Linear Algebra: Example Sheet 1 of 4

1. Let $\mathbb{R}^{\mathbb{R}}$ be the vector space of all functions $f: \mathbb{R} \rightarrow \mathbb{R}$, with addition and scalar multiplication defined pointwise. Which of the following sets of functions form a vector subspace of $\mathbb{R}^{\mathbb{R}}$?
(a) The set C of continuous functions.
(b) The set $\{f \in C:|f(t)| \leq 1$ for all $t \in[0,1]\}$.
(c) The set $\{f \in C: f(t) \rightarrow 0$ as $t \rightarrow \infty\}$.
(d) The set $\{f \in C: f(t) \rightarrow 1$ as $t \rightarrow \infty\}$.
(e) The set of solutions of the differential equation $\ddot{x}(t)+\left(t^{2}-3\right) \dot{x}(t)+t^{4} x(t)=0$.
(f) The set of solutions of $\ddot{x}(t)+\left(t^{2}-3\right) \dot{x}(t)+t^{4} x(t)=\sin t$.
(g) The set of solutions of $(\dot{x}(t))^{2}-x(t)=0$.
(h) The set of solutions of $(\ddot{x}(t))^{4}+(x(t))^{2}=0$.
2. Suppose that the vectors $\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}$ form a basis for V. Which of the following are also bases?
(a) $\mathbf{e}_{1}+\mathbf{e}_{2}, \mathbf{e}_{2}+\mathbf{e}_{3}, \ldots, \mathbf{e}_{n-1}+\mathbf{e}_{n}, \mathbf{e}_{n}$;
(b) $\mathbf{e}_{1}-\mathbf{e}_{2}, \mathbf{e}_{2}-\mathbf{e}_{3}, \ldots, \mathbf{e}_{n-1}-\mathbf{e}_{n}, \mathbf{e}_{n}-\mathbf{e}_{1}$;
(c) $\mathbf{e}_{1}-\mathbf{e}_{n}, \mathbf{e}_{2}+\mathbf{e}_{n-1}, \ldots, \mathbf{e}_{n}+(-1)^{n} \mathbf{e}_{1}$.
3. Let T, U and W be subspaces of V.
(i) Show that $T \cup U$ is a subspace of V only if either $T \leq U$ or $U \leq T$.
(ii) Give explicit counter-examples to the following statements:
(a) $T+(U \cap W)=(T+U) \cap(T+W) ;$
(b) $\quad(T+U) \cap W=(T \cap W)+(U \cap W)$.
(iii) Show that each of the equalities in (ii) can be replaced by a valid inclusion of one side in the other.
4. For each of the following pairs of vector spaces (V, W) over \mathbb{R}, either give an isomorphism $V \rightarrow W$ or show that no such isomorphism can exist. [Here P denotes the space of polynomial functions $\mathbb{R} \rightarrow \mathbb{R}$, and $C[a, b]$ denotes the space of continuous functions defined on the closed interval $[a, b]$.]
(a) $V=\mathbb{R}^{4}, W=\left\{\mathbf{x} \in \mathbb{R}^{5}: x_{1}+x_{2}+x_{3}+x_{4}+x_{5}=0\right\}$.
(b) $V=\mathbb{R}^{5}, W=\{p \in P: \operatorname{deg} p \leq 5\}$.
(c) $V=C[0,1], \quad W=C[-1,1]$.
(d) $V=C[0,1], W=\{f \in C[0,1]: f(0)=0, f$ continuously differentiable $\}$.
(e) $V=\mathbb{R}^{2}, W=\{$ solutions of $\ddot{x}(t)+x(t)=0\}$.
(f) $V=\mathbb{R}^{4}, \quad W=C[0,1]$.
(g) (Harder:) $V=P, W=\mathbb{R}^{\mathbb{N}}$.
5. (i) If α and β are linear maps from U to V show that $\alpha+\beta$ is linear. Give explicit counter-examples to the following statements:
(a) $\operatorname{Im}(\alpha+\beta)=\operatorname{Im}(\alpha)+\operatorname{Im}(\beta)$;
(b) $\operatorname{Ker}(\alpha+\beta)=\operatorname{Ker}(\alpha) \cap \operatorname{Ker}(\beta)$.

Show that in general each of these equalities can be replaced by a valid inclusion of one side in the other. (ii) Let α be a linear map from V to V. Show that if $\alpha^{2}=\alpha$ then $V=\operatorname{Ker}(\alpha) \oplus \operatorname{Im}(\alpha)$. Does your proof still work if V is infinite dimensional? Is the result still true?
6. Let

$$
U=\left\{\mathbf{x} \in \mathbb{R}^{5}: x_{1}+x_{3}+x_{4}=0,2 x_{1}+2 x_{2}+x_{5}=0\right\}, \quad W=\left\{\mathbf{x} \in \mathbb{R}^{5}: x_{1}+x_{5}=0, x_{2}=x_{3}=x_{4}\right\}
$$

Find bases for U and W containing a basis for $U \cap W$ as a subset. Give a basis for $U+W$ and show that

$$
U+W=\left\{\mathbf{x} \in \mathbb{R}^{5}: x_{1}+2 x_{2}+x_{5}=x_{3}+x_{4}\right\}
$$

7. Let $\alpha: U \rightarrow V$ be a linear map between two finite dimensional vector spaces and let W be a vector subspace of U. Show that the restriction of α to W is a linear map $\left.\alpha\right|_{W}: W \rightarrow V$ which satisfies

$$
\mathrm{r}(\alpha) \geq \mathrm{r}\left(\left.\alpha\right|_{W}\right) \geq \mathrm{r}(\alpha)-\operatorname{dim}(U)+\operatorname{dim}(W) .
$$

Give examples (with $W \neq U$) to show that either of the two inequalities can be an equality.
8. (i) Let $\alpha: V \rightarrow V$ be an endomorphism of a finite dimensional vector space V. Show that

$$
V \geq \operatorname{Im}(\alpha) \geq \operatorname{Im}\left(\alpha^{2}\right) \geq \ldots \quad \text { and } \quad\{0\} \leq \operatorname{Ker}(\alpha) \leq \operatorname{Ker}\left(\alpha^{2}\right) \leq \ldots
$$

If $r_{k}=\mathrm{r}\left(\alpha^{k}\right)$, deduce that $r_{k} \geq r_{k+1}$ and that $r_{k}-r_{k+1} \geq r_{k+1}-r_{k+2}$. Conclude that if, for some $k \geq 0$, we have $r_{k}=r_{k+1}$, then $r_{k}=r_{k+\ell}$ for all $\ell \geq 0$.
(ii) Suppose that $\operatorname{dim}(V)=5, \alpha^{3}=0$, but $\alpha^{2} \neq 0$. What possibilities are there for $\mathrm{r}(\alpha)$ and $\mathrm{r}\left(\alpha^{2}\right)$?
9. Let $\alpha: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the linear map given by $\alpha:\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right) \mapsto\left(\begin{array}{lll}2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2\end{array}\right)\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)$. Find the matrix representing α relative to the basis $\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right),\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$ for both the domain and the range. Write down bases for the domain and range with respect to which the matrix of α is the identity.
10. Let U_{1}, \ldots, U_{k} be subspaces of a vector space V and let B_{i} be a basis for U_{i}. Show that the following statements are equivalent:
(i) $U=\sum_{i} U_{i}$ is a direct sum, i.e. every element of U can be written uniquely as $\sum_{i} u_{i}$ with $u_{i} \in U_{i}$.
(ii) $U_{j} \cap \sum_{i \neq j} U_{i}=\{0\}$ for all j.
(iii) The B_{i} are pairwise disjoint and their union is a basis for $\sum_{i} U_{i}$.

Give an example where $U_{i} \cap U_{j}=\{0\}$ for all $i \neq j$, yet $U_{1}+\ldots+U_{k}$ is not a direct sum.
11. Let Y and Z be subspaces of the finite dimensional vector spaces V and W, respectively. Show that $R=\{\alpha \in \mathcal{L}(V, W): \alpha(Y) \leq Z\}$ is a subspace of the space $\mathcal{L}(V, W)$ of all linear maps from V to W. What is the dimension of R ?
12. Recall that \mathbb{F}^{n} has standard basis $\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}$. Let U be a subspace of \mathbb{F}^{n}. Show that there is a subset I of $\{1,2, \ldots, n\}$ for which the subspace $W=\left\langle\left\{\mathbf{e}_{i}: i \in I\right\}\right\rangle$ is a complementary subspace to U in \mathbb{F}^{n}.
13. Suppose X and Y are linearly independent subsets of a vector space V; no member of X is expressible as a linear combination of members of Y, and no member of Y is expressible as a linear combination of members of X. Is the set $X \cup Y$ necessarily linearly independent? Give a proof or counterexample.
14. Show that any two subspaces of the same dimension in a finite dimensional real vector space have a common complementary subspace.
15. Let T, U, V, W be vector spaces over \mathbb{F} and let $\alpha: T \rightarrow U, \beta: V \rightarrow W$ be fixed linear maps. Show that the mapping $\Phi: \mathcal{L}(U, V) \rightarrow \mathcal{L}(T, W)$ which sends θ to $\beta \circ \theta \circ \alpha$ is linear. If the spaces are finite-dimensional and α and β have rank r and s respectively, find the rank of Φ.

