof. Suppose A € Mat,(F) and B € Mat;(F) and k+1 = n so C € Maty (F).

Define 4
C
= 5)

det X = Z (o) (ﬁ Xm(i)> .
geSy i=1

Since X;; = 0 whenever ¢ > k and j < k the terms with o such that o(i) < k for
some i > k are all zero. So we may restrict the sum to those o such that o(i) > k

det (A C) — det(A) det(B).

then

for i > k i.e. those o that restrict to a permutation of {1,...,k}. We may factorise
these o as 0 = 0109 with o1 € Sk and o9 a permuation of {k+ 1,...,n}. Thus
k !
det X = 226(0102) (H Xiaj('i)) HXj+k7o-2(j+k)
o1 g2 =1 j:l

i l
< > e(on) (HAwl(i)» > elos) HBjag(j)

o1ESy oheS;
= det Adet B
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Corollary.
Ay % * 5
det | g . 4 | =]]det4; O
0 0 A =1

Warning: it is not true in general that if A, B,C, D € Mat,,(F) and M is the
element of Mats, (F) given by
A B
u=(e b)

then det M = det Adet D — det Bdet C.

4. ENDOMORPHISMS

4.1. Invariants.

Definition. Suppose that V is a finite dimensional vector space over F. An endo-
morphism of V' is a linear map «: V' — V. Let End(V) denote the vector space of
endomorphisms of V. We'll write ¢ to denote the identity endomorphism of V.

When considering endomorphisms as matrices it is usual to choose the same
basis for V' for both the domain and the range.

Lemma. Suppose that {e1,...,e,) and (f1,..., fn) are bases for V such that f; =
> Prier. Let a € End(V), A be the matriz representing « with respect to {eq, ..., e,)
and B the matriz representing o with respect to (f1,..., fu). Then B = P~1AP.

Proof. This is a special case of the change of basis formula for all linear maps
between f.d. vector spaces. O

Definition. We say matrices A and B are similar (or conjugate) if B = P~AP
for some invertible matrix P.

Recall GL,(F) denotes all the invertible matrices in Mat,,(F). Then GL,(F)
acts on Mat,, (F) by conjugation and two such matrices are similar precisely if they
lie in the same orbit. Thus similarity is an equivalence relation.

An important problem is to classify elements of Mat, (F) up to similarity (ie
classify GL,, (F)-orbits). It will help us to find basis independent invariants of the
corresponding endomorphisms. For example we'll see that given o € End(V') the
rank, trace, determinant, characteristic polynomial and eigenvalues of « are all
basis-independent.

Definition. The trace of A € Mat,,(F) is defined by tr A =Y A;; € F.
Note that trace is a linear map from Mat,, (F) — F.

Lemma.

(a) If A € Mat,, ,(F) and B € Maty, ,,(F) then tr AB = tr BA.
(b) If A and B are similar then tr A = tr B.
(c) If A and B are similar then det A = det B.
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Proof. (a)

trAB = ; (f: Aiiji

If B= P 'AP then,
(b) tr B=tr(P~1A)P =tr P(P~1A) = tr A.

(c) det B = det P~ det Adet P = {1 det Adet P = det A. O

Definition. Let a € End(V), (e1,...,e,) be a basis for V and A the matrix
representing « with respect to (eq,...,e,). Then the trace of a written tra is
defined to be the trace of A and the determinant of o written det « is defined to
be the determinant of A.

We'’ve proven that the trace and determinant of @ do not depend on the choice
of basis (e1,...,en).

Definition. Let a € End(V).

(a) A € Fis an eigenvalue of « if there is v € V\0 such that av = Awv.

(b) v €V is an eigenvector for a if a(v) = Av for some A € F.

(¢) When X € F, the A-eigenspace of «, written E,()\) or simply E(A) is the set of
A-eigenvectors of «; i.e. E(A) = ker(a — A¢).

(d) The characteristic polynomial of « is defined by

Xa(t) = det(te — ).

Remarks.

(1) xa(t) is a monic polynomial in ¢ of degree n.

(2) A € F is an eigenvalue of « if and only if ker(aw — A¢) # 0 if and only if X is a
root of x.(t).

(3) If A € Mat,,(F') we can define x4(t) = det(¢tI, — A). Then similar matrices
have the same characteristic polynomials.

Lemma. Let o € End(V) and Aq,...,\; be the distinct eigenvalues of a. Then
E(\) 4+ -+ E(M) is a direct sum of the E()\;).

Proof. Suppose that Zle T; = Zle y; with z;,y; € E()\;). Consider the linear
maps

ﬁj = H(Oé — )\ZL)

i#]
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Then
k k
Bi(O wi) = Y Bixi)
i=1 i=1
k
= H(a — Art)(x;)
i=1 \r#j
k
= Z H<)\Z — )\T)mi
i=1 \r#j
= Iy =)
-
Similarly, 53’(2?:1 Yi) = [1,;(A; — Ar)yi. Thus since [[,_;(A; — A) #0, z; =y,
and the expression is unique. ([

Note that the proof of this lemma show that any set of non-zero eigenvectors
with distinct eigenvalues is LI.

LECTURE 10

Definition. o € End(V) is diagonalisable if there is a basis for V' such that the
corresponding matrix is diagonal.

Theorem. Let o € End(V). Let A1,..., A\, be the distinct eigenvalues of a. Write
E; = E(\;). Then the following are equivalent

(a) « is diagonalisable;

(b) V has a basis consisting of eigenvectors of a;

(c) V= EB?:lEi;

(d) > dimE; = dimV.

Proof. Suppose that (e1,...,e,) is a basis for V and A is the matrix representing
a with respect to this basis. Then a(e;) = > Aj;e;. Thus A is diagonal if and only
if each e; is an eigenvector for a. i.e. (a) and (b) are equivalent.

Now (b) is equivalent to V = " E; and we've proven that > E; = &% | E; so
(b) and (c) are equivalent.

The equivalence of (¢) and (d) is a basic fact about direct sums that follows from
Example Sheet 1 Q10. O

4.1.1. An aside on polynomials.
Definition. A polynomial function f: F — F is one of the form
f(t) = amtm + -+ Cllt + ap

for some m > 0 and ag, ..., a, € F. The largest n such that a,, # 0 is the degree
of f written deg f. Thus deg0 = —o0.

It is straightforward to show that
deg(f +g) < max(deg f,degg)

and
deg fg = deg f + degg.
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Notation. We write F[t] := {polynomials with coefficients in F}.

Lemma (Polynomial division). Given f,g € F[t], g # 0 there exist q,r € F[t] such
that f(t) = q(t)g(t) + r(t) and degr < degg.

Lemma. If A € F is a root of a polynomial f(t), i.e. f(N\) = 0, then f(t) =
(t —N)g(t) for some g(t) € Ft].

Proof. There are q,r € F[t] such that f(t) = (¢t — A)q(t) + r(¢t) with degr < 1. But

degr < 1 means r(t) = ro some ro € F. But then 0 = f(A) = (A—=X)g(A) +79 = ro.
So rg = 0 and we're done. O

Definition. If f € F[t] and A € F is a root of f we say that A is a root of
multiplicity k if (t — \)* is a factor of f(t) but (t — A\)**! is not a factor of f. i.e.
if () = (t — \)*g(t) for some g(t) € F[t] with g(\) # 0.

We can use the last lemma and induction to show that every f(¢) can be written

as
T

F) =TT = x)"a(t)

i=1

with r >0, a1,...,a, 21, A1,..., A\, € F and g(t) € F(¢) with no roots in F.

Lemma. A polynomial f € F[t] of degree n > 0 has at most n roots counted with
multiplicity.

Corollary. Suppose f,g € F[t] have degrees < n and f(t;) = g(t;) forty,...,t, € F
distinct. Then f = g.

Proof. Consider f — g which has degree < n but at least n roots, namely t1,...,t,.
Thus deg(f — g) = —oco and so f = g. O

Theorem (Fundamental Theorem of Algebra). Every polynomial f € C[t] of degree
at least 1 has a root in C.

It follows that f € CJt] has precisely n roots in C counted with multiplicity.
4.1.2. Minimal polynomials.

Notation. Given f(t) = >.1",a;t" € F[t], A € Mat,,(F) and o € End(V') we write

FA) = A’
i=0

and

Here A° =1, and o® = «.

Theorem. Suppose that o € End(V'). Then « is diagonalisable if and only if there
is a non-zero polynomial p(t) € F[t] that can be expressed as a product of distinct
linear factors such that p(a) = 0.
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Proof. Suppose that « is diagonalisable and A1, ..., A\ € F are the distinct eigen-

values of a. Thus if v is an eigenvector for « then a(v) = A\;v for some i =1,... k.
k
Let p(t) = [[;i=, (t — \i)
Since « is diagonalisable there is a basis ey, ..., e, for V such that each e, is an

eigenvector of o with eigenvalue \; , say. Then p(a)(e,) = Hle()\jr —Xer-=0

since \;, = A; for some ¢ € {1,...,k}. Thus p(ca)(v) = 0 for all v in a basis for V'
and so p(a) =0 € End(V).

Conversely, if p(a) = 0 for p(t) = Hle(t — ;) for Aq,..., A\ € F distinct —
note that without loss of generality we may assume p has leading coefficient equal
to 1. We will show that V = @le E(X;). Since the sum of eigenspaces is always
direct it suffices to show that every element v € V can be written as a sum of
eigenvectors.

Let .
t— N\
pi(t) = II (()\] — /\Z))

%
for j =1,..., k. Thus p;j(\;) = d;;.

Thus Z?lej (t) is a polynomial of degree at most k — 1 such that p;(\;) =1
for each i = 1,..., k. It follows that Z?:M’j(t) =1

Let IT;: V' — V be defined by II; = p;(a). Then > II; = > p;(a) =¢.

Let v € V. Then v = ¢(v) = Y II;(v). But (o — A\ji)p,(a) = %v =0.
Thus II;(v) € ker(a — Ajt) = E(\;) and we're done. O
Remark. In the above proof, if v € E();) then II;(v) = p;(\i)v = d;;v. So II; is a
projection onto E(\;) along @®;.;E(X;).

Definition. The minimal polynomial of a € End(V) is the non-zero monic poly-
nomial (i.e. leading coefficient is 1) m, (¢) of least degree such that mq(a) = 0.

Of course we can define the minimal polynomial of a square matrix in a similar
fashion.

Note that if dimV = n < oo then dimEnd(V) = n?, so ,a,a?,.. .,a”2 are
linearly dependent since there are n? + 1 of them. Thus there is some non-trivial
linear equation Z;io a;a’ = 0. i.e. there is a non-zero polynomial p(t) of degree at
most n? such that p(a) = 0.

Lemma. Let a € End(V), p € F[t] then p(a) = 0 if and only if my(t) is a factor
of p(t). In particular mq(t) is well-defined.

Proof. We can find ¢, r € F[t] such that p(t) = q(t)mq(t)+r(t) with degr < degm,.
Then p(a) = g(a)mqa(a) + () = 0+ r(«). Thus p(a) = 0 if and only if r(a) = 0.
But the minimality of the degree of m, means that r(a) = 0 if and only if r = 0 ie
if and only if m,, is a factor of p.

Now if my, my are both minimal polynomials for o then m; divides msy and mo
divides m; so as both are monic ms = m;. O

LECTURE 11

Note that if A and B are similar matrices; so B = P~'AP say, then for any
polynomial p(t) € F[t] we can compute p(B) = p(P~*AP) = P~ 1p(A)P. So as 0
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is only similar to itself we see that p(B) = 0 if and only if p(A) = 0. Thus similar
matrices have the same minimal polynomial.

Another way to see that is to observe that m4 = m, for any endomorphism «
such that A represents o with respect to some basis. But then if B is similar to A,
B must also represent o with respect to some (other) basis. Thus mp = m, = ma.

Ezample. If V = F? then

1 0 1 1
A (2 wan= ()

both have characteristic polynomial (¢ — 1)2 but only the first one is diagonalisable
so they cannot be similar. One can see that m4(t) =t —1 but mp(t) = (t — 1)% so
minimal polynomials distinguish these two similarity classes.

Theorem (Diagonalisability Theorem). Let o € End(V) then « is diagonalisable
if and only if my(t) has distinct linear factors.

Proof. If « is diagonalisable there is some polynomial p(t) with distinct linear fac-
tors such that p(a) = 0 then m, divides p(t) so must also have distinct linear
factors. The converse is already proven. (Il

Theorem. Let a,f € End(V) be diagonalisable. Then «,f are simultaneously
diagonalisable (i.e. there is a single basis with respect to which the matrices repre-
senting « and 8 are both diagonal) if and only if a and S commute.

Proof. Certainly if there is a basis (e1,...,e,) such that @ and § are represented
by diagonal matrices, A and B respectively, then o and 8 commute since A and B
commute and af is represented by AB and Sa by BA.

For the converse, suppose that o and S commute. Let Ay,...,A; denote the
distinct eigenvalues of a and let E; = E,(\;) for ¢ = 1,...,k. Then as « is
diagonalisable we know that V = @le E;.

We claim that 3(F;) C E; for each i = 1,..., k. To see this, suppose that v € E;
for some such i. Then

aB(v) = pa(v) = B(Av) = AB(v)

and so 5(v) € E; as claimed. Thus we can view |z, as an endomorphism of F;.
Now since 3 is diagonalisable, the minimal polynomial mg of 8 has distinct linear
factors. But mg(B8|g,) = mg(B)|e, = 0. Thus f|g, is diagonalisable for each E;
and we can find B; a basis of E; consisting of eigenvectors of 5. Then B = Ule B;
is a basis for V. Moreover a and 3 are both diagonal with respect to this basis. O

Remark. By slightly adapting the proof we can extend this to show that any set
of diagonalisable endomorphisms of V' is simultaneously diagonalisable precisely if
they commute pairwise.

4.2. The Cayley-Hamilton Theorem.

Definition. « € End(V) is triangulable if there is a basis for V' such that the
corresponding matrix is upper triangular.

Recall that the characteristic polynomial of an endomorphism « € End(V) is
defined by x,(t) = det(tt — ).
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Lemma. A linear map « is triangulable if and only if xo(t) can be written as a
product of linear factors.

Proof. Suppose that « is triangulable and is represented by

0 . %
0 0 a,
with respect to some basis. Then
a1 * %
Xa(t) = det | tI, — 0 .
0 0 ay

= H(t — CLZ‘).

Thus x4 is a product of linear factors.

We’ll prove the converse by induction on n = dimV. If n = 1 every matrix
is triangulable. Suppose that n > 1 and the result holds for all endomorphisms
of spaces of smaller dimension. By hypothesis x,(t) has a root A € F. Let U =
E(X) # 0. Let W be a vector space complement for U in V. Let uq,...,u, be
a basis for U and w,41,...,w, a basis for W so that uy,...,ur, Wry1,...,w, is a
basis for V. Then « is represented by a matrix of the form

AL %
0 B
Moreover because this matrix is block triangular we know that

Xa(t) = xar, (t)xB(1).

Thus as x, is a product of linear factors y g must be also. Let 8 be the linear map
W — W defined by B. (Warning: [ is not just |y in general. However it is true
that (8 — a)(w) € U for all w € W.) Since dimW < dimV there is another basis
Upig1,-- .,V for W such that the matrix C' representing  is upper-triangular. Since
for each j = 1,...,n — 7, a(vj,) = uj + Y ;] Ckjvx for some ) € U, the matrix
representing « with respect to the basis uq, ..., up, vyy1,...,v, is of the form

M, x
0o C
which is upper triangular. ([l

Thus by the Fundamental Theorem of Algebra every endomorphism of a f.d.
complex vector space is triangulable.

Corollary. Fvery A € Mat,,(C) is similar to an upper triangular matriz.

cosf sinf
—sinf cos6

is not similar to an upper triangular matrix over R for 6 ¢ wZ since its eigenvalues
are e ¢ R. Of course it is similar to a diagonal matrix over C.

FExample. The real matrix
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Theorem (Cayley—Hamilton Theorem). Suppose that V is a f.d. wvector space
over F and oo € End(V'). Then xq(o) = 0. In particular m, divides xo (and so
degm, < dim V).

Remarks.

(1) Tt is tempting to substitute ‘t = A’ into x4 (¢t) = det(tI, — A) but it is not
possible to make sense of this.
(2) If p(t) € F[t] and

A0 0
A=10 . o0
0 0 M\,
is diagonal then
p()\l) 0 0
p(A)=1| o .0
0 0 p(A)

So as xa(t) = [, (t — \;) we see xa(A) = 0. So Cayley—Hamilton is obvious
when « is diagonalisable.

Proof of Cayley—Hamilton when F = C. Since F = C we’ve seen that there is a
basis (e1,...,ey,) such that « is represented by an upper triangular matrix

Al * *
A: O '.' *
0 0 M\

Then we can compute xo(t) = [, (¢t — \;). Let V; be the span of eq,...,e; for
7 =20,...,n so we have

0o=VycWc---CcV,.1CV, =V
with dim V; = j. Since a(e;) = ZZ=1 Apier = 2221 Apier, we see that
a(Vj) C Vj for each j =0,...,n.
Moreover (a — Aji)(ej) = Zi;ll Apjer so
(a—=Xje)(V;) C Vj_y foreach j =1,...,n.
Thus we see inductively that [} (e — Ait)(V,,) € Vj—1. In particular

[[(e=xv(v)cvy=o.
i=1
Thus xq () = 0 as claimed. O

Remark. 1t is straightforward to extend this to the case F = R: since R C C, if
A € Mat,(R) then we can view A as an element of Mat,, (C) to see that x4(A4) = 0.
But then if o € End(V) for any vector space V over R we can take A to be the
matrix representing « over some basis. Then x,(a) = xa(a) is represented by
xa(A) and so it zero.
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Second proof of Cayley—Hamilton. Let A € Mat,,(F) and let B =tI,, — A. We can
compute that adj B is an n X n-matrix with entries elements of F[t] of degree at
most n — 1. So we can write

adjB = B,_1t" ' 4+ B, _ot" %2+ ...+ Bit + By
with each B; € Mat, (F). Now we know that Badj B = det BI,, = xa(t)1,. ie
(tI, — A) (B 1t" '+ By ot" 2 4 - 4 Byt + By) = (t" + an_1t" " 4+ +ao)l,

where x4(t) =t" + ap—1t" + -+ - ap. Comparing coefficients in thfork=mn,...,0
we see
B,.1—-0 = I,
B,_o— Aanl = ap_1ln
By, 3—AB, 2 = an2l,
0— ABO = ao_[n
Thus
A"B,_.1—-0 = A"
An_an—2 - Aan—l = an—lAn_l
An_QBn,;g _ An_an,Q _ an72A7l—2
0— ABO = (Iofn
Summing we get 0 = x4(A) as required. O

Lemma. Let o € End(V), A € F. Then the following are equivalent

(a) X is an eigenvalue of a;
(b) X is a root of xo(t);
(c) X is a oot of m(t).

Proof. \is an eigenvalue of « if and only if ker(aw—A¢) # 0 if and only if det(a—At) =
0 if and only if xo(A) = 0. Thus (a) is equivalent to (b).

Suppose that A is an eigenvalue of a. There is some v € V non-zero such that
av = M. Then for any polynomial p € F[t], p(a)v = p(A)v so

0 =mqa(a)v =mq(A)(v).

Since v # 0 it follows that m,(A) = 0. Thus (a) implies (c).

Finally suppose that mq(A) = 0. Then m(t) = (t — A)g(¢) for some g € F[t].
Since deg g < degm, g(«) # 0. Thus there is some v € V such that g(a)(v) # 0.
But then (o — At) (g(@)(v)) = ma(a)(v) = 0. So g(a)(v) # 0 is a A-eigenvector of
«. Thus (c) implies (a). O

Note we could’ve used the Cayley—Hamilton Theorem to see that (c) implies (b).
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Example. What is the minimal polynomial of

1 0 -2
A=(0 1 1|7
0 0 2

We can compute xa(t) = (t — 1)2(t — 2). So by Cayley—Hamilton m,(¢) is a factor
of (t —1)%(t — 2). Moreover by the lemma it must be a multiple of (¢ — 1)(t — 2).
So m4 is one of (t —1)(t — 2) and (t — 1)2(t — 2).

We can compute

00 -2\ /-1 0 -2
A-I)A-2)=[0 0 1 0 -1 1|=o.
00 1 0 0 0

Thus m4(t) = (t — 1)(t — 2). Since this has distict roots, A is diagonalisable.
4.3. Multiplicities of eigenvalues and Jordan Normal Form.

Definition (Multiplicity of eigenvalues). Suppose that « € End(V) and X is an
eigenvalue of «:

(a) the algebraic multiplicity of X is
ay := the multiplicity of A as a root of x(¢);
(b) the geometric multiplicity of A is
g = dim B, (A);
(c) another useful number is
¢y := the multiplicity of A as a root of mq(¢).

Lemma. Let o € End(V) and A € F an eigenvalue of oo. Then

(a) 1 < gy <ay and

(b) 1 < C) < ay.

Proof. (a) By definition if X is an eigenvalue of a then E,(\) # 0 so gx > 1.

Suppose that vy ..., v, is a basis for E(\) and extend it to a basis v1,. .., v, for V.
Then « is represented by a matrix of the form

DY
0 B)°

Thus xa(t) = xar, (t)xB(t) = (t = A)9xB(t). So ax > g = ga.

(b) We've seen that if A is an eigenvalue of a then « is a root of m, () so ¢y > 1
Cayley-Hamilton says m(t) divides x4 (t) so ¢x < ay. O
FEzxamples.
Al 0
A
(1) If A= € Mat,,(F) then gy = 1 and ay = ¢y = n.

S
0 A

(2) If A= Al then gy =a) =n and ¢ = 1.
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Lemma. Suppose that F = C and o € End(V'). Then the following are equivalent:
(a) « is diagonalisable;

(b) ax = gx for all eigenvalues A of «;

(c) ex =1 for all eigenvalues A of a.

Proof. To see that (a) is equivalent to (b) suppose that the distict eigenvalues of «
are A1,...,A\;. Then « is diagonalisable if and only if dimV = Zle dim E(\;) =
> 1 9xn- But gx < ay for each eigenvalue A and Zle ay, = degx, = dimV
by the Fundamental Theorem of Algebra. Thus « is diagonalisable if and only if
gr, =ay, foreachi=1,... k.

Since by the Fundamental Theorem of Algebra for any such «, m(t) may be
written as a product of linear factors, a is diagonalisable if and only if these factors
are distinct. This is equivalent to ¢y = 1 for every eigenvalue \ of a. O

Remark. Let A be a block diagonal square matrix; ie

A 0 0 O

0 A, 0 0
A= i
0 O 0
0 0 0 A

then xa(t) = Hle X4, (t). Moreover, if p € F[t] then

p(4) 0 0 0
0 p(4) 0 0
p(A) = :
0 0 . 0
0 0 0 p(Ax)
so ma(t) is the lowest common multiple of ma, (t),...,ma, (t).

We even have n(p(4)) = Zle n(p(4;)) for any p € F[t].

Definition. We say that a matrix A € Mat,,(C) is in Jordan Normal Form (JNF)
if it is a block diagonal matrix

Jo (M) 0 0 0
0 Ju,(X2) 0 0
A =
0 0 - 0
0 0 0 Jn.(Ar)

where k > 1, n1,...,nr € N such that Zleni =mnand Aj,..., A\ € C (not
necessarily distinct) and J,,(A) € Mat,,,(C) has the form

A1 0 0
= |0 A 0
00 .1
00 0 X

We call the J,,(\) Jordan blocks
Note J,(A) = AL, + J(0).



34 SIMON WADSLEY

FEzxzamples.
Ji(A) = (/\) ,
Al
() = (0 1) ’
A1 0
Js(A)=[0 X 1
0 0 X

Theorem (Jordan Normal Form). FEvery matriz A € Mat, (C) is similar to a
matriz in JNF. Moreover this matriz in JNF is uniquely determined by A up to
reordering the Jordan blocks.

Remarks.

(1) Of course, we can rephrase this as whenever « is an endomorphism of a f.d.
C-vector space V, there is a basis of V' such that « is represented by a matrix
in JNF. Moreover, this matrix is uniquely determined by « up to reordering
the Jordan blocks.

(2) Two matrices in JNF that differ only in the ordering of the blocks are similar.
A corresponding basis change arises as a reordering of the basis vectors.

(3) A € Mat,(C) is diagonalisable if and only if all Jordan blocks have size one
if and only if ay = gy for all eigenvalues A of A if and only if ¢y = 1 for all
eigenvalues \ of A.

FEzxzamples.
(1) Every 2 x 2 matrix in JNF is of the form (6\ 2) with A # p or <(>)\ ?\)

or Al
0 A
A\)? respectively. The characteristic polynomials are (t — \)(t — ), (t — \)?
and (t — A\)? respectively. Thus we see that the JNF is determined by the
minimal polynomial of the matrix in this case (but not by just the characteristic
polynomial).
(2) Suppose now that Aj, A2 and A3 are distinct complex numbers. Then every
3 x 3 matrix in JNF is one of six forms

). The minimal polynomials are (¢ — A\)(t — u), (t — A) and (¢ —

A0 0 A0 0 A 0 0

0 )\2 0 5 0 /\2 0 5 0 >\2 1

0 0 A3 0 0 X 0 0 X
A0 0 A0 0 A 10
0 A O0],10 XN 1)and [0 XN 1
0 0 X\ 0 0 X\ 0 0 X\

The minimal polynomials are (t—A1)(t—X2)(t—A3), (E—A1)(t—A2), (t—=X1)(t—
A2)2, (t=X1), (t—A1)? and (t—\;)? respectively. The characteristic polynomials
are (t—X1)(t—=X2)(t—=X3), (E—=A1)(E—X2)2, (t—=A1)(E—X2)?, (t—N1)3, (t—N1)?
and (t — A\1)3 respectively. So in this case the minimal polynomial does not
determine the JNF by itself but the minimal and characteristic polynomials
together do determine the JNF. In general even these two bits of data together
don’t suffice to determine everything.
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We recall that

A
7o) = °
0

o > =
> = o o

0 0 O
Thus if (eq, . .., ey) is the standard basis for C" we can compute (J,,(A\)—Al,)e; =0
and (Jn,(\) — A,)e; = ;1 for 1 < i < n. Thus (J,(A\) — AI,,)* maps ey, ...,ex to
0 and ep4; to ej for 1 < j < n —k. That is

o) =M= (O Ik for k<
0 0

and (J,(\) — AI,)F =0 for k > n.
Thus if A = J,()) is a single Jordan block, then x a(t) = ma(t) = (t — )™, so A
is the only eigenvalue of A. Moreover dim E(\) = 1. Thus ay = ¢y =n and gy = 1.
In general ay is the sum of the sizes of the blocks with eigenvalue A which is
the same as the number of As on the diagonal. g, is the number of blocks with
eigenvalue A\ and c) is the size of the largest block with eigenvalue \.

Theorem. If o € End(V) and A in JNF represents a with respect to some basis
then the number of Jordan blocks J,(X) of A with eigenvalue X and sizen > k > 1
is given by

[{Jordan blocks J,,(\) in A with n > k}| =n ((a — /\L)k) —n((a-— )\L)kfl)
Proof. We work blockwise. We can compute that
n ((Jm(X) — AI,)*) = min(m, k)

and
n ((Jm(ﬂ) - )‘In)k) =0
when p # A.
Adding up for each block we get for k > 1
n((@=A)") —n((@=X)""1) = n((A=AD)F) —n((A= X))
k
= (min(k, n;) — min(k — 1,n;)
Pys
= |{Jordan blocks J,()) in A with n > k}|
as required. O

Because these nullities are basis-invariant, it follows that if it exists then the
Jordan normal form representing « is unique up to reordering the blocks as claimed.

LECTURE 14

Theorem (Jordan Normal Form). Let V be a f.d. C-vector space, and o € End(V').
Then there is a basis for V such that « is represented by a block diagonal matriz of
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the form
Iy (M) 0 0
A= 0 .0
0 0 Jn, (M)

where k > 1, ny,...,ny € N such that Zleni = dimV and A\,..., A\ € C
(not necessarily distinct). Moreover, this matriz is uniquely determined by o up to
reordering the blocks.

Theorem (Generalised eigenspace decompostion). Let V' be a f.d. C-vector space
and « € End(V). Suppose that
M (t) = (t— A1) - (t — Ag)*
with A1, ..., A\, distinct. Then
V=Vielhod oV

where V; = ker((a—X\;)%) is an a-invariant subspace (called a generalised eigenspace).

Note that in the case ¢; = co = -+ = ¢ = 1 we recover the diagonalisability
theorem.

Sketch of proof. Let p;(t) = Hk;éj (t—X;)¢. Then py,...,px have no common factor
iZ1

i.e. they are coprime. Thus by zE_uclid’s algorithm we can find ¢y, . .., q; € C[t] such
that Z?:l qip; = 1.

Let II; = gj(o)p;(e) for j = 1,...,k. Then Z§:1 II; = ¢. Since mqy(a) = 0,
(a — /\j)c-ij =0, thus ImHj C ‘/J

Suppose that v € V' then

k
v=1(v) = Zﬂj(v) € ZVJ
j=1
Thus V =3"V;.

But ILII; = 0 for ¢ # j and so II; = Hi(2§:1 ;) =112 for 1 < i < k. Thus
Iy, = vy, and if v = Y v; with v; € Vj then v; = IL;j(v). So V = @V as
claimed. (]

Using this theorem we can, by restricting to its generalised eigenspaces, reduce
the proof of the existence of Jordan normal form for a to the case that it has only

one eigenvalue A. By considering (o — At) we can even reduce to the case that 0 is
the only eigenvalue.

Definition. We say that o € End(V) is nilpotent if there is some k > 0 such that
k
a” =0.

Note that « is nilpotent if and only if m,(t) = t* for some 1 < k < n. When
F = C this is equivalent to 0 being the only eigenvalue for a.

Ezxample. Let

3 -2 0
A=11 0 0
1 0 1

Find an invertible matrix P such that P~1AP is in JNF.
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First we compute the eigenvalues of A:

t—3 2 0
xalt)=det | =1 t 0 | =(t—-1tEt—-3)+2)=(t—-1)*t—-2).
-1 0 t-—1

Next we compute the eigenspaces

2 -2 0
A-TI=11 -1 0
1 0 0

0 0
which has rank 2 and kernel spanned by [ 0 |. Thus E4(1) = < 0 > Similarly
1

1
1 -2 0
A-2I=1(1 -2 0
1 0 -1

2 2

also has rank 1 and kernel spanned by [ 1| thus E4(2) = < 1 > Since
2 2

dim E4 (1) + dim E4(2) = 2 < 3, A is not diagonalisable. Thus

ma(t) = xa(t) = (t —1)*(t - 2)

and the JNF of A is

1
J=10
0

O~ =
N OO

So we want to find a basis (v1,vs,v3) such that Avy = vy, Avy = v1 + v2 and
Avs = 2v3 or equivalently (A — Ive = vy, (A —I)vy =0 and (A — 2I)vs = 0. Note
that under these conditions (A — I)?vy = 0 but (A — I)vy # 0.

We compute

2 =2 0
(A-D?=1[1 -1 0
2 =2 0
Thus
1 0
ker(AI)2< 11,10 >
0 1
1 0 2
Take vo = [1]), vy = (A—1Tve = [0 and v3 = [ 1|. Then these are LI
0 1 2

so form a basis for C3 and if we take P to have columns vy, vs,v3 we see that
P~1AP = J as required.
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5. DuALITY

5.1. Dual spaces. To specify a subspace of F" we can write down a set of linear

1
equations that every vector in the space satisfies. For example if U = < 2 > CF3
1
we can see that

U= To | 120y —2x2=0,21 —2x3=0
z3
These equations are determined by linear maps F* — F. Moreover if 61,65: F* —
F are linear maps that vanish on U and A, € F then A0, + pfy vanishes on U.
Since the 0 map vanishes on evey subspace, one may study the subspace of linear
maps F" — F that vanish on U.

Definition. Let V be a vector space over F. The dual space of V is the vector
space

V*:= L(V,F) ={a: V — F linear}
with pointwise addition and scalar mulitplication. The elements of V* can called
linear forms or linear functionals on V.

Ezxzamples.
T
(a) V=R360:V > R; (22| = 23— 21,
T3

(b) V =C([0,1],R), then V — R; f > [ f(t)dt € V*.

Lemma. Suppose thatV is a f.d. vector space over F with basis {(e1,...,e,). Then
V* has a basis (€1, ..., €,) such that €;(ej) = ;.

Definition. We call the basis (e1,...,€,) the dual basis of V* with respect to
<€1, ey €n>.

Proof of Lemma. We know that to define a linear map it suffices to define it on a
basis so there are unique elements €1, ..., €, such that €;(e;) = d;;. We must show
that they span and are LI.

Suppose that § € V* is any linear map. Then let A\; = 6(e;) € F. We claim
that 0 = Z?:l Ai€i. It suffices to show that the two elements agree on the basis
e1,...,en of V. But 31", Nei(e;) = Aj = 6(e;). So the claim is true that €1, ..., €,
do span V*.

Next, suppose that > u;e; = 0 € V* for some p1,...,p4, € F. Then 0 =
> pi€i(ej) = pj; for each j =1,...,n. Thus €,...,€, are LI as claimed. O

LECTURE 15

Recall the following lemma/definition.

Lemma. Suppose that V is a f.d. vector space over F with basis {(e1,...,e,). Then
V* has a basis {(e1,...,€,) called the dual basis with respect to {(e1,...,e,) such that
€; (ej) = (Sij. O

Corollary. IfV is f.d. then dimV* =dim V. (]
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Proposition. Suppose that V' is a f.d. vector space over F with bases {(e1, ..., e,)
and (f1,...,fn) such that P is the change of basis matriz from (e1,...,ey,) to

(fiyoooy fn) e fi =D F_ Prieg for 1 <i<n.
Let {e1,...,€) and (n1,...,n,) be the corresponding dual bases so that

ei(ej) = (Sij = ni(fj) for 1 < i,j < n.
Then the change of basis matriz from (€1, ..., €,) to (n1,...,n,) is given by (P~1)T
ie €; — Ef’gm. .
Proof. Let Q = P~!. Then e; = > Qy; fx, 0 we can compute
O Pam)(es) =D (Pum)(@xi fr) = Y PadrQuj = bij-
1 k.l k.l

Thus €; = >, Pym as claimed. O
Remark. If we think of elements of V' as column vectors with respect to some basis

T

Z Tiep=| : |,
Ty

then we can view elements of V* as row vectors with respect to the dual basis

Zaiei = (a1 ce Cln) .

Then
Z1

(Z am) (ijej) = Zaixi = (fll an)

Definition.
(a) If U C V then the annihilator of U, U° :={0 € V* | 0(u) =0 YuecU} CV*
(b) If W C V*, then the annihilator of W° :={v eV |0(v) =0 VoeW}CV.

Tn

Ezample. Consider R3 with standard basis (e, ez, e3) and (R3)* with dual basis
(€1,€2,€3), U = {e1 + 2e3 +e3) C R? and W = (€1 — €3,€1 — 2¢5) C (R?®)*. Then
U°=W and W° =U.
Proposition. Suppose that V is f.d. over F and U C 'V is a subspace. Then
dimU + dimU° = dim V.

Proof 1. Let (eq,...,ex) be a basis for U and extend to a basis (ey,...,e,) for V
and consider the dual basis (ey, ..., €,) for V*.

We claim that U° is spanned by €x41,...,€x.

Certainly if j > k, then €;(e;) = 0 for each 1 < i < k and so €¢; € U°. Suppose
now that § € U°. We can write § = Y " | A\j¢; with \; € F. Now,

0=~6(e;) = Aj foreach 1 < j < k.
So 0 = Z;;,H_l Ai€;. Thus U° is the span of €1, ...,€, and
dimU°® =n—k=dimV —dimU

as claimed. O
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Proof 2. Consider the restriction map V* — U* given by 6 — 0|y. Since every
linear map U — F can be extended to a linear map V' — F' this map is a linear
surjection. Moreover its kernel is U°. Thus dim V* = dim U* 4+dim U° by the rank-
nullity theorem. The proposition follows from the statements dim U = dim U* and
dimV =dim V*. O

5.2. Dual maps.

Definition. Let V and W be vector spaces over F and suppose that a: V — W
is a linear map. The dual map to « is the map o*: W* — V* is given by 0 — fa.

Note that f« is the composite of two linear maps and so is linear. Moreover, if
A p€F and 01,0, € W* and v € V then

o (Ay + pb2)(v) = (A1 + pb2)a(v)
Aia(v) + phaa(v)

= (Aa™(01) + pa*(02)) (v).
Therefore o*(A01 + uh2) = Aa*(01) + pa*(02) and o is linear ie o € L(W™*, V™).
Lemma. Suppose that V and W are f.d. with bases (e1,...,en) and {(f1,..., fm)
respectively. Let (€1, ...,€,) and (m,...,Nm) be the corresponding dual bases. Then

if a: V.— W is represented by A with respect to {e1,...,e,) and (f1,..., fm) then
a* is represented by AT with respect to (e1,...,€,) and (N1, ..., Nm).

Proof. We're given that a(e;) = > Aj;f; and must compute o*(n;) in terms of
€1y,...,€En.

a*(ni)(ex) = mi(aler))
m(z Aji f5)

Z Ajrdi; = Ak
J

Thus a(n;)(e;) = > ) Aiverle;) = >y Afiek(ej) so a(n) = Dk A;‘Qek as re-
quired. [l
Remarks.

(1) fa: U -V and B: V — W are linear maps then (Sa)* = a*5*.

(2) If a, : U — V then (a + B)* = a* + B*.

(3) If @ € End(V) then det o* = det « since det(AT) = det A.

(4) If B= QAP is an equality of matrices with P and @ invertible, then

BT — pT AT (Q—l)T _ ((P_l)T)il AT (Q—1>T

as we should expect at this point.

LECTURE 16

Lemma. Suppose that o € L(V,W) with V,W f.d. over F. Then
(a) kera* = (Im«)°;

(b) r(a*) =r(a) and

(c) Ima* = (ker a)°
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Proof. (a) Suppose 8 € W*. Then 6 € ker o* if and only if o*(6) = 0 if and only if
fa(v) =0 for all v € V if and only if § € (Im «)°.

(b) As Im « is a subspace of W, we’ve seen that dim Im av+dim(Im «)° = dim W.
Using part (a) we can deduce that r(a)+n(a*) = dim W = dim W*. But the rank-
nullity theorem gives r(a*) 4+ n(a*) = dim W*.

(¢) Suppose that ¢ € Im «*. Then there is some § € W* such that ¢ = a*(0) =
Oca.. Therefore for all v € ker a, ¢(v) = fa(v) = 0(0) = 0. Thus Im o* C (ker o)°.

But dim ker a + dim(ker a)° = dim V. So

dim(ker @)® = dimV — n(a) = r(a) = r(a*) = dimIm o™.
and so the inclusion must be an equality. [

Notice that we have reproven that row-rank=column rank in a more conceptually
satisfying way.

Lemma. Let V' be a vector space over ¥ there is a canonical linear map ev: V —
V** given by ev(v)(0) = 0(v).

Proof. First we must show that ev(v) € V** whenever v € V. Suppose that
01,05 € V* and A\, u € F. Then

ev(v) (Al + pba) = A1 (v) + pba(v) = Aev(v)(01) + pev(v)(6z).

Next, we must show ev is linear, ie ev(Av; + pvs) = Aev(vy1) + ev(ve) whenever
v, v2 € V, A\ u € F. We can show this by evaluating both sides at each 8 € V*.
Then

ev(Avy + pva)(8) = 0(Avy + pva) = (Aev(vy) + pev(ve))(0)

so ev is linear. O

Lemma. Suppose that V is f.d. then the canonical linear map ev: V — V** is an
isomorphism.

Proof. Suppose that ev(v) = 0. Then 6(v) = ev(v)(f) = 0 for all § € V*. Thus the
annilhilator of the span of V' has dimension dim V. It follows that the span of v is
a space of dimension 0 so v = 0. In particular we’ve proven that ev is injective.
To complete the proof it suffices to observe that dim V' = dim V* = dim V** so
any injective linear map V' — V** is an isomorphism. (I

Remarks.

(1) The lemma tells us more than that there is an isomorphism between V' and
V**. It tells us that there is a way to define such an isomorphism canonically,
that is to say without choosing bases. This means that we can, and from now
on we will identify V' and V** whenever V is f.d. In particular for v € V and
0 € V* we can write v(6) = 6(v).

(2) Although the canonical linear map is ev: V. — V** always exists it is not an
isomorphism in general if V' is not f.d.

Lemma. Suppose V and W are f.d. over F. After identifying V' with V** and W
with W** via ev we have

(a) If U is a subspace of V then U°° =U.
(b) If a € L(V,W) then o™ = a.



42 SIMON WADSLEY

Proof. (a) Let w € U. Then u(f) = 0(u) = 0 for all 6 € U°. Thus u € U°°. ie
U cU°. But

dimU =dimV —dimU° =dim V* — dim U° = dim U°°.

(b) Suppose that (e1,...,e,) is a basis for V and (f1,..., fm) is a basis for W
and (e1,...,€,) and (m1,...,nn) are the corresponding dual bases. Then if « is
represented by A with respect to {(e1,...,e,) and (f1,..., fm), o™ is represented by
AT with respect to {(e1,...,€,) and (n1,...,7,).

Since we can view (ej,...,e,) as the dual basis to {(e1,...,€,) as

ei(€;) = €j(ei) = bij,

*%

and (f1,..., fm) as the dual basis of (n1,...,mm,) (by a similar computation), «
is represented by (AT)T = A. O

Proposition. Suppose V is f.d. over F and Uy, Us are subspaces of V' then
(a) (U1 +Us)°=UyNUs and
(b) (U1NUz)° =U; +Us.
Proof. (a) Suppose that 6§ € V*. Then 6 € (U; + Us)° if and only if 8(ug +u2) =0
for all uy € Uy and ug € Us if and only if 8(u) = 0 for all u € Uy U Us if and only if
0eUyNUs.

(b) by part (a), Uy NUy = UP° NUs° = (Uy 4+ Us)°. Thus

(U1NU)° = Uy +U3)° =07 +Us

as required ([l

6. BILINEAR FORMS
6.1. Definitions and Examples. Let V and W be vector spaces over F'.

Definition. ¢: V x W — F is a bilinear form if it is linear in both arguments; i.e.
ifv,=): W —sFeW*forallveVand ¢(—,w): V -FeV*forallweW.

Ezamples.

(1) V=R" ¢(x,y) = > 1, z;y; is a bilinear form.

(2) Suppose that A € Mat,, ,,(F) then ¢: F™ x F* — F; ¢(v,w) = vT Aw is a
bilinear form.

(3) The map V x V* = F; (v,0) — 0(v) is a bilinear form.

(4) If V=W = C([0,1],R) then ¢(f, 9) = [, f(t)g(t)dt is a bilinear form.

LECTURE 17
We recall the following definition from last time.

Definition. ¥: V x W — F is a bilinear form if it is linear in both arguments; i.e.
if(v,=): W >FeW*forallveVand ¢(—,w): V- F e V* forallwe W.

We can see that a bilinear form v gives linear maps ¢, : V. — W* and ¢g: W —
V* by the formulae

Yr(v)(w) = ¢(v,w) = Yr(w)(v)
forveV and w e W.
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Definition. Let (eq,...,e,) be a basis for V and (fi,..., fm) be a basis of W and
1¥: V x W — F a bilinear form. Then the matriz A representing v with respect to

(e1,...,en) and (f1,..., fm) is given by A;; = ¥ (e, f;).
Remark. If v=">"A\e; and w =" p; f; then

P (Z /\ieia,ujfj) = i/\ﬂ/) (ez‘, Zﬂjfj) = ii/\iﬂjw(eiafj)'
=1

i=1 j=1

Therefore if A is the matrix representing ¢ with respect to {eq,...,e,) and (f1,..., fim)

we have

M1

Yw,w)= M\ - M) A|
Hm

and ¢ is determined by the matrix representing it.

Lemma. Let (€1,...,¢,) be the dual basis to {e1,...,e,) and (n1,...,nm) be the

dual basis to (f1,..., fm). Then A represents ¥ with respect to (f1,..., fm) and
(€1, .. €m) and AT represents 11, with respect to {e1,...,en) and (N1, ..., 0m).

Proof. We can compute 9, (e;)(f;) = ¥(es, fj) = Ai;j and so ¢r(e;) = Z;":l A};nj
and Yr(fj)(ei) = ¥(ei, fj) = Aij and so Pr(fj) = Y01, Aijei a
Proposition. Suppose that {(e1,...,e,) and {(v1,...,v,) are two bases of V' such
that v; = Z?Zl Pjej fori=1,...,n and (f1,..., fm) and (wi,...,wy) are two
bases of W such that w; = Z?;jSfj fori=1,....m. Let : V. xW — F be a
bilinear form represented by A with respect to {e1,...,en) and (f1,..., fm) and by

B with respect to {v1,...,v,) and (w1,...,w,, then
B = PTAQ.
Proof.
Bij = (v, wy)

(G (Z Pyier, Qljfl)
k=1 =1

= ZPkinjw(emfz)

k,l
= (PTAQ)y
O
Corollary. Let V and W be f.d. wvector spaces over F and ¥: V x W — F a

bilinear form. There are bases (v1,...,vm) of V and (wi,...,w,) of W and an
r < min(m,n) such that (2111 Aivi, D5 ujwj) =30 Nl
Proof. Let (e1,...,em) and (f1,..., fn) be any bases of V and W respectively and

let A be the matrix representing ¥ with respect to this pair of bases. We know that
there are R € GL,,(F) and Q € GL,(F) such that

e (5
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for r = r(A4). Taking P = (R™HT, v; = >°)L, Prex, for 1 < i < m and w; =
Sy Quyier for 1 < j < n gives the result. O

We note that r only depends on % since 7(PTAQ) = r(A) whenever P,Q are
invertible. We call r the rank of ¢ written r(z).

Definition. We say a bilinear form ¥: V x W — F is degenerate if there is either
some v € V\O such that ¢(v,—) = 0 € W* or there is some w € W\0 such that
Y(—,w) =0 € V*. Otherwise we say that v is non-degenerate.

Lemma. Let V and W be f.d. wvector spaces over F with bases (e1,...,e,) and
(f1,-+ s fm) and let p: W x V = F be a bilinear form represented by the matriz A
with respect to those bases. Then 1 is non-degenerate if and only if the matriz A
is invertible. In particular, if ¥ non-degenerate then dimV = dim W.

Proof. The condition that 1 is non-degenerate is equivalent to kerty; = 0 and
ker 1)z = 0 which is in turn equivalent to n(A4) = 0 = n(AT). This last is equivalent
to r(A) = dimV and r(AT) = dim W. Since row-rank and column-rank agree we
can see that this final statement is equivalent to A being invertible as required. [

It follows that, when V and W are f.d., defining a non-degenerate bilinear form
¥: V. x W — F is equivalent to defining an isomorphism t¢: V — W* (or equiva-
lently an isomorphism ¢¥g: W — V*).

6.2. Symmetric bilinear forms and quadratic forms.

Definition. Let V' be a vector space over F. A bilinear form ¢: V x V — F is
symmetric if ¢(v1,v2) = ¢(va,v1) for all v € V.

Example. Suppose S € Mat,,(F) is a symmetric matrix (ie ST = §), then we can
define a symmetric bilinear form ¢: F” x F* — F by

d(x,y) = 2" Sy = Z ;5i5Y;

i,j=1
In fact that example is completely typical.

Lemma. Suppose that V is a f.d. wvector space over F and ¢: V xV — F is a

bilinear form. Let {e1,...,ey,) be a basis for V and M be the matrixz representing

¢ with respect to this basis, i.e. M;; = ¢(e;,ej). Then ¢ is symmetric if and only
if M is symmetric.

Proof. If ¢ is symmetric then M;; = ¢(e;, e;) = ¢(ej, e;) = Mj; so M is symmetric.
Conversely if M is symmetric, then

n

Pz, y) = Z z; M;jy; = Z yiMjizi = ¢(y, x).

4,j=1 4,j=1

Thus ¢ is symmetric. O

It follows that if ¢ is represented by a symmetric matrix with respect to one
basis then it is represented by a symmetric matrix with respect to every basis.
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Lemma. Suppose that V' is a f.d. vector space over F, ¢: V xV — F is a bilinear
form and {eq,...,en) and {f1,..., fn) are two bases of V' such that f; = > Pgiex
fori=1,...n. If A represents ¢ with respect to {(e1,...,en) and B represents ¢
with respect to (f1,. .., fn) then

B=prTAP
Proof. We compute
Bij = ¢(fi, fj) = ¢(Z Piier, ZPljel) = ZPm‘Pljﬁb(ek, er)-
k l k,l
Thus Bz] = Zk,l PlgAklPl_] = [PTAP]'L] -

Definition. We say that square matrices A and B are congruent if there is an
invertible matrix P such that B = PTAP.

Congruence is an equivalence relation. Two matrices are congruent precisely if
they represent the same bilinear form ¢: V x V — F with respect to different bases
for V. Thus to classify (symmetric) bilinear forms on a f.d. vector space is to
classify (symmetric) matrices up to congruence.

LECTURE 18

Definition. If ¢: V x V — F is a bilinear form then we call the map V — F;
v = ¢(v,v) a quadratic form on V.

Ezample. If V = R? and ¢ is represented by the matrix A with respect to the
standard basis then the corresponding quadratic form is

<gyg> ~ @ ov)4 (5) = Ana? + (A2 + An)zy + Asoy?

Note that if we replace A by the symmetric matrix % (A + AT) we get the same
quadratic form.

Proposition (Polarisation identity). If ¢: V' — F is a quadratic form then there
exists a unique symmetric bilinear form ¢: V. xV — F such that q(v) = ¢(v,v) for
allveV.

Proof. Let 1 be a bilinear form on V' x V such that ¢ (v,v) = ¢q(v) for all v € V.
Then L
¢(U7 w) = 5 W(% ’LU) + w(wa U))

is a symmetric bilinear form such that ¢(v,v) = ¢(v) for all v € V.
It remains to prove uniqueness. Suppose that ¢ is such a symmetric bilinear
form. Then for v,w € V,

qz+y) = ov+wv+w)
= ¢(v,v) + o(v, w) + d(w,v) + d(w, w)
= q(v) +2¢(v,w) + q(w).
Thus ¢(v,w) = % (q(v 4+ w) — q(v) — q(w)). (Il
Theorem (Canonical form for symmetric bilinear forms). If ¢: V x V — F s

a symmetric bilinear form on a f.d. vector space V over F, then there is a basis
(e1y...,en) for V such that ¢ is represented by a diagonal matriz.
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Proof. By induction on n = dim V. If n = 0,1 the result is clear. Suppose that we
have proven the result for all spaces of dimension strictly smaller than n.

If ¢(v,v) = 0 for all v € V, then by the polarisation identity ¢ is identically zero
and is represented by the zero matrix with respect to every basis. Otherwise, we
can choose e; € V such that ¢(e1,e1) # 0. Let

U={ueV|g¢le,u) =0} =kerp(e;,—): V—F.

By the rank-nullity theorem, U has dimension n—1 and e; ¢ U so U is a complement
to the span of e; in V.

Consider ¢|yxy: Ux U — F, a symmetric bilinear form on U. By the induction
hypothesis, there is a basis (es, ..., e,) for U such that ¢|yxy is represented by a
diagonal matrix. The basis (e1,...,e,) satisfies ¢(e;,e;) = 0 for ¢ # j and we're
done. O

Ezample. Let ¢ be the quadratic form on R? given by
) 2 2
=z 4y + 2"+ 2zxy + 4yz + b6xz.

Find a basis (f1, fa, f3> for R? such that ¢ is of the form
q(afi +bfa + cfs) = Aa® + pub* + vc.
Method 1 Let ¢ be the bilinear form represented by the matrix

1 1 3
A=1[1 1 2
3 2 1
so that q(v) = ¢(v,v) for all v € R3.
1
Now q(e;) =1#0solet fy =e; = [ 0 |. Then ¢(f1,v) = f{ Av = v +vo+3vs.
0
So we choose f3 such that qﬁ f1, f2) =0 but ¢(f2, f2) # 0. For example
3
q —1 =0 but ¢ 0 =—-8#0.
0 —1
3
So we can take fo = [ 0 |. Then ¢(fo,v) = ff Av = (O 1 8) v = vy + 8vs.
-1

Now we want ¢(f1, f3) = ¢(fa, f3) =0, f3 = (5,8, 1)T will work. Then
qlafy +bfa +cfs) = a® + (—8)b* + 82
Method 2 Complete the square
22y 22 2ay +Ayz+ 622 = (x4y+32)% + (—2yz) — 827
2

2
= 3 2—8( Y ¥
(r+y+32) z+8) +8

Nowsolvex—i—y—i—?)z:l,z—&-%:Oandy:Otoobtainfl:(1 0 O)T, solve
r+y+32=0z+%=1and y = 0 to obtain f = (-3 0 1)" and solve

— _ _ ; _(_5 T
x+y+3270,z+%70andyf1toobta1nf3f(—g 1 —g).
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LECTURE 19

Corollary. Let ¢ be a symmetric bilinear form on a f.d C-vector space V. Then
there is a basis (v1,...,v,) for V such that ¢ is represented by a matriz of the form

I, 0
(6 0)

with v = r(¢) or equivalently such that the corresponding quadratic form q is given
by q(3o7— aivi) = 32, af.-

Proof. We have already shown that there is a basis (eq, .. ., e,) such that ¢(e;, e;) =
0;5A; for some Aq,..., A\, € C. By reordering the e; we can assume that \; # 0 for
1 <i<rand \; =0 for i > r. Since we're working over C for each 1 <7 < r, \;
has a non-zero square root p;, say. Defining v; = iei for 1 <i<randwv;, =e¢; for
r+1 < i< n, we see that ¢(v;,v;) =01if ¢ # j ofi:j > r and ¢(vi,v;) = 1if
1 <7 < r as required. O

Corollary. Every symmetric matriz in Mat,,(C) is congruent to a matriz of the

form
I. 0
0 0)°

|
Corollary. Let ¢ be a symmetric bilinear form on a f.d R-vector space V. Then
there is a basis (v1,...,v,) for V such that ¢ is represented by a matriz of the form
I 0 0
0 —-IL_s O
0 0 0

with 7 = r(¢) and 0 < s < r or equivalently such that the corresponding quadratic
Jorm q is given by q(3 071 av) = >0 af — >0 a7

Proof. We have already shown that there is a basis (e, ..., ey,) such that ¢(e;, e;) =
dijA; for some Aq,..., A, € R. By reordering the e; we can assume that there is an
ssuch that \; >0for1 <i<sand \; <Ofors+1<i<rand \; =0 fori>r.
Since we're working over R we can define pu; = /A; for 1 < i <'s, u; = /—\; for
s+1l1<i<rand y; =1fori=1. Defining v; = iel- we see that ¢ is represented
by the given matrix with respect to vy,...,v,. / ([

Corollary. Every real symmetric matriz is congruent to a matriz of the form

I, 0 0
0 —I,_, 0
0 0 0

Definition. A symmetric bilinear form ¢ on a real vector space V is

(a) positive definite if ¢p(v,v) > 0 for all v € V\0;

(b) positive semi-definite if ¢(v,v) = 0 for all v € V;

(¢) negative definite if ¢p(v,v) < 0 for all v € V\0;

(d) negative semi-definite if ¢(v,v) <0 for all v € V.

We say a quadratic form is ...-definite if the corresponding bilinear form is so.
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Ezample. ¢(z,y) := > 1, x;y; is positive definite on R™.

Theorem (Sylvester’s Law of Inertia). Let V' be an n-dimensional real vector space
and let ¢ be a symmetric bilinear form on V. Then there are unique integers s,r

such that V has a basis vy, ...,v, with respect to which ¢ is represented by the
matric

I 0 0

0 —-I,_s O

0 0 0

Proof. We've already done the existence part. We also already know that r = r(¢)
is unique. To see s is unique we’ll prove that s is the largest dimension of a subspace
P of V such that ¢|pxp is positive definite.

Let vy, ..., v, be some basis with respect to which ¢ is represented by
I 0 0
0 -I_s O
0 0 0
for some choice of s. Then ¢ is positive definite on the space spanned by vy, ..., vs.

Thus it remains to prove that there is no larger such subspace.
Let P be any subspace of V' such that ¢|pxp is positive definite and let @ be

the space spanned by vsi1,...,v,. The restriction of ¢ to @ x @ is negative semi-
definite so PNQ = 0. SodimP +dim@ = dimP + @ < n. Thus dim P < s as
required. O

Definition. The signature of the symmetric bilinear form ¢ given in the Theorem
is defined to be s — (r — s) = 2s —r.

6.3. Hermitian forms. Let V be a vector space over C and let ¢ be a symmetric
bilinear form on V. Then ¢ can never be positive definite since ¢(iv,iv) = —¢p(v,v)
for all v € V. We'd like to fix this.

Definition. Let V and W be vector spaces over C. Then a sesquilinear form is a
function ¢: V x W — C such that

d(Av1 + Aavg,w) = Ao(vi,w) + Aa¢(ve, w) and

(v, prwr + ppwe) = p1d(v,wr) + p2d(v, we)
for all Ay, Ag, i1, 2 € C, v,v1,v2 € V and w, wy,wy € W.
Definition. Let ¢ be a sesquilinear form on V xW and let V have basis (v1, ..., V)
and W have basis (w1, ..., wy,). The matriz A representing ¢ with respect to these

bases is defined by A;; = ¢(vs, wj).
Suppose that > Ajv; € V and ) pjw; € W othen
m n . _r
S v, Y mwy) = > Y NAgu; =X Ap.
i=1 j=1

Definition. A sesquilinear form ¢: V xV — C is said to be Hermitian if ¢(z,y) =
d(y,x) for all z,y € V.

Lemma. Let ¢: VXV — C be a sesquilinear form on a complex vector space V' with
basis (v1,...,v,). Then ¢ is Hermitian if and only if the matriz A representing ¢

—T
with respect to this basis satisfies A= A" (we also say the matriz A is Hermitian).
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Proof. If ¢ is Hermitian then
Aij = (i, v;) = ¢(vj,vi) = Aji.
Conversely if A = A" then

10) (Z Aivi, Z pjvj) = XTA/J =pTATX = HTT)\ =¢ (Z V5, Z )\ivi)

as required ([l

LECTURE 20

Notice that if ¢ is a Hermitian form on V then ¢(z,z) € R for all z € V and
d(Ax, A\x) = |A\|?¢(z, x) for all A € C.

Proposition (Change of basis). Suppose that ¢ is a Hermitian form on a f.d.

complex vector space V and that {e1,...,e,) and (v1,...,v,) are bases for V such
that v; = >, _, Prie. Let A be the matriz representing ¢ with respect to (e1, ..., en)
and B be the matriz representing ¢ with respect to (v1,...,v,) then

B=TP AP,

Proof. We compute
n n o o
Bij=¢ (Z Pkielmzpljel> => (P )id(er, )Py = [P AP
k=1 1=1 k.l

as required. (Il

Lemma (Polarisation Identity). A Hermitian form ¢ on a complex vector space V
is determined by the function ¢: V — R; v — ¢(v,v).

Proof. Tt can be checked that

B,y) = 7 (Bl +y) = (e + i) — ¥l — y) + i(z — iy))

O

Theorem (Hermitian version of Sylvester’s Law of Inertia). LetV be a f.d. complex
vector space and suppose that ¢: V x V. — C is a Hermitian form on V. Then

there is a basis (v1,...,vy,) of V with respect to which ¢ is represented by a matriz
of the form

I 0 0

0 —-I,_s O

0 0 0

Moreover r and s depend only on ¢ not on the basis.
Notice that for such a basis ¢(3° Aivi, 2o Aivi) = 20—y [Nil? = D27y [AG]*

Sketch of Proof. This is nearly identical to the real case. For existence: if ¢ is
identically zero then any basis will do. If not, then by the Polarisation Identity
there is some v; € V such that ¢(vi,v1) # 0. By replacing vy by W we
can assume that ¢(vy,v1) = £1. Define U := ker ¢(vy, —): V — C a subspace of
V of dimension dimV — 1. Since v; € U, U is a complement to the span of v; in
V. By induction on dim V, there is a basis (va,...,v,) of U such that ¢|yxy is
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represented by a matrix of the required form. Now (vq,ve,...,v,) is a basis for V
that after suitable reordering works.

For uniqueness: r is the rank of the matrix representing ¢ with respect to any
basis and s arises as the dimension of a maximal positive definite subspace as in
the real symmetric case. O

7. INNER PRODUCT SPACES

7.1. Definitions and basic properties.

Definition. Let V' be a vector space over F. An inner product on V is a positive
definite symmetric/Hermitian form ¢ on V. Usually instead of writing ¢(z,y) we’ll
write (x,y). A vector space equipped with an inner product (—,—) is called an
inner product space.

Ezamples.
(1) The usual scalar product on R™ or C™: (z,y) = Y i, Tiyi.
(2) Let C(]0,1],F) be the space of continuous real/complex valued functions on

[0,1] and define
0= [ 70

(3) A weighted version of (2 ) Let w: [0, 1] — R take only positive values and
define

(f.g) = /0 wt FDg(t) dt.

If V is an inner product space then we can define a norm || - || on V by ||v|| =
(v,v)z. Note ||v|]| = 0 with equality if and only if v = 0. Note that the norm
determines the inner product because of the polarisation identity.

Lemma (Cauchy—Schwarz inequality). Let V' be an inner product space and take
v,w € V. Then |(v,w)] < ||v||||w]].

Proof. Since (—, —) is positive-definite,

0< (v—Aw,v—w) = (v,0) — Av,w) — Mw,v) + M (w, w)

for all A € F. Now when \ = ((;U ”)) (the case w = 0 is clear) then we get
2[(0,w)? | (v, w)]? (v, w)|?
(w,w)  (w,w)? (w,w) -

The inequality follows by multiplying by (w, w) rearranging and taking square roots.
O

0< (v,0) = (w, w) = (v, v) =

Corollary (Minkowski’s inequality). Let V be an inner product space and take
vyw € V. Then ||v+ w|| < ||v]] + [|w]].

Proof.
lv+wl*> = (v+w,v+w)
[[oll? + (v, w) + (w,v) + |w]|?
< ol 42l [w]] + [Jwl]?

(ol + llwll)?

Taking square roots gives the result. O
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Definition. Let V be an inner product space then v,w € V are said to be orthog-
onal if (v,w) =0. A set {v; | i € I} is orthonormal if (v;,v;) = 0;; for i,j € I. An
orthormal basis (o.n. basis) for V is a basis for V that is orthonormal.

Suppose that V is a f.d. inner product space with o.n. basis vq,...,v,. Then
given v € V, we can write v = Y., \jv;. But then (vj,v) = >0 Ni(vj,v;) = Aj.
Thus v = Y7, (vi, v)v;.

Lemma (Parseval’s identity). Suppose that V is a f.d. inner product space with

o.n basis (vy,...,v,) then (v,w) =Y 1 (v;,v)(v;,w). In particular
loll* =D I(vs, v)[%.
i=1
Proof. (v,w) = (Z?:l(vﬂv)vivzyzl(vj’w>vj) = E?:l (vi, v) (vi, w). U

7.2. Gram—Schmidt orthogonalisation.

Theorem (Gram-Schmidt process). Let V' be an inner product space and ey, ea, . ..
be LI vectors. Then there is a sequence vi,vs,... of orthonormal vectors such that
the sets {e1,...,ex} and {v1,...,v;} have the same span for each k.

Proof. We proceed by induction on k. The case k = 0 is clear. Suppose we’ve
found vy, ...,vg. Let
k
ki1 = erp1 — D (Vi ept1) Vi
i=1
Then for j < k,

k
(g, uk1) = (v, en11) = D (Viy ex41) (05, 05) = 0.

i=1

Since {v1,...,vg} and {ey,...,ex} span the same set, and ej,...,expq are LI,
Uk

{v1,...,0k, ex+1} are LI and so ugy1 # 0. Let vy = m O

Corollary. Let V be a f.d. inner product space. Then any orthonormal sequence

v1,...,V can be extended to an orthonormal basis.

Proof. Let vy,...,0%, Tkt1,...,Z, be any basis of V' extending vy,...,vg. If we
apply the Gram—Schmidt process to this basis we obtain an o.n. basis wy, ..., w,.
Moreover one can check that w; = v; for 1 <14 < k. O

Definition. Let V' be an inner product space and let Vi, Vs be subspaces of V.
Then V is the orthogonal (internal) direct sum of Vi and Vs, written V = V7 L Vo,
if

(1) V=V, + Vy
(2) V1 N V2 = O;
(3) (v1,v2) =0 for all v; € V] and vy € V5.

Note that condition (3) implies condition (2).
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Definition. If W C V is a subspace of an inner product space V then the orthog-
onal complement of W in V, written W+, is the subspace of V

Wt={veV|(wv)=0forall we W}

Corollary. Let V be a f.d. inner product space and W a subspace of V. Then
V=w1LWwk.

Proof. Of course if w € W and wt € W+ then (w,w) = 0. So it remains to
show that V = W + W=. Let wy,...,w; be an o.n. basis of W and extend it to
w1, ..., W, an o.n. basis for V.

If 7 > k, then (Zle Nwg, wj) = 3 Ai(wi,wj) = 0 and so w; € W, Since
w1, ..., wy, span V it follows that V =W + W=, (I

Notice that unlike general vector space complements, orthogonal complements
are unique.

Definition. We can also define the orthogonal (external) direct sum of two inner
product spaces V7 and V5 by endowing the vector space direct sum V; & Vo with
the inner product

((v1,v2), (w1, w2)) = (v1,w1) + (v2,w2)
for vi,wy € V7 and vg, wy € V5.

Definition. Suppose that V. = U & W. Then we can define II: V. — W by
I(u 4+ w) = w for u € U and w € W. We call II a projection map onto W. If
U = W+ we call Il the orthogonal projection onto W.

Proposition. Let V' be a f.d. inner product space and W C V be a subspace with
o.n. basis {(e1,...,er). Let IT be the orthogonal projection onto W. Then

(a) T(v) = Zle(ei, v)e; for each v € V;
(b) |lv—T)|| < |J[v—wl|| for all w € W with equality if and only if II(v) = w;
that is II(v) is the closest point to v in W.

Proof. (a) Put w = Zle(ei,v)ei € W. Then

k
(ej,v—w) = (ej,v) — Z(ei,v)(ej,ei) =0for1<j<k.

i=1

Thus v —w € Wt. Now v = w + (v — w) so II(v) = w.
(b) If z,y € V are orthogonal then

lo+yll? = (z +y,2 +y) = ll2* + (2,9) + (y,2) + [[yl]* = [l2]]* + [|y]
o = wl]* = [|(v = TI(v)) + (L(v) — w)|* = ||(v = T(v)]||* + [|(TI(v) — w)||*

and ||[v — w||? > [Jv — II(v)||* with equality if and only if |[II(v) — w||*> = 0 ie
II(v) = w. O
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7.3. Adjoints.

Lemma. Suppose V and W are f.d. inner product spaces and ov: V. — W is linear.
Then there is a unique linear map o : W — V' such that (a(v), w) = (v, a*(w)) for
allveV andweW.

Proof. Let (vy,...,vy) be an o.n. basis for V and (wy, ..., wy,,) be an o.n. basis for
W and suppose that « is represented by the matrix A with respect to these bases.
Then if a*: W — V satisfies (a(v),w) = (v,a*(w)) for all v € V and w € W .
Then we can compute

(v, 0" (wy)) = (a(vi), wy) = (D Apswr, wy) = Ajs.
k

Thus o*(w;) = > ATy vi ie o is represented by the matrix A”. In particular o
is unique if it exists.

But to prove existence we can now take a* to be the linear map represented by
the matrix AT. Then

fe! <Z )\ivi> ,Z,ujwj = ZX‘M <Z Akiwk,wj>
i j 1,] k

= D N
4]

whereas
D v Yol (wwy) | = ) Ay (w’“’ ZAT““”)
i J ] l
= Z)\iAkiﬂj
0,J
Thus (a(v),w) = (v,a*(w)) for all v € V and w € W as required. O

Definition. We call the linear map «a* characterised by the lemma the adjoint of
Q.

We've seen that if « is represented by A with respect to some o.n. bases then
o* is represented by AT with respect to the same bases.

Definition. Suppose that V is an inner product space. Then o € End(V) is
self-adjoint if o* = a; ie. if (a(v),w) = (v, a(w)) for all v,w € V.

Thus if V = R™ with the standard inner product then a matrix is self-adjoint
if and only if it is symmetric. If V' = C™ with the standard inner product then a
matrix is self-adjoint if and only if it is Hermitian.

Definition. If V is a real inner product space then we say that a € End(V) is
orthogonal if

(a(v1), a(v2)) = (v1,v2) for all v,v9 € V.
By the polarisation identity « is orthogonal if and only if ||a(v)|| = ||v|| for all
veV.



54 SIMON WADSLEY

Note that a real square matrix is orthogonal (as an endomorphism of R™ with
the standard inner product) if and only if its columns are orthonormal.

Lemma. Suppose that V is a f.d. real inner product space. Let o € End(V'). Then
o is orthogonal if and only if o is invertible and o = a1,
Proof. If a* = a~! then (v,v) = (v,a*a(v)) = (a(v),a(v)) for all v € V ie « is
orthogonal.

Conversely, if « is orthogonal, let vy,...,v, be an o.n. basis for V. Then for
each 1 <i,7 < n,

(vi, v5) = (a(vi), a(v))) = (vi, a"a(vy)).

Thus d;; = (v;,v;) = (v, a*a(v;)) and a*a(v;) = v; as required. O
Corollary. With notation as in the lemma, o € End(V') is orthogonal if and only
if a is represnted by an orthogonal matriz with respect to any orthonormal basis.

Proof. Let (v1,...,v,) be an o.n. basis then « is represented by A with respect to
this basis if and only if a* is represented by A”. Thus « is orthogonal if and only
if A is invertible with inverse AT i.e. A is orthogonal. (]

Definition. If V is a f.d. real inner product space then

O(V) :={a € End(V) | « is orthogonal}
forms a group under composition called the orthogonal group of V.
Definition. If V is a complex inner product space then we say that a € End(V)
is unitary if

(a(v1),a(ve)) = (v1,v9) for all vi,ve € V.
By the polarisation identity « is unitary if and only if ||a(v)|| = ||v|| for all v € V.
Lemma. Suppose that V is a f.d. complex inner product space. Let o € End(V).
Then o is unitary if and only if o is invertible and a* = o~ 1.
Proof. If a* = a1 then (v,v) = (v,a*a(v)) = (a(v),a(v)) for all v € V ie « is
unitary.

Conversely, if « is unitary, let vq,...,v, be an o.n. basis for V. Then for each

1<4,j<n,

(vi,v5) = (a(v:), alvy)) = (03, " (v;)).
Thus §;; = (v;,v;) = (v;, a*a(v;)) and a*«(v,;) = v; as required. O
Corollary. With notation as in the lemma, o € End(V) is unitary if and only if

« 1s represnted by an unitary matriz A with respect to any orthonormal basis (ie
Al =AT).

Proof. Let {(v1,...,v,) be an o.n. basis then « is represented by A with respect to
this basis if and only if a* is represented by A”. Thus « is orthogonal if and only
if A is invertible with inverse AT i.e. A is unitary. O

Definition. If V is a f.d. complex inner product space then
U(V):={a € End(V) | a is unitary}

forms a group under composition called the unitary group of V.
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7.4. Spectral theory.

Lemma. Suppose that V is an inner product space and o € End(V) is self-adjoint
then

(a) a has a real eigenvalue;
(b) all eigenvalues of a are real;
(c) eigenvectors of o with distinct eigenvalues are orthogonal.

Proof. (a) and (b) Suppose first that V is a complex inner product space. By the
fundamental theorem of algebra « has an eigenvalue (since the mininal polynomial
has a root). Suppose that a(v) = Av with v = V\0 and A € C. Then

Av,v) = (v, W) = (v,a(v)) = (a(v),v) = (M, v) = A(v,v).
Since (v,v) # 0 we can deduce A € R.
Now, suppose that V is a real inner product space. Let (vq,...,v,) be an o.n.
basis. Then « is represented by a real symmetric matrix A. But A viewed as
a complex matrix is also Hermitian so all its eigenvalues are real by the above.

Finally, the eigenvalues of « are precisely the eigenvalues of A.
(¢) Suppose a(v) = Av and o(w) = pw with A # p € R. Then

Alw, w) = (M, w) = (a(v),w) = (v,a(w)) = (v, p(w)) = p(v, w).
Since A # p we must have (v,w) = 0. O

Theorem. Let V' be an inner product space and o« € End(V') self-adjont. Then V
has an orthonormal basis of eigenvectors of a.

Proof. By the lemma, « has a real eigenvalue A, say. Thus we can find v; € V\0
such that a(vy) = Avy. Let U := ker(vy, —): V — F the orthogonal complement of
the span of v1 in V.

If uw € U, then

(a(u),v1) = (u,av1)) = (u, Avy) = A(u,v1) = 0.

Thus a(u) € U and « restricts to an element of End(U). Since (a(v),w) = (v, a(w))
for all v,w € V also for all v,w € U ie |y is also self-adjoint. By induction on
dim V' we can conclude that U has an o.n. basis of eigenvectors (v, ..., v,) of a|y.
Then <II%H’ Va,...,Up) is an o.n. basis for V' consisting of eigenvectors of a. O

Corollary. If V is an inner product space and o € End(V) is self adjoint then V
is the orthogonal direct sum of its eigenspaces.

Corollary. Let A € Mat,(R) be a symmetric matriz. Then there is an orthogonal
matriz P such that PT AP is diagonal.

Proof. Let (—,—) be the standard inner product on R™. Then A € End(R") is

self-adjoint so R™ has an o.n. basis (eq, ..., e,) consisting of eigenvectors of A. Let
P be the matrix whose columns are given by eq,...,e,. Then P is orthogonal and
PTAP = P71AP is diagonal. O

Corollary. LetV be a f.d. real inner product space and p: VxV — R a symmetric
bilnear form. Then there is an orthonormal basis of V' such that ¢ is represented
by a diagonal matrix.
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Proof. Let (uy,...,u,) be any o.n. basis for V and suppose that A represents
with respect to this basis. Then A is symmetric and there is an orthogonal matrix
P such that PTAP is diagonal. Let v; = > % Priug. Then (vq,...,v,) is an o.n.
basis and 1 is represented by PT AP with respect to it. O

Remark. Note that in the proof the diagonal entries of PT AP are the eigenvalues
of A. Thus it is easy to see that the signature of v is given by

# of positive eigenvalues of A — # of negative eigenvalues of A.

Corollary. Let V be a f.d. real vector space and let ¢ and 1y be symmetric bilinear
forms on V. If ¢ is positive-definite there is a basis vy, ...,v, for V with respect
to which both forms are represented by a diagonal matrix.

Proof. Use ¢ to make V into a real inner product space and then use the last
corollary. (I

Corollary. Let A,B € Mat,(R) be symmetric matrices such that A is postive
definite (ie vT Av > 0 for allv € R™\0). Then there is an invertible matriz Q such
that QT AQ and QT BQ are both diagonal.

We can prove similar corollaries for f.d. complex inner product spaces. In par-
ticular:

(1) If A € Mat,,(C) is Hermitian there is a unitary matrix U such that UT AU is
diagonal.

(2) If ¢ is a Hermitian form on a complex inner product space then there is an
orthonormal basis diagonalising ).

(3) If V is a complex vector space and ¢ and ¢ are two Hermitian forms with ¢
positive definite then ¢ and i can be simultaneously diagonalised.

(4) If A, B € Mat,,(C) are both Hermitian and A is positive definite (i.e. v Av > 0
for all v € C™\0) then there is an invertible matrix @ such that QT AQ and
QT BQ are both diagonal.

LECTURE 24

We can prove a similar diagonalisability theorem for unitary matrices. There
is no direct analogue for real orthogonal matrices — because orthogonal matrices
need not have an eigenvalue e.g. rotations in R? — but see the last question of
Example Sheet 4 for something close.

Theorem. LetV be a f.d. complex inner product space and o € End(V') be unitary.
Then V has an o.n. basis consisting of eigenvectors of a.

Proof. By the fundamental theorem of algebra, a has an eigenvector v say. Let
W =ker(v,—): V — C adimV — 1 dimensional subspace. Then if w € W,
1
(Ua a(w)) = (ailvauﬂ = (X’U7w) = Ail(vaw) =0.
Thus « restricts to a unitary endomorphism of W. By induction W has an o.n.
basis consisting of eigenvectors of a. By adding v/||v|| to this basis of W we obtain
a suitable basis of V. (]
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8. ALTERNATING FORMS
I believe that this short section is non-examinable.

Definition. Suppose that V is a vector space over F. An bilinear form ¢: VxV —
F is alternating if ¢p(v,v) =0 for all v € V.

Lemma. A bilinear form ¢: V x V. — F is alternating if and only if it is skew-
symmetric i.e (v, w) = —d(w,v) for all v,w € V.

Proof. If v,w € V then

¢(U +w, v+ ’LU) - ¢(U7 U) + ¢(vv w) + (;5(71), v) + ¢(w7 U))
Thus if ¢ is alternating then 0 = 0 + ¢(v,w) + ¢(w,v) + 0. That is ¢ is skew-
symmetric.

Conversely, if ¢ is skew-symmetric and v € V, then ¢(v,v) = —¢(v,v) and so
2¢(v,v) = 0. Since 2 # 0 € F, we see that ¢ is alternating. O

Theorem. IfV is a f.d. vector space over F and ¢: V xV — F is an alternating
bilinear form then there is a basis for V' such that ¢ is represented by a block diagonal
matriz with all block diagonal entries either

(_01 (1)) or (0).

In particular the rank of ¢ is even, and so if V' has a non-degenerate alternating
form then dim' V' must be even.

Proof. By induction on dim V. If ¢ is identically zero then any basis is suitable.
Otherwise, we can find v,w € V such that ¢(v,w) = ¢ # 0. Let v; = v/c and
vy = w so that ¢(v1,v2) = 1 and ¢(ve,v1) = —1 as required.

Now let a: V' — F? be the linear map given by a(v) = (igzl’zi) and define
2,

U = kera. Since a(vy) = (_01> and a(vy) = (é), Ima = F? and so dimU =

dim V' — 2 by the rank-nullity theorem. Moreover U intersects the span of v; and
vg trivially so that U is a complement to the span of v; and wvs.

Now if u € U then ¢(u,u) = 0 since u € U. Thus ¢ restricts to an alternating
form ¢|yxy: U x U — F. By the induction hypothesis, U has a basis (vs, ..., v,)
such that ¢|yxy is represented by a matrix of the required form. It is straightfor-
ward to verify that (vi,...,v,) is a suitable basis for V. O

Definition. If V is an F-vector space equipped with an alternating bilinear form
¢:V xV — F then the symplectic group of V,

Sp(V) :={a € GL(V) | ¢(a(v), a(w)) = ¢(v,w) for all v,w € V}.
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