Linear Algebra: Example Sheet 2 of 4

1. Write down the three types of elementary matrices and find their inverses. Show that an $n \times n$ matrix A is invertible if and only if it can be written as a product of elementary matrices. Use this method to find the inverse of

$$
\left(\begin{array}{ccc}
1 & -1 & 0 \\
0 & 0 & 1 \\
0 & 3 & -1
\end{array}\right)
$$

2. (Another proof of the row rank column rank equality.) Let A be an $m \times n$ matrix of (column) rank r. Show that r is the least integer for which A factorises as $A=B C$ with $B \in \operatorname{Mat}_{m, r}(\mathbb{F})$ and $C \in \operatorname{Mat}_{r, n}(\mathbb{F})$. Using the fact that $(B C)^{T}=C^{T} B^{T}$, deduce that the (column) rank of A^{T} equals r.
3. Let V be a 4-dimensional vector space over \mathbb{R}, and let $\left\{\xi_{1}, \xi_{2}, \xi_{3}, \xi_{4}\right\}$ be the basis of V^{*} dual to the basis $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}, \mathbf{x}_{4}\right\}$ for V. Determine, in terms of the ξ_{i}, the bases dual to each of the following:
(a) $\left\{\mathbf{x}_{2}, \mathbf{x}_{1}, \mathbf{x}_{4}, \mathbf{x}_{3}\right\}$;
(b) $\left\{\mathbf{x}_{1}, 2 \mathbf{x}_{2}, \frac{1}{2} \mathbf{x}_{3}, \mathbf{x}_{4}\right\}$;
(c) $\left\{\mathbf{x}_{1}+\mathbf{x}_{2}, \mathbf{x}_{2}+\mathbf{x}_{3}, \mathbf{x}_{3}+\mathbf{x}_{4}, \mathbf{x}_{4}\right\}$;
(d) $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}-\mathbf{x}_{1}, \mathbf{x}_{3}-\mathbf{x}_{2}+\mathbf{x}_{1}, \mathbf{x}_{4}-\mathbf{x}_{3}+\mathbf{x}_{2}-\mathbf{x}_{1}\right\}$.
4. Let P_{n} be the space of real polynomials of degree at most n. For $x \in \mathbb{R}$ define $\varepsilon_{x} \in P_{n}^{*}$ by $\varepsilon_{x}(p)=p(x)$. Show that $\varepsilon_{0}, \ldots, \varepsilon_{n}$ form a basis for P_{n}^{*}, and identify the basis of P_{n} to which it is dual.
5. (a) Show that if $\mathbf{x} \neq \mathbf{y}$ are vectors in the finite dimensional vector space V, then there is a linear functional $\theta \in V^{*}$ such that $\theta(\mathbf{x}) \neq \theta(\mathbf{y})$.
(b) Suppose that V is finite dimensional. Let $A, B \leq V$. Prove that $A \leq B$ if and only if $A^{\circ} \geq B^{\circ}$. Show that $A=V$ if and only if $A^{\circ}=\{\mathbf{0}\}$.
6. For $A \in \operatorname{Mat}_{n, m}(\mathbb{F})$ and $B \in \operatorname{Mat}_{m, n}(\mathbb{F})$, let $\tau_{A}(B)$ denote $\operatorname{tr} A B$. Show that, for each fixed A, $\tau_{A}: \operatorname{Mat}_{m, n}(\mathbb{F}) \rightarrow \mathbb{F}$ is linear. Show moreover that the mapping $A \mapsto \tau_{A}$ defines a linear isomorphism $\operatorname{Mat}_{n, m}(\mathbb{F}) \rightarrow \operatorname{Mat}_{m, n}(\mathbb{F})^{*}$.
7. (a) Let V be a non-zero finite dimensional real vector space. Show that there are no endomorphisms α, β of V with $\alpha \beta-\beta \alpha=\mathrm{id}_{V}$.
(b) Let V be the space of infinitely differentiable functions $\mathbb{R} \rightarrow \mathbb{R}$. Find endomorphisms α and β of V such that $\alpha \beta-\beta \alpha=\operatorname{id}_{V}$.
8. Suppose that $\psi: U \times V \rightarrow \mathbb{F}$ is a bilinear form of rank r on finite dimensional vector spaces U and V over \mathbb{F}. Show that there exist bases e_{1}, \ldots, e_{m} for U and f_{1}, \ldots, f_{n} for V such that

$$
\psi\left(\sum_{i=1}^{m} x_{i} e_{i}, \sum_{j=1}^{n} y_{j} f_{j}\right)=\sum_{k=1}^{r} x_{k} y_{k}
$$

for all $x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{n} \in \mathbb{F}$. What are the dimensions of the left and right kernels of ψ ?
9. Let A and B be $n \times n$ matrices over a field F. Show that the $2 n \times 2 n$ matrix

$$
C=\left(\begin{array}{cc}
I & B \\
-A & 0
\end{array}\right) \quad \text { can be transformed into } \quad D=\left(\begin{array}{cc}
I & B \\
0 & A B
\end{array}\right)
$$

by elementary row operations (which you should specify). By considering the determinants of C and D, obtain another proof that $\operatorname{det} A B=\operatorname{det} A \operatorname{det} B$.
10. Let A, B be $n \times n$ matrices, where $n \geq 2$. Show that, if A and B are non-singular, then
$(i) \operatorname{adj}(A B)=\operatorname{adj}(B) \operatorname{adj}(A)$,
(ii) $\operatorname{det}(\operatorname{adj} A)=(\operatorname{det} A)^{n-1}$,
(iii) $\operatorname{adj}(\operatorname{adj} A)=(\operatorname{det} A)^{n-2} A$.

What happens if A is singular? [Hint: Consider $A+\lambda I$ for $\lambda \in \mathbb{F}$.]
Show that the rank of the adjugate matrix is $\mathrm{r}(\operatorname{adj} A)= \begin{cases}n & \text { if } \mathrm{r}(A)=n \\ 1 & \text { if } \mathrm{r}(A)=n-1 \\ 0 & \text { if } \mathrm{r}(A) \leq n-2 .\end{cases}$
11. Show that the dual of the space P of real polynomials is isomorphic to the space $\mathbb{R}^{\mathbb{N}}$ of all sequences of real numbers, via the mapping which sends a linear form $\xi: P \rightarrow \mathbb{R}$ to the sequence $\left(\xi(1), \xi(t), \xi\left(t^{2}\right), \ldots\right)$.
In terms of this identification, describe the effect on a sequence $\left(a_{0}, a_{1}, a_{2}, \ldots\right)$ of the linear maps dual to each of the following linear maps $P \rightarrow P$:
(a) The map D defined by $D(p)(t)=p^{\prime}(t)$.
(b) The map S defined by $S(p)(t)=p\left(t^{2}\right)$.
(c) The map E defined by $E(p)(t)=p(t-1)$.
(d) The composite $D S$.
(e) The composite $S D$.

Verify that $(D S)^{*}=S^{*} D^{*}$ and $(S D)^{*}=D^{*} S^{*}$.
12. Suppose that $\psi: V \times V \rightarrow \mathbb{F}$ is a bilinear form on a finite dimensional vector space V. Take U a subspace of V with $U=W^{\perp}$ some subspace W of V. Suppose that $\left.\psi\right|_{U \times U}$ is non-singular. Show that ψ is also non-singular.
13. Let V be a vector space. Suppose that $f_{1}, \ldots, f_{n}, g \in V^{*}$. Show that g is in the span of f_{1}, \ldots, f_{n} if and only if $\bigcap_{i=1}^{n} \operatorname{ker} f_{i} \subset \operatorname{ker} g$.
14. Let $\alpha: V \rightarrow V$ be an endomorphism of a real finite dimensional vector space V with $\operatorname{tr}(\alpha)=0$.
(i) Show that, if $\alpha \neq 0$, there is a vector \mathbf{v} with $\mathbf{v}, \alpha(\mathbf{v})$ linearly independent. Deduce that there is a basis for V relative to which α is represented by a matrix A with all of its diagonal entries equal to 0 .
(ii) Show that there are endomorphisms β, γ of V with $\alpha=\beta \gamma-\gamma \beta$.

The final question is based on non-examinable material
15. Let Y and Z be subspaces of the finite dimensional vector spaces V and W respectively. Suppose that $\alpha: V \rightarrow W$ is a linear map such that $\alpha(Y) \subset Z$. Show that α induces linear maps $\left.\alpha\right|_{Y}: Y \rightarrow Z$ via $\left.\alpha\right|_{Y}(y)=\alpha(y)$ and $\bar{\alpha}: V / Y \rightarrow W / Z$ via $\bar{\alpha}(v+Y)=\alpha(v)+Z$.
Consider a basis $\left(v_{1}, \ldots, v_{n}\right)$ for V containing a basis $\left(v_{1}, \ldots, v_{k}\right)$ for Y and a basis $\left(w_{1}, \ldots, w_{m}\right)$ for W containing a basis $\left(w_{1}, \ldots, w_{l}\right)$ for Z. Show that the matrix representing α with respect to $\left(v_{1}, \ldots, v_{n}\right)$ and $\left(w_{1}, \ldots, w_{m}\right)$ is a block matrix of the form $\left(\begin{array}{cc}A & C \\ 0 & B\end{array}\right)$. Explain how to determine the matrices representing $\left.\alpha\right|_{Y}$ with respect to the bases $\left(v_{1}, \ldots, v_{k}\right)$ and $\left(w_{1}, \ldots, w_{l}\right)$ and representing $\bar{\alpha}$ with respect to the bases $\left(v_{k+1}+Y, \ldots, v_{n}+Y\right)$ and $\left(w_{l+1}+Z, \ldots, w_{m}+Z\right)$ from this block matrix.

