Michaelmas Term 2014

Linear Algebra: Example Sheet 2 of 4

- 1. (Another proof of the row rank column rank equality.) Let A be an $m \times n$ matrix of (column) rank r. Show that r is the least integer for which A factorises as A = BC with $B \in \operatorname{Mat}_{m,r}(\mathbb{F})$ and $C \in \operatorname{Mat}_{r,n}(\mathbb{F})$. Using the fact that $(BC)^T = C^T B^T$, deduce that the (column) rank of A^T equals r.
- 2. Write down the three types of elementary matrices and find their inverses. Show that an $n \times n$ matrix A is invertible if and only if it can be written as a product of elementary matrices. Use this method to find the inverse of

$$\begin{pmatrix} 1 & -1 & 0 \\ 0 & 0 & 1 \\ 0 & 3 & -1 \end{pmatrix}.$$

3. Let A and B be $n \times n$ matrices over a field F. Show that the $2n \times 2n$ matrix

$$C = \begin{pmatrix} I & B \\ -A & 0 \end{pmatrix} \quad \text{can be transformed into} \quad D = \begin{pmatrix} I & B \\ 0 & AB \end{pmatrix}$$

by elementary row operations (which you should specify). By considering the determinants of C and D, obtain another proof that det $AB = \det A \det B$.

4. (i) Let V be a non-trivial real vector space of finite dimension. Show that there are no endomorphisms α, β of V with $\alpha\beta - \beta\alpha = \mathrm{id}_V$.

(ii) Let V be the space of infinitely differentiable functions $\mathbb{R} \to \mathbb{R}$. Find endomorphisms α, β of V which do satisfy $\alpha\beta - \beta\alpha = \mathrm{id}_V$.

5. Find the eigenvalues and give bases for the eigenspaces of the following complex matrices:

$$\begin{pmatrix} 1 & 1 & 0 \\ 0 & 3 & -2 \\ 0 & 1 & 0 \end{pmatrix}, \qquad \begin{pmatrix} 1 & 1 & -1 \\ 0 & 3 & -2 \\ 0 & 1 & 0 \end{pmatrix}, \qquad \begin{pmatrix} 1 & 1 & -1 \\ -1 & 3 & -1 \\ -1 & 1 & 1 \end{pmatrix}.$$

The second and third matrices commute; find a basis with respect to which they are both diagonal.

- 6. Let $\lambda \in \mathbb{F}$. Consider the $n \times n$ matrix A with each diagonal entry equal to λ and all other entries 1. How does the rank of A depend on λ ? Evaluate det A.
- 7. Let V be a vector space, let $\pi_1, \pi_2, \ldots, \pi_k$ be endomorphisms of V such that $\mathrm{id}_V = \pi_1 + \cdots + \pi_k$ and $\pi_i \pi_j = 0$ for any $i \neq j$. Show that $V = U_1 \oplus \cdots \oplus U_k$, where $U_j = \mathrm{Im}(\pi_j)$. Let α be an endomorphism on the vector space V, satisfying the equation $\alpha^3 = \alpha$. Prove directly that $V = V_0 \oplus V_1 \oplus V_{-1}$, where V_{λ} is the λ -eigenspace of α .
- 8. Let α be an endomorphism of a finite dimensional complex vector space. Show that if λ is an eigenvalue for α then λ^2 is an eigenvalue for α^2 . Show further that every eigenvalue of α^2 arises in this way. Are the eigenspaces Ker $(\alpha \lambda \iota)$ and Ker $(\alpha^2 \lambda^2 \iota)$ necessarily the same?
- 9. (Another proof of the Diagonalisability Theorem.) Let V be a vector space of finite dimension. Show that if α_1 and α_2 are endomorphisms of V, then the nullity $n(\alpha_1\alpha_2)$ satisfies $n(\alpha_1\alpha_2) \leq n(\alpha_1) + n(\alpha_2)$. Deduce that if α is an endomorphism of V such that $p(\alpha) = 0$ for some polynomial p(t) which is a product of distinct linear factors, then α is diagonalisable.
- 10. Let A be a square complex matrix of finite order that is, $A^m = I$ for some m > 0. Show that A can be diagonalised.
- 11. Let C be an $n \times n$ matrix over \mathbb{C} , and write C = A + iB, where A and B are real $n \times n$ matrices. By considering det $(A + \lambda B)$ as a function of λ , show that if C is invertible then there exists a real number λ such that $A + \lambda B$ is invertible. Deduce that if two $n \times n$ real matrices P and Q are similar when regarded as matrices over \mathbb{C} , then they are similar as matrices over \mathbb{R} .

12. Let A, B be $n \times n$ matrices, where $n \ge 2$. Show that, if A and B are non-singular, then

 $(i) \operatorname{adj} (AB) = \operatorname{adj} (B) \operatorname{adj} (A), \quad (ii) \operatorname{det} (\operatorname{adj} A) = (\operatorname{det} A)^{n-1}, \quad (iii) \operatorname{adj} (\operatorname{adj} A) = (\operatorname{det} A)^{n-2}A.$

What happens if A is singular? [Hint: Consider $A + \lambda I$ for $\lambda \in \mathbb{F}$.]

Show that the rank of the adjugate matrix is $r(\operatorname{adj} A) = \begin{cases} n & \text{if } r(A) = n \\ 1 & \text{if } r(A) = n - 1 \\ 0 & \text{if } r(A) \leq n - 2. \end{cases}$

13. Let $f(x) = a_0 + a_1 x + \ldots + a_n x^n$, with $a_i \in \mathbb{C}$, and let C be the *circulant* matrix

$$\begin{pmatrix} a_0 & a_1 & a_2 & \dots & a_n \\ a_n & a_0 & a_1 & \dots & a_{n-1} \\ a_{n-1} & a_n & a_0 & \dots & a_{n-2} \\ \vdots & & & \ddots & \vdots \\ a_1 & a_2 & a_3 & \dots & a_0 \end{pmatrix}.$$

Show that the determinant of C is $\det C = \prod_{j=0}^{n} f(\zeta^{j})$, where $\zeta = \exp(2\pi i/(n+1))$.

- 14. Let V denote the space of all infinitely differentiable functions $\mathbb{R} \to \mathbb{R}$ and let α be the differentiation endomorphism $f \mapsto f'$.
 - (i) Show that every real number λ is an eigenvalue of α . Show also that ker $(\alpha \lambda \iota)$ has dimension 1.
 - (ii) Show that $\alpha \lambda \iota$ is surjective for every real number λ .
- 15. Let α: V → V be an endomorphism of a real finite dimensional vector space V with tr(α) = 0.
 (i) Show that, if α ≠ 0, there is a vector v with v, α(v) linearly independent. Deduce that there is a basis for V relative to which α is represented by a matrix A with all of its diagonal entries equal to 0.
 (ii) Show that there are endomorphisms β, γ of V with α = βγ γβ.