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Lecture 1

1. Vector spaces

Linear algebra can be summarised as the study of vector spaces and linear maps
between them. This is a second ‘first course’ in Linear Algebra. That is to say, we
will define everything we use but will assume some familiarity with the concepts
(picked up from the IA course Vectors and Matrices for example).

1.1. Definitions and examples.

Examples.

(1) For each non-negative integer n, the set Rn of column vectors of length n with
real entries is a vector space (over R). An (m× n)-matrix A with real entries
can be viewed as a linear map Rn → Rm via v 7→ Av. In fact, as we will see,
every linear map from Rn → Rm is of this form.

(2) Let X be a set and RX := {f : X → R} be equipped with an addition given
by (f + g)(x) := f(x) + g(x) and a multiplication by scalars (in R) given by
(λf)(x) = λ(f(x)). Then RX is a vector space (over R).

(3) If [a, b] is a closed interval in R then C([a, b],R) := {f ∈ R[a,b] | f is continuous}
is an R-vector space by restricting the operations on R[a,b]. Similarly

C∞([a, b],R) := {f ∈ C([a, b],R) | f is infinitely differentiable}

is an R-vector space.
(4) The set of (m× n)-matrices with real entries is a vector space over R.

Convention. In this course we will use F to denote either R or C. Most of
the results will be true for any field F; but since general fields are not officially
defined until Groups, Rings and Modules next term we follow the schedules in not
addressing that.

What do our examples of vector spaces above have in common? In each case
we have a notion of addition of ‘vectors’ and scalar multiplication of ‘vectors’ by
elements in R.

Definition. An F-vector space is an abelian group (V,+) equipped with a function
F× V → V ; (λ, v) 7→ λv such that

(a) λ(µv) = (λµ)v for all λ, µ ∈ F and v ∈ V ;
(b) λ(u+ v) = λu+ λv for all λ ∈ F and u, v ∈ V ;
(c) (λ+ µ)v = λv + µv for all λ, µ ∈ F and v ∈ V ;
(d) 1v = v for all v ∈ V .

Note that this means that we can add, subtract and rescale elements in a vector
space and these operations behave in the ways that we are used to. Note also
that in general a vector space does not come equipped with notions of length or of
angle. We will discuss how to recover these at the end of the course. At that point
particular properties of the field F will be important.

Convention. We will always write 0 to denote the additive identity of a vector
space V . By slight abuse of notation we will also write 0 to denote the vector space
{0}.
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Exercise.

(1) Convince yourself that all the vector spaces mentioned thus far do indeed satisfy
the axioms for a vector space.

(2) Show that for any v in any vector space V , 0v = 0 and (−1)v = −v

Definition. Suppose that V is a vector space over F. A subset U ⊂ V is a (linear)
subspace if

(a) for all u1, u2 ∈ U , u1 + u2 ∈ U ;
(b) for all λ ∈ F and u ∈ U , λu ∈ U ;
(c) 0 ∈ U .

Remarks.

(1) It is straightforward to see that U ⊂ V is a subspace if and only if U 6= ∅ and
λu1 + µu2 ∈ U for all u1, u2 ∈ U and λ, µ ∈ F .

(2) If U is a subspace of V then U is a vector space under the inherited operations.

Examples.

(1)


x1x2
x3

 ∈ R3 : x1 + x2 + x3 = t

 is a subspace of R3 if and only if t = 0.

(2) Let X be a set. We define the support of a function f : X → F to be

suppf := {x ∈ X : f(x) 6= 0}.

Then {f ∈ FX : |suppf | <∞} is a subspace of FX .

Definition. Let V be a vector space over F and S ⊂ V a subset of V . Then the
span of S in V ,

〈S〉 :=

{
n∑
i=1

λisi : λi ∈ F, si ∈ S, n > 0

}
Remark. For any subset S ⊂ V , 〈S〉 is the smallest subspace of V containing S.

Example. Suppose that V is R3.

If S =


1

0
0

 ,

0
1
1

 ,

1
2
2

 then 〈S〉 =


ab
b

 : a, b ∈ R

 .

Note also that every subset of S of order 2 has the same span as S.

Example. Let X be a set and for each x ∈ X, define δx : X → F by

δx(y) =

{
1 if y = x

0 if y 6= x.

Then 〈δx : x ∈ X〉 = {f ∈ FX : |suppf | <∞}.

Definition. Suppose that U and W are subspaces of a vector space V over F.
Then the sum of U and W is the set

U +W := {u+ w : u ∈ U,w ∈W}.

Proposition. If U and W are subspaces of a vector space V over F then U ∩W
and U +W are also subspaces of V .
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Proof. Certainly both U ∩W and U +W contain 0. Suppose that v1, v2 ∈ U ∩W ,
u1, u2 ∈ U , w1, w2 ∈W ,and λ, µ ∈ F. Then λv1 + µv2 ∈ U ∩W and

λ(u1 + w1) + µ(u2 + w2) = (λu1 + µu2) + (λw1 + µw2) ∈ U +W.

So U ∩W and U +W are subspaces of V . �

*Quotient spaces*. Suppose that V is a vector space over F and U is a subspace
of V . Then the quotient group V/U can be made into a vector space over F by
definining

λ(v + U) = (λv) + U

for λ ∈ F and v ∈ V .

Exercise. Justify the claim that this makes V/U into a vector space over F.

Lecture 2

1.2. Linear independence, bases and the Steinitz exchange lemma.

Definition. Let V be a vector space over F and S ⊂ V .

(a) We say that S spans V if V = 〈S〉.
(b) We say that S is linearly independent (LI) if, whenever

n∑
i=1

λisi = 0

with λi ∈ F, and si distinct elements of S, it follows that λi = 0 for all i. If S
is not linearly independent then we say that S is linearly dependent (LD).

(c) We say that S is a basis for V if S spans and is linearly independent.

Example. Suppose that V is R3 and S =


1

0
0

 ,

0
1
1

 ,

1
2
2

. Then S is linearly

dependent since 1

1
0
0

+2

0
1
1

+(−1)

1
2
2

 = 0. Moreover S does not span V since0
0
1

 is not in 〈S〉. However, every subset of S of order 2 is linearly independent

and forms a basis for 〈S〉.

Remark. Note that no linearly independent set can contain the zero vector since
1 · 0 = 0.

Convention. The span of the empty set 〈∅〉 is the zero subspace 0. Thus the
empty set is a basis of 0. One may consider this to not be so much a convention as
the only reasonable interpretation of the definitions of span, linearly independent
and basis in this case.

Lemma. A subset S of a vector space V over F is linearly dependent if and only if
there exist s0, s1, . . . , sn ∈ S distinct and λ1, . . . , λn ∈ F such that s0 =

∑n
i=1 λisi.
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Proof. Suppose that S is linearly dependent so that
∑
λisi = 0 for some si ∈ S

distinct and λi ∈ F with λj 6= 0 say. Then

sj =
∑
i 6=j

−λi
λj

si.

Conversely, if s0 =
∑n
i=1 λisi then (−1)s0 +

∑n
i=1 λisi = 0. �

Proposition. Let V be a vector space over F. Then {e1, . . . , en} is a basis for V
if and only if every element v ∈ V can be written uniquely as v =

∑n
i=1 λiei with

λi ∈ F.

Proof. First we observe that by definition {e1, . . . , en} spans V if and only if every
element v of V can be written in at least one way as v =

∑
λiei with λi ∈ F.

So it suffices to show that {e1, . . . , en} is linearly independent if and only if there
is at most one such expression for every v ∈ V .

Suppose that {e1, . . . , en} is linearly independent and v =
∑
λiei =

∑
µiei with

λi, µi ∈ F. Then,
∑

(λi − µi)ei = 0. Thus by definition of linear independence,
λi − µi = 0 for i = 1, . . . , n and so λi = µi for all i.

Conversely if {e1, . . . , en} is linearly dependent then we can write∑
λiei = 0 =

∑
0ei

for some λi ∈ F not all zero. Thus there are two ways to write 0 as an F-linear
combination of the ei. �

The following result is necessary for a good notion of dimension for vector spaces.

Theorem (Steinitz exchange lemma). Let V be a vector space over F. Suppose
that S = {e1, . . . , en} is a linearly independent subset of V and T ⊂ V spans V .
Then there is a subset T ′ of T of order n such that (T\T ′)∪S spans V . In particular
n 6 |T |.

This is sometimes stated as follows (with the assumption that T is finite).

Corollary. If {e1, . . . , en} ⊂ V is linearly independent and {f1, . . . , fm} spans V .
Then n 6 m and, possibly after reordering the fi, {e1, . . . , en, fn+1, . . . , fm} spans
V .

We prove the theorem by replacing elements of T by elements of S one by one.

Proof of the Theorem. Suppose that we’ve already found a subset T ′r of T of order
0 6 r < n such that Tr := (T\T ′r) ∪ {e1, . . . , er} spans V . Then we can write

er+1 =

k∑
i=1

λiti

with λi ∈ F and ti ∈ Tr. Since {e1, . . . , er+1} is linearly independent there must be
some 1 6 j 6 k such that λj 6= 0 and tj 6∈ {e1, . . . , er}. Let T ′r+1 = T ′r ∪ {tj} and

Tr+1 = (T\T ′r+1) ∪ {e1, . . . , er+1} = (Tr\{tj}) ∪ {er+1}
.

Now

tj =
1

λj
er+1 −

∑
i 6=j

λi
λj
ti,
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so tj ∈ 〈Tr+1〉 and 〈Tr+1〉 = 〈Tr+1 ∪ {tj}〉 ⊃ 〈Tr〉 = V .
Now we can inductively construct T ′ = T ′n with the required properties. �

Corollary. Let V be a vector space with a basis of order n.

(a) Every basis of V has order n.
(b) Every basis of a subspace U of V has order at most n.
(c) Any n LI vectors in V form a basis for V .
(d) Any n vectors in V that span V form a basis for V .
(e) Any set of linearly independent vectors in V can be extended to a basis.

Proof. Suppose that S = {e1, . . . , en} is a basis for V .
(a) Suppose that T is another basis of V . Since S spans V and any finite subset

of T is linearly independent |T | 6 n. Since T spans and S is linearly independent
|T | > n. Thus |T | = n as required.

(b) Suppose T is a basis for U . Since T is a linearly independent subset of V ,
|T | 6 n.

(c) Suppose T is a LI subset of V of order n. If T did not span we could choose
v ∈ V \〈T 〉. Then T ∪ {v} is a LI subset of V of order n+ 1, a contradiction.

(d) Suppose T is spans V and has order n. If T were LD we could find
t0, t1, . . . , tm in T distinct such that t0 =

∑m
i=1 λiti with λi ∈ F. Thus V =

〈T 〉 = 〈T\{t0}〉 so T\{t0} is a spanning set for V of order n− 1, a contradiction.
(e) Let T = {t1, . . . , tm} be a linearly independent subset of V . Since S spans

V we can find s1, . . . , sm in S such that (S\{s1, . . . , sm}) ∪ T spans V . Since this
set has order (at most) n it is a basis containing T . �

Lecture 3

Definition. If a vector space V over F has a finite basis S then we say that V is
finite dimensional (or f. d.). Moreover, we define the dimension of V by

dimF V = dimV = |S|.

If V does not have a finite basis then we will say that V is infinite dimensional.

Lemma. If V is f.d. and U ( V is a proper subspace then U is also f.d.. Moreover,
dimU < dimV .

Proof. Let S ⊂ U be a LI subset of U of maximal possible size. Then |S| 6 dimV
(by the last Corollary).

Suppose that v ∈ V \〈S〉 and λ0v +
∑m
i=1 λisi=0 with λ0 . . . , λm ∈ F, and

s1, . . . , sm is S distinct. Then λ0 = 0 since v 6∈ 〈S〉. So λ1, . . . , λm = 0 since S is
LI. Thus S ∪ {v} is LI for every v ∈ V \〈S〉. In particular U = 〈S〉, else S does not
have maximal size. Moreover since U 6= V , there is some v ∈ V \〈S〉 and |S ∪ {v}|
is a LI subset of order |S|+ 1. So |S| < dimV as required. �

Remarks.
(1) By the last corollary the dimension of a finite dimensional space V does not

depend on the choice of basis S. However the dimension does depend on F.
For example C has dimension 1 viewed as a vector space over C (since {1} is a
basis) but dimension 2 viewed as a vector space over R (since {1, i} is a basis).
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(2) If we wanted to be more precise then we could define the dimension of an
infinite dimensional space to be the cardinality of any basis for V . But we have
not proven enough to see that this would be well-defined; in fact there are no
problems.

Proposition. Let U and W be subspaces of a finite dimensional vector space V
over F. Then

dim(U +W ) + dim(U ∩W ) = dimU + dimW.

Proof. Since dimension is defined in terms of bases and we have no way to compute
it at present except by finding bases and counting the number of elements we must
find suitable bases. The key idea is to be careful about how we choose our bases.

Slogan When choosing bases always choose the right basis for the job.

Let R := {v1, . . . , vr} be a basis for U∩W . Since U∩W is a subspace of U we can
extend R to a basis S := {v1, . . . , vr, ur+1, . . . , us} for U . Similary we can extend
R to a basis T := {v1, . . . , vr, wr+1, . . . , wt} for W . We claim that X := S ∪ T is a
basis for U +W . This will suffice, since then

dim(U +W ) = |X| = s+ t− r = dimU + dimW − dim(U ∩W ).

Suppose u + w ∈ U + W with u ∈ U and w ∈ W . Then u ∈ 〈S〉 and w ∈ 〈T 〉.
Thus U +W is contained in the span of X = S ∪ T . It is clear that 〈X〉 ⊂ U +W
so X does span U +W and it now suffices to show that X is linearly independent.
Suppose that

r∑
i=1

λivi +

s∑
j=r+1

µjuj +

t∑
k=r+1

νkwk = 0.

Then we can write
∑
µjuj = −

∑
λivi −

∑
νkwk ∈ U ∩W . Since the R spans

U ∩ W and T is linearly independent it follows that all the νk are zero. Then∑
λivi +

∑
µjuj = 0 and so all the λi and µj are also zero since S is linearly

independent. �

Lemma. If S ⊂ V is a finite spanning set then S contains a basis for V .

Proof. By induction on —S—. If S is LI we’re done. Otherwise there are s0, . . . , sn ∈
S and λ1, . . . , λn ∈ F such that s0 =

∑n
i=1 λisi. Thus 〈S〉 = 〈S\{s0}〉. By the

induction hypothesis S\{s0} contains a basis. �

Exercise (non-examinable). Show that if V is a finite dimensional vector space over
F and U is a subspace then

dimV = dimU + dimV/U.

Hint. Show that if {u1, . . . , um} is a basis for U and {v1 +U, . . . , vn +U} is a basis
for V/U then {u1, . . . , um, v1, . . . , vn} is a basis for V .

1.3. Direct sum. There are two related notions of direct sum of vector spaces
and the distinction between them can often cause confusion to newcomers to the
subject. The first is sometimes known as the internal direct sum and the latter as
the external direct sum. However it is common to gloss over the difference between
them.
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Definition. Suppose that V is a vector space over F and U and W are subspaces
of V . Recall that sum of U and W is defined to be

U +W = {u+ w : u ∈ U,w ∈W}.

We say that V is the (internal) direct sum of U and W , written V = U ⊕W , if
V = U +W and U ∩W = 0. Equivalently V = U ⊕ V if every element v ∈ V can
be written uniquely as u+ w with u ∈ U and w ∈W .

We also say that U and W are complementary subspaces in V .

Example. Suppose that V = R3 and

U =


x1x2
x3

 : x1 + x2 + x3 = 0

 ,W1 =

〈1
1
1

〉 and W2 =

〈1
0
0

〉

then V = U ⊕W1 = U ⊕W2.
Note in particular that U does not have only one complementary subspace in V .

Definition. Given any two vector spaces U and W over F the (external) direct
sum U ⊕W of U and W is defined to be the set of pairs

{(u,w) : u ∈ U,w ∈W}

with addition given by

(u1, w1) + (u2, w2) = (u1 + u2, w1 + w2)

and scalar multiplication given by

λ(u,w) = (λu, λw).

Exercise. Show that U ⊕W is a vector space over F with the given operations and
that it is the internal direct sum of its subspaces

{(u, 0) : u ∈ U} and {(0, w) : w ∈W}.

More generally we can make the following definitions.

Definition. If U1, . . . , Un are subspaces of V then V is the (internal) direct sum
of U1, . . . , Un written

V = U1 ⊕ · · · ⊕ Un =

n⊕
i=1

Ui

if every element v of V can be written uniquely as v =
∑n
i=1 ui with ui ∈ Ui.

Definition. If U1, . . . , Un are any vector spaces over F their (external) direct sum
is the vector space

n⊕
i=1

Ui := {(u1, . . . , un) | ui ∈ Ui}

with natural coordinate-wise operations.

From now on we will drop the adjectives ‘internal’ and ‘external’ from ‘direct
sum’.
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Lecture 4

2. Linear maps

2.1. Definitions and examples.

Definition. Suppose that U and V are vector spaces over a field F. Then a function
α : U → V is a linear map if

(a) α(u1 + u2) = α(u1) + α(u2) for all u1, u2 ∈ U ;
(b) α(λu) = λα(u) for all u ∈ U and λ ∈ F.

Notation. We write L(U, V ) for the set of linear maps U → V .

Remarks.

(1) We can combine the two parts of the definition into one as: α is linear if and
only if α(λu1 +µu2) = λα(u1) +µα(u2) for all λ, µ ∈ F and u1, u2 ∈ U . Linear
maps should be viewed as functions between vector spaces that respect their
structure as vector spaces.

(2) If α is linear map then α is a homomorphism of the underlying abelian groups.
In particular α(0) = 0.

(3) If we want to stress the field F then we will say a map is F-linear. For example,
complex conjugation defines an R-linear map from C to C but it is not C-linear.

Examples.
(1) Let A be an n×m matrix with coefficients in F. Then α : Fm → Fn; α(v) = Av

is a linear map.
To see this let λ, µ ∈ F and u, v ∈ Fm. As usual, let Aij denote the ijth

entry of A and uj , (resp. vj) the jth coordinate of u (resp. v). Then for
1 6 i 6 n,

(α(λu+ µv))i =

m∑
j=1

Aij(λuj + µvj) = λα(u)i + µα(v)i

so α(λu+ µv) = λα(u) + µα(v) as required.
(2) If X is any set and g ∈ FX then g : FX → FX ; (gf)(x) := g(x)f(x) for x ∈ X

is linear.
(3) For all x ∈ [a, b], δx : C([a, b],R)→ R; f 7→ f(x) is linear.
(4) I : C([a, b],R)→ C([a, b],R); I(f)(x) =

∫ x
a
f(t) dt is linear.

(5) D : C∞([a, b],R)→ C∞([a, b],R); (Df)(t) = f ′(t) is linear.
(6) If α, β : U → V are linear and λ ∈ F then α+β : U → V given by (α+β)(u) =

α(u) + β(u) and λα : U → V given by (λα)(u) = λ(α(u)) are linear. In this
way L(U, V ) is a vector space over F.

Definition. We say that a linear map α : U → V is an isomorphism if there is a
linear map β : V → U such that βα = idU and αβ = idV .

Lemma. Suppose that U and V are vector spaces over F. A linear map α : U → V
is an isomorphism if and only if α is a bijection.

Proof. Certainly an isomorphism α : U → V is a bijection since it has an inverse
as a function between the underlying sets U and V . Suppose that α : U → V is a
linear bijection and let β : V → U be its inverse as a function. We must show that
β is also linear. Let λ, µ ∈ F and v1, v2 ∈ V . Then

αβ (λv1 + µv2) = λαβ(v1) + µαβ(v2) = α (λβ(v1) + µβ(v2)) .
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Since α is injective it follows that β is linear as required. �

Definition. Suppose that α : U → V is a linear map.

• The image of α, Imα := {α(u) : u ∈ U}.
• The kernel of α, kerα := {u ∈ U : α(u) = 0}.

Examples.

(1) Let A be an n ×m-matrix with coefficients in F and let α : Fm → Fn be the
linear map defined by x 7→ Ax. Then the system of equations

m∑
j=1

Aijxj = bi; 1 6 i 6 n

has a solution if and only if

b1...
bn

 ∈ Imα. The kernel of α consists of the

solutions

x1
...
xm

 to the homogeneous equations

m∑
j=1

Aijxj = 0; 1 6 i 6 n

(2) Let β : C∞(R,R)→ C∞(R,R) be given by

β(f)(t) = f ′′(t) + p(t)f ′(t) + q(t)f(t)

for some p, q ∈ C∞(R,R). A function g ∈ C∞(R,R) is in the image of β
precisely if

f ′′(t) + p(t)f ′(t) + q(t) = g(t)

has a solution in C∞(R,R). Moreover, kerβ consists of the solutions to the
differential equation

f ′′(t) + p(t)f ′(t) + q(t)f(t) = 0

in C∞(R,R).

Note that α is injective if and only if kerα = 0 and that α is surjective if and
only if Imα = V .

Proposition. Suppose that α : U → V is an F-linear map.

(a) If α is injective and S ⊂ U is linearly independent then α(S) ⊂ V is linearly
independent.

(b) If α is surjective and S ⊂ U spans U then α(S) spans V .
(c) If α is an isomorphism and S is a basis then α(S) is a basis.

Proof. (a) Suppose α is injective, S ⊂ U and α(S) is linearly dependent. Then
there are s0, . . . , sn ∈ S distinct and λ1, . . . , λn ∈ F such that

α(s0) =
∑

λiα(si) = α

(
n∑
i=1

λisi

)
.

Since α is injective it follows that s0 =
∑n

1 λisi and S is LD.
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(b) Now suppose that α is surjective, S ⊂ U spans U and let v in V . There is
u ∈ U such that α(u) = v and there are s1, . . . , sn ∈ S and λ1, . . . , λn ∈ F such
that

∑
λisi = u. Then

∑
λiα(si) = v. Thus α(S) spans V .

(c) Follows immediately from (a) and (b). �

Corollary. If two finite dimensional vector spaces are isomorphic then they have
the same dimension.

Proof. If α : U → V is an isomorphism and S is a finite basis for U then α(S) is a
basis of V by the proposition. Since α is an injection |S| = |α(S)|. �

Proposition. Suppose that V is a vector space over F of dimension n < ∞.
Writing e1, . . . , en for the standard basis for Fn, there is a bijection Φ between the
set of isomorphisms Fn → V and the set of (ordered) bases for V that sends the
isomorphism α : Fn → V to the (ordered) basis 〈α(e1), . . . , α(en)〉.

Proof. That the map Φ is well-defined follows immediately from part (c) of the last
Proposition.

If Φ(α) = Φ(β) then

α


x1...
xn


 =

n∑
i=1

xiα(ei) =

n∑
i=1

xiβ(ei) = β


x1...
xn




for all

x1...
xn

 ∈ Fn so α = β and Φ is injective.

Suppose now that 〈v1, . . . , vn〉 is an ordered basis for V and define α : Fn → V
by

α


x1...
xn


 =

n∑
i=1

xivi.

Then α is injective since v1, . . . , vn are LI and α is surjective since v1, . . . , vn span
V and α is easily seen to be linear. Thus α is an isomorphism such that Φ(α) =
〈v1, . . . , vn〉 and Φ is surjective as required. �

Thus choosing a basis for an n-dimensional vector space V corresponds to choos-
ing an identification of V with Fn.

Lecture 5

2.2. Linear maps and matrices.

Proposition. Suppose that U and V are vector spaces over F and S := {e1, . . . , en}
is a basis for U . Then every function f : S → V extends uniquely to a linear map
α : U → V .

Slogan To define a linear map it suffices to specify its values on a basis.
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Proof. First we prove uniqueness: suppose that f : S → V and α andd β are two
linear maps U → V extending f . Let u ∈ U so that u =

∑
uiei for some ui ∈ F.

Then

α(u) = α

(
n∑
i=1

uiei

)
=

n∑
i=1

uiα(ei).

Similarly, β(u) =
∑n

1 uiβ(ei). Since α(ei) = f(ei) = β(ei) for each 1 6 i 6 n we
see that α(u) = β(u) for all u ∈ U and so α = β.

That argument also shows us how to construct a linear map α that extends f .
Every u ∈ U can be written uniquely as u =

∑n
i=1 uiei with ui ∈ F. Thus we can

define α(u) =
∑
uif(ei) without ambiguity. Certainly α extends f so it remains

to show that α is linear. So we compute for u =
∑
uiei and v =

∑
viei,

α (λu+ µv) = α

(
n∑
i=1

(λui + µvi)ei

)

=

n∑
i=1

(λui + µvi)f(ei)

= λ

n∑
i=1

uif(ei) + µ

n∑
i=1

vif(ei)

= λα (u) + µα (v)

as required. �

Remarks.

(1) With a little care the proof of the proposition can be extended to the case U
is not assumed finite dimensional.

(2) It is not hard to see that the only subsets S of U that satisfy the conclusions
of the proposition are bases: spanning is necessary for the uniqueness part and
linear independence is necessary for the existence part. The proposition should
be considered a key justification for the definition of a basis.

Corollary. If U and V are finite dimensional vector spaces over F with (ordered)
bases 〈e1, . . . , em〉 and 〈f1, . . . , fn〉 respectively then there is a bijection

Matn,m(F)↔ L(U, V )

that sends a matrix A to the unique linear map α such that α(ei) =
∑
ajifj.

Interpretation The ith column of the matrix A tells where the ith basis
vector of U goes (as a linear combination of the basis vectors of V ).

Proof. If α : U → V is a linear map then for each 1 6 i 6 m we can write α(ei)
uniquely as α(ei) =

∑
ajifj with aji ∈ F. The proposition tells us that every

matrix A = (aij) arises in this way from some linear map and that α is determined
by A. �

Definition. We call the matrix corresponding to a linear map α ∈ L(U, V ) under
this corollary the matrix representing α with respect to 〈e1, . . . , em〉 and 〈f1, . . . , fn〉.

Exercise. The bijection given by the corollary is even an isomorphism of vector
spaces. Thus dimL(U, V ) = dimU dimV .
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Proposition. Suppose that U, V and W are finite dimensional vector spaces over
F with bases R := 〈u1, . . . , ur〉, S := 〈v1, . . . , vs〉 and T := 〈w1, . . . , wt〉 respectively.
If α : U → V is a linear map represented by the matrix A with respect to R and S
and β : V → W is a linear map represented by the matrix B with respect to S and
T then βα is the linear map U →W represented by BA with respect to R and T .

Proof. Verifying that βα is linear is straightforward: suppose x, y ∈ U and λ, µ ∈ F
then

βα(λx+ µy) = β(λα(x) + µα(y)) = λβα(x) + µβα(y).

Next we compute βα(ui) as a linear combination of wj .

βα(ui) = β

(∑
k

Akivk

)
=
∑
k

Akiβ(vk) =
∑
k,j

AkiBjkwj =
∑
j

(BA)jiwj

as required.
�

2.3. The first isomorphism theorem and the rank-nullity theorem. The
following analogue of the first isomorphism theorem for groups holds for vector
spaces.

Lemma (The first isomorphism theorem). Let α : U → V be a linear map between
vector spaces over F. Then kerα is a subspace of U and Imα is a subspace of V .
Moreover α induces an isomorphism U/ kerα→ Imα given by

α(u+ kerα) = α(u).

Proof. Certainly 0 ∈ kerα. Suppose that u1, u2 ∈ kerα and λ, µ ∈ F. Then

α(λu1 + µu2) = λα(u1) + µα(u2) = 0 + 0 = 0.

Thus kerα is a subspace of U . Similarly 0 ∈ Imα and for u1, u2 ∈ U ,

λα(u1) + µα(u2) = α(λu1 + µu2) ∈ Im(α).

The remainder is left as a (straightforward yet non-examinable) exercise. [Hint: the
first isomorphism theorem for groups gives that α is a bijective homomorphism of
the underlying abelian groups so it remains to verify that α respects multiplication
by scalars.] �

Definition. Suppose that α : U → V is a linear map between finite dimensional
vector spaces.

• The number n(α) := dim kerα is called the nullity of α.
• The number r(α) := dim Imα is called the rank of α.

Corollary (The rank-nullity theorem). If α : U → V is a linear map between f.d.
vector spaces over F then

r(α) + n(α) = dimU.

Proof. Since U/ kerα ∼= Imα this follows immediately from an earlier exercise. �

We are about to give another proof of the rank-nullity theorem not using quotient
spaces or the first isomorphism theorem. However, the proof above is illustrative
of the power of considering quotients.
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Proposition. Suppose that α : U → V is a linear map between finite dimensional
vector spaces then there are bases {e1, . . . , en} for U and {f1, . . . , fm} for V such
that the matrix representing α is (

Ir 0
0 0

)
where r = r(α).

Proof. Let ek+1, . . . , en be a basis for kerα (here n(α) = n − k) and extend it to
a basis e1, . . . , en for U (we’re being careful about ordering now so that we don’t
have to change it later). Let fi = α(ei) for 1 6 i 6 k.

We claim that {f1, . . . , fk} form a basis for Imα (so that k = r(α)). Suppose first

that
∑k
i=1 λifi = 0 for some λi ∈ F. Then α

(∑k
i=1 λiei

)
= 0 and so

∑k
i=1 λiei ∈

kerα. But kerα ∩ 〈e1, . . . , ek〉 = 0 by construction and so
∑k
i=1 λiei = 0. Since

e1, . . . , ek are LI, each λi = 0. Thus we have shown that {f1, . . . , fk} is LI.
Now suppose that v ∈ Imα, so that v = α(

∑n
i=1 µiei) for some µi ∈ F. Since

α(ei) = 0 for i > k and αi(ei) = fi for i 6 k, v =
∑k
i=1 µifi ∈ 〈f1, . . . , fk〉. So

{f1, . . . , fk} is a basis for Imα as claimed (and k = r).
We can extend {f1, . . . , fr} to a basis {f1, . . . , fm} for V .
Now

α(ei) =

{
fi 1 6 i 6 r

0 r + 1 6 i 6 m

so the matrix representing α with respect to our choice of basis is as in the state-
ment. �

The proposition says that the rank of a linear map between two finite dimensional
vector spaces is its only basis-independent invariant (or more precisely any other
invariant can be deduced from it).

Corollary (The rank-nullity theorem). If α : U → V is a linear map between finite
dimensional vector spaces then

r(α) + n(α) = dimU.

Proof. This can easily be read off from either the statement or the proof of the
Proposition. �

Lecture 6

Recall the statement of the rank-nullity theorem.

Theorem (The rank-nullity theorem). If α : U → V is a linear map between finite
dimensional vector spaces then

r(α) + n(α) = dimU.

This result is very useful for computing dimensions of vector spaces in terms of
known dimensions of other spaces.

Example. Let W = {x ∈ R5 | x1 + x2 + x5 = 0 and x3 − x4 − x5 = 0}. What is
dimW?
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Consider α : R5 → R2 given by α(x) =

(
x1 + x2 + x5
x3 − x4 − x5

)
. Then α is a linear map

with image R2 (since

α




1
0
0
0
0


 =

(
1
0

)
and α




0
0
1
0
0


 =

(
0
1

)
.)

and kerα = W . Thus dimW = n(α) = 5− r(α) = 5− 2 = 3.

More generally, one can use the rank-nullity theorem to see that m linear equa-
tions in n unknowns have a space of solutions of dimension at least n−m.

Example. Suppose that U and W are subspaces of a finite dimensional vector space
V then let α : U ⊕W → V be the linear map given by α((u,w)) = u + w. Then
kerα = {(u,−u) | u ∈ U ∩W} ∼= U ∩W , and Imα = U +W . Thus

dimU ⊕W = dim (U +W ) + dim (U ∩W ) .

We can then recover dimU + dimW = dim (U +W ) + dim (U ∩W ).

Corollary (of the rank-nullity theorem). Suppose that α : U → V is a linear map
between two vector spaces of dimension n <∞. Then the following are equivalent:

(a) α is injective;
(b) α is surjective;
(c) α is an isomorphism.

Proof. It suffices to see that (a) is equivalent to (b) since these two together are
already known to be equivalent to (c). Now α is injective if and only if n(α) = 0.
By the rank-nullity theorem n(α) = 0 if and only if r(α) = n and the latter is
equivalent to α being surjective. �

This enables us to prove the following fact about matrices.

Lemma. Let A be an n× n matrix over F. The following are equivalent

(i) there is a matrix B such that BA = In;
(ii) there is a matrix C such that AC = In.

Moreover, if (i) and (ii) hold then B = C and we write A−1 = B = C; we say A is
invertible.

Proof. Let α, β, γ, ι : Fn → Fn be the linear maps represented by A,B,C and In
respectively (with respect to the standard basis for Fn). Then (i) implies that
βα = ι thus α is injective and so an isomorphism. Thus α−1 = β is represented
by B with respect to the standard basis and AB = In. Similarly (ii) implies that
αγ = ι thus α is surjective and so an isomorphism. Thus α−1 = γ is represented
by C with respect to the standard basis and CA = In.

Finally C = InC = BAC = BIn = B. �

2.4. Change of basis.

Theorem. Suppose that 〈e1, . . . , em〉 and 〈u1, . . . , um〉 are two bases for a vector
space U over F and 〈f1, . . . , fn〉 and 〈v1, . . . , vn〉 are two bases of another veector
space V . Let α : U → V be a linear map, A be the matrix representing α with
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respect to 〈e1, . . . , em〉 and 〈f1, . . . , fm〉 and B be the matrix representing α with
respect to 〈u1, . . . , um〉 and 〈v1, . . . , vm〉 then

B = Q−1AP

where ui =
∑
Pkiek for i = 1, . . . ,m and vj =

∑
Qljfl for j = 1, . . . , n.

Note that one can view P as the matrix representing the identity map from U
with basis 〈u1, . . . , um〉 to U with basis 〈e1, . . . , em〉 and Q as the matrix represent-
ing the identity map from V with basis 〈v1, . . . , vn〉 to V with basis 〈f1, . . . , fn〉.
Thus both are invertible with inverses represented by the identity maps going in
the opposite directions.

Proof. On the one hand, by definition

α(ui) =
∑
j

Bjivj =
∑
j,l

BjiQljfl =
∑
l

(QB)lifl.

On the other hand, also by definition

α(ui) = α

(∑
k

Pkiek

)
=
∑
k,l

PkiAlkfl =
∑
l

(AP )lifl.

Thus QB = AP as the fl are LI. Since Q is invertible the result follows. �

Definition. We say two matrices A,B ∈ Matn,m(F) are equivalent if there are
invertible matrices P ∈ Matm(F) and Q ∈ Matn(F) such that Q−1AP = B.

Note that equivalence is an equivalence relation. It can be reinterpreted as
follows: two matrices are equivalent precisely if they respresent the same linear
map with respect to different bases.

We saw earlier that for every linear map α between f.d. vector spaces there are
bases for the domain and codomain such that α is represented by a matrix of the
form (

Ir 0
0 0

)
.

Moreover r = r(α) is independent of the choice of bases. We can now rephrase this
as follows.

Corollary. If A ∈ Matn,m(F) there are invertible matrices P ∈ Matm(F) and
Q ∈ Matn(F) such that Q−1AP is of the form(

Ir 0
0 0

)
.

Moreover r is uniquely determined by A. i.e. every equivalence class contains
precisely one matrix of this form. �

Definition. If A ∈ Matn,m(F) then

• column rank of A, written r(A) is the dimension of the subspace of Fn

spanned by the columns of A;
• the row rank of A is the column rank of AT .

Note that if we take α to be a linear map represented by A with respect to
the standard bases of Fm and Fn then r(A) = r(α). i.e. ‘column rank=rank’.
Moreover, since r(α) is defined in a basis-invariant way, the column rank of A is
constant on equivalence classes.
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Corollary (Row rank equals column rank). If A ∈ Matm,n(F) then r(A) = r(AT ).

Proof. Let r = r(A). There exist P,Q such that

Q−1AP =

(
Ir 0
0 0

)
.

Thus

PTAT (Q−1)T =

(
Ir 0
0 0

)
and so r = r(AT ). Thus A and AT have the same rank. �

Lecture 7

2.5. Elementary matrix operations.

Definition. We call the following three types of invertible n×nmatrices elementary
matrices

S
n
ij :=



i j
1 0

.
. .

0 1

.
.
.

1 0

.
.
.

0 1



for i 6= j,

E
n
ij(λ) :=



i j
1 0

.
.
.

1 λ

. .
.

0 1

.
. .

0 1



for i 6= j, λ ∈ F and

T
n
i (λ) :=



i
1 0

. .
.

1 0
λ

0 1

. .
.

0 1


for λ ∈ F\{0}.

We make the following observations: if A is an m × n matrix then ASnij (resp.
SmijA) is obtained from A by swapping the ith and jth columns (resp. rows),
AEnij(λ) (resp. Emij (λ)A) is obtained from A by adding λ · (column i) to column j
(resp. adding λ · (row j) to row i) and ATni (λ) (resp. Tmi (λ)A) is obtained from A
by multiplying column (resp. row) i by λ.

Recall the following result.

Proposition. If A ∈ Matn,m(F) there are invertible matrices P ∈ Matm(F) and
Q ∈ Matn(F) such that Q−1AP is of the form(

Ir 0
0 0

)
.
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Pure matrix proof of the Proposition. We claim that there are elementary matrices
En1 , . . . , E

n
a and Fm1 , . . . , F

m
b such that Ena · · ·En1AFm1 · · ·Fmb is of the required

form. This suffices since all the elementary matrices are invertible and products of
invertible matrices are invertible.

Moreover, to prove the claim it suffices to show that there is a sequence of
elementary row and column operations that reduces A to the required form.

If A = 0 there is nothing to do. Otherwise, we can find a pair i, j such that
Aij 6= 0. By swapping rows 1 and i and then swapping rows 1 and j we can reduce
to the case that A11 6= 0. By multiplying row 1 by 1

A11
we can further assume that

A11 = 1.
Now, given A11 = 1 we can add −A1j times column 1 to column j for each

1 < j 6 m and then add −Ai1 times row 1 to row i for each 1 < i 6 n to reduce
further to the case that A is of the form(

1 0
0 B

)
.

Now by induction on the size ofA we can find elementary row and column operations
that reduces B to the required form. Applying these ‘same’ operations to A we
complete the proof. �

Note that the algorithm described in the proof can easily be implemented on a
computer in order to actually compute the matrices P and Q.

Exercise. Show that elementary row and column operations do not alter r(A) or
r(AT ). Conclude that the r in the statement of the proposition is thus equal to
r(A) and to r(AT ).

3. Determinants of matrices

Recall that Sn is the group of permutations of the set {1, . . . , n}. Moreover we
can define a group homomorphism ε : Sn → {±1} such that ε(σ) = 1 whenever σ
is a product of an even number of transpositions and ε(σ) = −1 whenever σ is a
product of an odd number of transpositions.

Definition. If A ∈ Matn(F) then the determinant of A

detA :=
∑
σ∈Sn

ε(σ)

(
n∏
i=1

Aiσ(i)

)
.

Example. If n = 2 then detA = A11A22 −A12A21.

Lemma. detA = detAT

Proof.

detAT =
∑
σ∈Sn

ε(σ)

n∏
i=1

Aσ(i)i

=
∑
σ∈Sn

ε(σ)

n∏
i=1

Aiσ−1(i)

=
∑
τ∈Sn

ε(τ−1)

n∏
i=1

Aiτ(i)

= detA
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�

Lemma. Let A ∈ Matn(F) be upper triangular ie

A =

a1 ∗ ∗

0
. . . ∗

0 0 an


then detA =

∏n
i=1 ai.

Proof.

detA =
∑
σ∈Sn

ε(σ)

n∏
i=1

Aiσ(i).

Now Aiσ(i) = 0 if i > σ(i). So
∏n
i=1Aiσ(i) = 0 unless i 6 σ(i) for all i = 1, . . . , n.

Since σ is a permutation
∏n
i=1Aiσ(i) is only non-zero when σ = id. The result

follows immediately. �

Definition. A volume form d on Fn is a function Fn × Fn × · · · × Fn → F;
(v1, . . . , vn) 7→ d(v1, . . . , vn) such that

(i) d is multi-linear i.e. for each 1 6 i 6 n

d(v1, . . . , λvi + µv′i, . . . , vn) = λd(v1, . . . , vi, . . . , vn) + µd(v1, . . . , v
′
i, . . . , vn);

(ii) d is alternating i.e. whenever vi = vj for some i 6= j then d(v1, . . . , vn) = 0.

Note that one may view a matrix A ∈ Matn(F) as an n-tuple of elements of Fn

given by its columns A = (A(1) · · ·A(n)) with A(1), . . . , A(n) ∈ Fn.

Lemma. det : Fn × · · ·Fn → F; (A(1), . . . , A(n)) 7→ detA is a volume form.

Proof. To see that det is multilinear it suffices to see that
∏n
i=1Aiσ(i) is multilinear

for each σ ∈ Sn since a sum of (multi)-linear functions is (multi)-linear. Since one
term from each column appears in each such product this is easy to see.

Suppose now that A(k) = A(l) for some k 6= l. Let τ be the transposition (kl).
Then aij = aiτ(j) for every i, j in {1, . . . , n}. We can write Sn is a disjoint union of
cosets An

∐
τAn.

Then ∑
σ∈An

∏
aiσ(i) =

∑
σ∈An

∏
aiτσ(i) =

∑
σ∈τAn

∏
aiσ(i)

Thus detA = LHS− RHS = 0. �

Lecture 8

We continue thinking about volume forms.

Lemma. Let d be a volume form. Swapping two entries changes the sign. i.e.

d(v1, . . . , vi, . . . , vj , . . . , vn) = −d(v1, . . . , vj , . . . , vi, . . . , vn).

Proof. Consider d(v1, . . . , vi+vj , . . . , vi+vj , . . . , vn) = 0. Expanding the left-hand-
side using linearity of the ith and jth coordinates we obtain

d(v1, . . . , vi, . . . , vi, . . . , vn) + d(v1, . . . , vi, . . . , vj , . . . , vn)+

d(v1, . . . , vj , . . . , vi, . . . , vn) + d(v1, . . . , vj , . . . , vj , . . . , vn) = 0.
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Since the first and last terms on the left are zero, the statement follows immediately.
�

Corollary. If σ ∈ Sn then d(vσ(1), . . . , vσ(n)) = ε(σ)d(v1, . . . , vn). �

Theorem. Let d be a volume form on Fn. Let A be a matrix with ith column
A(i) ∈ Fn. Then

d(A(1), . . . , A(n)) = detA · d(e1, . . . , en).

In order words det is the unique volume form d such that d(e1, . . . , en) = 1.

Proof. We compute

d(A(1), . . . , A(n)) = d(

n∑
i=1

Ai1ei, A
(2), . . . , A(n))

=
∑
i

Ai1d(ei, A
(2), . . . , A(n))

=
∑
i,j

Ai1Aj2d(ei, ej , . . . , A
(n))

=
∑

i1,...,in

 n∏
j=1

Aijj

 d(ei1 , . . . , ein)

But d(ei1 , . . . , ein) = 0 unless i1, . . . , in are distinct. That is unless there is some
σ ∈ Sn such that ij = σ(j). Thus

d(A(1), . . . , A(n)) =
∑
σ∈Sn

 n∏
j=1

Aσ(j)j

 d(eσ(1), . . . , eσ(n)).

But d(eσ(1), . . . , eσ(n) = ε(σ)d(e1, . . . , en) so we’re done. �

Remark. We can interpret this as saying that for every matrix A,

d(Ae1, . . . , Aen) = detA · d(e1, . . . , en).

The same proof gives d(Av1, . . . , Avn) = detA ·d(v1, . . . , vn) for all v1, . . . , vn ∈ Fn.
We can view this result as the motivation for the formula defining the determinant;
detA is the unique way to define the ‘volume scaling factor’ of the linear map given
by A.

Theorem. Let A,B ∈ Matn(F). Then det(AB) = detA detB.

Proof. Let d be a non-zero volume form on Fn, for example det. Then we can
compute

d(ABe1, . . . , ABen) = det(AB) · d(e1, . . . , en)

by the last theorem. But we can also compute

d(ABe1, . . . , ABen) = detA · d(Be1. . . . , Ben) = detA detB · d(e1, . . . , en)

by the remark extending the last theorem. Thus as d(e1, . . . , en) 6= 0 we can see
that det(AB) = detA detB �

Corollary. If A is invertible then detA 6= 0 and det(A−1) = 1
detA .
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Proof. We can compute

1 = det In = det(AA−1) = detAdetA−1.

Thus detA−1 = 1
detA as required. �

Theorem. Let A ∈ Matn(F). The following statements are equivalent:

(a) A is invertible;
(b) detA 6= 0;
(c) r(A) = n.

Proof. We’ve seen that (a) implies (b) above.
Suppose that r(A) < n. Then by the rank-nullity theorem n(A) >0 and so there

is some λ ∈ Fn\0 such that Aλ = 0 i.e. there is a linear relation between the
columns of A;

∑n
i=1 λiA

(i) = 0 for some λi ∈ F not all zero.
Suppose that λk 6= 0 and let B be the matrix with ith column ei for i 6= k and

kth column λ. Then AB has kth column 0. Thus detAB = 0. But we can compute
detAB = detA detB = λk detA. Since λk 6= 0, detA = 0. Thus (b) implies (c).

Finally (c) implies (a) by the rank-nullity theorem: r(A) = n implies n(A) = 0
and the linear map corresponding to A is bijective as required. �

Notation. Let Âij denote the submatrix of A obtained by deleting the ith row
and the jth column.

Lemma. Let A ∈ Matn(F). Then

(a) expanding determinant along the jth column detA =
∑n
i=1(−1)i+jAij det Âij;

(b) expanding determinant along the ith row detA =
∑n
j=1(−1)i+jAij det Âij.

Proof. Since detA = detAT it suffices to verify (a).
Now

detA = det(A(1), . . . , A(n))

= det(A(1), . . . ,
∑
i

Aijei, . . . , A
(n))

=
∑
i

Aij det(A(1), . . . , ei, . . . , A
(n))

=
∑
i

Aij(−1)i+j detB

where

B =

(
Âij 0
∗ 1

)
.

Finally for σ ∈ Sn,
∏n
i=1Biσ(i) = 0 unless σ(n) = n and we see easily that detB =

det Âij as required. �

Definition. Let A ∈ Matn(F). The adjugate matrix adjA is the element of
Matn(F) such that

(adjA)ij = (−1)i+j det Âji.

Theorem. Let A ∈ Matn(F). Then

(adjA)A = A(adjA) = (detA)In.

Thus if detA 6= 0 then A−1 = 1
detAadjA
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Proof. We compute

((adjA)A)jk =

n∑
i=1

(adjA)jiAik

=

n∑
i=1

(−1)j+i det ÂijAik

The right-hand-side is detA if k = j. If k 6= j then the right-hand-side is the
determinant of the matrix obtained by replacing the jth column of A by the kth
column. Since the resulting matrix has two identical columns ((adjA)A)jk = 0 in
this case. Therefoe (adjA)A = (detA)In as required.

We can now obtain A adjA = (detA)In either by using a similar argument
using the rows or by considering the transpose of A adjA. The final part follows
immediately. �

Remark. Note that the entries of the adjugate matrix are all given polynomials in
the entries of A. Since the determinant is also a polynomial, it follows that the
entries of the inverse of an invertible square matrix are given by a rational function
(i.e. a ratio of two polynomial functions) in the entries of A. Whilst this is a very
useful fact from a theoretical point of view, computationally there are better ways
of computing the determinant and inverse of a matrix than using these formulae.

Lecture 9

We’ll complete this section on determinants of matrices with a couple of results
about block triangular matrices.

Lemma. Let A and B be square matrices. Then

det

(
A C
0 B

)
= det(A) det(B).

Proof. Suppose A ∈ Matk(F) and B ∈ Matl(F) and k + l = n so C ∈ Matk,l(F).
Define

X =

(
A C
0 B

)
then

detX =
∑
σ∈Sn

ε(σ)

(
n∏
i=1

Xiσ(i)

)
.

Since Xij = 0 whenever i > k and j 6 k the terms with σ such that σ(i) 6 k for
some i > k are all zero. So we may restrict the sum to those σ such that σ(i) > k
for i > k i.e. those σ that restrict to a permutation of {1, . . . , k}. We may factorise
these σ as σ = σ1σ2 with σ1 ∈ Sk and σ2 a permuation of {k + 1, . . . , n}. Thus

detX =
∑
σ1

∑
σ2

ε(σ1σ2)

(
k∏
i=1

Xiσ1(i)

) l∏
j=1

Xj+k,σ2(j+k)


=

( ∑
σ1∈Sk

ε(σ1)

(
k∏
i=1

Aiσ1(i)

)) ∑
σ′2∈Sl

ε(σ′2)

 l∏
j=1

Bjσ′2(j)


= detA detB
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�

Corollary.

det

A1 ∗ ∗

0
. . . ∗

0 0 Ak

 =

k∏
i=1

detAi �

Warning: it is not true in general that if A,B,C,D ∈ Matn(F) and M is the
element of Mat2n(F) given by

M =

(
A B
C D

)
then detM = detAdetD − detB detC.

4. Endomorphisms

4.1. Invariants.

Definition. Suppose that V is a finite dimensional vector space over F. An endo-
morphism of V is a linear map α : V → V . Let End(V ) denote the vector space of
endomorphisms of V . We’ll write ι to denote the identity endomorphism of V .

When considering endomorphisms as matrices it is usual to choose the same
basis for V for both the domain and the range.

Lemma. Suppose that 〈e1, . . . , en〉 and 〈f1, . . . , fn〉 are bases for V such that fi =∑
Pkiek. Let α ∈ End(V ), A be the matrix representing α with respect to 〈e1, . . . , en〉

and B the matrix representing α with respect to 〈f1, . . . , fn〉. Then B = P−1AP .

Proof. This is a special case of the change of basis formula for all linear maps
between f.d. vector spaces. �

Definition. We say matrices A and B are similar (or conjugate) if B = P−1AP
for some invertible matrix P .

Recall GLn(F) denotes all the invertible matrices in Matn(F). Then GLn(F)
acts on Matn(F) by conjugation and two such matrices are similar precisely if they
lie in the same orbit. Thus similarity is an equivalence relation.

An important problem is to classify elements of Matn(F) up to similarity (ie
classify GLn(F)-orbits). It will help us to find basis independent invariants of the
corresponding endomorphisms. For example we’ll see that given α ∈ End(V ) the
rank, trace, determinant, characteristic polynomial and eigenvalues of α are all
basis-independent.

Definition. The trace of A ∈ Matn(F) is defined by trA =
∑
Aii ∈ F.

Note that trace is a linear map from Matn(F)→ F.

Lemma.

(a) If A ∈ Matn,m(F) and B ∈ Matm,n(F) then trAB = trBA.
(b) If A and B are similar then trA = trB.
(c) If A and B are similar then detA = detB.
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Proof. (a)

trAB =

n∑
i=1

 m∑
j=1

AijBji


=

m∑
j=1

(
n∑
i=1

BjiAij

)
= trBA

If B = P−1AP then,
(b) trB = tr(P−1A)P = trP (P−1A) = trA.
(c) detB = detP−1 detAdetP = 1

detP detAdetP = detA. �

Definition. Let α ∈ End(V ), 〈e1, . . . , en〉 be a basis for V and A the matrix
representing α with respect to 〈e1, . . . , en〉. Then the trace of α written trα is
defined to be the trace of A and the determinant of α written detα is defined to
be the determinant of A.

We’ve proven that the trace and determinant of α do not depend on the choice
of basis 〈e1, . . . , en〉.

Definition. Let α ∈ End(V ).

(a) λ ∈ F is an eigenvalue of α if there is v ∈ V \0 such that αv = λv.
(b) v ∈ V is an eigenvector for α if α(v) = λv for some λ ∈ F.
(c) When λ ∈ F, the λ-eigenspace of α, written Eα(λ) or simply E(λ) is the set of

λ-eigenvectors of α; i.e. E(λ) = ker(α− λι).
(d) The characteristic polynomial of α is defined by

χα(t) = det(tι− α).

Remarks.

(1) χα(t) is a monic polynomial in t of degree n.
(2) λ ∈ F is an eigenvalue of α if and only if ker(α − λι) 6= 0 if and only if λ is a

root of χα(t).
(3) If A ∈ Matn(F ) we can define χA(t) = det(tIn − A). Then similar matrices

have the same characteristic polynomials.

Lemma. Let α ∈ End(V ) and λ1, . . . , λk be the distinct eigenvalues of α. Then
E(λ1) + · · ·+ E(λk) is a direct sum of the E(λi).

Proof. Suppose that
∑k
i=1 xi =

∑k
i=1 yi with xi, yi ∈ E(λi). Consider the linear

maps

βj :=
∏
i 6=j

(α− λiι).
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Then

βj(

k∑
i=1

xi) =

k∑
i=1

βj(xi)

=

k∑
i=1

∏
r 6=j

(α− λrι)(xi)


=

k∑
i=1

∏
r 6=j

(λi − λr)xi


=

∏
r 6=j

(λj − λr)xi

Similarly, βj(
∑k
i=1 yi) =

∏
r 6=j(λj − λr)yi. Thus since

∏
r 6=j(λj − λr) 6= 0, xj = yj

and the expression is unique. �

Note that the proof of this lemma show that any set of non-zero eigenvectors
with distinct eigenvalues is LI.

Lecture 10

Definition. α ∈ End(V ) is diagonalisable if there is a basis for V such that the
corresponding matrix is diagonal.

Theorem. Let α ∈ End(V ). Let λ1, . . . , λk be the distinct eigenvalues of α. Write
Ei = E(λi). Then the following are equivalent

(a) α is diagonalisable;
(b) V has a basis consisting of eigenvectors of α;
(c) V = ⊕ki=1Ei;
(d)

∑
dimEi = dimV .

Proof. Suppose that 〈e1, . . . , en〉 is a basis for V and A is the matrix representing
α with respect to this basis. Then α(ei) =

∑
Ajiej . Thus A is diagonal if and only

if each ei is an eigenvector for α. i.e. (a) and (b) are equivalent.
Now (b) is equivalent to V =

∑
Ei and we’ve proven that

∑
Ei = ⊕ki=1Ei so

(b) and (c) are equivalent.
The equivalence of (c) and (d) is a basic fact about direct sums that follows from

Example Sheet 1 Q10. �

4.1.1. An aside on polynomials.

Definition. A polynomial function f : F→ F is one of the form

f(t) = amt
m + · · ·+ a1t+ a0

for some m > 0 and a0, . . . , am ∈ F. The largest n such that an 6= 0 is the degree
of f written deg f . Thus deg 0 = −∞.

It is straightforward to show that

deg(f + g) 6 max(deg f, deg g)

and
deg fg = deg f + deg g.
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Notation. We write F[t] := {polynomials with coefficients in F}.

Lemma (Polynomial division). Given f, g ∈ F[t], g 6= 0 there exist q, r ∈ F[t] such
that f(t) = q(t)g(t) + r(t) and deg r < deg g.

Lemma. If λ ∈ F is a root of a polynomial f(t), i.e. f(λ) = 0, then f(t) =
(t− λ)g(t) for some g(t) ∈ F[t].

Proof. There are q, r ∈ F[t] such that f(t) = (t− λ)q(t) + r(t) with deg r < 1. But
deg r < 1 means r(t) = r0 some r0 ∈ F. But then 0 = f(λ) = (λ−λ)q(λ)+r0 = r0.
So r0 = 0 and we’re done. �

Definition. If f ∈ F[t] and λ ∈ F is a root of f we say that λ is a root of
multiplicity k if (t − λ)k is a factor of f(t) but (t − λ)k+1 is not a factor of f . i.e.
if f(t) = (t− λ)kg(t) for some g(t) ∈ F[t] with g(λ) 6= 0.

We can use the last lemma and induction to show that every f(t) can be written
as

f(t) =

r∏
i=1

(t− λi)aig(t)

with r > 0, a1, . . . , ar > 1, λ1, . . . , λr ∈ F and g(t) ∈ F(t) with no roots in F.

Lemma. A polynomial f ∈ F[t] of degree n > 0 has at most n roots counted with
multiplicity.

Corollary. Suppose f, g ∈ F[t] have degrees < n and f(ti) = g(ti) for t1, . . . , tn ∈ F
distinct. Then f = g.

Proof. Consider f − g which has degree < n but at least n roots, namely t1, . . . , tn.
Thus deg(f − g) = −∞ and so f = g. �

Theorem (Fundamental Theorem of Algebra). Every polynomial f ∈ C[t] of degree
at least 1 has a root in C.

It follows that f ∈ C[t] has precisely n roots in C counted with multiplicity.

4.1.2. Minimal polynomials.

Notation. Given f(t) =
∑m
i=0 ait

i ∈ F[t], A ∈ Matn(F) and α ∈ End(V ) we write

f(A) :=

m∑
i=0

aiA
i

and

f(α) :=

m∑
i=0

aiα
i.

Here A0 = In and α0 = ι.

Theorem. Suppose that α ∈ End(V ). Then α is diagonalisable if and only if there
is a non-zero polynomial p(t) ∈ F[t] that can be expressed as a product of distinct
linear factors such that p(α) = 0.
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Proof. Suppose that α is diagonalisable and λ1, . . . , λk ∈ F are the distinct eigen-
values of α. Thus if v is an eigenvector for α then α(v) = λiv for some i = 1, . . . , k.

Let p(t) =
∏k
i=1(t− λi)

Since α is diagonalisable there is a basis e1, . . . , en for V such that each er is an

eigenvector of α with eigenvalue λjr , say. Then p(α)(er) =
∏k
i=1(λjr − λi)er = 0

since λjr = λi for some i ∈ {1, . . . , k}. Thus p(α)(v) = 0 for all v in a basis for V
and so p(α) = 0 ∈ End(V ).

Conversely, if p(α) = 0 for p(t) =
∏k
i=1(t − λi) for λ1, . . . , λk ∈ F distinct —

note that without loss of generality we may assume p has leading coefficient equal

to 1. We will show that V =
⊕k

i=1E(λi). Since the sum of eigenspaces is always
direct it suffices to show that every element v ∈ V can be written as a sum of
eigenvectors.

Let

pj(t) :=

k∏
i=1

i6=j

(t− λi)
(λj − λi)

for j = 1, . . . , k. Thus pj(λi) = δij .

Thus
∑k
j=1 pj(t) is a polynomial of degree at most k − 1 such that pj(λi) = 1

for each i = 1, . . . , k. It follows that
∑k
j=1 pj(t) = 1.

Let Πj : V → V be defined by Πj = pj(α). Then
∑

Πj =
∑
pj(α) = ι.

Let v ∈ V . Then v = ι(v) =
∑

Πj(v). But (α − λjι)pj(α) = p(α)∏
i6=j(λj−λi)

v = 0.

Thus Πj(v) ∈ ker(α− λjι) = E(λj) and we’re done. �

Remark. In the above proof, if v ∈ E(λi) then Πj(v) = pj(λi)v = δijv. So Πj is a
projection onto E(λj) along ⊕i 6=jE(λi).

Definition. The minimal polynomial of α ∈ End(V ) is the non-zero monic poly-
nomial (i.e. leading coefficient is 1) mα(t) of least degree such that mα(α) = 0.

Of course we can define the minimal polynomial of a square matrix in a similar
fashion.

Note that if dimV = n < ∞ then dim End(V ) = n2, so ι, α, α2, . . . , αn
2

are
linearly dependent since there are n2 + 1 of them. Thus there is some non-trivial

linear equation
∑n2

i=0 aiα
i = 0. i.e. there is a non-zero polynomial p(t) of degree at

most n2 such that p(α) = 0.

Lemma. Let α ∈ End(V ), p ∈ F[t] then p(α) = 0 if and only if mα(t) is a factor
of p(t). In particular mα(t) is well-defined.

Proof. We can find q, r ∈ F[t] such that p(t) = q(t)mα(t)+r(t) with deg r < degmα.
Then p(α) = q(α)mα(α) + r(α) = 0 + r(α). Thus p(α) = 0 if and only if r(α) = 0.
But the minimality of the degree of mα means that r(α) = 0 if and only if r = 0 ie
if and only if mα is a factor of p.

Now if m1,m2 are both minimal polynomials for α then m1 divides m2 and m2

divides m1 so as both are monic m2 = m1. �

Lecture 11

Note that if A and B are similar matrices; so B = P−1AP say, then for any
polynomial p(t) ∈ F[t] we can compute p(B) = p(P−1AP ) = P−1p(A)P . So as 0
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is only similar to itself we see that p(B) = 0 if and only if p(A) = 0. Thus similar
matrices have the same minimal polynomial.

Another way to see that is to observe that mA = mα for any endomorphism α
such that A represents α with respect to some basis. But then if B is similar to A,
B must also represent α with respect to some (other) basis. Thus mB = mα = mA.

Example. If V = F2 then

A =

(
1 0
0 1

)
and B =

(
1 1
0 1

)
both have characteristic polynomial (t− 1)2 but only the first one is diagonalisable
so they cannot be similar. One can see that mA(t) = t− 1 but mB(t) = (t− 1)2 so
minimal polynomials distinguish these two similarity classes.

Theorem (Diagonalisability Theorem). Let α ∈ End(V ) then α is diagonalisable
if and only if mα(t) has distinct linear factors.

Proof. If α is diagonalisable there is some polynomial p(t) with distinct linear fac-
tors such that p(α) = 0 then mα divides p(t) so must also have distinct linear
factors. The converse is already proven. �

Theorem. Let α, β ∈ End(V ) be diagonalisable. Then α, β are simultaneously
diagonalisable (i.e. there is a single basis with respect to which the matrices repre-
senting α and β are both diagonal) if and only if α and β commute.

Proof. Certainly if there is a basis 〈e1, . . . , en〉 such that α and β are represented
by diagonal matrices, A and B respectively, then α and β commute since A and B
commute and αβ is represented by AB and βα by BA.

For the converse, suppose that α and β commute. Let λ1, . . . , λk denote the
distinct eigenvalues of α and let Ei = Eα(λi) for i = 1, . . . , k. Then as α is

diagonalisable we know that V =
⊕k

i=1Ei.
We claim that β(Ei) ⊂ Ei for each i = 1, . . . , k. To see this, suppose that v ∈ Ei

for some such i. Then

αβ(v) = βα(v) = β(λiv) = λiβ(v)

and so β(v) ∈ Ei as claimed. Thus we can view β|Ei
as an endomorphism of Ei.

Now since β is diagonalisable, the minimal polynomial mβ of β has distinct linear
factors. But mβ(β|Ei) = mβ(β)|Ei = 0. Thus β|Ei is diagonalisable for each Ei
and we can find Bi a basis of Ei consisting of eigenvectors of β. Then B =

⋃k
i=1Bi

is a basis for V . Moreover α and β are both diagonal with respect to this basis. �

Remark. By slightly adapting the proof we can extend this to show that any set
of diagonalisable endomorphisms of V is simultaneously diagonalisable precisely if
they commute pairwise.

4.2. The Cayley-Hamilton Theorem.

Definition. α ∈ End(V ) is triangulable if there is a basis for V such that the
corresponding matrix is upper triangular.

Recall that the characteristic polynomial of an endomorphism α ∈ End(V ) is
defined by χα(t) = det(tι− α).
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Lemma. A linear map α is triangulable if and only if χα(t) can be written as a
product of linear factors.

Proof. Suppose that α is triangulable and is represented bya1 ∗ ∗

0
. . . ∗

0 0 an


with respect to some basis. Then

χα(t) = det

tIn −
a1 ∗ ∗

0
. . . ∗

0 0 an




=
∏

(t− ai).

Thus χα is a product of linear factors.
We’ll prove the converse by induction on n = dimV . If n = 1 every matrix

is triangulable. Suppose that n > 1 and the result holds for all endomorphisms
of spaces of smaller dimension. By hypothesis χα(t) has a root λ ∈ F. Let U =
E(λ) 6= 0. Let W be a vector space complement for U in V . Let u1, . . . , ur be
a basis for U and wr+1, . . . , wn a basis for W so that u1, . . . , ur, wr+1, . . . , wn is a
basis for V . Then α is represented by a matrix of the form(

λIr ∗
0 B

)
.

Moreover because this matrix is block triangular we know that

χα(t) = χλIr (t)χB(t).

Thus as χα is a product of linear factors χB must be also. Let β be the linear map
W →W defined by B. (Warning: β is not just α|W in general. However it is true
that (β − α)(w) ∈ U for all w ∈ W .) Since dimW < dimV there is another basis
vr+1, . . . , vn for W such that the matrix C representing β is upper-triangular. Since

for each j = 1, . . . , n− r, α(vj+r) = u′j +
∑n−r
k=1 Ckjvk for some u′j ∈ U , the matrix

representing α with respect to the basis u1, . . . , ur, vr+1, . . . , vn is of the form(
λIr ∗
0 C

)
which is upper triangular. �

Thus by the Fundamental Theorem of Algebra every endomorphism of a f.d.
complex vector space is triangulable.

Corollary. Every A ∈ Matn(C) is similar to an upper triangular matrix.

Example. The real matrix (
cos θ sin θ
− sin θ cos θ

)
is not similar to an upper triangular matrix over R for θ 6∈ πZ since its eigenvalues
are e±iθ 6∈ R. Of course it is similar to a diagonal matrix over C.
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Lecture 12

Theorem (Cayley–Hamilton Theorem). Suppose that V is a f.d. vector space
over F and α ∈ End(V ). Then χα(α) = 0. In particular mα divides χα (and so
degmα 6 dimV ).

Remarks.

(1) It is tempting to substitute ‘t = A’ into χA(t) = det(tIn − A) but it is not
possible to make sense of this.

(2) If p(t) ∈ F[t] and

A =

λ1 0 0

0
. . . 0

0 0 λn


is diagonal then

p(A) =

p(λ1) 0 0

0
. . . 0

0 0 p(λn)

 .

So as χA(t) =
∏n
i=1(t− λi) we see χA(A) = 0. So Cayley–Hamilton is obvious

when α is diagonalisable.

Proof of Cayley–Hamilton when F = C. Since F = C we’ve seen that there is a
basis 〈e1, . . . , en〉 such that α is represented by an upper triangular matrix

A =

λ1 ∗ ∗

0
. . . ∗

0 0 λn

 .

Then we can compute χα(t) =
∏n
i=1(t − λi). Let Vj be the span of e1, . . . , ej for

j = 0, . . . , n so we have

0 = V0 ⊂ V1 ⊂ · · · ⊂ Vn−1 ⊂ Vn = V

with dimVj = j. Since α(ei) =
∑n
k=1Akiek =

∑i
k=1Akiek, we see that

α(Vj) ⊂ Vj for each j = 0, . . . , n.

Moreover (α− λjι)(ej) =
∑j−1
k=1Akjek so

(α− λjι)(Vj) ⊂ Vj−1 for each j = 1, . . . , n.

Thus we see inductively that
∏n
i=j(α− λiι)(Vn) ⊂ Vj−1. In particular

n∏
i=1

(α− λiι)(V ) ⊂ V0 = 0.

Thus χα(α) = 0 as claimed. �

Remark. It is straightforward to extend this to the case F = R: since R ⊂ C, if
A ∈ Matn(R) then we can view A as an element of Matn(C) to see that χA(A) = 0.
But then if α ∈ End(V ) for any vector space V over R we can take A to be the
matrix representing α over some basis. Then χα(α) = χA(α) is represented by
χA(A) and so it zero.
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Second proof of Cayley–Hamilton. Let A ∈ Matn(F) and let B = tIn −A. We can
compute that adjB is an n × n-matrix with entries elements of F[t] of degree at
most n− 1. So we can write

adjB = Bn−1t
n−1 +Bn−2t

n−2 + · · ·+B1t+B0

with each Bi ∈ Matn(F). Now we know that B adjB = detBIn = χA(t)In. ie

(tIn −A)(Bn−1t
n−1 +Bn−2t

n−2 + · · ·+B1t+B0) = (tn + an−1t
n−1 + · · ·+ a0)In

where χA(t) = tn + an−1t
n1 + · · · a0. Comparing coefficients in tk for k = n, . . . , 0

we see

Bn−1 − 0 = In

Bn−2 −ABn−1 = an−1In

Bn−3 −ABn−2 = an−2In

· · · = · · ·
0−AB0 = a0In

Thus

AnBn−1 − 0 = An

An−1Bn−2 −AnBn−1 = an−1A
n−1

An−2Bn−3 −An−1Bn−2 = an−2A
n−2

· · · = · · ·
0−AB0 = a0In

Summing we get 0 = χA(A) as required. �

Lemma. Let α ∈ End(V ), λ ∈ F. Then the following are equivalent

(a) λ is an eigenvalue of α;
(b) λ is a root of χα(t);
(c) λ is a root of mα(t).

Proof. λ is an eigenvalue of α if and only if ker(α−λι) 6= 0 if and only if det(α−λι) =
0 if and only if χα(λ) = 0. Thus (a) is equivalent to (b).

Suppose that λ is an eigenvalue of α. There is some v ∈ V non-zero such that
αv = λv. Then for any polynomial p ∈ F[t], p(α)v = p(λ)v so

0 = mα(α)v = mα(λ)(v).

Since v 6= 0 it follows that mα(λ) = 0. Thus (a) implies (c).
Finally suppose that mα(λ) = 0. Then mα(t) = (t − λ)g(t) for some g ∈ F[t].

Since deg g < degm, g(α) 6= 0. Thus there is some v ∈ V such that g(α)(v) 6= 0.
But then (α − λι) (g(α)(v)) = mα(α)(v) = 0. So g(α)(v) 6= 0 is a λ-eigenvector of
α. Thus (c) implies (a). �

Note we could’ve used the Cayley–Hamilton Theorem to see that (c) implies (b).
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Example. What is the minimal polynomial of

A =

1 0 −2
0 1 1
0 0 2

?

We can compute χA(t) = (t− 1)2(t− 2). So by Cayley–Hamilton mα(t) is a factor
of (t − 1)2(t − 2). Moreover by the lemma it must be a multiple of (t − 1)(t − 2).
So mA is one of (t− 1)(t− 2) and (t− 1)2(t− 2).

We can compute

(A− I)(A− 2I) =

0 0 −2
0 0 1
0 0 1

−1 0 −2
0 −1 1
0 0 0

 = 0.

Thus mA(t) = (t− 1)(t− 2). Since this has distict roots, A is diagonalisable.

4.3. Multiplicities of eigenvalues and Jordan Normal Form.

Definition (Multiplicity of eigenvalues). Suppose that α ∈ End(V ) and λ is an
eigenvalue of α:

(a) the algebraic multiplicity of λ is

aλ := the multiplicity of λ as a root of χα(t);

(b) the geometric multiplicity of λ is

gλ := dimEα(λ);

(c) another useful number is

cλ := the multiplicity of λ as a root of mα(t).

Lemma. Let α ∈ End(V ) and λ ∈ F an eigenvalue of α. Then

(a) 1 6 gλ 6 aλ and
(b) 1 6 cλ 6 aλ.

Proof. (a) By definition if λ is an eigenvalue of α then Eα(λ) 6= 0 so gλ > 1.
Suppose that v1 . . . , vg is a basis for E(λ) and extend it to a basis v1, . . . , vn for V .
Then α is represented by a matrix of the form(

λIg ∗
0 B

)
.

Thus χα(t) = χλIg (t)χB(t) = (t− λ)gχB(t). So aλ > g = gλ.
(b) We’ve seen that if λ is an eigenvalue of α then α is a root of mα(t) so cλ > 1.

Cayley–Hamilton says mα(t) divides χα(t) so cλ 6 aλ. �

Examples.

(1) If A =


λ 1 0

λ
. . .

. . . 1
0 λ

 ∈ Matn(F) then gλ = 1 and aλ = cλ = n.

(2) If A = λI then gλ = aλ = n and cλ = 1.
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Lecture 13

Lemma. Suppose that F = C and α ∈ End(V ). Then the following are equivalent:

(a) α is diagonalisable;
(b) aλ = gλ for all eigenvalues λ of α;
(c) cλ = 1 for all eigenvalues λ of α.

Proof. To see that (a) is equivalent to (b) suppose that the distict eigenvalues of α

are λ1, . . . , λk. Then α is diagonalisable if and only if dimV =
∑k
i=1 dimE(λi) =∑n

i=1 gλi
. But gλ 6 aλ for each eigenvalue λ and

∑k
i=1 aλi

= degχα = dimV
by the Fundamental Theorem of Algebra. Thus α is diagonalisable if and only if
gλi

= aλi
for each i = 1, . . . , k.

Since by the Fundamental Theorem of Algebra for any such α, mα(t) may be
written as a product of linear factors, α is diagonalisable if and only if these factors
are distinct. This is equivalent to cλ = 1 for every eigenvalue λ of α. �

Remark. Let A be a block diagonal square matrix; ie

A =


A1 0 0 0
0 A2 0 0

0 0
. . . 0

0 0 0 Ak


then χA(t) =

∏k
i=1 χAi(t). Moreover, if p ∈ F[t] then

p(A) =


p(A1) 0 0 0

0 p(A2) 0 0

0 0
. . . 0

0 0 0 p(Ak)


so mA(t) is the lowest common multiple of mA1

(t), . . . ,mAk
(t).

We even have n(p(A)) =
∑k
i=1 n(p(Ai)) for any p ∈ F[t].

Definition. We say that a matrix A ∈ Matn(C) is in Jordan Normal Form (JNF)
if it is a block diagonal matrix

A =


Jn1

(λ1) 0 0 0
0 Jn2

(λ2) 0 0

0 0
. . . 0

0 0 0 Jnk
(λk)


where k > 1, n1, . . . , nk ∈ N such that

∑k
i=1 ni = n and λ1, . . . , λk ∈ C (not

necessarily distinct) and Jm(λ) ∈ Matm(C) has the form

Jm(λ) :=


λ 1 0 0

0 λ
. . . 0

0 0
. . . 1

0 0 0 λ

 .

We call the Jm(λ) Jordan blocks

Note Jm(λ) = λIm + Jm(0).
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Examples.

J1(λ) =
(
λ
)
,

J2(λ) =

(
λ 1
0 1

)
,

J3(λ) =

λ 1 0
0 λ 1
0 0 λ

 .

Theorem (Jordan Normal Form). Every matrix A ∈ Matn(C) is similar to a
matrix in JNF. Moreover this matrix in JNF is uniquely determined by A up to
reordering the Jordan blocks.

Remarks.

(1) Of course, we can rephrase this as whenever α is an endomorphism of a f.d.
C-vector space V , there is a basis of V such that α is represented by a matrix
in JNF. Moreover, this matrix is uniquely determined by α up to reordering
the Jordan blocks.

(2) Two matrices in JNF that differ only in the ordering of the blocks are similar.
A corresponding basis change arises as a reordering of the basis vectors.

(3) A ∈ Matn(C) is diagonalisable if and only if all Jordan blocks have size one
if and only if aλ = gλ for all eigenvalues λ of A if and only if cλ = 1 for all
eigenvalues λ of A.

Examples.

(1) Every 2 × 2 matrix in JNF is of the form

(
λ 0
0 µ

)
with λ 6= µ or

(
λ 0
0 λ

)
or

(
λ 1
0 λ

)
. The minimal polynomials are (t − λ)(t − µ), (t − λ) and (t −

λ)2 respectively. The characteristic polynomials are (t − λ)(t − µ), (t − λ)2

and (t − λ)2 respectively. Thus we see that the JNF is determined by the
minimal polynomial of the matrix in this case (but not by just the characteristic
polynomial).

(2) Suppose now that λ1, λ2 and λ3 are distinct complex numbers. Then every
3× 3 matrix in JNF is one of six formsλ1 0 0

0 λ2 0
0 0 λ3

 ,

λ1 0 0
0 λ2 0
0 0 λ2

 ,

λ1 0 0
0 λ2 1
0 0 λ2


λ1 0 0

0 λ1 0
0 0 λ1

 ,

λ1 0 0
0 λ1 1
0 0 λ1

 and

λ1 1 0
0 λ1 1
0 0 λ1

 .

The minimal polynomials are (t−λ1)(t−λ2)(t−λ3), (t−λ1)(t−λ2), (t−λ1)(t−
λ2)2, (t−λ1), (t−λ1)2 and (t−λ1)3 respectively. The characteristic polynomials
are (t−λ1)(t−λ2)(t−λ3), (t−λ1)(t−λ2)2, (t−λ1)(t−λ2)2, (t−λ1)3, (t−λ1)3

and (t − λ1)3 respectively. So in this case the minimal polynomial does not
determine the JNF by itself but the minimal and characteristic polynomials
together do determine the JNF. In general even these two bits of data together
don’t suffice to determine everything.
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We recall that

Jn(λ) =


λ 1 0 0

0 λ
. . . 0

0 0
. . . 1

0 0 0 λ

 .

Thus if 〈e1, . . . , en〉 is the standard basis for Cn we can compute (Jn(λ)−λIn)e1 = 0
and (Jn(λ)− λIn)ei = ei−1 for 1 < i 6 n. Thus (Jn(λ)− λIn)k maps e1, . . . , ek to
0 and ek+j to ej for 1 6 j 6 n− k. That is

(Jn(λ)− λIn)k =

(
0 In−k
0 0

)
for k < n

and (Jn(λ)− λIn)k = 0 for k > n.
Thus if A = Jn(λ) is a single Jordan block, then χA(t) = mA(t) = (t−λ)n, so λ

is the only eigenvalue of A. Moreover dimE(λ) = 1. Thus aλ = cλ = n and gλ = 1.
In general aλ is the sum of the sizes of the blocks with eigenvalue λ which is

the same as the number of λs on the diagonal. gλ is the number of blocks with
eigenvalue λ and cλ is the size of the largest block with eigenvalue λ.

Theorem. If α ∈ End(V ) and A in JNF represents α with respect to some basis
then the number of Jordan blocks Jn(λ) of A with eigenvalue λ and size n > k > 1
is given by

|{Jordan blocks Jn(λ) in A with n > k}| = n
(
(α− λι)k

)
− n

(
(α− λι)k−1

)
Proof. We work blockwise. We can compute that

n
(
(Jm(λ)− λIn)k

)
= min(m, k)

and

n
(
(Jm(µ)− λIn)k

)
= 0

when µ 6= λ.
Adding up for each block we get for k > 1

n
(
(α− λι)k

)
− n

(
(α− λι)k−1

)
= n

(
(A− λI)k

)
− n

(
(A− λI)k−1

)
=

k∑
i=1

λi=λ

(min(k, ni)−min(k − 1, ni)

= |{1 6 i 6 k | λi = λ, ni > k}
= |{Jordan blocks Jn(λ) in A with n > k}|

as required. �

Because these nullities are basis-invariant, it follows that if it exists then the
Jordan normal form representing α is unique up to reordering the blocks as claimed.

Lecture 14

Theorem (Jordan Normal Form). Let V be a f.d. C-vector space, and α ∈ End(V ).
Then there is a basis for V such that α is represented by a block diagonal matrix of
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the form

A =

Jn1(λ1) 0 0

0
. . . 0

0 0 Jnk
(λk)


where k > 1, n1, . . . , nk ∈ N such that

∑k
i=1 ni = dimV and λ1, . . . , λk ∈ C

(not necessarily distinct). Moreover, this matrix is uniquely determined by α up to
reordering the blocks.

Theorem (Generalised eigenspace decompostion). Let V be a f.d. C-vector space
and α ∈ End(V ). Suppose that

mα(t) = (t− λ1)c1 · · · (t− λk)ck

with λ1, . . . , λk distinct. Then

V = V1 ⊕ V2 ⊕ · · · ⊕ Vk
where Vj = ker((α−λj)cj ) is an α-invariant subspace (called a generalised eigenspace).

Note that in the case c1 = c2 = · · · = ck = 1 we recover the diagonalisability
theorem.

Sketch of proof. Let pj(t) =
∏k

i6=j

i=1
(t−λi)ci . Then p1, . . . , pk have no common factor

i.e. they are coprime. Thus by Euclid’s algorithm we can find q1, . . . , qk ∈ C[t] such

that
∑k
i=1 qipi = 1.

Let Πj = qj(α)pj(α) for j = 1, . . . , k. Then
∑k
j=1 Πj = ι. Since mα(α) = 0,

(α− λj)cjΠj = 0, thus Im Πj ⊂ Vj .
Suppose that v ∈ V then

v = ι(v) =

k∑
j=1

Πj(v) ∈
∑

Vj .

Thus V =
∑
Vj .

But ΠiΠj = 0 for i 6= j and so Πi = Πi(
∑k
j=1 Πj) = Π2

i for 1 6 i 6 k. Thus

Πj |Vj
= ιVj

and if v =
∑
vj with vj ∈ Vj then vj = Πj(v). So V =

⊕
Vj as

claimed. �

Using this theorem we can, by restricting to its generalised eigenspaces, reduce
the proof of the existence of Jordan normal form for α to the case that it has only
one eigenvalue λ. By considering (α− λι) we can even reduce to the case that 0 is
the only eigenvalue.

Definition. We say that α ∈ End(V ) is nilpotent if there is some k > 0 such that
αk = 0.

Note that α is nilpotent if and only if mα(t) = tk for some 1 6 k 6 n. When
F = C this is equivalent to 0 being the only eigenvalue for α.

Example. Let

A =

3 −2 0
1 0 0
1 0 1

 .

Find an invertible matrix P such that P−1AP is in JNF.
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First we compute the eigenvalues of A:

χA(t) = det

t− 3 2 0
−1 t 0
−1 0 t− 1

 = (t− 1)(t(t− 3) + 2) = (t− 1)2(t− 2).

Next we compute the eigenspaces

A− I =

2 −2 0
1 −1 0
1 0 0



which has rank 2 and kernel spanned by

0
0
1

. Thus EA(1) =

〈0
0
1

〉. Similarly

A− 2I =

1 −2 0
1 −2 0
1 0 −1



also has rank 1 and kernel spanned by

2
1
2

 thus EA(2) =

〈2
1
2

〉. Since

dimEA(1) + dimEA(2) = 2 < 3, A is not diagonalisable. Thus

mA(t) = χA(t) = (t− 1)2(t− 2)

and the JNF of A is

J =

1 1 0
0 1 0
0 0 2

 .

So we want to find a basis 〈v1, v2, v3〉 such that Av1 = v1, Av2 = v1 + v2 and
Av3 = 2v3 or equivalently (A− I)v2 = v1, (A− I)v1 = 0 and (A− 2I)v3 = 0. Note
that under these conditions (A− I)2v2 = 0 but (A− I)v2 6= 0.

We compute

(A− I)2 =

2 −2 0
1 −1 0
2 −2 0


Thus

ker(A− I)2 =

〈1
1
0

 ,

0
0
1

〉

Take v2 =

1
1
0

, v1 = (A − I)v2 =

0
0
1

 and v3 =

2
1
2

. Then these are LI

so form a basis for C3 and if we take P to have columns v1, v2, v3 we see that
P−1AP = J as required.
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5. Duality

5.1. Dual spaces. To specify a subspace of Fn we can write down a set of linear

equations that every vector in the space satisfies. For example if U =

〈1
2
1

〉 ⊂ F3

we can see that

U =


x1x2
x3

 : 2x1 − x2 = 0, x1 − x3 = 0

 .

These equations are determined by linear maps Fn → F. Moreover if θ1, θ2 : Fn →
F are linear maps that vanish on U and λ, µ ∈ F then λθ1 + µθ2 vanishes on U .
Since the 0 map vanishes on evey subspace, one may study the subspace of linear
maps Fn → F that vanish on U .

Definition. Let V be a vector space over F. The dual space of V is the vector
space

V ∗ := L(V,F) = {α : V → F linear}
with pointwise addition and scalar mulitplication. The elements of V ∗ can called
linear forms or linear functionals on V .

Examples.

(a) V = R3, θ : V → R;

x1x2
x3

 7→ x3 − x1.

(b) V = C([0, 1],R), then V → R; f 7→
∫ 1

0
f(t)dt ∈ V ∗.

Lemma. Suppose that V is a f.d. vector space over F with basis 〈e1, . . . , en〉. Then
V ∗ has a basis 〈ε1, . . . , εn〉 such that εi(ej) = δij.

Definition. We call the basis 〈ε1, . . . , εn〉 the dual basis of V ∗ with respect to
〈e1, . . . , en〉.

Proof of Lemma. We know that to define a linear map it suffices to define it on a
basis so there are unique elements ε1, . . . , εn such that εi(ej) = δij . We must show
that they span and are LI.

Suppose that θ ∈ V ∗ is any linear map. Then let λi = θ(ei) ∈ F. We claim
that θ =

∑n
i=1 λiεi. It suffices to show that the two elements agree on the basis

e1, . . . , en of V . But
∑n
i=1 λiεi(ej) = λj = θ(ej). So the claim is true that ε1, . . . , εn

do span V ∗.
Next, suppose that

∑
µiεi = 0 ∈ V ∗ for some µ1, . . . , µn ∈ F. Then 0 =∑

µiεi(ej) = µj for each j = 1, . . . , n. Thus ε1, . . . , εn are LI as claimed. �

Lecture 15

Recall the following lemma/definition.

Lemma. Suppose that V is a f.d. vector space over F with basis 〈e1, . . . , en〉. Then
V ∗ has a basis 〈ε1, . . . , εn〉 called the dual basis with respect to 〈e1, . . . , en〉 such that
εi(ej) = δij. �

Corollary. If V is f.d. then dimV ∗ = dimV . �
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Proposition. Suppose that V is a f.d. vector space over F with bases 〈e1, . . . , en〉
and 〈f1, . . . , fn〉 such that P is the change of basis matrix from 〈e1, . . . , en〉 to
〈f1, . . . , fn〉 i.e. fi =

∑n
k=1 Pkiek for 1 6 i 6 n.

Let 〈ε1, . . . , εn〉 and 〈η1, . . . , ηn〉 be the corresponding dual bases so that

εi(ej) = δij = ηi(fj) for 1 6 i, j 6 n.

Then the change of basis matrix from 〈ε1, . . . , εn〉 to 〈η1, . . . , ηn〉 is given by (P−1)T

ie εi =
∑
PTli ηl. .

Proof. Let Q = P−1. Then ej =
∑
Qkjfk, so we can compute

(
∑
l

Pilηl)(ej) =
∑
k,l

(Pilηl)(Qkjfk) =
∑
k,l

PilδklQkj = δij .

Thus εi =
∑
l Pilηl as claimed. �

Remark. If we think of elements of V as column vectors with respect to some basis

∑
xiei =

x1...
xn

 ,

then we can view elements of V ∗ as row vectors with respect to the dual basis∑
aiεi =

(
a1 · · · an

)
.

Then (∑
aiεi

)(∑
xjej

)
=
∑

aixi =
(
a1 · · · an

)x1...
xn


Definition.

(a) If U ⊂ V then the annihilator of U , U◦ := {θ ∈ V ∗ | θ(u) = 0 ∀u ∈ U} ⊂ V ∗.
(b) If W ⊂ V ∗, then the annihilator of W ◦ := {v ∈ V | θ(v) = 0 ∀θ ∈W} ⊂ V .

Example. Consider R3 with standard basis 〈e1, e2, e3〉 and (R3)∗ with dual basis
〈ε1, ε2, ε3〉, U = 〈e1 + 2e2 + e3〉 ⊂ R3 and W = 〈ε1 − ε3, ε1 − 2ε2〉 ⊂ (R3)∗. Then
U◦ = W and W ◦ = U .

Proposition. Suppose that V is f.d. over F and U ⊂ V is a subspace. Then

dimU + dimU◦ = dimV.

Proof 1. Let 〈e1, . . . , ek〉 be a basis for U and extend to a basis 〈e1, . . . , en〉 for V
and consider the dual basis 〈ε1, . . . , εn〉 for V ∗.

We claim that U◦ is spanned by εk+1, . . . , εn.
Certainly if j > k, then εj(ei) = 0 for each 1 6 i 6 k and so εj ∈ U◦. Suppose

now that θ ∈ U◦. We can write θ =
∑n
i=1 λiεi with λi ∈ F. Now,

0 = θ(ej) = λj for each 1 6 j 6 k.

So θ =
∑n
j=k+1 λiεi. Thus U◦ is the span of εk+1, . . . , εn and

dimU◦ = n− k = dimV − dimU

as claimed. �



40 SIMON WADSLEY

Proof 2. Consider the restriction map V ∗ → U∗ given by θ 7→ θ|U . Since every
linear map U → F can be extended to a linear map V → F this map is a linear
surjection. Moreover its kernel is U◦. Thus dimV ∗ = dimU∗+dimU◦ by the rank-
nullity theorem. The proposition follows from the statements dimU = dimU∗ and
dimV = dimV ∗. �

5.2. Dual maps.

Definition. Let V and W be vector spaces over F and suppose that α : V → W
is a linear map. The dual map to α is the map α∗ : W ∗ → V ∗ is given by θ 7→ θα.

Note that θα is the composite of two linear maps and so is linear. Moreover, if
λ, µ ∈ F and θ1, θ2 ∈W ∗ and v ∈ V then

α∗(λθ1 + µθ2)(v) = (λθ1 + µθ2)α(v)

= λθ1α(v) + µθ2α(v)

= (λα∗(θ1) + µα∗(θ2)) (v).

Therefore α∗(λθ1 + µθ2) = λα∗(θ1) + µα∗(θ2) and α∗ is linear ie α∗ ∈ L(W ∗, V ∗).

Lemma. Suppose that V and W are f.d. with bases 〈e1, . . . , en〉 and 〈f1, . . . , fm〉
respectively. Let 〈ε1, . . . , εn〉 and 〈η1, . . . , ηm〉 be the corresponding dual bases. Then
if α : V →W is represented by A with respect to 〈e1, . . . , en〉 and 〈f1, . . . , fm〉 then
α∗ is represented by AT with respect to 〈ε1, . . . , εn〉 and 〈η1, . . . , ηm〉.

Proof. We’re given that α(ei) =
∑
Ajifj and must compute α∗(ηi) in terms of

ε1, . . . , εn.

α∗(ηi)(ek) = ηi(α(ek))

= ηi(
∑
j

Ajkfj)

=
∑
j

Ajkδij = Aik

Thus α(ηi)(ej) =
∑
k Aikεk(ej) =

∑
k A

T
kiεk(ej) so α(ηi) =

∑
K A

T
kiεk as re-

quired. �

Remarks.

(1) If α : U → V and β : V →W are linear maps then (βα)∗ = α∗β∗.
(2) If α, β : U → V then (α+ β)∗ = α∗ + β∗.
(3) If α ∈ End(V ) then detα∗ = detα since det(AT ) = detA.
(4) If B = Q−1AP is an equality of matrices with P and Q invertible, then

BT = PTAT
(
Q−1

)T
=
((
P−1

)T)−1
AT
(
Q−1

)T
as we should expect at this point.

Lecture 16

Lemma. Suppose that α ∈ L(V,W ) with V,W f.d. over F. Then

(a) kerα∗ = (Imα)◦;
(b) r(α∗) = r(α) and
(c) Imα∗ = (kerα)◦
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Proof. (a) Suppose θ ∈W ∗. Then θ ∈ kerα∗ if and only if α∗(θ) = 0 if and only if
θα(v) = 0 for all v ∈ V if and only if θ ∈ (Imα)◦.

(b) As Imα is a subspace of W , we’ve seen that dim Imα+dim(Imα)◦ = dimW .
Using part (a) we can deduce that r(α)+n(α∗) = dimW = dimW ∗. But the rank-
nullity theorem gives r(α∗) + n(α∗) = dimW ∗.

(c) Suppose that φ ∈ Imα∗. Then there is some θ ∈ W ∗ such that φ = α∗(θ) =
θα. Therefore for all v ∈ kerα, φ(v) = θα(v) = θ(0) = 0. Thus Imα∗ ⊂ (kerα)◦.

But dim kerα+ dim(kerα)◦ = dimV . So

dim(kerα)◦ = dimV − n(α) = r(α) = r(α∗) = dim Imα∗.

and so the inclusion must be an equality. �

Notice that we have reproven that row-rank=column rank in a more conceptually
satisfying way.

Lemma. Let V be a vector space over F there is a canonical linear map ev : V →
V ∗∗ given by ev(v)(θ) = θ(v).

Proof. First we must show that ev(v) ∈ V ∗∗ whenever v ∈ V . Suppose that
θ1, θ2 ∈ V ∗ and λ, µ ∈ F. Then

ev(v)(λθ1 + µθ2) = λθ1(v) + µθ2(v) = λev(v)(θ1) + µev(v)(θ2).

Next, we must show ev is linear, ie ev(λv1 + µv2) = λev(v1) + ev(v2) whenever
v1, v2 ∈ V , λ, µ ∈ F. We can show this by evaluating both sides at each θ ∈ V ∗.
Then

ev(λv1 + µv2)(θ) = θ(λv1 + µv2) = (λev(v1) + µev(v2))(θ)

so ev is linear. �

Lemma. Suppose that V is f.d. then the canonical linear map ev : V → V ∗∗ is an
isomorphism.

Proof. Suppose that ev(v) = 0. Then θ(v) = ev(v)(θ) = 0 for all θ ∈ V ∗. Thus the
annilhilator of the span of V has dimension dimV . It follows that the span of v is
a space of dimension 0 so v = 0. In particular we’ve proven that ev is injective.

To complete the proof it suffices to observe that dimV = dimV ∗ = dimV ∗∗ so
any injective linear map V → V ∗∗ is an isomorphism. �

Remarks.

(1) The lemma tells us more than that there is an isomorphism between V and
V ∗∗. It tells us that there is a way to define such an isomorphism canonically,
that is to say without choosing bases. This means that we can, and from now
on we will identify V and V ∗∗ whenever V is f.d. In particular for v ∈ V and
θ ∈ V ∗ we can write v(θ) = θ(v).

(2) Although the canonical linear map is ev : V → V ∗∗ always exists it is not an
isomorphism in general if V is not f.d.

Lemma. Suppose V and W are f.d. over F. After identifying V with V ∗∗ and W
with W ∗∗ via ev we have

(a) If U is a subspace of V then U◦◦ = U .
(b) If α ∈ L(V,W ) then α∗∗ = α.
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Proof. (a) Let u ∈ U . Then u(θ) = θ(u) = 0 for all θ ∈ U◦. Thus u ∈ U◦◦. ie
U ⊂ U◦◦. But

dimU = dimV − dimU◦ = dimV ∗ − dimU◦ = dimU◦◦.

(b) Suppose that 〈e1, . . . , en〉 is a basis for V and 〈f1, . . . , fm〉 is a basis for W
and 〈ε1, . . . , εn〉 and 〈η1, . . . , ηm〉 are the corresponding dual bases. Then if α is
represented by A with respect to 〈e1, . . . , en〉 and 〈f1, . . . , fm〉, α∗ is represented by
AT with respect to 〈ε1, . . . , εn〉 and 〈η1, . . . , ηn〉.

Since we can view 〈e1, . . . , en〉 as the dual basis to 〈ε1, . . . , εn〉 as

ei(εj) = εj(ei) = δij ,

and 〈f1, . . . , fm〉 as the dual basis of 〈η1, . . . , ηm〉 (by a similar computation), α∗∗

is represented by (AT )T = A. �

Proposition. Suppose V is f.d. over F and U1, U2 are subspaces of V then

(a) (U1 + U2)◦ = U◦1 ∩ U◦2 and
(b) (U1 ∩ U2)◦ = U◦1 + U◦2 .

Proof. (a) Suppose that θ ∈ V ∗. Then θ ∈ (U1 +U2)◦ if and only if θ(u1 + u2) = 0
for all u1 ∈ U1 and u2 ∈ U2 if and only if θ(u) = 0 for all u ∈ U1 ∪U2 if and only if
θ ∈ U◦1 ∩ U◦2 .

(b) by part (a), U1 ∩ U2 = U◦◦1 ∩ U◦◦2 = (U◦1 + U◦2 )◦. Thus

(U1 ∩ U2)◦ = (U◦1 + U◦2 )◦◦ = U◦1 + U◦2

as required �

6. Bilinear Forms

6.1. Definitions and Examples. Let V and W be vector spaces over F.

Definition. ψ : V ×W → F is a bilinear form if it is linear in both arguments; i.e.
if ψ(v,−) : W → F ∈W ∗ for all v ∈ V and ψ(−, w) : V → F ∈ V ∗ for all w ∈W .

Examples.

(1) V = Rn; ψ(x, y) =
∑n
i=1 xiyi is a bilinear form.

(2) Suppose that A ∈ Matm,n(F) then ψ : Fm × Fn → F; ψ(v, w) = vTAw is a
bilinear form.

(3) The map V × V ∗ → F; (v, θ) 7→ θ(v) is a bilinear form.

(4) If V = W = C([0, 1],R) then ψ(f, g) =
∫ 1

0
f(t)g(t) dt is a bilinear form.

Lecture 17

We recall the following definition from last time.

Definition. ψ : V ×W → F is a bilinear form if it is linear in both arguments; i.e.
if ψ(v,−) : W → F ∈W ∗ for all v ∈ V and ψ(−, w) : V → F ∈ V ∗ for all w ∈W .

We can see that a bilinear form ψ gives linear maps ψL : V →W ∗ and ψR : W →
V ∗ by the formulae

ψL(v)(w) = ψ(v, w) = ψR(w)(v)

for v ∈ V and w ∈W .
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Definition. Let 〈e1, . . . , en〉 be a basis for V and 〈f1, . . . , fm〉 be a basis of W and
ψ : V ×W → F a bilinear form. Then the matrix A representing ψ with respect to
〈e1, . . . , en〉 and 〈f1, . . . , fm〉 is given by Aij = ψ(ei, fj).

Remark. If v =
∑
λiei and w =

∑
µjfj then

ψ
(∑

λiei, µjfj

)
=

n∑
i=1

λiψ
(
ei,
∑

µjfj

)
=

n∑
i=1

m∑
j=1

λiµjψ(ei, fj).

Therefore ifA is the matrix representing ψ with respect to 〈e1, . . . , en〉 and 〈f1, . . . , fm〉
we have

ψ(v, w) =
(
λ1 · · · λn

)
A

µ1

...
µm


and ψ is determined by the matrix representing it.

Lemma. Let 〈ε1, . . . , εn〉 be the dual basis to 〈e1, . . . , en〉 and 〈η1, . . . , ηm〉 be the
dual basis to 〈f1, . . . , fm〉. Then A represents ψR with respect to 〈f1, . . . , fm〉 and
〈ε1, . . . , εm〉 and AT represents ψL with respect to 〈e1, . . . , en〉 and 〈η1, . . . , ηm〉.

Proof. We can compute ψL(ei)(fj) = ψ(ei, fj) = Aij and so ψL(ei) =
∑m
j=1A

T
jiηj

and ψR(fj)(ei) = ψ(ei, fj) = Aij and so ψL(fj) =
∑n
i=1Aijεi. �

Proposition. Suppose that 〈e1, . . . , en〉 and 〈v1, . . . , vn〉 are two bases of V such
that vi =

∑n
j=1 Pjiej for i = 1, . . . , n and 〈f1, . . . , fm〉 and 〈w1, . . . , wm〉 are two

bases of W such that wi =
∑m
j=1Qjifj for i = 1, . . . ,m. Let ψ : V ×W → F be a

bilinear form represented by A with respect to 〈e1, . . . , en〉 and 〈f1, . . . , fm〉 and by
B with respect to 〈v1, . . . , vn〉 and 〈w1, . . . , wm then

B = PTAQ.

Proof.

Bij = ψ(vi, wj)

= ψ

(
n∑
k=1

Pkiek,

m∑
l=1

Qljfl

)
=

∑
k,l

PkiQljψ(ek, fl)

= (PTAQ)ij

�

Corollary. Let V and W be f.d. vector spaces over F and ψ : V × W → F a
bilinear form. There are bases 〈v1, . . . , vm〉 of V and 〈w1, . . . , wn〉 of W and an

r 6 min(m,n) such that ψ
(∑m

i=1 λivi,
∑n
j=1 µjwj

)
=
∑r
i=1 λiµi.

Proof. Let 〈e1, . . . , em〉 and 〈f1, . . . , fn〉 be any bases of V and W respectively and
let A be the matrix representing ψ with respect to this pair of bases. We know that
there are R ∈ GLm(F) and Q ∈ GLn(F) such that

R−1AQ =

(
Ir 0
0 0

)
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for r = r(A). Taking P = (R−1)T , vi =
∑m
k=1 Pkiek for 1 6 i 6 m and wj =∑n

l=1Qljel for 1 6 j 6 n gives the result. �

We note that r only depends on ψ since r(PTAQ) = r(A) whenever P,Q are
invertible. We call r the rank of ψ written r(ψ).

Definition. We say a bilinear form ψ : V ×W → F is degenerate if there is either
some v ∈ V \0 such that ψ(v,−) = 0 ∈ W ∗ or there is some w ∈ W\0 such that
ψ(−, w) = 0 ∈ V ∗. Otherwise we say that ψ is non-degenerate.

Lemma. Let V and W be f.d. vector spaces over F with bases 〈e1, . . . , en〉 and
〈f1, . . . , fm〉 and let ψ : W × V → F be a bilinear form represented by the matrix A
with respect to those bases. Then ψ is non-degenerate if and only if the matrix A
is invertible. In particular, if ψ non-degenerate then dimV = dimW .

Proof. The condition that ψ is non-degenerate is equivalent to kerψL = 0 and
kerψR = 0 which is in turn equivalent to n(A) = 0 = n(AT ). This last is equivalent
to r(A) = dimV and r(AT ) = dimW . Since row-rank and column-rank agree we
can see that this final statement is equivalent to A being invertible as required. �

It follows that, when V and W are f.d., defining a non-degenerate bilinear form
ψ : V ×W → F is equivalent to defining an isomorphism ψL : V →W ∗ (or equiva-
lently an isomorphism ψR : W → V ∗).

6.2. Symmetric bilinear forms and quadratic forms.

Definition. Let V be a vector space over F. A bilinear form φ : V × V → F is
symmetric if φ(v1, v2) = φ(v2, v1) for all v ∈ V .

Example. Suppose S ∈ Matn(F) is a symmetric matrix (ie ST = S), then we can
define a symmetric bilinear form φ : Fn × Fn → F by

φ(x, y) = xTSy =

n∑
i,j=1

xiSijyj

In fact that example is completely typical.

Lemma. Suppose that V is a f.d. vector space over F and φ : V × V → F is a
bilinear form. Let 〈e1, . . . , en〉 be a basis for V and M be the matrix representing
φ with respect to this basis, i.e. Mij = φ(ei, ej). Then φ is symmetric if and only
if M is symmetric.

Proof. If φ is symmetric then Mij = φ(ei, ej) = φ(ej , ei) = Mji so M is symmetric.
Conversely if M is symmetric, then

φ(x, y) =

n∑
i,j=1

xiMijyj =

n∑
i,j=1

yjMjixi = φ(y, x).

Thus φ is symmetric. �

It follows that if φ is represented by a symmetric matrix with respect to one
basis then it is represented by a symmetric matrix with respect to every basis.
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Lemma. Suppose that V is a f.d. vector space over F, φ : V ×V → F is a bilinear
form and 〈e1, . . . , en〉 and 〈f1, . . . , fn〉 are two bases of V such that fi =

∑
Pkiek

for i = 1, . . . n. If A represents φ with respect to 〈e1, . . . , en〉 and B represents φ
with respect to 〈f1, . . . , fn〉 then

B = PTAP

Proof. We compute

Bij = φ(fi, fj) = φ(
∑
k

Pkiek,
∑
l

Pljel) =
∑
k,l

PkiPljφ(ek, el).

Thus Bij =
∑
k,l P

T
ikAklPlj = [PTAP ]ij . �

Definition. We say that square matrices A and B are congruent if there is an
invertible matrix P such that B = PTAP .

Congruence is an equivalence relation. Two matrices are congruent precisely if
they represent the same bilinear form φ : V ×V → F with respect to different bases
for V . Thus to classify (symmetric) bilinear forms on a f.d. vector space is to
classify (symmetric) matrices up to congruence.

Lecture 18

Definition. If φ : V × V → F is a bilinear form then we call the map V → F;
v 7→ φ(v, v) a quadratic form on V .

Example. If V = R2 and φ is represented by the matrix A with respect to the
standard basis then the corresponding quadratic form is(

x
y

)
7→
(
x y

)
A

(
x
y

)
= A11x

2 + (A12 +A21)xy +A22y
2

Note that if we replace A by the symmetric matrix 1
2

(
A+AT

)
we get the same

quadratic form.

Proposition (Polarisation identity). If q : V → F is a quadratic form then there
exists a unique symmetric bilinear form φ : V ×V → F such that q(v) = φ(v, v) for
all v ∈ V .

Proof. Let ψ be a bilinear form on V × V such that ψ(v, v) = q(v) for all v ∈ V .
Then

φ(v, w) :=
1

2
(ψ(v, w) + ψ(w, v))

is a symmetric bilinear form such that φ(v, v) = q(v) for all v ∈ V .
It remains to prove uniqueness. Suppose that φ is such a symmetric bilinear

form. Then for v, w ∈ V ,

q(x+ y) = φ(v + w, v + w)

= φ(v, v) + φ(v, w) + φ(w, v) + φ(w,w)

= q(v) + 2φ(v, w) + q(w).

Thus φ(v, w) = 1
2 (q(v + w)− q(v)− q(w)). �

Theorem (Canonical form for symmetric bilinear forms). If φ : V × V → F is
a symmetric bilinear form on a f.d. vector space V over F, then there is a basis
〈e1, . . . , en〉 for V such that φ is represented by a diagonal matrix.
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Proof. By induction on n = dimV . If n = 0, 1 the result is clear. Suppose that we
have proven the result for all spaces of dimension strictly smaller than n.

If φ(v, v) = 0 for all v ∈ V , then by the polarisation identity φ is identically zero
and is represented by the zero matrix with respect to every basis. Otherwise, we
can choose e1 ∈ V such that φ(e1, e1) 6= 0. Let

U = {u ∈ V | φ(e1, u) = 0} = kerφ(e1,−) : V → F.

By the rank-nullity theorem, U has dimension n−1 and e1 6∈ U so U is a complement
to the span of e1 in V .

Consider φ|U×U : U ×U → F, a symmetric bilinear form on U . By the induction
hypothesis, there is a basis 〈e2, . . . , en〉 for U such that φ|U×U is represented by a
diagonal matrix. The basis 〈e1, . . . , en〉 satisfies φ(ei, ej) = 0 for i 6= j and we’re
done. �

Example. Let q be the quadratic form on R3 given by

q

xy
z

 = x2 + y2 + z2 + 2xy + 4yz + 6xz.

Find a basis 〈f1, f2, f3〉 for R3 such that q is of the form

q(af1 + bf2 + cf3) = λa2 + µb2 + νc2.

Method 1 Let φ be the bilinear form represented by the matrix

A =

1 1 3
1 1 2
3 2 1


so that q(v) = φ(v, v) for all v ∈ R3.

Now q(e1) = 1 6= 0 so let f1 = e1 =

1
0
0

. Then φ(f1, v) = fT1 Av = v1+v2+3v3.

So we choose f2 such that φ(f1, f2) = 0 but φ(f2, f2) 6= 0. For example

q

 1
−1
0

 = 0 but q

 3
0
−1

 = −8 6= 0.

So we can take f2 =

 3
0
−1

. Then φ(f2, v) = fT2 Av =
(
0 1 8

)
v = v2 + 8v3.

Now we want φ(f1, f3) = φ(f2, f3) = 0, f3 = (5,−8, 1)T will work. Then

q(af1 + bf2 + cf3) = a2 + (−8)b2 + 8c2.

Method 2 Complete the square

x2 + y2 + z2 + 2xy + 4yz + 6xz = (x+ y + 3z)2 + (−2yz)− 8z2

= (x+ y + 3z)2 − 8
(
z +

y

8

)2
+
y2

8

Now solve x + y + 3z = 1, z + y
8 = 0 and y = 0 to obtain f1 =

(
1 0 0

)T
, solve

x + y + 3z = 0, z + y
8 = 1 and y = 0 to obtain f2 =

(
−3 0 1

)T
and solve

x+ y + 3z = 0, z + y
8 = 0 and y = 1 to obtain f3 =

(
− 5

8 1 − 1
8

)T
.
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Lecture 19

Corollary. Let φ be a symmetric bilinear form on a f.d C-vector space V . Then
there is a basis 〈v1, . . . , vn〉 for V such that φ is represented by a matrix of the form(

Ir 0
0 0

)
with r = r(φ) or equivalently such that the corresponding quadratic form q is given
by q(

∑n
i=1 aivi) =

∑r
i=1 a

2
i .

Proof. We have already shown that there is a basis 〈e1, . . . , en〉 such that φ(ei, ej) =
δijλj for some λ1, . . . , λn ∈ C. By reordering the ei we can assume that λi 6= 0 for
1 6 i 6 r and λi = 0 for i > r. Since we’re working over C for each 1 6 i 6 r, λi
has a non-zero square root µi, say. Defining vi = 1

µi
ei for 1 6 i 6 r and vi = ei for

r + 1 6 i 6 n, we see that φ(vi, vj) = 0 if i 6= j or i = j > r and φ(vi, vi) = 1 if
1 6 i 6 r as required. �

Corollary. Every symmetric matrix in Matn(C) is congruent to a matrix of the
form (

Ir 0
0 0

)
.

�

Corollary. Let φ be a symmetric bilinear form on a f.d R-vector space V . Then
there is a basis 〈v1, . . . , vn〉 for V such that φ is represented by a matrix of the formIs 0 0

0 −Ir−s 0
0 0 0


with r = r(φ) and 0 6 s 6 r or equivalently such that the corresponding quadratic
form q is given by q(

∑n
i=1 aivi) =

∑s
i=1 a

2
i −

∑r
i=s+1 a

2
i .

Proof. We have already shown that there is a basis 〈e1, . . . , en〉 such that φ(ei, ej) =
δijλj for some λ1, . . . , λn ∈ R. By reordering the ei we can assume that there is an
s such that λi > 0 for 1 6 i 6 s and λi < 0 for s+ 1 6 i 6 r and λi = 0 for i > r.
Since we’re working over R we can define µi =

√
λi for 1 6 i 6 s, µi =

√
−λi for

s+ 1 6 i 6 r and µi = 1 for i = 1 . Defining vi = 1
µi
ei we see that φ is represented

by the given matrix with respect to v1, . . . , vn. �

Corollary. Every real symmetric matrix is congruent to a matrix of the formIs 0 0
0 −Ir−s 0
0 0 0


�

Definition. A symmetric bilinear form φ on a real vector space V is

(a) positive definite if φ(v, v) > 0 for all v ∈ V \0;
(b) positive semi-definite if φ(v, v) > 0 for all v ∈ V ;
(c) negative definite if φ(v, v) < 0 for all v ∈ V \0;
(d) negative semi-definite if φ(v, v) 6 0 for all v ∈ V .

We say a quadratic form is ...-definite if the corresponding bilinear form is so.
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Example. φ(x, y) :=
∑n
i=1 xiyi is positive definite on Rn.

Theorem (Sylvester’s Law of Inertia). Let V be an n-dimensional real vector space
and let φ be a symmetric bilinear form on V . Then there are unique integers s, r
such that V has a basis v1, . . . , vn with respect to which φ is represented by the
matrix Is 0 0

0 −Ir−s 0
0 0 0


Proof. We’ve already done the existence part. We also already know that r = r(φ)
is unique. To see s is unique we’ll prove that s is the largest dimension of a subspace
P of V such that φ|P×P is positive definite.

Let v1, . . . , vn be some basis with respect to which φ is represented byIs 0 0
0 −Ir−s 0
0 0 0


for some choice of s. Then φ is positive definite on the space spanned by v1, . . . , vs.
Thus it remains to prove that there is no larger such subspace.

Let P be any subspace of V such that φ|P×P is positive definite and let Q be
the space spanned by vs+1, . . . , vn. The restriction of φ to Q×Q is negative semi-
definite so P ∩ Q = 0. So dimP + dimQ = dimP + Q 6 n. Thus dimP 6 s as
required. �

Definition. The signature of the symmetric bilinear form φ given in the Theorem
is defined to be s− (r − s) = 2s− r.

6.3. Hermitian forms. Let V be a vector space over C and let φ be a symmetric
bilinear form on V . Then φ can never be positive definite since φ(iv, iv) = −φ(v, v)
for all v ∈ V . We’d like to fix this.

Definition. Let V and W be vector spaces over C. Then a sesquilinear form is a
function φ : V ×W → C such that

φ(λ1v1 + λ2v2, w) = λ1φ(v1, w) + λ2φ(v2, w) and

φ(v, µ1w1 + µ2w2) = µ1φ(v, w1) + µ2φ(v, w2)

for all λ1, λ2, µ1, µ2 ∈ C, v, v1, v2 ∈ V and w,w1, w2 ∈W .

Definition. Let φ be a sesquilinear form on V ×W and let V have basis 〈v1, . . . , vm〉
and W have basis 〈w1, . . . , wm〉. The matrix A representing φ with respect to these
bases is defined by Aij = φ(vi, wj).

Suppose that
∑
λivi ∈ V and

∑
µjwj ∈W then

φ(
∑

λivi,
∑

µjwj) =

m∑
i=1

n∑
j=1

λiAijµj = λ
T
Aµ.

Definition. A sesquilinear form φ : V ×V → C is said to be Hermitian if φ(x, y) =

φ(y, x) for all x, y ∈ V .

Lemma. Let φ : V ×V → C be a sesquilinear form on a complex vector space V with
basis 〈v1, . . . , vn〉. Then φ is Hermitian if and only if the matrix A representing φ

with respect to this basis satisfies A = A
T

(we also say the matrix A is Hermitian).
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Proof. If φ is Hermitian then

Aij = φ(vi, vj) = φ(vj , vi) = Aji.

Conversely if A = A
T

then

φ
(∑

λivi,
∑

µjvj

)
= λ

T
Aµ = µTATλ = µTAλ = φ

(∑
µjvj ,

∑
λivi

)
as required �

Lecture 20

Notice that if φ is a Hermitian form on V then φ(x, x) ∈ R for all x ∈ V and
φ(λx, λx) = |λ|2φ(x, x) for all λ ∈ C.

Proposition (Change of basis). Suppose that φ is a Hermitian form on a f.d.
complex vector space V and that 〈e1, . . . , en〉 and 〈v1, . . . , vn〉 are bases for V such
that vi =

∑n
k=1 Pkiek. Let A be the matrix representing φ with respect to 〈e1, . . . , en〉

and B be the matrix representing φ with respect to 〈v1, . . . , vn〉 then

B = P
T
AP.

Proof. We compute

Bij = φ

(
n∑
k=1

Pkiek,

n∑
l=1

Pljel

)
=
∑
k,l

(P
T

)ikφ(ek, el)Plj = [P
T
AP ]ij

as required. �

Lemma (Polarisation Identity). A Hermitian form φ on a complex vector space V
is determined by the function ψ : V → R; v 7→ φ(v, v).

Proof. It can be checked that

φ(x, y) =
1

4
(ψ(x+ y)− iψ(x+ iy)− ψ(x− y) + iψ(x− iy))

�

Theorem (Hermitian version of Sylvester’s Law of Inertia). Let V be a f.d. complex
vector space and suppose that φ : V × V → C is a Hermitian form on V . Then
there is a basis 〈v1, . . . , vn〉 of V with respect to which φ is represented by a matrix
of the form Is 0 0

0 −Ir−s 0
0 0 0

 .

Moreover r and s depend only on φ not on the basis.

Notice that for such a basis φ(
∑
λivi,

∑
λivi) =

∑s
i=1 |λi|2 −

∑r
j=s+1 |λj |2.

Sketch of Proof. This is nearly identical to the real case. For existence: if φ is
identically zero then any basis will do. If not, then by the Polarisation Identity
there is some v1 ∈ V such that φ(v1, v1) 6= 0. By replacing v1 by v1

|φ(v1,v1)|1/2
we

can assume that φ(v1, v1) = ±1. Define U := kerφ(v1,−) : V → C a subspace of
V of dimension dimV − 1. Since v1 6∈ U , U is a complement to the span of v1 in
V . By induction on dimV , there is a basis 〈v2, . . . , vn〉 of U such that φ|U×U is
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represented by a matrix of the required form. Now 〈v1, v2, . . . , vn〉 is a basis for V
that after suitable reordering works.

For uniqueness: r is the rank of the matrix representing φ with respect to any
basis and s arises as the dimension of a maximal positive definite subspace as in
the real symmetric case. �

7. Inner product spaces

7.1. Definitions and basic properties.

Definition. Let V be a vector space over F. An inner product on V is a positive
definite symmetric/Hermitian form φ on V . Usually instead of writing φ(x, y) we’ll
write (x, y). A vector space equipped with an inner product (−,−) is called an
inner product space.

Examples.
(1) The usual scalar product on Rn or Cn: (x, y) =

∑n
i=1 xiyi.

(2) Let C([0, 1],F) be the space of continuous real/complex valued functions on
[0, 1] and define

(f, g) =

∫ 1

0

f(t)g(t) dt.

(3) A weighted version of (2). Let w : [0, 1] → R take only positive values and
define

(f, g) =

∫ 1

0

w(t)f(t)g(t) dt.

If V is an inner product space then we can define a norm || · || on V by ||v|| =

(v, v)
1
2 . Note ||v|| > 0 with equality if and only if v = 0. Note that the norm

determines the inner product because of the polarisation identity.

Lemma (Cauchy–Schwarz inequality). Let V be an inner product space and take
v, w ∈ V . Then |(v, w)| 6 ||v||||w||.
Proof. Since (−,−) is positive-definite,

0 6 (v − λw, v − λw) = (v, v)− λ(v, w)− λ(w, v) + |λ|2(w,w)

for all λ ∈ F. Now when λ = (w,v)
(w,w) (the case w = 0 is clear) then we get

0 6 (v, v)− 2|(v, w)|2

(w,w)
+
|(v, w)|2

(w,w)2
(w,w) = (v, v)− |(v, w)|2

(w,w)
.

The inequality follows by multiplying by (w,w) rearranging and taking square roots.
�

Corollary (Minkowski’s inequality). Let V be an inner product space and take
v, w ∈ V . Then ||v + w|| 6 ||v||+ ||w||.
Proof.

||v + w||2 = (v + w, v + w)

= ||v||2 + (v, w) + (w, v) + ||w||2

6 ||v||2 + 2||v||||w||+ ||w||2

= (||v||+ ||w||)2

Taking square roots gives the result. �
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Lecture 21

Definition. Let V be an inner product space then v, w ∈ V are said to be orthog-
onal if (v, w) = 0. A set {vi | i ∈ I} is orthonormal if (vi, vj) = δij for i, j ∈ I. An
orthormal basis (o.n. basis) for V is a basis for V that is orthonormal.

Suppose that V is a f.d. inner product space with o.n. basis v1, . . . , vn. Then
given v ∈ V , we can write v =

∑n
i=1 λivi. But then (vj , v) =

∑n
i=1 λi(vj , vi) = λj .

Thus v =
∑n
i=1(vi, v)vi.

Lemma (Parseval’s identity). Suppose that V is a f.d. inner product space with

o.n basis 〈v1, . . . , vn〉 then (v, w) =
∑n
i=1 (vi, v)(vi, w). In particular

||v||2 =

n∑
i=1

|(vi, v)|2.

Proof. (v, w) = (
∑n
i=1(vi, v)vi,

∑n
j=1(vj , w)vj) =

∑n
i=1 (vi, v)(vi, w). �

7.2. Gram–Schmidt orthogonalisation.

Theorem (Gram-Schmidt process). Let V be an inner product space and e1, e2, . . .
be LI vectors. Then there is a sequence v1, v2, . . . of orthonormal vectors such that
the sets {e1, . . . , ek} and {v1, . . . , vk} have the same span for each k.

Proof. We proceed by induction on k. The case k = 0 is clear. Suppose we’ve
found v1, . . . , vk. Let

uk+1 = ek+1 −
k∑
i=1

(vi, ek+1)vi.

Then for j 6 k,

(vj , uk+1) = (vj , ek+1)−
k∑
i=1

(vi, ek+1)(vj , vi) = 0.

Since {v1, . . . , vk} and {e1, . . . , ek} span the same set, and e1, . . . , ek+1 are LI,
{v1, . . . , vk, ek+1} are LI and so uk+1 6= 0. Let vk+1 = uk+1

||uk+1|| . �

Corollary. Let V be a f.d. inner product space. Then any orthonormal sequence
v1, . . . , vk can be extended to an orthonormal basis.

Proof. Let v1, . . . , vk, xk+1, . . . , xn be any basis of V extending v1, . . . , vk. If we
apply the Gram–Schmidt process to this basis we obtain an o.n. basis w1, . . . , wn.
Moreover one can check that wi = vi for 1 6 i 6 k. �

Definition. Let V be an inner product space and let V1, V2 be subspaces of V .
Then V is the orthogonal (internal) direct sum of V1 and V2, written V = V1 ⊥ V2,
if

(1) V = V1 + V2;
(2) V1 ∩ V2 = 0;
(3) (v1, v2) = 0 for all v1 ∈ V1 and v2 ∈ V2.

Note that condition (3) implies condition (2).
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Definition. If W ⊂ V is a subspace of an inner product space V then the orthog-
onal complement of W in V , written W⊥, is the subspace of V

W⊥ := {v ∈ V | (w, v) = 0 for all w ∈W}.

Corollary. Let V be a f.d. inner product space and W a subspace of V . Then
V = W ⊥W⊥.

Proof. Of course if w ∈ W and w⊥ ∈ W⊥ then (w,w⊥) = 0. So it remains to
show that V = W + W⊥. Let w1, . . . , wk be an o.n. basis of W and extend it to
w1, . . . , wn an o.n. basis for V .

If j > k, then (
∑k
i=1 λiwi, wj) =

∑
λi(wi, wj) = 0 and so wj ∈ W⊥. Since

w1, . . . , wn span V it follows that V = W +W⊥. �

Notice that unlike general vector space complements, orthogonal complements
are unique.

Definition. We can also define the orthogonal (external) direct sum of two inner
product spaces V1 and V2 by endowing the vector space direct sum V1 ⊕ V2 with
the inner product

((v1, v2), (w1, w2)) = (v1, w1) + (v2, w2)

for v1, w1 ∈ V1 and v2, w2 ∈ V2.

Definition. Suppose that V = U ⊕ W . Then we can define Π: V → W by
Π(u + w) = w for u ∈ U and w ∈ W . We call Π a projection map onto W . If
U = W⊥ we call Π the orthogonal projection onto W .

Proposition. Let V be a f.d. inner product space and W ⊂ V be a subspace with
o.n. basis 〈e1, . . . , ek〉. Let Π be the orthogonal projection onto W . Then

(a) Π(v) =
∑k
i=1(ei, v)ei for each v ∈ V ;

(b) ||v − Π(v)|| 6 ||v − w|| for all w ∈ W with equality if and only if Π(v) = w;
that is Π(v) is the closest point to v in W .

Proof. (a) Put w =
∑k
i=1(ei, v)ei ∈W . Then

(ej , v − w) = (ej , v)−
k∑
i=1

(ei, v)(ej , ei) = 0 for 1 6 j 6 k.

Thus v − w ∈W⊥. Now v = w + (v − w) so Π(v) = w.
(b) If x, y ∈ V are orthogonal then

||x+ y||2 = (x+ y, x+ y) = ||x||2 + (x, y) + (y, x) + ||y||2 = ||x||2 + ||y||2

so

||v − w||2 = ||(v −Π(v)) + (Π(v)− w)||2 = ||(v −Π(v)||2 + ||(Π(v)− w)||2

and ||v − w||2 > ||v − Π(v)||2 with equality if and only if ||Π(v) − w||2 = 0 ie
Π(v) = w. �
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Lecture 22

7.3. Adjoints.

Lemma. Suppose V and W are f.d. inner product spaces and α : V →W is linear.
Then there is a unique linear map α∗ : W → V such that (α(v), w) = (v, α∗(w)) for
all v ∈ V and w ∈W .

Proof. Let 〈v1, . . . , vm〉 be an o.n. basis for V and 〈w1, . . . , wm〉 be an o.n. basis for
W and suppose that α is represented by the matrix A with respect to these bases.
Then if α∗ : W → V satisfies (α(v), w) = (v, α∗(w)) for all v ∈ V and w ∈ W .
Then we can compute

(vi, α
∗(wj)) = (α(vi), wj) = (

∑
k

Akiwk, wj) = Aji.

Thus α∗(wj) =
∑
AT kjvk ie α∗ is represented by the matrix AT . In particular α∗

is unique if it exists.
But to prove existence we can now take α∗ to be the linear map represented by

the matrix AT . Thenα(∑
i

λivi

)
,
∑
j

µjwj

 =
∑
i,j

λiµj

(∑
k

Akiwk, wj

)

=
∑
i,j

λiAjiµj

whereas ∑
i

λivi,
∑
j

α∗ (µjwj)

 =
∑
i,j

λiµj

(
wk,

∑
l

AT ljwl

)

=
∑
i,j

λiAkiµj

Thus (α(v), w) = (v, α∗(w)) for all v ∈ V and w ∈W as required. �

Definition. We call the linear map α∗ characterised by the lemma the adjoint of
α.

We’ve seen that if α is represented by A with respect to some o.n. bases then

α∗ is represented by AT with respect to the same bases.

Definition. Suppose that V is an inner product space. Then α ∈ End(V ) is
self-adjoint if α∗ = α; i.e. if (α(v), w) = (v, α(w)) for all v, w ∈ V .

Thus if V = Rn with the standard inner product then a matrix is self-adjoint
if and only if it is symmetric. If V = Cn with the standard inner product then a
matrix is self-adjoint if and only if it is Hermitian.

Definition. If V is a real inner product space then we say that α ∈ End(V ) is
orthogonal if

(α(v1), α(v2)) = (v1, v2) for all v1, v2 ∈ V.
By the polarisation identity α is orthogonal if and only if ||α(v)|| = ||v|| for all
v ∈ V .
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Note that a real square matrix is orthogonal (as an endomorphism of Rn with
the standard inner product) if and only if its columns are orthonormal.

Lemma. Suppose that V is a f.d. real inner product space. Let α ∈ End(V ). Then
α is orthogonal if and only if α is invertible and α∗ = α−1.

Proof. If α∗ = α−1 then (v, v) = (v, α∗α(v)) = (α(v), α(v)) for all v ∈ V ie α is
orthogonal.

Conversely, if α is orthogonal, let v1, . . . , vn be an o.n. basis for V . Then for
each 1 6 i, j 6 n,

(vi, vj) = (α(vi), α(vj)) = (vi, α
∗α(vj)).

Thus δij = (vi, vj) = (vi, α
∗α(vj)) and α∗α(vj) = vj as required. �

Corollary. With notation as in the lemma, α ∈ End(V ) is orthogonal if and only
if α is represnted by an orthogonal matrix with respect to any orthonormal basis.

Proof. Let 〈v1, . . . , vn〉 be an o.n. basis then α is represented by A with respect to
this basis if and only if α∗ is represented by AT . Thus α is orthogonal if and only
if A is invertible with inverse AT i.e. A is orthogonal. �

Definition. If V is a f.d. real inner product space then

O(V ) := {α ∈ End(V ) | α is orthogonal}
forms a group under composition called the orthogonal group of V .

Definition. If V is a complex inner product space then we say that α ∈ End(V )
is unitary if

(α(v1), α(v2)) = (v1, v2) for all v1, v2 ∈ V.
By the polarisation identity α is unitary if and only if ||α(v)|| = ||v|| for all v ∈ V .

Lemma. Suppose that V is a f.d. complex inner product space. Let α ∈ End(V ).
Then α is unitary if and only if α is invertible and α∗ = α−1.

Proof. If α∗ = α−1 then (v, v) = (v, α∗α(v)) = (α(v), α(v)) for all v ∈ V ie α is
unitary.

Conversely, if α is unitary, let v1, . . . , vn be an o.n. basis for V . Then for each
1 6 i, j 6 n,

(vi, vj) = (α(vi), α(vj)) = (vi, α
∗α(vj)).

Thus δij = (vi, vj) = (vi, α
∗α(vj)) and α∗α(vj) = vj as required. �

Corollary. With notation as in the lemma, α ∈ End(V ) is unitary if and only if
α is represnted by an unitary matrix A with respect to any orthonormal basis (ie

A−1 = AT ).

Proof. Let 〈v1, . . . , vn〉 be an o.n. basis then α is represented by A with respect to

this basis if and only if α∗ is represented by AT . Thus α is orthogonal if and only

if A is invertible with inverse AT i.e. A is unitary. �

Definition. If V is a f.d. complex inner product space then

U(V ) := {α ∈ End(V ) | α is unitary}
forms a group under composition called the unitary group of V .
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Lecture 23

7.4. Spectral theory.

Lemma. Suppose that V is an inner product space and α ∈ End(V ) is self-adjoint
then

(a) α has a real eigenvalue;
(b) all eigenvalues of α are real;
(c) eigenvectors of α with distinct eigenvalues are orthogonal.

Proof. (a) and (b) Suppose first that V is a complex inner product space. By the
fundamental theorem of algebra α has an eigenvalue (since the mininal polynomial
has a root). Suppose that α(v) = λv with v = V \0 and λ ∈ C. Then

λ(v, v) = (v, λv) = (v, α(v)) = (α(v), v) = (λv, v) = λ(v, v).

Since (v, v) 6= 0 we can deduce λ ∈ R.
Now, suppose that V is a real inner product space. Let 〈v1, . . . , vn〉 be an o.n.

basis. Then α is represented by a real symmetric matrix A. But A viewed as
a complex matrix is also Hermitian so all its eigenvalues are real by the above.
Finally, the eigenvalues of α are precisely the eigenvalues of A.

(c) Suppose α(v) = λv and α(w) = µw with λ 6= µ ∈ R. Then

λ(v, w) = (λv,w) = (α(v), w) = (v, α(w)) = (v, µ(w)) = µ(v, w).

Since λ 6= µ we must have (v, w) = 0. �

Theorem. Let V be an inner product space and α ∈ End(V ) self-adjont. Then V
has an orthonormal basis of eigenvectors of α.

Proof. By the lemma, α has a real eigenvalue λ, say. Thus we can find v1 ∈ V \0
such that α(v1) = λv1. Let U := ker(v1,−) : V → F the orthogonal complement of
the span of v1 in V .

If u ∈ U , then

(α(u), v1) = (u, α(v1)) = (u, λv1) = λ(u, v1) = 0.

Thus α(u) ∈ U and α restricts to an element of End(U). Since (α(v), w) = (v, α(w))
for all v, w ∈ V also for all v, w ∈ U ie α|U is also self-adjoint. By induction on
dimV we can conclude that U has an o.n. basis of eigenvectors 〈v2, . . . , vn〉 of α|U .
Then 〈 v1

||v1|| , v2, . . . , vn〉 is an o.n. basis for V consisting of eigenvectors of α. �

Corollary. If V is an inner product space and α ∈ End(V ) is self adjoint then V
is the orthogonal direct sum of its eigenspaces.

Corollary. Let A ∈ Matn(R) be a symmetric matrix. Then there is an orthogonal
matrix P such that PTAP is diagonal.

Proof. Let (−,−) be the standard inner product on Rn. Then A ∈ End(Rn) is
self-adjoint so Rn has an o.n. basis 〈e1, . . . , en〉 consisting of eigenvectors of A. Let
P be the matrix whose columns are given by e1, . . . , en. Then P is orthogonal and
PTAP = P−1AP is diagonal. �

Corollary. Let V be a f.d. real inner product space and ψ : V ×V → R a symmetric
bilnear form. Then there is an orthonormal basis of V such that ψ is represented
by a diagonal matrix.



56 SIMON WADSLEY

Proof. Let 〈u1, . . . , un〉 be any o.n. basis for V and suppose that A represents ψ
with respect to this basis. Then A is symmetric and there is an orthogonal matrix
P such that PTAP is diagonal. Let vi =

∑
k Pkiuk. Then 〈v1, . . . , vn〉 is an o.n.

basis and ψ is represented by PTAP with respect to it. �

Remark. Note that in the proof the diagonal entries of PTAP are the eigenvalues
of A. Thus it is easy to see that the signature of ψ is given by

# of positive eigenvalues of A−# of negative eigenvalues of A.

Corollary. Let V be a f.d. real vector space and let φ and ψ be symmetric bilinear
forms on V . If φ is positive-definite there is a basis v1, . . . , vn for V with respect
to which both forms are represented by a diagonal matrix.

Proof. Use φ to make V into a real inner product space and then use the last
corollary. �

Corollary. Let A,B ∈ Matn(R) be symmetric matrices such that A is postive
definite (ie vTAv > 0 for all v ∈ Rn\0). Then there is an invertible matrix Q such
that QTAQ and QTBQ are both diagonal.

We can prove similar corollaries for f.d. complex inner product spaces. In par-
ticular:

(1) If A ∈ Matn(C) is Hermitian there is a unitary matrix U such that UTAU is
diagonal.

(2) If ψ is a Hermitian form on a complex inner product space then there is an
orthonormal basis diagonalising ψ.

(3) If V is a complex vector space and φ and ψ are two Hermitian forms with φ
positive definite then φ and ψ can be simultaneously diagonalised.

(4) If A,B ∈ Matn(C) are both Hermitian and A is positive definite (i.e. vTAv > 0

for all v ∈ Cn\0) then there is an invertible matrix Q such that QTAQ and

QTBQ are both diagonal.

Lecture 24

We can prove a similar diagonalisability theorem for unitary matrices. There
is no direct analogue for real orthogonal matrices — because orthogonal matrices
need not have an eigenvalue e.g. rotations in R2 — but see the last question of
Example Sheet 4 for something close.

Theorem. Let V be a f.d. complex inner product space and α ∈ End(V ) be unitary.
Then V has an o.n. basis consisting of eigenvectors of α.

Proof. By the fundamental theorem of algebra, α has an eigenvector v say. Let
W = ker(v,−) : V → C a dimV − 1 dimensional subspace. Then if w ∈W ,

(v, α(w)) = (α−1v, w) = (
1

λ
v,w) = λ−1(v, w) = 0.

Thus α restricts to a unitary endomorphism of W . By induction W has an o.n.
basis consisting of eigenvectors of α. By adding v/||v|| to this basis of W we obtain
a suitable basis of V . �
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8. Alternating forms

I believe that this short section is non-examinable.

Definition. Suppose that V is a vector space over F. An bilinear form φ : V ×V →
F is alternating if φ(v, v) = 0 for all v ∈ V .

Lemma. A bilinear form φ : V × V → F is alternating if and only if it is skew-
symmetric i.e φ(v, w) = −φ(w, v) for all v, w ∈ V .

Proof. If v, w ∈ V then

φ(v + w, v + w) = φ(v, v) + φ(v, w) + φ(w, v) + φ(w,w).

Thus if φ is alternating then 0 = 0 + φ(v, w) + φ(w, v) + 0. That is φ is skew-
symmetric.

Conversely, if φ is skew-symmetric and v ∈ V , then φ(v, v) = −φ(v, v) and so
2φ(v, v) = 0. Since 2 6= 0 ∈ F, we see that φ is alternating. �

Theorem. If V is a f.d. vector space over F and φ : V × V → F is an alternating
bilinear form then there is a basis for V such that φ is represented by a block diagonal
matrix with all block diagonal entries either(

0 1
−1 0

)
or
(
0
)
.

In particular the rank of φ is even, and so if V has a non-degenerate alternating
form then dimV must be even.

Proof. By induction on dimV . If φ is identically zero then any basis is suitable.
Otherwise, we can find v, w ∈ V such that φ(v, w) = c 6= 0. Let v1 = v/c and
v2 = w so that φ(v1, v2) = 1 and φ(v2, v1) = −1 as required.

Now let α : V → F2 be the linear map given by α(v) =

(
φ(v1, v)
φ(v2, v)

)
and define

U = kerα. Since α(v1) =

(
0
−1

)
and α(v2) =

(
1
0

)
, Imα = F2 and so dimU =

dimV − 2 by the rank-nullity theorem. Moreover U intersects the span of v1 and
v2 trivially so that U is a complement to the span of v1 and v2.

Now if u ∈ U then φ(u, u) = 0 since u ∈ U . Thus φ restricts to an alternating
form φ|U×U : U × U → F. By the induction hypothesis, U has a basis 〈v3, . . . , vn〉
such that φ|U×U is represented by a matrix of the required form. It is straightfor-
ward to verify that 〈v1, . . . , vn〉 is a suitable basis for V . �

Definition. If V is an F-vector space equipped with an alternating bilinear form
φ : V × V → F then the symplectic group of V ,

Sp(V ) := {α ∈ GL(V ) | φ(α(v), α(w)) = φ(v, w) for all v, w ∈ V }.


	Lecture 1
	1. Vector spaces
	1.1. Definitions and examples
	*Quotient spaces*

	Lecture 2
	1.2. Linear independence, bases and the Steinitz exchange lemma

	Lecture 3
	1.3. Direct sum

	Lecture 4
	2. Linear maps
	2.1. Definitions and examples

	Lecture 5
	2.2. Linear maps and matrices
	2.3. The first isomorphism theorem and the rank-nullity theorem

	Lecture 6
	2.4. Change of basis

	Lecture 7
	2.5. Elementary matrix operations

	3. Determinants of matrices
	Lecture 8
	Lecture 9
	4. Endomorphisms
	4.1. Invariants

	Lecture 10
	Lecture 11
	4.2. The Cayley-Hamilton Theorem

	Lecture 12
	4.3. Multiplicities of eigenvalues and Jordan Normal Form

	Lecture 13
	Lecture 14
	5. Duality
	5.1. Dual spaces

	Lecture 15
	5.2. Dual maps

	Lecture 16
	6. Bilinear Forms
	6.1. Definitions and Examples

	Lecture 17
	6.2. Symmetric bilinear forms and quadratic forms

	Lecture 18
	Lecture 19
	6.3. Hermitian forms

	Lecture 20
	7. Inner product spaces
	7.1. Definitions and basic properties

	Lecture 21
	7.2. Gram–Schmidt orthogonalisation

	Lecture 22
	7.3. Adjoints

	Lecture 23
	7.4. Spectral theory

	Lecture 24
	8. Alternating forms

