## Linear Algebra: Example Sheet 3 of 4

1. Show that none of the following matrices are similar:

$$
\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right), \quad\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right), \quad\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) .
$$

Is the matrix

$$
\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right)
$$

similar to any of them? If so, which?
2. Find a basis with respect to which $\left(\begin{array}{cc}0 & -1 \\ 1 & 2\end{array}\right)$ is in Jordan normal form. Hence compute $\left(\begin{array}{cc}0 & -1 \\ 1 & 2\end{array}\right)^{n}$.
3. (a) Recall that the Jordan normal form of a $3 \times 3$ complex matrix can be deduced from its characteristic and minimal polynomials. Give an example to show that this is not so for $4 \times 4$ complex matrices.
(b) Let $A$ be a $5 \times 5$ complex matrix with $A^{4}=A^{2} \neq A$. What are the possible minimal and characteristic polynomials? If $A$ is not diagonalisable, how many possible JNFs are there for $A$ ?
4. Let $\alpha$ be an endomorphism of the finite dimensional vector space $V$ over $\mathbb{F}$, with characteristic polynomial $\chi_{\alpha}(t)=t^{n}+c_{n-1} t^{n-1}+\cdots+c_{0}$. Show that $\operatorname{det}(\alpha)=(-1)^{n} c_{0}$ and $\operatorname{tr}(\alpha)=-c_{n-1}$.
5. Let $\alpha$ be an endomorphism of the finite-dimensional vector space $V$, and assume that $\alpha$ is invertible. Describe the eigenvalues and the characteristic and minimal polynomial of $\alpha^{-1}$ in terms of those of $\alpha$.
6. Prove that that the inverse of a Jordan block $J_{m}(\lambda)$ with $\lambda \neq 0$ has Jordan normal form a Jordan block $J_{m}\left(\lambda^{-1}\right)$. For an arbitrary invertible square matrix $A$, describe the Jordan normal form of $A^{-1}$ in terms of that of $A$.

Prove that any square complex matrix is similar to its transpose.
7. Let $V$ be a vector space of dimension $n$ and $\alpha$ an endomorphism of $V$ with $\alpha^{n}=0$ but $\alpha^{n-1} \neq 0$. Show that there is a vector $y$ such that $\left\langle y, \alpha(y), \alpha^{2}(y), \ldots, \alpha^{n-1}(y)\right\rangle$ is a basis for $V$.
Show that if $\beta$ is an endomorphism of $V$ which commutes with $\alpha$, then $\beta=p(\alpha)$ for some polynomial $p$. [Hint: consider $\beta(y)$.] What is the form of the matrix for $\beta$ with respect to the above basis?
8. Let $A$ be an $n \times n$ matrix all the entries of which are real. Show that the minimal polynomial of $A$ over the complex numbers has real coefficients.
9. Let $V$ be a 4 -dimensional vector space over $\mathbb{R}$, and let $\left\{\xi_{1}, \xi_{2}, \xi_{3}, \xi_{4}\right\}$ be the basis of $V^{*}$ dual to the basis $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}, \mathbf{x}_{4}\right\}$ for $V$. Determine, in terms of the $\xi_{i}$, the bases dual to each of the following:
(a) $\left\{\mathbf{x}_{2}, \mathbf{x}_{1}, \mathbf{x}_{4}, \mathbf{x}_{3}\right\}$;
(b) $\left\{\mathbf{x}_{1}, 2 \mathbf{x}_{2}, \frac{1}{2} \mathbf{x}_{3}, \mathbf{x}_{4}\right\}$;
(c) $\left\{\mathbf{x}_{1}+\mathbf{x}_{2}, \mathbf{x}_{2}+\mathbf{x}_{3}, \mathbf{x}_{3}+\mathbf{x}_{4}, \mathbf{x}_{4}\right\}$;
(d) $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}-\mathbf{x}_{1}, \mathbf{x}_{3}-\mathbf{x}_{2}+\mathbf{x}_{1}, \mathbf{x}_{4}-\mathbf{x}_{3}+\mathbf{x}_{2}-\mathbf{x}_{1}\right\}$.
10. Let $P_{n}$ be the space of real polynomials of degree at most $n$. For $x \in \mathbb{R}$ define $\varepsilon_{x} \in P_{n}^{*}$ by $\varepsilon_{x}(p)=p(x)$. Show that $\varepsilon_{0}, \ldots, \varepsilon_{n}$ form a basis for $P_{n}^{*}$, and identify the basis of $P_{n}$ to which it is dual.
11. Let $\alpha: V \rightarrow V$ be an endomorphism of a finite dimensional complex vector space and let $\alpha^{*}: V^{*} \rightarrow V^{*}$ be its dual. Show that a complex number $\lambda$ is an eigenvalue for $\alpha$ if and only if it is an eigenvalue for $\alpha^{*}$. How are the algebraic and geometric multiplicities of $\lambda$ for $\alpha$ and $\alpha^{*}$ related? How are the minimal and characteristic polynomials for $\alpha$ and $\alpha^{*}$ related?
12. (a) Show that if $\mathbf{x} \neq \mathbf{y}$ are vectors in the finite dimensional vector space $V$, then there is a linear functional $\theta \in V^{*}$ such that $\theta(\mathbf{x}) \neq \theta(\mathbf{y})$.
(b) Suppose that $V$ is finite dimensional. Let $A, B \leq V$. Prove that $A \leq B$ if and only if $A^{o} \geq B^{o}$. Show that $A=V$ if and only if $A^{o}=\{\mathbf{0}\}$.
13. For $A \in \operatorname{Mat}_{n, m}(\mathbb{F})$ and $B \in \operatorname{Mat}_{m, n}(\mathbb{F})$, let $\tau_{A}(B)$ denote $\operatorname{tr} A B$. Show that, for each fixed $A$, $\tau_{A}: \operatorname{Mat}_{m, n}(\mathbb{F}) \rightarrow \mathbb{F}$ is linear. Show moreover that the mapping $A \mapsto \tau_{A}$ defines a linear isomorphism $\operatorname{Mat}_{n, m}(\mathbb{F}) \rightarrow \operatorname{Mat}_{m, n}(\mathbb{F})^{*}$.
14. Show that the dual of the space $P$ of real polynomials is isomorphic to the space $\mathbb{R}^{\mathbb{N}}$ of all sequences of real numbers, via the mapping which sends a linear form $\xi: P \rightarrow \mathbb{R}$ to the sequence $\left(\xi(1), \xi(t), \xi\left(t^{2}\right), \ldots\right)$.
In terms of this identification, describe the effect on a sequence $\left(a_{0}, a_{1}, a_{2}, \ldots\right)$ of the linear maps dual to each of the following linear maps $P \rightarrow P$ :
(a) The map $D$ defined by $D(p)(t)=p^{\prime}(t)$.
(b) The map $S$ defined by $S(p)(t)=p\left(t^{2}\right)$.
(c) The map $E$ defined by $E(p)(t)=p(t-1)$.
(d) The composite $D S$.
(e) The composite $S D$.

Verify that $(D S)^{*}=S^{*} D^{*}$ and $(S D)^{*}=D^{*} S^{*}$.

The remaining two questions are based on non-examinable material
15. Let $V$ be a vector space of finite dimension over a field $F$. Let $\alpha$ be an endomorphism of $V$ and let $U$ be an $\alpha$-invariant subspace of $V$ ie a subspace such that $\alpha(U) \leq U$. Define $\bar{\alpha} \in \operatorname{End}(V / U)$ by $\bar{\alpha}(v+U)=\alpha(v)+U$. Check that $\bar{\alpha}$ is a well-defined endomorphism of $V / U$.
Consider a basis $\left\langle v_{1}, \ldots, v_{n}\right\rangle$ of $V$ containing a basis $\left\langle v_{1}, \ldots, v_{k}\right\rangle$ of $U$. Show that the matrix of $\alpha$ with respect to $\left\langle v_{1}, \ldots, v_{n}\right\rangle$ is $\left(\begin{array}{cc}A & C \\ 0 & B\end{array}\right)$, where $A$ the matrix of the restriction $\alpha_{U}: U \rightarrow U$ of $\alpha$ to $U$ with respect to $\left\langle v_{1}, \ldots, v_{k}\right\rangle$, and $B$ the matrix of $\bar{\alpha}$ with respect to $\left\langle v_{k+1}+U, \ldots, v_{n}+U\right\rangle$. Deduce that $\chi_{\alpha}=\chi_{\alpha_{U}} \chi_{\bar{\alpha}}$.
16. (Another proof of the Cayley Hamilton Theorem.) Assume that the Cayley Hamilton Theorem holds for any endomorphism on any vector space over the field $\mathbb{F}$ of dimension less than $n$. Let $V$ be a vector space of dimension $n$ and let $\alpha$ be an endomorphism of $V$. If $U$ is a proper $\alpha$-invariant subspace of $V$, use the previous question and the induction hypothesis to show that $\chi_{\alpha}(\alpha)=0$. If no such subspace exists, show that there exists a basis $\left\langle v, \alpha(v), \ldots \alpha^{n-1}(v)\right\rangle$ of $V$. Show that $\alpha$ has matrix

$$
\left(\begin{array}{cccc}
0 & & & -a_{0} \\
1 & \ddots & & -a_{1} \\
& \ddots & 0 & \vdots \\
& & 1 & -a_{n-1}
\end{array}\right)
$$

with respect to this basis, for suitable $a_{i} \in \mathbb{F}$. Show that $\chi_{\alpha}(t)=t^{n}+a_{n-1} t^{n-1}+\cdots+a_{0}$ and that $\chi_{\alpha}(\alpha)(v)=0$. Deduce that $\chi_{\alpha}(\alpha)=0$ as an element of $\operatorname{End}(V)$.

