Michaelmas Term 2015

Linear Algebra: Example Sheet 3 of 4

1. Find the eigenvalues and give bases for the eigenspaces of the following complex matrices:

(1	1	0)		(1)	1	-1)		(1	1	-1	
0	3	-2	,	0	3	-2	,	-1	3	-1	
$\begin{pmatrix} 1\\0\\0 \end{pmatrix}$	1	0 /		$\left(0 \right)$	1	$\begin{pmatrix} -1 \\ -2 \\ 0 \end{pmatrix}$				1 /	

The second and third matrices commute; find a basis with respect to which they are both diagonal.

- 2. By considering the rank of a suitable matrix, find the eigenvalues of the $n \times n$ matrix A with each diagonal entry equal to λ and all other entries 1. Hence write down the determinant of A.
- 3. Let α be an endomorphism of the finite dimensional vector space V over \mathbb{F} , with characteristic polynomial $\chi_{\alpha}(t) = t^n + c_{n-1}t^{n-1} + \cdots + c_0$. Show that $\det(\alpha) = (-1)^n c_0$ and $\operatorname{tr}(\alpha) = -c_{n-1}$.
- 4. Let V be a vector space, let $\pi_1, \pi_2, \ldots, \pi_k$ be endomorphisms of V such that $\mathrm{id}_V = \pi_1 + \cdots + \pi_k$ and $\pi_i \pi_j = 0$ for any $i \neq j$. Show that $V = U_1 \oplus \cdots \oplus U_k$, where $U_j = \mathrm{Im}(\pi_j)$. Let α be an endomorphism on the vector space V, satisfying the equation $\alpha^3 = \alpha$. Prove directly that $V = V_0 \oplus V_1 \oplus V_{-1}$, where V_{λ} is the λ -eigenspace of α .
- 5. Let α be an endomorphism of a finite dimensional complex vector space. Show that if λ is an eigenvalue for α then λ^2 is an eigenvalue for α^2 . Show further that every eigenvalue of α^2 arises in this way. Are the eigenspaces Ker $(\alpha \lambda \iota)$ and Ker $(\alpha^2 \lambda^2 \iota)$ necessarily the same?
- 6. (Another proof of the Diagonalisability Theorem.) Let V be a vector space of finite dimension. Show that if α_1 and α_2 are endomorphisms of V, then the nullity $n(\alpha_1\alpha_2)$ satisfies $n(\alpha_1\alpha_2) \leq n(\alpha_1) + n(\alpha_2)$. Deduce that if α is an endomorphism of V such that $p(\alpha) = 0$ for some polynomial p(t) which is a product of distinct linear factors, then α is diagonalisable.
- 7. Let A be a square complex matrix of finite order that is, $A^m = I$ for some m > 0. Show that A can be diagonalised.
- 8. Show that none of the following matrices are similar:

$\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix},$	$\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix},$	$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$
	$\begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$	

Is the matrix

similar to any of them? If so, which?

- 9. Find a basis with respect to which $\begin{pmatrix} 0 & -1 \\ 1 & 2 \end{pmatrix}$ is in Jordan normal form. Hence compute $\begin{pmatrix} 0 & -1 \\ 1 & 2 \end{pmatrix}^n$.
- (a) Recall that the Jordan normal form of a 3 × 3 complex matrix can be deduced from its characteristic and minimal polynomials. Give an example to show that this is not so for 4 × 4 complex matrices.
 (b) Let A be a 5×5 complex matrix with A⁴ = A² ≠ A. What are the possible minimal and characteristic polynomials? If A is not diagonalisable, how many possible JNFs are there for A?
- 11. Let V be a vector space of dimension n and α an endomorphism of V with $\alpha^n = 0$ but $\alpha^{n-1} \neq 0$. Show that there is a vector y such that $(y, \alpha(y), \alpha^2(y), \dots, \alpha^{n-1}(y))$ is a basis for V.

Show that if β is an endomorphism of V which commutes with α , then $\beta = p(\alpha)$ for some polynomial p. [*Hint: consider* $\beta(y)$.] What is the form of the matrix for β with respect to the above basis?

- 12. Let α be an endomorphism of the finite-dimensional vector space V, and assume that α is invertible. Describe the eigenvalues and the characteristic and minimal polynomial of α^{-1} in terms of those of α .
- 13. Prove that that the inverse of a Jordan block $J_m(\lambda)$ with $\lambda \neq 0$ has Jordan normal form a Jordan block $J_m(\lambda^{-1})$. For an arbitrary invertible square matrix A, describe the Jordan normal form of A^{-1} in terms of that of A.

Prove that any square complex matrix is similar to its transpose.

- 14. Let C be an $n \times n$ matrix over \mathbb{C} , and write C = A + iB, where A and B are real $n \times n$ matrices. By considering det $(A + \lambda B)$ as a function of λ , show that if C is invertible then there exists a real number λ such that $A + \lambda B$ is invertible. Deduce that if two $n \times n$ real matrices P and Q are similar when regarded as matrices over \mathbb{C} , then they are similar as matrices over \mathbb{R} .
- 15. Let $f(x) = a_0 + a_1 x + \ldots + a_n x^n$, with $a_i \in \mathbb{C}$, and let C be the *circulant* matrix

$$\begin{pmatrix} a_0 & a_1 & a_2 & \dots & a_n \\ a_n & a_0 & a_1 & \dots & a_{n-1} \\ a_{n-1} & a_n & a_0 & \dots & a_{n-2} \\ \vdots & & \ddots & \vdots \\ a_1 & a_2 & a_3 & \dots & a_0 \end{pmatrix}.$$

Show that the determinant of C is $\det C = \prod_{j=0}^{n} f(\zeta^{j})$, where $\zeta = \exp(2\pi i/(n+1))$.

- 16. Let V denote the space of all infinitely differentiable functions $\mathbb{R} \to \mathbb{R}$ and let α be the differentiation endomorphism $f \mapsto f'$.
 - (i) Show that every real number λ is an eigenvalue of α . Show also that ker $(\alpha \lambda \iota)$ has dimension 1.
 - (ii) Show that $\alpha \lambda \iota$ is surjective for every real number λ .