Linear Algebra: Example Sheet 2 of 4

1. (Another proof of the row rank column rank equality.) Let A be an $m \times n$ matrix of (column) rank r. Show that r is the least integer for which A factorises as $A=B C$ with $B \in \operatorname{Mat}_{m, r}(\mathbb{F})$ and $C \in \operatorname{Mat}_{r, n}(\mathbb{F})$. Using the fact that $(B C)^{T}=C^{T} B^{T}$, deduce that the (column) rank of A^{T} equals r.
2. Write down the three types of elementary matrices and find their inverses. Show that an $n \times n$ matrix A is invertible if and only if it can be written as a product of elementary matrices. Use this method to find the inverse of

$$
\left(\begin{array}{ccc}
1 & -1 & 0 \\
0 & 0 & 1 \\
0 & 3 & -1
\end{array}\right)
$$

3. Let A and B be $n \times n$ matrices over a field F. Show that the $2 n \times 2 n$ matrix

$$
C=\left(\begin{array}{cc}
I & B \\
-A & 0
\end{array}\right) \quad \text { can be transformed into } \quad D=\left(\begin{array}{cc}
I & B \\
0 & A B
\end{array}\right)
$$

by elementary row operations (which you should specify). By considering the determinants of C and D, obtain another proof that $\operatorname{det} A B=\operatorname{det} A \operatorname{det} B$.
4. (i) Let V be a non-trivial real vector space of finite dimension. Show that there are no endomorphisms α, β of V with $\alpha \beta-\beta \alpha=\operatorname{id}_{V}$.
(ii) Let V be the space of infinitely differentiable functions $\mathbb{R} \rightarrow \mathbb{R}$. Find endomorphisms α, β of V which do satisfy $\alpha \beta-\beta \alpha=\mathrm{id}_{V}$.
5. Find the eigenvalues and give bases for the eigenspaces of the following complex matrices:

$$
\left(\begin{array}{ccc}
1 & 1 & 0 \\
0 & 3 & -2 \\
0 & 1 & 0
\end{array}\right), \quad\left(\begin{array}{ccc}
1 & 1 & -1 \\
0 & 3 & -2 \\
0 & 1 & 0
\end{array}\right), \quad\left(\begin{array}{ccc}
1 & 1 & -1 \\
-1 & 3 & -1 \\
-1 & 1 & 1
\end{array}\right) .
$$

The second and third matrices commute; find a basis with respect to which they are both diagonal.
6. Let $\lambda \in \mathbb{F}$. Consider the $n \times n$ matrix A with each diagonal entry equal to λ and all other entries 1 . How does the rank of A depend on λ ? Evaluate $\operatorname{det} A$.
7. Let V be a vector space, let $\pi_{1}, \pi_{2}, \ldots, \pi_{k}$ be endomorphisms of V such that $\mathrm{id}_{V}=\pi_{1}+\cdots+\pi_{k}$ and $\pi_{i} \pi_{j}=0$ for any $i \neq j$. Show that $V=U_{1} \oplus \cdots \oplus U_{k}$, where $U_{j}=\operatorname{Im}\left(\pi_{j}\right)$.
Let α be an endomorphism on the vector space V, satisfying the equation $\alpha^{3}=\alpha$. Prove directly that $V=V_{0} \oplus V_{1} \oplus V_{-1}$, where V_{λ} is the λ-eigenspace of α.
8. Let α be an endomorphism of a finite dimensional complex vector space. Show that if λ is an eigenvalue for α then λ^{2} is an eigenvalue for α^{2}. Show further that every eigenvalue of α^{2} arises in this way. Are the eigenspaces $\operatorname{Ker}(\alpha-\lambda \iota)$ and $\operatorname{Ker}\left(\alpha^{2}-\lambda^{2} \iota\right)$ necessarily the same?
9. (Another proof of the Diagonalisability Theorem.) Let V be a vector space of finite dimension. Show that if α_{1} and α_{2} are endomorphisms of V, then the nullity $n\left(\alpha_{1} \alpha_{2}\right)$ satisfies $n\left(\alpha_{1} \alpha_{2}\right) \leq n\left(\alpha_{1}\right)+n\left(\alpha_{2}\right)$. Deduce that if α is an endomorphism of V such that $p(\alpha)=0$ for some polynomial $p(t)$ which is a product of distinct linear factors, then α is diagonalisable.
10. Let A be a square complex matrix of finite order - that is, $A^{m}=I$ for some $m>0$. Show that A can be diagonalised.
11. Let C be an $n \times n$ matrix over \mathbb{C}, and write $C=A+i B$, where A and B are real $n \times n$ matrices. By considering $\operatorname{det}(A+\lambda B)$ as a function of λ, show that if C is invertible then there exists a real number λ such that $A+\lambda B$ is invertible. Deduce that if two $n \times n$ real matrices P and Q are similar when regarded as matrices over \mathbb{C}, then they are similar as matrices over \mathbb{R}.
12. Let A, B be $n \times n$ matrices, where $n \geq 2$. Show that, if A and B are non-singular, then
$(i) \operatorname{adj}(A B)=\operatorname{adj}(B) \operatorname{adj}(A)$,
(ii) $\operatorname{det}(\operatorname{adj} A)=(\operatorname{det} A)^{n-1}$,
(iii) $\operatorname{adj}(\operatorname{adj} A)=(\operatorname{det} A)^{n-2} A$.

What happens if A is singular? [Hint: Consider $A+\lambda I$ for $\lambda \in \mathbb{F}$.]
Show that the rank of the adjugate matrix is $\quad r(\operatorname{adj} A)= \begin{cases}n & \text { if } r(A)=n \\ 1 & \text { if } r(A)=n-1 \\ 0 & \text { if } r(A) \leq n-2 .\end{cases}$
13. Let $f(x)=a_{0}+a_{1} x+\ldots+a_{n} x^{n}$, with $a_{i} \in \mathbb{C}$, and let C be the circulant matrix

$$
\left(\begin{array}{ccccc}
a_{0} & a_{1} & a_{2} & \ldots & a_{n} \\
a_{n} & a_{0} & a_{1} & \ldots & a_{n-1} \\
a_{n-1} & a_{n} & a_{0} & \ldots & a_{n-2} \\
\vdots & & & \ddots & \vdots \\
a_{1} & a_{2} & a_{3} & \ldots & a_{0}
\end{array}\right) .
$$

Show that the determinant of C is $\operatorname{det} C=\prod_{j=0}^{n} f\left(\zeta^{j}\right)$, where $\zeta=\exp (2 \pi i /(n+1))$.
14. Let V denote the space of all infinitely differentiable functions $\mathbb{R} \rightarrow \mathbb{R}$ and let α be the differentiation endomorphism $f \mapsto f^{\prime}$.
(i) Show that every real number λ is an eigenvalue of α. Show also that $\operatorname{ker}(\alpha-\lambda \iota)$ has dimension 1 .
(ii) Show that $\alpha-\lambda \iota$ is surjective for every real number λ.
15. Let $\alpha: V \rightarrow V$ be an endomorphism of a real finite dimensional vector space V with $\operatorname{tr}(\alpha)=0$.
(i) Show that, if $\alpha \neq 0$, there is a vector \mathbf{v} with $\mathbf{v}, \alpha(\mathbf{v})$ linearly independent. Deduce that there is a basis for V relative to which α is represented by a matrix A with all of its diagonal entries equal to 0 .
(ii) Show that there are endomorphisms β, γ of V with $\alpha=\beta \gamma-\gamma \beta$.

