IWASAWA ALGEBRAS

SIMON WADSLEY

LECTURE 1
1. INTRODUCTION
Recall the following famous result in Number Theory.

Theorem 1.1. Suppose that p is a odd prime. If z,y and z are integers such that
P + yP = 2P then xyz = 0.

One possible approach to trying to prove this is to begin by factorising the
equation in Q[¢,] where ¢, = ¢*™/P denotes a primitive p-th root of 1 in C.

Before we discuss this we should recall some notation. If F' is a finite field
extension of Q then its ring of integers is denoted Op. A fractional ideal in F' is
then a non-zero finitely generated Og-submodule of F'. If I and J are two fractional
ideals then their product IJ = {>_z;y; | ®; € I,y; € J} is a fractional ideal. Since
Or is a Dedekind domain the set of fractional ideals of F' forms an abelian group
with respect to this product.

The ideal class group Cp = Cl(OFp) (also known as the Picard group of OF)
is then defined to be the group of fractional ideals in F' modulo the subgroup
of principal fractional ideals. Although any abelian group can arise as the ideal
class group of a Dedekind domain, C1(OF) is known to always be finite. When
Cl(OF) =1, O is a UFD.

In 1850 Kummer was able to prove that if Cq(c,) has order coprime to p then
Theorem 1.1 is true. However there are infinitely many primes where this is not
the case (the first being 37). These latter are known as the irregular primes.

In the 1950s Iwasawa studied the following situation. For an odd prime p he
considered for each n > 1 a primitive p™-root of 1 called (,» and then defined
F,, = Q(({pn+1) giving a tower of Galois extensions over Q,

FhCckHC---CF,C---.

Given o € Gal(F,,/Q), o((pn+1) = ;‘n(ﬂ for some x(0) € (Z/p"T1Z)*. This defines
a group homomorphism
Xn: Gal(F,/Q) — (Z/p"Z)*.

It can be shown that for each n, O, = Z[(,n+1], Fy, is Galois of degree p"(p — 1)
over Q and each x,, is a group isomorphism.

Taking F., = |J F}, then F,/Q is an infinite Galois extension with Galois group
G =Gal(Fo /Q) = yLnGal(Fn/Q) and the x,, patch to an isomorphism x: G — Z
called the cyclotomic character. Here Z,, = gn Z/p™Z as rings and Z;=2Z,xCp
as groups.

The question that Iwasawa addressed is how the groups A4,, = CFp, [p°], that is

the Sylow p-subgroups of the ideal class groups, grow with n in the tower.
1
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Theorem 1.2 (Iwasawa, 1958). For any prime p, there are natural numbers A, p
and c such that for any sufficiently large n

log, [An] = An + up" +c.

For each n the action of G,, = Gal(F,,/Q) on F,, induces an action of G, on CF,
and so on A,. That is we may view A, as a Z[G,]-module. Since A, is a finite
abelian p-group this action factors through (Z/p"NZ)[G,] for N sufficiently large
and so even Zy[G,,] acts on A,

Now there are norm maps A,, — A, for m > n coming from

I I I
UEG&I(FWL/Fn)
These make Ay, = lim A, into a module over the Iwasawa algebra Z,[[G]] =
Nm Z,, [Grn] = Zp[[T))[Cp-1]- Here A = Z,[[T]] is a power series ring in one variable
over Zj,. In particular it is a commutative Noetherian integral domain of dimension

2.

Fact 1.3. Using class field theory one can show A is finitely generated and torsion
as a A-module.

One can also prove the following using commutative algebra.

Proposition 1.4. If M is a finitely generated torsion A-module M there is a A-
module map

t s
M= @A/ Ao @A/ fiA
i=1 j=1

with finite kernel and cokernel where the a; € N and the f; are monic elements of
Z,[T].

Then to prove Theorem 1.2 we take M = A, in the Proposition and then
pw=> a; and A =) deg f;. The idea is that because A is so well-behaved studying
A is easier than directly studying each of the pieces A, that make it up. But
then A,, can be recovered from A...

One can play similar games with more general families of field extensions or
covering spaces and the action of related Galois groups on cohomology groups
associated to the these extensions/covernings.

In this course we will focus on the algebraic (and p-adic analytic) background to
this kind of arithmetic set up which turns out to be interesting from a ring-theoretic
and representation theoretic point of view apart from the arithmetic applications;
i.e. we will be more interested in results like Proposition 1.4 than Fact 1.3.

I should note that almost all the material in this course and more can be
found in Lazard’s monumental paper ‘Groupes analytiques p-adiques’ Publications
Mathématiques de I'THES, Volume 26 (1965), p. 5-219.

To prepare the lectures I've also used an exposition of Lazard’s material by
Schneider in his book p-adic Lie groups published by Springer in 2011, and unpub-
lished lecture notes by Ardakov for a similar course to this one given in Oxford in
2016.
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2. FILTRATIONS
2.1. Ring filtrations.

Definition 2.1. A (descending) filtration on a ring R is a function
v: R — RZYU {00}

such that for all r, s € R:
(a) v(r —s) = min(v(r),v(s));
(b) v(rs) = v(r) +v(s);
(¢) v(1) =0 and
(d) v(0) = oo.

We say that the pair (R,v) is a filtered ring. We say that the filtration v is
separated if v (c0) = {0}.

Remarks 2.2.
(1) Notice that condition (c¢) in Definition 2.1 follows from condition (b) unless
v(r) = oo for all r € R.

(2) Similarly condition (d) in Definition 2.1 follows from condition (b) unless v(r) =
0 for all r € R.

Example 2.3. Let p € Z be prime and let v,: Z — RZ° U {00} be given by
vp(n) = sup{k € Ny | p* divides n}.
Then (Z,v,) is a separated filtration.

LECTURE 2

Exercise 2.4. Suppose that M, (R) denotes the ring of n x n matrices with coef-
ficients in a filtered ring (R,v) and let v, : M, (R) — R>° U {cc} be given by
vn(A) = min {v(A;)}.
n

1<4,5<

s

Show that v, is a filtration on M, (R). Moreover v, is separated if and only if v is
separated.

Remark 2.5. For any filtered ring (R, v) there is a family of two-sided ideals of R
given by (Ry = {r € R | v(r) 2 A})xer>o. This family satisfies the following three
conditions:
RO = R;
Ry = (1) Ry for all A € R*°
pn<A
and
RAR, C Ry, for all A\, € R?°.

In fact any family of additive subgroups (Rx)scgr>o of R satisfying these three
conditions corresponds to a filtration on R via v(r) = sup{\ € R*? | r € R)}.

Example 2.6. Let M denote the free monoid on X and Y so that elements of M
consist of finite (possibly empty) strings w of Xs and Y's and the binary operation
is given by concatenation. We write ¢(w) for the length of a string w so

LX) =4£(Y)=1 and ¢(uv) = £(u) + £(v) for any two strings u,v € M.
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Let Z[M] denote the free associative ring on two generators so that Z[M] may
be viewed as a free Z-module on M and multiplication is given by the Z-bilinear
extension of multiplication in M. Let v: Z[M] — RZ% U {co} be given by

v ( Z cmm> = inf ¢(m)

meM

where the infinum is taken over the (finite) set of m such that ¢,, # 0.! Then v is
a separated filtration on Z[M].

Definition 2.7. If (R,v) and (S, w) are filtered rings then a morphism of filtered
rings from (R, v) to (S, w) is a ring homomorphism f: R — S with w(f(r)) > v(r)
for all r € R.

2.2. Topology and completion. A filtration v on a ring R induces a topology on
R; a subset of R is open if and only if it is a union of cosets r + R). This makes R
into a topological ring — that is the addition and multiplication maps R X R = R
are both continuous. Moreover if f: R — S is a morphism of filtered rings (R, v)
to (S,w) then f is continuous with respect to the induced topologies.

Definition 2.8. The completion of a filtered ring (R, v)

R=lmR/Ry =< (r + Raserzo € [[ B/Ba|(Vu < Nra+ Ry =r,+R,
AER>0

is a ring when equipped with pointwise operations. Moreover there is a natural ring

homomorphism R — @R/RA given by r +— (r + R)y).

We say that a filtered ring (R,v) is complete if the natural map R — Ris a
isomorphism.

Exercise 2.9. Show that R has a separated filtration
U((ra + Ra)azo) = inf{\ | rx &€ Ry} = v(r,) whenever r, & R,

with respect to which it is complete. Show moreover the natural map tg: (R,v) —
(R, ) is then a morphism of filtered rings and ¢y is injective precisely if v is sepa-
rated.

Examples 2.10.

(1) If R = Z with the p-adic filtration then R is the ring of p-adic integers Z,

(2) If R = Z[M] with M the free monoid on X and Y with the filtration given
in Example 2.6 then R is isomorphic to the Magnus algebra 9t of associative
(not commutative) formal power series in X and Y with coefficients in Z.
Elements of 9 are formal sums ),/ c¢nm and M, = {3 Cmm | ¢ =
0 whenever ¢(m) < n}.

meM

2.3. Associated graded rings.

Definition 2.11. An (R?°)-graded ring is a ring A equipped with a decomposition
A= @P,cr>o Ax as a direct sum of abelian groups such that AxA, C Axy, for all
A\ € RZ0,

IRecall inf ) = oo.
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Definition 2.12. If (R,v) is a filtered ring let Ry+ = {r € R | v(r) > A} and
gry R = R)/Ry+ for A > 0. The associated graded ring is the graded ring

grR = @ gry R
AER>0

with multiplication the bilinear extension of
gry R xgr, R—gry,, R;

(r+ Ry+)(s + Ruy) =18+ Riagpy+-

LECTURE 3
Example 2.13. If Z is given the p-adic filtration then
grZ = Gﬁionti =F,[f]
where ' has degree i.

Proof. (Z)y = (p") whenn —1 < A <nsogry,Z=0for A ¢ Z2° and gr,, Z =
(p™)/(p"*1) for n € ZZ°. Moreover if t = p+(p)? € (grZ),+ then t" = p"+(Z),+ €
gr,, Z is non-zero. ]

Definition 2.14. If A = ®)cg>0A4) and B = @)cr>0B) are graded rings. Then
f+ A— B is a graded ring homomorphism if it is a ring homomorphism such that
f(Ay) C B, for all A € R*°.

Exercise 2.15. Prove that for any filtered ring (R, v) there is an isomorphism of
graded rings gr R = gr R. In particular gr Z, = F,[t].
Exercise 2.16. Show that if (R,v) is a filtered ring and M, (R) is given the

filtration v, given in Exercise 2.4 then there is an isomorphism of graded rings
gr M, (R) = M, (gr R).

Notation 2.17. If (R,v) is a filtered ring and 7 € v=1(R>?) then we’ll write
o(r) =r+ Rypy+. If v(r) = oo then we write o(r) = 0. We call o(r) the symbol of
rin gr R.

2.4. Filtrations on groups.

Definition 2.18. A filtration on a group G is a function w: G — R~ U {co} such
that, for all z,y € G,

(a) w(zy ') > min(w(z),w(y));
(b) w(z™lyay) > w(z) +w(y).
A filtered group is a group G equipped with a filtration w.

Lemma 2.19. Suppose that (G,w) is a filtered group. Then
(i) w(eg) = oo; and for all z,y € G

(ii) w(@) = w(z™");

(iii) w(y ™ ay) = w(z);

(iv) w(zy) = min(w(z),w(y)) whenever w(zx) # w(y);

(v) if H is a subgroup of G then w restricts to a filtration on H.
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Proof. (i) Take © = y = eg in Definition 2.18(b) to get w(eg) = 2w(eg) > 0. So
w(eg) = 0.

(ii) Take x = eg in Definition 2.18(a) to get w(y 1) = min(w(eg),w(y)) = w(y)
and use symmetry.

(iii)

wly ley) = wlz(@ly ay))
> min(w(z!),w(@ 'y oy) (Definition 2.18(a))
> min(w(z),w(z) + w(y)) = w(z). (Definition 2.18(b) and part (ii))

Thus w(ghg™!) > w(h) for all g,h € G. So writing z = y~*(yzy~ ')y we see
w(z) > w(yay).
(iv) WLOG w(z) > w(y). Then
w(y) > minw(e ), w(@y)) > min(w(e), w(y) = w(y).
(v) is immediate. O

Definition 2.20. As for ring filtrations we say that a filtration w is separated if
w™l(00) = {ec}-
Proposition 2.21. Suppose that (R,v) is a filtered ring. Let
G={x € R|xis aunit and v(z — 1) > 0}.
Then G is a group under the ring multiplication and
w:G—=RPU{c0};  w(x)=v(x—1)
defines a filtration on G. Moreover w is separated if v is separated.

Proof. First v(l —1) =v(0) =0 so 1 € G.
Next if z,y € G then as

eyt —l=(e-1)—(y—1)—(zy ' =1y —1)
we see that
v(zy~t—1) = min(v(z—1),v(y—1),v(zy~ ' —1)+v(y—1)) = min(v(z—1),v(y—1))
sozy~! € G and w(xy™!) > min(w(z),w(y)). Similarly
ey ey — 1= 2y (@ - Dy — 1) — (y— Dz — 1)
gives w(z 1y lzy) > w(z) + w(y). The last part is immediate. O

Example 2.22. M,(Z,) has a separated filtration on it induced from the p-adic
filtration on Z, as in Exercise 2.4. This induces a separated filtration on

GLL(Z,) = ker(GLu(Z,) = GL.(F)
via Proposition 2.21.
Notation 2.23. Given a filtered group (G,w) and A > 0 we write
Gy = {zeGlw(x)> A} and
Gy+ = {zeGlw(x)> A}

Lemma 2.24. For any filtered group (G,w) and A > 0, G and Gy+ are normal
subgroups of G. Moreover Gy /Gx+ is contained in the centre of G/G\+.
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Proof. The statements that G and G+ are normal subgroups of G follow imme-
diately from Exercise 2.19. For the last part we see that for any z,y € G

1

w(a™ly oY) > w(@) +w(y) > w@)

sox ty lzy € Gyt and 2yGyz)+ = YyrGyz)+ i€ TG )+ is central. O

It is also straightforward to see that
(a) G= U)\>O Ga
(b) 27 'y tay € Gyyy, for all z € Gy and y € G, with A\, u € R>Y and
(¢) Gx=[,crGp forall A € R>C.
Moreover any family (Gx)aer>0 of subgroups of G satisfying properties (a)-(c)
determines a filtration on G via w(x) = sup{\ | z € G, }.2

LECTURE 4

Aside on group commutators. We recall some general group theoretic facts. For
x,7 in a group we write ¥ = y~lxy for the conjugate of x by y (on the right) and
(r,y) = 2~y tay = v~ 12Y for the commutator of z and y.

Exercise 2.25. Suppose that G is a group and z,y,z € G.
(1) (zy,2) = (z,2)"(y, 2);

(2) (z,y2) = (z,2)(z,y)%

(3) (2, (¥, 2)(¥*, (2,2)) (2%, (2,9)) = eq-

Notation 2.26. If G is a group and H and K are subgroups of G we write (H, K)
to denote the subgroup of G generated by commutators (h,k) with h € H and
ke K.

Definition 2.27. The lower central series for G is defined recursively: v1(G) = G;
Y (G) = (G, yn—1(Q)) for n > 2. We say that G is nilpotent if there is some n > 1
such that v, (G) = {ec}.

Exercise 2.28. Show that w: G — R>%U{oco} given by w(z) = sup{n | z € v,(G)}
defines a filtration on G. Show moreover that 7,41(G) is the smallest normal
subgroup of G such that v, (G)/vn+1(G) is contained in the centre of G/v,+1(G)
for all n > 1.

Theorem 2.29. [Hall-Petrescu Formula; P. Hall 1932, Lazard 1953] Let G be a
group, x,y € G and n € N. Then

"yt = (y) ey es” e _yn
for some ¢; € v;,(G)

Exercise 2.30. Verify this for n < 4.

2Sornething similar is true for the family G+ .
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2.5. The associated graded Lie algebra of a filtered group. In this section
we suppose that G is a group equipped with a filtration w.

Definition 2.31. The associated graded group of G
gG= P GGy
AeR>0

We will write gry G for the A\-component G /G + of grG.

Notation 2.32. As for associated graded rings for g € w™1(R>?), we write o(g) =
9Gu(g)+-

We note that by Lemma 2.24 each component gry G is an abelian group. Thus
we may view itself gr G as an abelian group. The goal of this section is to explain

how to give gr G the structure of a Z-Lie algebra in a way that only depends on
the pair (G,w). Moreover the Lie bracket

[,—]: erG xgrG — gr G
will respect the grading in the sense that [a,b] € gr),, G whenever a € gry G and
b € gr, G. We will say that grG is a graded Lie algebra.?

Definition 2.33. For any A, > 0 let
[—,—]: gry G xgr,G—eryy, G

be given by
G+, yG ] = (2,9)Gagpt-

Proposition 2.34. The Z-bilinear extension of [—, —| to gr G makes gr G into an
Z-Lie algebra.

Proof. First we check that [—,—] is well-defined on grG. Suppose that G+,
yG,+ are homogeneous elements of gr G. Then (x,y) € Gy, by condition (b) for
a filtration on a group. Moreover if [ € G and m € G, then

(l,y) = (2,9)'(1,y) € (2,9) (1Y) s+
and
(.23, ym) = (.13, m)(x, y)m € ($7 y)(x, rrn)G)\Jr;LJr
by Exercise 2.25 and the centrality of Gzy,/Gyy,+ in G/Gyy,+ (Lemma 2.24).
Moreover (I,y) € Gy ,+ (resp. (z,m) € Gyyp,+) if I € Gyt (vesp. m € Gt ).
Thus each map gry G x gr, G — gry,, G is a well defined Z-bilinear map.
Next we see that

[o(x),0(x)] =0
since (x,z) = eg and
[0(2), 0(y)] = =[o(y), o(2)]
since (z,9)~! = (y,z). Thus [—, —] extends to an alternating Z-bilinear form on
grG.

Suppose now that additionally z € G. Then the Jacobi identity

[0(z),[o(y),0(2)]]l + [0(y), [0(2),0(2)]] + [0(2), [o(x), o ()] = O
holds on homogeneous elements by Exercise 2.25(3) and Lemma 2.19 and thus by
multilinearity on the whole of gr G. (]

8VVarning: this isn’t always what is meant by this term!
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Exercise 2.35. Let R be a commutative ring and let G denote the group of 3 x 3
upper-unitriangular matrices with entries in R

1 = =z
G = 01 y||xz,y,z€R
0 0 1

equipped with the filtration coming from the lower central series as in Exercise 2.28.
Show that G is nilpotent and gr G is an R-Lie algebra RX & RY @ RZ (free of rank
3 as an R-module) with

gry G =RX ®RY and gr, G = RZ,
[X,Y]=Z and [X,Z] = [V, Z] = 0.

Exercise 2.36. Suppose now that R = Z, and

1 =z =z
G= 0 1 y||xvyz2€pR
0 0 1

with the filtration w induced by restricting the one in Example 2.22.
Show that gr G = @pengr,, G is an gr Z, = F[t]-Lie algebra,

gr, G=Fpt"X @ Fpt"Y @ Fpt"Z forn > 1

with tX,tY and tZ free generators all of degree 1, [tX,tY] = t*Z and [tX,tZ] =
[tY,tZ] = 0.

LECTURE 5
3. p-VALUED GROUPS

3.1. Definitions and basic properties. We will be most interested in special
filtrations of groups called p-valuations. The reason for this will become apparent
later.

Definition 3.1. Let p be a prime. A separated filtration w on a group G is called
a p-valuation if for all g € G

(a) w(g) > p%l and

(b) w(g”) = w(g) +1.

Lemma 3.2. If G has a p-valuation w then for all A > 0
(i) Gx/Gx+ has exponent p;

(i) G/Gy is a p-group and

(iii) G is torsion-free.

Proof. (1) Suppose gGy+ € G5/Gx+. Then w(g) =2 A so w(g?) > A+ 1> X and so
(9Gr+)P =e.

(ii) Choose n € N such that n > X. For any g € G, w(g?") = w(g) +n > X. So
(gG,\)p” =1

(iii) Suppose for contradiction that g € G\{e} and ¢g" = e. Write n = p®m for
(m,p) = 1. Then w(g”") = w(g) + a < co. So we may choose p > w(g?")

Now (gP")™ = e so, as G/G,, is a p-group and (m, p) = 1, we see that gpaGu =G,
ie g?" € G, and w(gP") > p contrary to the choice of . a
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Exercise 3.3. Show that if w is a p-valuation on G and g € v,(G) then w(g) >
n/(p —1). Show moreover that if g € v,(< x,y >) and n > 2 then w(g) >
a1 + max{w(x),w(y)}

Proposition 3.4. Suppose that (R, v) is a separated filtered ring such that v(pr) =
v(r)+1 for allr € R and that (G,w) is obtained from (R,v) as in Proposition 2.21.
Then w restricts to a p-valuation on Gy@p—1)+-

Proof. That w restricts to a separated filtration on Gy /(,_1)+ satisfying condition
(a) for a p-valuation is immediate from Proposition 2.21.
Suppose that = € Gy /,—1)+. We must show w(z?) = w(z) + 1. Now

xp—1:(1+(m—1))1’—1:§p:<§>(x_1)i

i=1
But v(p(z — 1)) =w(z)+ land for 2<i<p—1

v ((];)(x— 1)i> =1+w (p*(];)(a:— 1)1') > 1 +iw(z) > w(r) + 1.

Finally v((z — 1)P) > pw(z) > w(z) + 1.* Thus w(z?) = v(a? — 1) = w(z) + 1 as
required. (|
Example 3.5. Recall the filtration on GL},(Z,) as in Example 2.22. For p > 2,
GLy(Zp)r(p-1y+ = GLy(Zy)
so this group has a p-valuation on it. For p =2
GLZ(Z,) = ker (GL,(Z,) — GL,(Z/p*Z))
has a p-valuation on it.

Since it is easy to verify that the restriction of a p-valuation to a subgroup is a
p-valuation on the subgroup it follows that any subgroup of GL.(Z,) can be given
a p-valuation for p odd and likewise any subgroup of GL%(ZP) when p is even. In
particular in Exercise 2.36 the given w is a p-valuation on the given group G.

3.2. Finite rank p-valued groups.

Lemma 3.6. Suppose that G is a group with a p-valuation w. Let x,y € G, n € N
and w(y) > w(x), then the following hold:

(a) w(y Pz"P(zy)?) > w(y) + 1; and

(b) wxz P y*") =w(x ly) +n for alln > 0.

Proof. (a) By the Hall-Petrescu formula (Theorem 2.29), there are ¢; € v;(< z,y >)
for 2 < i < p such that

y P ayy = e,
Now by Exercise 3.3, for each 2 <i<p—1
w(e;) > w(y) and

w(ep) > wly) + 1.

4this last inequality is equivalent to w(z) > T
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Thus
w (cgg) -~-c§_1cp> > w(y)+1

since v,((?)) = 1 for 2 <i < p.
(b) An inductive argument reduces us to the case n = 1. Note that

w(z™y) > w(@)

so we may apply (a) to the pair (x,27'y) and see that
w((@™ly) PeTPY?) > weTly) +1=w (@7 y)P).
So by Lemma 2.19(iv) w(z™1y) + 1 = w((x~1y)P) = w(z"PyP) O
Proposition 3.7. If (G,w) is a p-valued group there is a family of well-defined
group homomorphisms
Py:gryG—gry,, G
given by Py(xGx+) = 2PGyy1+.
Moreover if a € gry G and b € gr, G then [Pxa,b] = Pxy,[a,b].

Proof. If z,y € Gy then zP,yP, (zy)? € Gxry1 and (zy)PGri1+ = 2PyPGry 1+ by
Lemma 3.6(a). Moreover if y € G+ then y? € Gy 1+. Thus each Py is a group
homomorphism.

Let a = xGy+ #0 and b = yG,+ and set v = A + p + 1 then

[Pa,b] = (2P, y)G,+
and
P[a7b} = (xvy)pGqu'
Now (2P,y) = x P (aP)¥ = 2 P(2¥)?. So we must show
(@9) P PGP G
Now w(z) = w(z¥) = X and w((z,y)) = A+ p > w(x). Since z(x,y) = z¥ we may
use Lemma 3.6(a) this time applied to the pair (z, (z,y)) to deduce the result. O

We will write P for the degree 1 operator on gr G given by @&Py. Recall that
F,[t] can be viewed as the graded ring gr Z,, where Z,, is given the p-adic filtration
so that ¢t has degree 1.

LECTURE 6

Corollary 3.8. If (G,w) is a p-valued group then gr G is naturally a graded F[t]-
Lie algebra where t acts by P and has degree 1.

Proof. grG is a graded Z-Lie algebra by Proposition 2.34. By Lemma 3.2 it has
exponent p as an abelian group so is a graded F,-Lie algebra. Proposition 3.7 shows
that defining ta = P(a) for a € gr G is a degree 1 operator such that t[a, b] = [ta, b]
for all a,b € grG. Thus p(t)[a,b] = [p(t)a,b] for all p(t) € F,[t] and a,b € grG.
Since [—, —] is alternating it follows that it is F,[t]-bilinear. O

Lemma 3.9. grG is torsion-free as an Fp[t]-module.
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Proof. Suppose that 0 # ¢(t) € F,[t] and 0 # a € gr G. We wish to show ga # 0.
We can write ¢(t) = > -, ¢;t" with ¢; € F,, and ¢, # 0 and a = >, a, a finite
sum with ay € gry G. If p is largest with a, # 0 then the degree p + m part of
ga is gmt™a,,. Since gr G is a p-group and ¢, € F,\0, it thus suffices to show that
t™a, # 0 ie that ¢ acts injectively on grG.° Now if a, = Gt then w(z) = p
and ta, = Pa, = 2G| 1+. But w(z?) = w(z) + 1 since w is a p-valuation. Thus
Pa,, # 0 as required. O

Definition 3.10. We say that a p-valued group (G,w) has finite rank if gr G is
finitely generated as an F,[t]-module. The rank of (G,w) is then the minimal
number of generators of gr G over F,[t]

Example 3.11. The computation in Example 2.36 shows that the pair (G, w) there
has rank 3.

Note that the structure theorem for modules over a principal ideal domain to-
gether with Lemma 3.9 gives that if (G, w) is finite rank then gr G is in fact a free
F,[t]-module of the same rank.

Exercise 3.12. Show that if (G,w) has finite rank then gr G is free as a graded
F,[t]-module. That is there are A1,..., A, > 1/(p —1) and z; € G, such that

grG = @i | Fytle, G, +.
Lemma 3.13. Suppose that (G,w) is a finite rank p-valued group and g1,...,g4 €

G such that {o(g1),...,0(ga)} spans gr G as an F,[t]-module.

(a) For all x € G\{e} there are integers n1,...,ng such that w(g;) +vp(n;) = w(z)
whenever n; # 0 and o(x) = o(g7" -+ - g;*).
(b) w(G\{e}) is a discrete subset of R.

Proof. (a) Let z € G\{e} so that o(z) € grG\{0}. There are homogeneous el-
ements uq,...,uq € F,[t] not all zero such that o(z) = Z?Zl u;o(g;). Moreover
when u; # 0 then we may assume degu; +w(g;) = w(x). For each i we may choose
n; € Z such that u; = o(n;) and then, whenever n; # 0,

w(g}") = w(g) + deg(u;) = w(z).

Moreover

ooy - 9q") =D olgf) = Zum(gi) = o(x).

?

(b) It follows from (a) that for x € G\{e}, w(z) € (w(g1) +N)U---U(w(gq) + N)
which is a discrete subset of R. O

Notation 3.14. If (R,v) is a complete filtered ring and (r,),>0 is a sequence in
R such that v(r,) — co as n — oo then identifying R with R we write

Zrn = <27ﬂn+R)\>
n=0 A>0

n=0

=

where the m) are chosen so that v(r,) > X for all n > m.

5Note that the argument so far works for any graded Fp[t]-module.
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Exercise 3.15. Show that if r,, and s,, are two such sequences then so are (r,, + s,,)
and (Ziﬂ.:n sir;). Moreover

ZT" + an :Z(rn+sn)

n>0 n>0 nz=0
and

o) (Zo) -2 [ 32 s

n>=0 n>=0 n=>0 \i+j=n

Example 3.16. Suppose that p > 2 and G = GL}(Z,) with the p-valuation w
given in Example 2.22. Note that w in N-valued in this case and thus grG is
N-graded. Moreover for each m € N

Gm ={9€G|wlg) Z2m} ={A e Mu(Zy) |v(A=1)Zm} =1+p"M,(Zp)
since (I +p™A) = ZiEO(fpmA)i. Note moreover that if £ € M, (Z,)
(I+pmA+an+1E)(I+anA)_1 _ I+pm+1E/

for some E' € M,,(Z,) ie if g,¢' € G,,, are congruent as matrices mod p™*! then
9Gmi1 = ¢'Gma1. Thus we may consider the surjective map

Gm: p" My (Z,) — gr,, G
such that ¢, (p™A) = (1 +p™A)Gp41. Since
(14+p™A)(1+p™B)G i1 = (1+p™ (A+B) +p* " AB) Gy = (1+p™ (A+B))Gy1
we see that ¢, is a group homomorphism with kernel p™ 1 M,,(Z,). Thus ¢ = Sy,
defines an group isomorphism
@m>1pmMn(Zp)/pm+1Mn(zp) —grG.
Now the map p™M, (Z,) - M, (F,) given by p™ A — A+ pM,,(F,) is a surjective
group homomorphism with kernel p™ 1M, (Z,). So we obtain an isomorphism of
N-graded F-spaces
0: tM,(F,lt]) = gr G

given by linear extension of §(t™A) = (I + p™A)G,,+1 where A € M, (Z,) is any
lift of 4 € M, (F,).

We claim that 6 is even as isomorphism of F,[t]-Lie algebras where the Lie
bracket on tM, (F,[t]) is given by [X,Y] = XY - Y X.

LECTURE 7
First we note that, for m > 1 and A € M,,(Z,),
tot"™A) = t-(I+p"A)Gpi1 =T +p"APG 2
= ([+p™ T A)G 2 =0T A)

so 0 is F,[t]-linear.
Next we prove that

0([t™A,t'B]) = [0(t™A), 0(t'B)]
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for [,m > 1 and A, B € M, (F,). By the last calculation it suffices to consider the
case m =1 = 1. That is
6(67),60B)] = (1+pA)'(1+pB)~ (1 +pA)(1 + pB)Gs
(1-pA+p°A*)(1 - pB + p*B*)(1 + pA)(1 + pB)G3
(1-p(A+ B)+p*(A>+ AB+ B?) (1 + p(A+ B) + p’AB)) G5
= (1+p(A+B—-A-B)+p*(A*+24AB+ B? — (A+ B)*)G3
(1+p*(A%* +2AB + B* — (A + AB + BA + B?)))G3
(1+p*(BA — AB))G3

= 0([tA,tB])
Thus we see that gr G 2 tgl, (F,[t]) has rank n? as an F,[t]-module.

Exercise 3.17. Show that if (G,w) is a finite rank p-valued group and H < G is
a subgroup then (H,w|p) is a finite rank p-valued group.

3.3. Complete p-valued groups. As for filtered rings, we can define a topology
on a filtered group.

Definition 3.18. If (G,w) is a filtered group we give G a topology by declaring a
subset open if and only if it is a union of cosets of the from gG, with A > 0.

This makes G into a topological group; i.e. the multiplication map G x G — G
(g,h) — gh and the inversion map G — G; g — g~! are both continuous.®
We can also define the completion of a filtered group.

Definition 3.19. If (G,w) is a filtered group then its completion

G =1im G/Gy = {(9G)rs0 € [[ G/Gr | 2Gy = g4, for all < A}.
A>0 A>0

We say that G is complete if the natural group homomorphism
G —G; g (9Ga)as0
is an isomorphism.
Exercise 3.20.
(1) Show that G has a separated filtration given by
©((grGa)r>0) = infw(gx | gx & G)

with respect to which it is complete.

(2) Show that the natural map G — G is injective if and only if w is sepa-
rated. ShovAv that moreover that this map always induces a natural isomorphism
erG — grG.

(3) Show that if (R,v) is a complete filtered ring then the filtered group (G,w)
obtained as in Proposition 2.21 is complete.

Example 3.21. For any odd prime p if w denotes the usual p-valutation on
GL}(Z,) then (GLL(Z,),w) is a complete filtered group.

In the remainder of this section (G,w) will be a complete p-valued group.

SHere G x G is given the product topology.
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Lemma 3.22. Suppose that x € G and A\ € Z,,. There is a unique element ™ eqG
such that for each t > 0, 2*Gy = 2 Gy whenever Ay € Z and vy(\ — \) > t.

Proof. Since G is complete with respect to the filtration, the natural map G —
I'&Ht G /Gy is a bijection. Thus it suffices to show that there is a unique element

ixth)Do of @t G /Gy such that z,Gy = 2t Gy for any \; € Z such that v,(A—\;) >

If A, A, € Z such that v,(A — A) >t and v (A — A}) > ¢, then v,(Ay — A)) >t
SO w(x)“_ké) > w(z)+t >t Thus 2MGy = 2 Gy so the coset 2N Gy only depends
on z, A and t. That is there is a unique element (2;G¢):~0 of ], G/G¢ such that
Gy = JJAth for A\; € Z such that ’Up()\ — )‘t) > t.

Now if s > ¢, vp(A — Xs) = s and v,(A — Ay) > ¢ then v,(As — A;) > t and
MGy = 2 Gy, Thus (2G>0 € l'glt>0 G /G as required. O

Definition 3.23. When G is a complete p-valued group and x € G the function
Z,— G\~ x> given by Lemma 3.22 is called p-adic exponentiation.

Remark 3.24. The function A\ — 2* is the unique continuous extension of the
group homomorphism Z — G; n +— z".

Exercise 3.25. For any z € G and \ € Z,, w(z*) = w(z) + v,(\) and that
(@) =a(\) - o(x).

Given any d-tuple (g1,...,94) in a complete p-valued group G we have a contin-
uous map
d
Z,—G
given by

(M, ) r—>gi‘1 ~~gé‘d.

We will often write this as A > g* for A = (A1,...,\q) € Zg. This map is a group
homomorphism if and only if the g; pairwise commute.
Proposition 3.26. Suppose that (g1,...,94) is a d-tuple of non-identity elements
in G. The following are equivalent:
(a) o(g1),---,0(94) € gr G are linearly independent over F[t];
(b) w(g*) = min{w(g;) + vp(Ai)} for any X € Z¢;.
(¢) wl(g")"'g") = min{w(gs) + vp(Ni — 10)} whenever A,y € Z2.

Note that (c) implies (b) is immediate since (b) is the special case where p = 0.

Moreover if (c) holds then the map A +— ¢* is injective since w((g")1gs) < oo
whenever A # p.

LECTURE 8

Proof of Proposition 3.26. Throughout this proof we will write z; = o(g;) for each
i=1,...,d.
Suppose (a) holds and A € Z¢\0. Then

w(g") = min{w(g;")} = min{v, (X)) +w(gi)} = s,
say, by Exercise 3.25.
Writing

0 otherwise,

W@:{menm if w(g)) = s
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we see that at least one u; # 0 and so

Zuixi =g G+ #0

since u;r; = a(gi)‘i) when u; # 0 and the z; are linearly independent over F,[t].
Thus w(g?) = s and (b) holds.

Next suppose that (b) holds and > u;x; = 0 is a linear relation. We wish to
show that all the u; = 0. If not, then s = min{w(g;) + deg(u;)} is finite. Since
the z; are homogeneous we may assume that the w; are also homogeneous and
w(g;) + degu; = s whenever the left-hand side is finite. Let

a;p™ € Zp, when u; = a;t™ # 0
Ai = )
0 otherwise.

Then w(g*) = s by assumption and

Gy = Zuzxz =0
yielding the desired contradiction. Thus (a) holds.
Suppose that (b) holds and A, € Z¢. Then let s = min{w(g;) + vp(X — 1) }-
We compute

<glt)—1g>\Gs+ — g;m{ . .gl—ﬂlgi\l . 'g?ﬁGer

_ —Hd —p2  A1—f1 Ao A
= G9q 92 "% 92" 9q

o A1—p1  pd —p2 A A
= gl gd g2 922...gddGs+

since gf‘ﬁ’“ € G, and G5/Gg+ is central in G/G + by Lemma 2.24. Continuing in
this fashion we see that
(9") ' Gor = g G

By assumption w(g**) = s so (c) holds. O
Definition 3.27. A d-tuple (g1,...,9q) is called an ordered basis for (G,w) if the
map Zg — G; XA+ ¢ is a bijection (and so a homeomorphism since it always
continuous, Zg is compact and G is Hausdorff) and

w(g?) = min{v,(\;) +w(g;)} for all A € Zz.
Theorem 3.28. Let (G,w) be a complete p-valued group and {q1,...,94} C G.
The following are equivalent
(a) {o(91),...,0(g94)} is a free generating set for gr G over F,[t].
(b) (g1,---,94) is an ordered basis for G.

Proof. Suppose first that (b) holds. Then by Proposition 3.26, {o(g1),...,0(g4)}
is linearly independent and we must show that it spans. Consider 1 # g* € G, let
s =w(g") = min{w(g;) + v,(A\;)} and

{ir < <iy}={1<i<d]|w(gM) = s}

Then
s Aiy
U(gk) = gill o .gir CY'SJr = ZU(AlJ)U(g’LJ)
j=1
Thus every homogeneous element of grG is in the span of {o(g1),...,0(gq4)} are

we’re done.
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Conversely suppose (a) holds. By Proposition 3.26 it suffices to show that every
element of G is of the form ¢ with A\ € ZZ. That is if X is the image of the
map Zg — G; A — g* then we must show X = G. Since Zg is compact and G is
Hausdorff, X is closed. Let h # eg be in G. It suffices to show that for all s € R>°
there is z, € X such that z,Gs = hG,.”

We suppose for contradiction that there is some s € R>? such that there is no
x € X with G5 = hG,. Since w(G\{1}) is a discrete subset of R (Lemma 3.13(b))
there is some ¢ < s maximal such that we can find z = ¢* € X with G, = hG.
Since G, # hG,, for all u > t, w(x~1h) = t. Thus by Lemma 3.13(a) there is some
p € Z4 such that g* = 7 1h and w(g!"’) = t whenever u; # 0. Since G¢/Gy+ is
central in G/Gy+ (Lemma 2.24) we obtain

g>\+#Gt+ = g)\g'uGt‘F = th+.

But the discreteness of w(G\{1}) gives that G+ = G for some s > ¢ contradicting
the maximality of ¢. t

Remark 3.29. It follows that any complete p-valued group of finite rank has an
ordered basis and so is compact and Hausdorff.

Exercise 3.30. If (G,w) is as in Exercise 2.36 then the triple of matrices

1 p 0 10 0 10 p
r=10 1 0),y=10 1 p]lz=({0 1 0
0 0 1 0 0 1 0 0 1

form an ordered basis. Rewrite (z1y*2273) - (zP1yH22H3) as ¥1y"22"3 for general

A€ Z;’).
Exercise 3.31. Find an ordered basis for (GL.(Z,),w) where p is an odd prime
and w is an in Example 2.22.

LECTURE 9

Proposition 3.32. Suppose that (g1,...,94) is an ordered basis for G and, for
s €R, let n; =n;(s) =inf{n € No} | ¢ € G,}.
(a) (glfnl,...,ggnd) is an ordered basis for (Gs,w
(b) G/Gs ={g*Gs |0 < \; <p" fori=1...d}.
(¢) |G/Gu| = p .

G.)-

Proof. (a) Since (g1, --.,9gq) is an ordered basis we see that, for A € Zg, g* € Gy if
and only if w(g;) +vp(A;) = s for each 1 < ¢ < d. This is easily seen to be equivalent
to vp(Ai) = n; (that is p™ divides A;) for each such ¢. Thus every element of G can
be written uniquely as (g7 #) with p € Z¢ and n = (n1,...,nq) € N3. Moreover

w(gh") = min{w (gl ") + v (i)}
as required.

(b) & (c) The function {\ € Z¢ | 0 < \; < p™} — G/G sending A to g G,
is a bijection since, for A\, € Z¢, w((g")"tg*) = min{w(g:) + vp(Ai — i)} by
Proposition 3.26, and for all u € Zg there is a unique A € Z% with 0 < \; < p™

and vp(A; — i) +w(gi) > s for all 4. O

7Since then h is in the closure of the set {zs | s € R>0}.
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Corollary 3.33. Any complete p-valued group of finite rank is an inverse limit of
finite p-groups.

Exercise 3.34. If g is an element of an ordered basis for a complete p-valued group
(G,w) then g is not a p-th power in G.

4. UNIVERSAL OBJECTS

We want to recall the construction of some universal objects. First we recall the
definition of a category.

Definition 4.1. A category C is a collection of objects Ob(C) together with a set
of morphisms Home (A, B) for each pair A, B € Ob(C) which have a compostion
rule

Home (A, B) x Home (B, C) — Home (A, C)
for every triple of objects A, B and C written

(f:9) = gof
such that if f € Hom¢(A, B), g € Home (B, C) and h € Home(C, D) then

ho(gof)=(hog)o f;®
and for every object A there is an identity morphism id4 € Hom¢(A, A) such that
idgof = fand goidg =g
whenever these compositions make sense.

Examples 4.2.

(1) Set is the category whose objects are all sets and Homget (4, B) is the set of
functions A — B.

(2) Grp is the category whose objects are all groups and Homayp(G, H) is the set
of group homomorphisms G — H.

(3) Mon is the category whose objects are all monoids (ie sets M with an associa-
tive binary operation and an identity ep;) Hompgon (M, N) is the set of monoid
homomorphisms (ie functions f: M — N such that f(ab) = f(a)f(b) for all
a,b € M and f(ep) = en.

(4) FiltGrp is the category whose objects are all filtered groups (G,w¢g) and
whose morphisms are filtered group homomorphisms; ie a group homomor-
phism f: G — H such that wy(f(g)) > wa(g) for all g € G. CFiltGrp is the
subcategory whose objects are the complete filtered groups and morphisms as
in FiltGrp.

(5) Similary FiltRing and CFiltRing are the categories of filtered rings/complete
filtered rings and filtered ring homomorphisms.

Suppose that k is a commutative ring

(6) Mody, is the category whose objects are k-modules and whose morphisms are
k-linear maps — if k is a field we write Vecty.

(7) Commy, is the category whose objects are all commutative k-algebras and
whose morphisms are all k-algebra homomorphisms.

(8) Assy is the category whose objects are all associative k-algebras and whose
morphisms are all k-algebra homomorphisms.

8 e. composition is associative
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(9) Liey is the category whose objects all all k-Lie algebras and whose morphisms
are all k-Lie algebra homomorphisms.
(10) There are graded versions grMod,,, grComm,,, grAss, and grLie; of Mody,
Commy, Ass; and Liey.

Definition 4.3. Suppose that C and D are categories. A functor F': C — D is a
rule that assigns
e an object FC € Ob(D) to every C € Ob(C) and
e a morphism F(f) € Homp(F(A), F(B)) to every f € Hom¢(A, B)
such that
e F(gf) = F(9)F(f) whenever the compositon gf makes sense.
e F(ida) = idp(a) for every object A in C.
A functor F is faithful if F: Hom¢(A, B) — Homp(F A, FB) is injective for
every pair of objects A, B € Ob(C).

Examples 4.4. In any of the examples of categories above there is a faithful func-
tor C — Set assigning an object to its underlying set and any morphism to its
underlying function. Similarly for any commutative ring there are faithful functors
Comm; — Mody, Assy — Mody and Liey, — Mody sending objects to their
underlying vector spaces and morphisms to their underlying linear maps. There
is also a faithful functor Ass; — Mon sending objects to their underlying mul-
tiplicative monoids and morphism to the underlying function viewed as a monoid
homomorphism. There are also faithful ‘inclusion’ functors CFiltGrp — FiltGrp
and CFiltRing — FiltRing. We call all of these examples ‘forgetful functors’.

Definition 4.5 (Universal property for a free object). Suppose that F': C — D is
a functor between two categories. For any object X in D we say that an object
U(X) in C together with a morphism ¢« € Homp(X, FU(X)) is free on X if for
every object A in C and morphism f € Homp (X, F'A) there is a unique morphism
g € Home(U(X), A) such that f = F(g)t.

We say that a morphism f € Home (A, B) is an isomorphism A — B if there is
g € Home (B, A) such that gf =id4 and fg = idp.

Examples 4.6.

(1) Given a commutative ring k and the forgetful functor Mod), — Set a free
object on a set X is a k-module M together with an injective function ¢: X —
M whose image is a free generating set.” We can construct such a free module
as the set k[X] of functions X — k which take non-zero values at only finitely
many z € X with the natural k-linear structure and ¢: X — k[X] sending x to
the indicator function of z.

(2) In Example 2.6 we constructed the free monoid and the free associative k-
algebra on the set {X,Y}. These constructions generalise to any set.

(3) Given the forgetful functor Ass; — Mon a free-associative k-algebra on a
monoid M is the monoid algebra whose underlying k-module is (k[M],¢), the
free k-module on M and whose multiplication is given by k-bilinear extension of
the multiplication on the basis ¢(M) — t(a)(b) = t(ad) for a,bin M. Note that
¢ can then be viewed as a monoid homomorphism from M to the underlying
monoid of k[M]. In the case that a monoid M happens to be a group this gives
the group algebra of M.

e it is a linearly independent spanning set.
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LECTURE 10

(4) Given the forgetful functors CFiltRing — FiltRing (resp. CFiltGrp —
FiltGrp) a free complete filtered ring (resp. group) on a filtered ring R (resp.
group G) is the completion R (resp. @) together with the natural map R — R
(resp. G — @) The ring case is the content of Example Sheet 1 Q5. The
group case is similar.

Lemma 4.7. If (U(X),t) and (U'(X),!") are both free on X then there is a unique
isomorphism f: U(X) — U'(X) such that ' = F(f)e.

Proof. The universal property for (U(X),¢) applied to the morphsim ¢/ gives a
unique morphism f: U(X) — U’(X) such that ./ = F(f). that we must show is an
isomorphism. Similarly the universal property for (U’(X),:) applied to ¢ gives a
unique morphism g: U(X') — U(X) such that « = F(g)¢. Then

v=F(g)F(f)e=F(gf)e and ' = F(fg)".
The universal property for (U(X),t) applied to ¢ gives that there is a unique mor-
phism A € Hom¢(U(X),U(X)) such that ¢ = he but both F(gf) and idpy(x)
satisfy this equation. Thus F(fg) = idpy(x) = F(idy(x)) so fg = idy(x) since F
is faithful. By symmetry gf = idy/(x) as required. O

Remark 4.8. In general given a functor F: C — D and X € Ob(D), a free
object U(X) on X need not exist but when one does the Lemma tells us that they
are uniquely determined up to unique isomorphism (provided that the morphism
t: X — FU(X) is considered part of the data.

Example 4.9. Given the forgetful functor Ass; — Modg the free associative
algebra on a k-module V' can be constructed as follows. Let T™(V) = V@ e
TO(V) =k, T'(V) =V and T"(V) = T" (V) ®; V for n > 2. Then @, ., T"(V)
is the underlying k-module for the free associative k-algebra k(V) on V and the
multiplication is given by k-bilinear extension of

(v1®...®fun).(wl®...®w7n) = (Ul@""l}n@wl@"‘wm)
and ty: V — k(V) is given by the natural inclusion map V — TH(V) — T(V): if
R is an associative k-algebra and f: V — R is a k-linear map there is a unique
k-algebra map g: k(V) — R such that f = g¢ given by linear extension of

g1 @ - ®@vy) = f(v1) -+ f(vn).
If instead we consider the forgetful functor grAss; — grMody we can construct
the free graded associative algebra on a graded vector space in a similar fashion: if
V = @V, we define a grading on each T"(V) via

"(Vix= P V@V,
A1t FAn =X
Example 4.10. There is a forgetful functor from Ass; — Lie; that sends an
associative k-algebra R to the k-Lie algebra with the same k-module and Lie bracket
[r, s] = rs—sr. Then the free associative algebra on a k-Lie algebra g is the universal
enveloping algebra U(g). This can be constructed by taking the free associative
algebra k(g) on the k-module underlying g and modding out by the ideal generated
by all elements zy — yx — [z,y] for 2,y € g i.e.

Ulg) = k(g)/(zy —yz — [z, 4] [ =,y € g)).



IWASAWA ALGEBRAS 21

The k-Lie algebra map ¢4 is given by the natural map that is the composite
g — k(g) = U(g)-

Exercise 4.11. Show that if g is a graded k-Lie algebra then the grading on k(g)
induces a grading on U(g) making it free on g with respect to the forgetful functor
grAss — grlLie.

Exercise 4.12. Show that if f: A — B is a morphism of rings there is a functor
from Modp — Mod4 that sends a B-module M to its underlying abelian group
together with the map A x M — M; (a,m) — f(a)m and sends a morphism in
Modp to its underlying function in Mod 4 viewed as an A-linear map. Show that,
with respect to this functor, given an A-module N, B ® 4 N together with the
A-linear map N = B®4 N; n— 1 ®n is the ‘free B-module on N’.

5. THE GROUP RING

In this section we suppose that O is a complete discrete valuation ring with
uniformiser p (so that k¥ = O/pO is a field of characteristic p) and (G,w) will
denote a p-valued group of finite rank. O[G] will denote the group algebra of G
with coefficients in O i.e. the free associative O-algebra on the monoid G and k[G]
the corresponding group algebra with coefficients in k.

We filter O p-adically and then we say that an O-algebra R is filtered if has ring
filtration v such that v(pr) > v(r) + 1 for all r € R.

Notation 5.1. For A > 0 let
OGIx=0-{p" (1 —1)-(9s—1) |T+Zw(gi) > Mfor g1,...,95 € G}.
i=1
Lemma 5.2. The family (O[G]x)xr>0 defines a filtration v on O[G] making it into
a filtered O-algebra. Moreover we may view gr O[G| as a graded k[t] algebra via
t.a+ O[G)x+ = pa+ O[G]ry1+

Proof. We can easily check that O[G]o = O[G], O[G]x = ,<x
and O[G]\O[G], C O[G]a4, for all A, x> 0. So by Remark 2.5

O[G], for all A > 0

v(r) =sup{\ > 0| r € O[G]\}

defines a ring filtration.

Now p € O[G]1 so v(pr) = 1+ v(r) for all r € O[G] and O]G] is thus a filtered
O-algebra. It follows that gr O[G] is a k-algebra and the given action of ¢t does
define a graded k-linear map on gr O[G] of degree 1 commuting with the ring
multiplication. (I

Exercise 5.3. Show that there is a natural functor F' from the category of filtered
O-algebras and filtered O-algebra homomorphisms to FiltGrp given on objects by

F((R,v)) = {z € R| z is a unit and v(z — 1) > 0},w)

where w(z) = v(z — 1) such that (O[G], v) is free on G with respect to F.
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Proposition 5.4. The family of functions @y : gry G — gry O[G] given by
9Gx+ = (9 —1) + O[G]\+

induce a map ¢ = @ px of graded Fp[t]-Lie algebras where the Lie structure on
gr O[G] is given by commutators.

Proof. Tf w(g) = A then g — 1 € O[G] so ¢, is well-defined. If also w(h) = A then
gh—=1=(@g-1)h-1)+g-1)+(h-1)c(g-1)+(h-1)+0[C]\

since v((g — 1)(h — 1)) = 2X > X so g, is a group homomorphism for each A > 0
and ¢ = @y, is an graded F,-linear map.

Next ¢(to(g)) = g” — 1+ O[G]ry1+ whereas to(o(g)) = p(g — 1) + O[G]ay1+-
Thus to see that ¢ is F,[t]-linear we must show that (¢? —1) —p(g—1) € O[G]ry1+-
But

¢ —1-pg—1) = (A+(@g-1))-1-plg—1)
- > (M-

Since v(p) = 1 and v((g — 1)*) > i\ we see that
viplg— 1)) =22 +1> A+ 1for2<i <p.
Moreover A > 1/(p — 1) by definition of a p-valuation so
w((g— 1)) > pr> At 1

and so >0, (?)(g—1)" € O[G]r11+ as required — since vy, ((7)) =1 for 2 <i < p.
Finally if w(g) = A and w(h) = p then

o([o(g),o(h)]) = (g,h) = 1+ O[G] x4+
and

[p(a(9)),ela(h)] = (g—1)(h—1) = (h=1)(g —1) + O[G]\y.+
= gh—hg+ O[G]\y .+

So to see that ¢ is a Lie-algebra map we must show
v((g:h) —1—(gh—hg)) > X+ p.

Now

(9,h) —1—(gh—hg) = (g7 'h~"'—1)(gh— hg)
= (' =1)([g—-1,h—1)).

But v(g7*h™t —1) > min{\, u} > 0 and v([g—1,h—1]) > A+ u so we're done. O

Proposition 5.5. The graded F,[t]-Lie algebra map ¢: gr G — gr O[G] in Propo-
sition 5.4 extends to a surjective graded k[t]-algebra homomorphism

@: Uppy(k ®@p, grG) — grO[G]
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Proof. That gr G — gr O[G] extends to a graded k[t]-algebra homomorphism
©: Uy (k ®p, grG) — grO[G]

follows immediately from the universal properties for £ ®¢, — and U(—). Now
grO[G] is generated an a k[t]-algebra by {(g — 1) + O[G]yg)+ | 9 € G} by the
definition of the filtration:

(g —1)-(9s = 1) + O[Glr+ =1t" - p(0(g1)) - ¢(0(9s)))-
Since these are all in the image of ¢ it is indeed surjective. O
We will show that in fact this map ¢ is an isomorphism whenever G is a complete

p-valued group of finite rank. To this end we fix a complete p-valued group (G, w)
of finite rank and an ordered basis (g1, ..., gq) for it.

Notation 5.6. For 1 < i < d write #; = 0(g;) € grG C Uy (k ®r, grG) and
b; = gi — 1 € O[G]. Then given o € N write
b = b2 .. 1% € O[G]
We also recall the notation from Proposition 3.32: for s € R>9,
ni(s) = inf{n | g*" € Gy}.
Lemma 5.7. The image of {b® | 0 < a; < p™)} in O[G/G,] is an O-module
basis.

Proof. If B € {a € N& |0 < o; < p™i} then

P =+b)P (b= (i)ba
aeNY

where (g) denotes the image of H?:l (21) in O. Since (g) = 0 unless a; < 3; for all
i, Proposition 3.32 gives that the given set spans O[G/G;]. As it has size |G/G;| and

O[G/G;] is a free O-module of this rank it must also be linearly independent. O
Corollary 5.8. The set {b® | o € N¢} is linearly independent in O[G].

Proof. Suppose that S is a finite subset of N& such that there is a non-trivial linear
relation }__ . g Aab® = 0 in O[G]. We may choose s € R>? large enough that if
a € S then oy < p™®) for all i. Then the image of 3___¢ Aob® in O[G/G,] gives
a linear relation contradicting Lemma 5.7. (]

acs

Lemma 5.9. If H is a finite p-group and Jg = ker(k[H] — k) then Jy is nilpotent.

Proof. By induction on |H|. Recall that Z(H) # 1 so we can pick z € Z(H) of
order p. H/(z) is a p-group of order smaller than |H | so by the induction hypothesis

JH/(z) = ker (k[H/(2)] = k)
is nilpotent. i.e. there is some N > 1 such that J;IV/<Z> = 0. It follows easily that
JE C ker(k[H] — k[H/(z)]) = k[H] - (z — 1). Now if a1, ..., € K[H] then
ar(z—1)--ap(z—1)=ag - -ap(z — 1)P.

But (z —1)P =27 =1 =050 Jy* = 0. O
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Corollary 5.10. For all m € N and s € R>° the kernel J of the augmentation
homomorphism (O/p™O)|G/Gs| — k is nilpotent.

Proof. The group G/Gy is a p-group by Proposition 3.32(c). Thus by Lemma 5.9
there is some N > 1 such that JY C (p). It follows that J™N C (p™) = 0. O
Corollary 5.11. For all m € N and s € R>? there is some A € R*? such that
O[G]x C ker(ty.m: OIG] — (O/p™O)[G/G).

Proof. Let J = (p,g—1|g € G) an ideal in O[G]. By Corollary 5.10 there is some
N > 1 such that g ,,,(J)N = 0. We take A = N(s + 1).
Each a € O[G], is an O-linear combination of elements of the form

k
aj=p"(hy—1)- (b — 1) with h; € G and r+ Y w(hs) > A,
i=1

It thus suffices to show that each such «; lies in ker 9 ,.

If w(h;) > s for some i then v, (h; — 1) = 0 so a; € kerty, as required.
Similarly if 7 > N then p” € J" C JV C ker ¢bs m 50 15 m(a;) = 0.

Finally ifr < N and w(h;) < sforallithenk > Nsoa; € JN and o € ker g .

So in all cases a; € ker ¢, p, and ¥, (O[G]a) = 0 as claimed. O
Notation 5.12. Now we let

B= 0b* c 0[G]

aeNg

and define u: B — R*% U {oo} by

d
u (Z rabo‘) = min {vp(ra) + Z aiw(gi)}
i=1
and write By = {x € B | u(x) > A\. Notice that v(z) > u(z) for all z € B.
Lemma 5.13. For all A < u in R>? the natural map
By/B,, — O[G]»/0[G],
18 surjective.

Proof. Since z1,...,xq is a spanning set for gr G over F,[t], Proposition 5.5 tells
us that o(b1),...,0(bq) generate gr O[G] as an F[t]-algebra. Thus

B)\ — O[G])\/O[G])\+

is surjective i.e. By 4+ O[G|x+ = O[G]x. Since v(O[G]\0) is a discrete subset of R
there is some v > A such that O[G|x+ = O[G],. Then B, + O[G], = O[G]r. By
induction on the number of values of v(O[G]) between A\ and p we have

O[Gly = B, + O[G].

Thus
O[G]x» = Bx + B, + O[G], = B + O[G],,

as required. O

Proposition 5.14. v(z) = u(z) for all x € B.
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Proof. We know that v(x) > wu(z) for all z € B. Suppose for contradiction that
v(x) > u(z) for some z = ZaeScNg rob® with S finite and r,, # 0 for all « € S.

Choose m € N and s € R®? such that m > v,(r,) and a; < p™(®) for all a € S
and all 1 < ¢ < d. Then consider 95 ., O[G] — (O/p™O)[G/G,].

By Lemma 5.11 there is some A > v(z) such that ¢, ,,(O[G]x) = 0. Moreover
by Lemma 5.13, O[G]U(x) = Bq,(x) + O[G] .

So choose y = ZaeNg 54b% € By(y) and z € O[G]y such that x = y + z. Then
Vs,m () = thsm(y) and u(y) = v(z) > u(z).

By Lemma 5.7 5 ,,, (b®) with o € S are linearly independent in (O/p™O)[G/G]
and so 7o = s mod p™ for all & € S. Since vy(ry) < m for all a € S,

Up(Sa) = vp(ry) for all a € S.

Thus

u(@) = min{oy(ra) + 3 aiw(g)} = minfup(sa) + 3 aiw(g)} > uly) > u(z)
the required contradiction. [
Theorem 5.15 (Poincaré-Birkhoff-Witt (PBW)). Let g be a Lie algebra over a
commutative ring A and suppose that x1, ..., T, is a spanning set for g as an A-
module. Then every element of U(g) is an A-linear combination of elements of the
form :clfl cooxkn with ky, ...k, € No. Moreover if z1,...,x, are a free generating

set for g over A so is ¥ ... xkn for Ul(g).

Remark 5.16. We won’t prove the PBW theorem but the first part is a straight-
forward consequence of the construction of U(g). The second part is more fiddly.
There are other forms of it but this what we will need.

Theorem 5.17. The morphism ¢: Uy (k ®@r, grG) — grO[G] of graded F,-
algebras is an isomorphism.

Proof. Recall that z; = 0(g;) and 1, ..., x4 is a basis for gr G as an F,[t]-module.
So, by the PBW theorem, U (k®r, gr ) consists elements that are finite sums of the
form u = ZaeNg Aoz with Ay € k[t]. Moreover since ¢ is a map of graded algebras
its kernel is also graded, so to prove that it is injective it suffices to show that no
non-zero homogeneous elements lie in the kernel. That is we need only consider
non-zero elements of the form u = Y A\yz® with each A\, € k[t] homogeneous
and deg A\, + > a;w(g;) = s is the same for all non-zero terms in the sum. Now
o3> Aax®) = > Ab* + O[G],+ and we must show that such an element is not
zero.

Pick 7, € O with o(ry) = A, for each . Then ¢(u) = > rob® + O[G],+. By

Proposition 5.14
s=u (Z raba) = (Z raba>

so ¢(u) # 0 as required. O

LECTURE 13
6. THE COMPLETED GROUP RING
6.1. Inverse limits.

Definition 6.1. A pre-ordered set is a set I equipped with a binary relation <
that is
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(a) reflexive (a < a for all @ € I) and
(b) transitive (a < b and b < ¢ implies a < ¢).

Definition 6.2. We say that a pre-ordered set (I, <) is directed if it is non-empty
and for any a,b € I there is some ¢ € I such that a < ¢ and b < ¢ (ie every finite
subset has an upper bound).

Examples 6.3.

(1) N, Z and R are all directed pre-ordered sets with respect to their usual orders.

(2) If G is a group then the finite index subgroups are directed with respect to
reverse inclusion i.e. H < K precisely if K C H — since if H, K < G have
finite index then H N K has finite index.

Definition 6.4. Suppose that C is a category and (I, <) is a pre-ordered set then
an inverse system of shape (I, <) in C is a family of objects (C,)qcr and morphisms
cpe: Cp. — Cy whenever b < ¢ in I such that cpeceq = cpqg Whenever b < ¢ < d.

Example 6.5. If R is a filtered ring and I = R>? is given the usual ordering <
then the family of rings (R/Rx)a>0 together with the canonical surjections R/R, —
R/RM for u < v form an inverse system.

Definition 6.6. The inverse limit of an inverse system C' = (Cy,cp.) of shape
(I,<) in a category C is an object @1 s C of C together with a family of morphisms
Tyt I&H s C — C, for each a € I such that ¢y.m. = m, whenever b < ¢ which satisfies
the universal property:
e for any object D in C and family of morphims p,: D — C, for each a €
such that c.p. = pp whenever b < c there is a unique morphism
f:D— L%lC’
such that 7, f = p, for all a € I.

Note that this universal property is dual to the one for a free object.’® It is
possible to make this precise but we won’t.

Exercise 6.7. Suppose I is a pre-ordered set and C = (C, ¢pc) is an inverse system
of shape I.

(a) Show that, if it exists, lim €' together with the family of morphisms

<7ra: LiLnC' — C'a>
I acl

is uniquely determined up to unique isomorphism.

(b) Show that if I has a largest element ¢ (i.e. a < t for all a € I) then m, €= C
and m, = ¢4 for all a € 1.

(¢) More generally suppose that I is directed and J C I such that for all a € I
there is j € J with a < j'' and consider the restriction of C' to J ie. the
subfamily of objects (C;)jes and morphisms (cjr: Cr — Cj)jckes. Show
that if lim ' exists then so does LiLnI C and there is a canonical isomorphism
jim, € = im, €

10in the sense that the morphisms go the other way

Hywe say J is cofinal in I
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Exercise 6.8. Suppose that I is a pre-ordered set and C is Grp or Ring and
C = (Ca, ¢pe) is an inverse system in C. Show that

m ¢ = {(zq) € H Cy | ¢be(xc) = xp whenever b < ¢}
I acl
together with the projection maps 7, ((24)acr) = x4 is the inverse limit of C.

In both of these cases @1 s C is usually given the weakest topology such that
all the projection maps 7, are continous when each object C, is given the discrete
topology. Then limI C' is a topological group/ring. In particular the inverse limits
in Definitions 2.8 and 3.19 are consistent with Definition 6.6.

Lemma 6.9. Suppose that S is a ring and {I,}aca and {Jg}gen are two families
of two-sided ideals in S that are directed with respect to reverse inclusion such that
for all o € A there is f € B such that Jg C I, and for all f € B there is o € A
such that I, C Jg then there is a natural isomorphism

%S/Ia = %HS/J[;.

Proof. Consider C = AU B and for vy € C, let

K - I, ifyeA
Jy ifyeB.

Then { K, },ec is directed with respect to reverse inclusion since if we have K, , K,
with 71 € A and 2 € B there is a € A such that I, C J,, = K,, then, as I is
directed, there is o/ € A such that K, = I, C I, NI, Then K, C K, NK,,
the other cases are easier. Now by Exercise 6.7(c)

@S/Ia = 1'&1,5'/}(,y & @S/Jg
A c B
as required. ([

Exercise 6.10. Suppose that I and J are directed pre-ordered sets. Show that I x.J
is a directed pre-ordered set with respect to the relation (4,5) < (¢, ') precisely if
1 <1 and j < j/. Assuming that all relevant inverse limits exist, show that if C
is a diagram of shape I x J then Qiil{i}xJ ();er has canonical maps making it a
diagram of shape I and (l&n 1% () (') jes has canonical maps making it a diagram

of shape J. Finally show that

@(@0)%@0%@(1@0)-

I {i}xJ IxJ J Ix{j}
6.2. Completing group algebras.
Definition 6.11. We say that a topological group G is profinite if it is isomorphic
to an inverse limit of finite groups. We say that is pro-p if is isomorphic to an
inverse limit of finite p-groups.
Exercise 6.12 (Optional). Show that a profinite group is compact, Hausdorff

and totally disconnected'?. Show conversely that any compact Hausdorff, totally
disconnected topological group is profinite.

124 6. any connected subspace is a single point
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Suppose that G is a profinite group. The set {N | N <, G} of open normal
subgroups of G forms a directed pre-ordered set under reverse inclusion and then
for any commutative ring R there are natural maps R[G/N;1] — R|[G /N3] whenever
Ny < N;.

LECTURE 14

Definition 6.13. For any commutative ring R and profinite group G the completed
group ring with coefficients in R is
RG = R[[G]] = lim R[G/N].

(—
N<,G

If R =7, and G has an open normal subgroup N that can be given a p-valuation

w making (N,w) into a complete p-valued group of finite rank then we call RG an
Twasawa algebra.

It is a theorem of Lazard that the profinite groups G with a finite index normal
subgroup that can be viewed as a complete p-valued group are precisely the compact
p-adic Lie groups; that is the compact locally analytic manifolds over Q, with a
group structure such that the group multiplication is locally analytic'®. We’ve seen
that a complete p-valued group has a global chart ZZ — G given by an ordered
basis. So the claim in one direction is that if (gi,...,g4) is an ordered basis and

99" =g"
then each v;(\, p): Zf,d — Z,, is given locally by convergent power series.

Note that G can be viewed as a subgroup of the group of units of RG under the
family of maps g — (9N)ng,¢ € lim R[G/N].

Definition 6.14. A crossed product of a ring S by a group G is a ring S* H which
contains S as a subring and contains a set of units H = {h | h € H} such that

e Sx H is a free left S-module on H — S % H; h — h and

o forall z,y € H, xS = S% and .95 = TyS.

Example 6.15. If G is a group with normal subgroup NV and R is a commutative
ring then R[G] can be viewed as a crossed product R[N] x (G/N). The set G/N
can be formed as the image of a set of coset representatives of N in G in the ring
R[G]. Then all the conditions are straightforward to verify. Notice that it may not
be possible to choose m to closed under multiplication.

Lemma 6.16. If H is an open normal subgroup of a profinite group G then H has
finite index. Moreover RG is a crossed product of RH by the finite group G/H.

Proof. Since G is compact and the left cosets of H in G form a disjoint open cover
of G, H must have finite index in G. Fix a set of coset representatives x1,..., Ty
of H in G.
Let I be the set of open normal subgroups of G contained in H ordered by reverse
inclusion. Now for each N € I,
k
R[G/N] = @ R[H/Nx; = R[H/N|xG/H.

i=1

137 locally analytic function is one that is locally given by convergent power series
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Then
k

lim RIG/N] = @@%n R{H/N])a: & (jm R{H/N]) » (G/H).
i=1

Since NNH € I for each N <, G, I is cofinal in the set of open normal subgroups
of G and RG = ]'gll R[G/N].

Similary if K <, H then ﬂgeG gKg~! is a finite intersection so lives in I and so
I is cofinal in the set of open normal subgroups of H. So

RH = lim R[H/N]

and the result follows. O

The idea of these observations about crossed products is that a reasonable strat-
egy for understanding RG and its representation theory is to first understand RH
and its representation theory and then use the crossed product structure to deduce
things about RG. In particular to understand Iwasawa algebras an important first
case will be to understand the case where the group is complete p-valued of finite
rank.

Theorem 6.17. Let (G,w) be a complete p-valued group of finite rank and recall
the filtration on O[G] from Lemma 5.2. Then

0G = @1 O[G]/O[G]».
AER>0

Proof. Since O is p-adically complete and for N <, G, it follows from Exercise 6.10
that

oG

I

lim ( lim (0/pm0>[G/N]) >~ lm O[G) I
N<,G \meN, Nox{N|N<G}
where I, y = ker(O[G] — (O/p™O)[G/N]) = (n—1,p™ | n € N) < O[G].

Now for each N <, G there is some s € R?? such that G5 < N since the G
form a basis of open neighbourhoods of the identity. Thus by Lemma 5.11, for all
m € Ny there is some A € R>Y such that O[G]x C Iy N-

Conversely given A € RZ, if m € Ny is bigger than \ then I, ¢, € O[G], so
we’re done by Lemma 6.9. |

Definition 6.18. If R is a ring then an ascending Ny-filtration is a family of
additive subgroups (F),R)nen, of R such that

e 1€ F,R for all n € Ng;
e F,RF,R C F1,,R for all n,m € Ny and
o R=J,5¢ Rt

Given an ascending Ny-filtration on R the associated graded ring of R is the Np-
graded ring

grR= P F.R/F, 1R

n€Ny
(where F_; R = 0) with multiplication the bilinear extension of
(FLR/F,_1R) x (FyR/Fp-1R) — FoymR/Foym—R
(r+ Fho1iR,s+ Fa1R) — rs+ Fpyn—1
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Recall that a ring R is Noetherian if it is both left and right Noetherian and is
a domain if it has no non-trivial zero-divisors.

Exercise 6.19. Suppse that R has either an ascending Ny-filtration or a descending
R>-filtration.

(1) Show that if gr R is a domain then R is a domain.
(2) Show that if gr R is Noetherian and, in the descending case R is complete with
v(RZ%\{0}) discrete and closed in R*%, then R is Noetherian.

LECTURE 15

Corollary 6.20. If (G,w) is a complete p-valued group of finite rank then OG is
a Noetherian domain.

Proof. By Theorem 6.17 and Exercise 2.15 we may filter OG so that it is complete
and gr OG = gr O[G]. Moreover by Theorem 5.17 gr O[G] = Uy (k®F, gr G) = U.
Now we may give U an ascending No-filtration via FoU = k[t], F1U = k[t]+k[t] gr G
and F,U = (FLU)" for n > 2. Since k ®p, gr G is a free k[t]-module of rank d say,
the PBW Theorem gives that grU = Symk[t](kz ®r, grG) a polynomial ring over
Ek[t] in d-variables. Since this is a Noetherian domain we may use Exercise 6.19 to
deduce that U is a Noetherian domain and then that OG is a Noetherian domain
since OG is complete with respect to its filtration. O

Exercise 6.21. Deduce that if r, s € OG then v(rs) = v(r) + v(s).
Corollary 6.22. Any Iwasawa algebra Z,G is Noetherian.

Proof. G has an open normal subgroup N that can be viewed as a complete p-valued
group of finite rank. By Lemma 6.16 Z,G = Z,N % (G/N). By Corollary 6.20 Z, N
is a Noetherian domain. Since Z,G is a finitely generated Z,N-module it follows
that Z,G is Noetherian — Z,G is a finitely generated left/right Z, N-module and
so every left/right ideal of Z,G is finitely generated as a left/right Z, N-module
and so also as a left/right Z,G-module. O

We can understand the O-linear structure of OG when (G,w) is complete p-
valued of finite rank with ordered basis (g1, ..., g4). Recall that b; = g; — 1 € O[G]
and b® = bJ* -+ - b5¢ for o € N@.

Proposition 6.23. There is an O-linear bijection

0: ] 0— oG
aeNg
given by
0((ra)aeng) = > b+ 0[G, € lim O[G]/0[G], = OG.
Sy aiw(gi)<s SER>0

Proof. Recall that by Proposition 5.14

v (Z raba) = mgn {vp(ra) + zd:aiw(gi)}

i=1

for any finite sum ) r,b®.
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For s > 0, let Ss be the finite set {a e N¢ | Zle aw(gi) < s} Since for t > s,

Sy C Sy and v (Eaest\ss rabo‘) > s, it is straightforward to verify that 6 is well-

defined and O-linear.
Moreover if 0((ra)qeng) = 0 then v(}-,cg rab®) = s for all s > 0. Thus

d
Up(ra) Z 8- Zaiw(gi)
i=1

for all & € N¢ and all s > 0 and so v,(r4) = oo for all « € Ng. It follows that 6 is
injective.
Now suppose that (zs)s>0 € @O[G]/O[G]S. By Lemma 5.13
0G| = € ob* +0[Gl,
aeNd
for each s > 0 and so we can find z, , € O such that z, = Zaesﬁ Za,sb* + O[Gls.
If t > s then z; + O[G]s = zs + O[G]s so

Z (Ta,s — Ta,t)bY € O[G]s
a€Ss
ie Up(Tat — Ta,s) =8 — D, aiw(g;) for all « € Sy and ¢ > s.
Now given a € N¢ we can choose s such that a € Sy and then
Up(Tat = Taw) 21— Y aw(g:)

for all u >t > s ie there is some x, = lim;_,oc ot € O since O is complete.
Now we can verify that 0((za)seng) + O[Gls = x5 for each s > 0 and so 6 is
surjective. (Il

Remark 6.24. We may view 0 as an O-module isomorphism O[[b1, ..., bq]] = OG.
This will not be a ring isomorphism in general as OG will not be commutative.

Examples 6.25.
(a) If G = Z¢ with w(\) = mini;<a{vp(Xs)} + 1 Then OG is isomorphic to the

commutative formal power series ring O[[Th,...,Tq]] as claimed for d = 1 in
Lecture 1.
(b) If (G,w) is as in Exercise 2.36,
1 p 0 100 10 p
zr=10 1 0}J,y=10 1 p|J andz=]0 1 O
0 01 0 01 0 01
then writing X =2z - 1,Y =y —1,Z =z — 1 € OG we can compute that
OG =3¢ > NgnX'Y"Z" | A € O
l,m,n>0

as an O-module with multiplication such that Z is central and

1+Y)1+X)=(1+X)1+Y)(1+2)"ie

YX=XY+(1+X+Y +XY) Z(,p)zf
jz1
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Exercise 6.26. Show that if G is a complete p-valued group of rank d and k =
O/(p) as usual then there is a k-linear isomorphism kG = {ZaeNg Tob® | o € kY.

LECTURE 16

Exercise 6.27. Show that kG = OG/(p). Let M be a finitely generated OG-
module and write M[p*] = {m € M | p"m = 0}. Show that there is some n > 0
such that M[pk] = M[p"] for all k > n, that M [p*]/M[p*~1] is naturally a finitely
generated kG-module for each 1 < k < n and that M/M[p"] is an OG-module with
no p-torsion elements.

It follows that many questions about finitely generated OG-modules can an-
swered by considering finitely generated kG-modules (i.e. those OG-modules killed
by p) and finitely generated OG[1/p]-modules separately.

7. CENTRES OF IWASAWA ALGEBRAS

In this section k£ will denote a finite field of characteristic p and G will denote a
profinite group. Our goal will be to compute Z(RG) in the case G has a p-valuation
with respect to which it is complete and R = Z, or R = k. We will follow Ardakov
‘The Centre of Completed Group Algebras of Pro-p Groups’ (2004).

Definition 7.1. The category G — Setf has objects finite sets X4 equipped with
a continous G-action G X X — X and morphisms

Homg_gett (X, Y)={f: X =Y | g.f(z) = f(gz) for all g € G,z € X}.

We may view this as a subcategory of the category of all topological G-sets with
continuous action map.

Exercise 7.2. Show that an action G x X — X on a finite set is continuous
precisely if Stabg(x) is an open subgroup of G for each x € X.

For each object X € G — Setf we can form the permutation module R[X] which
is the free R-module with basis X and with G-action the R-linear extension of the
G-action on the basis. A morphism f: X — Y in G — Setf naturally induces a
G-linear map f: R[X]| — R[Y] sending the basis vector z € X to the basis vector
flx)eY.

Given an inverse system(X,, 7, ) in G — Set! of shape (N, <) we can form
the inverse limit @Xn in the category of all topological G-Sets with continuous
G-action and RX = LiLnR[Xn] in the category of all topological kG-modules. All
of these spaces are compact and Hausdorff and indeed metrizable!® In particular
we give kX = l&lk[Xn] the metric

d((an)nen, (Bn)nen) = p~ BHnENlan5n}

We will compute (kX)¢ and (Z,X)¢ when G is a pro-p group and then apply
this to the case where G acts on itself by conjugation and is complete p-valued.

with the discrete topology
15we topologise ZpX = mn . Z,/(p™)[Xn] with the weakest topology so that all maps
Z,X — Z,/(p™)[Xn] are continuous where the codomain is always discrete or equivalently so

that all maps Zp X — Zp[X,] are continuous where Zp [ X ] =2 Z;LX"‘ is given the product topology
with respect to the usual topology on Z.
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Notation 7.3. Given a set X with a G-action and a finite orbit C C X we write

C]=> x € RIX]

for its orbit sum. We write
X¢={reX|gr=uxforall geG}.

Exercise 7.4. If X is any set with a G-action then R[X]“ is spanned by the orbit
sums [C] as C ranges over all finite G-orbits in X.

Lemma 7.5. Suppose that G is pro-p and f: X — Y is a morphism in G — Setf.
Then under f: k[X] — k[Y] the image of k[X] in k[Y] is spanned by the orbit
sums [f(C)] where C ranges over the orbits of X such that |f(C)| = |C|.

Proof. Tt is easy to verify that if C is an orbit in X then f(C) is an orbit in Y.
Moreover if y € f(C) then

{z €C| f(z) =y} = |Staba(y)|/| Staba(z)| = [C[/|f(C)]-

This number is independent of the choice of y € f(C) and is always a power of p
since G is pro-p.

Thus
_ _JIr©@p il =[f(©)l
el = |f(C)] LFe = {0 otherwise.
The result follows immediately via Exercise 7.4. (]

Proposition 7.6. If G is pro-p and X is the inverse limit of an inverse system of
shape (N, <) in G — Setf then

kXC = k[X]C

Proof. Since the action of G' on kX is continuous, kX% is closed in kX and so
k[X]¢ C kXC.

Suppose that a = (o), € kX%, We will show that for each r € N there is some
B € k[X]% such that d(a,8) < p~" and so a € k[X]C as required.

We fix r € N. Since the m,: kX — k[X,] are maps of G-spaces each «,, €
k[X,]¢. In particular we may write

Qp = Z)\c[C]
C

where the sum is over all G-orbits C in X,.

We consider some orbit C such that A\¢ # 0. Since for all n > r the map
Tnr: kK[ Xn] — k[X,] sends a,, € k[X,]¢ to a,, by Lemma 7.5 we can find an
orbit C,, in X,, such that =, ,(C,) = C and |C| = |C,|. Indeed we may inductively
construct the C,, so that 7, ,_1(C,) = C,,—1 for each n > r (and C, = C). Thus for
x, € C we can find a unique z,, € C, such that 7, ,(x,) = ,. This family (z,)n>r
defines an element x € X = @Xn. The G-orbit Cy, of x is @n>r C, and has the

same order as C by construction.

Repeating this construction for each orbit C in X, with A¢ # 0 we can then
define 8 =" A¢[Coo) € k[X]®. Then 74(8) = a for all s < 7 and so d(«, 3) < p~"
as required. O
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Corollary 7.7. If G and X are as in Proposition 7.6 then (Z,X)¢ = Z,[X]C.

Proof. Once again since the action of G on Z,X is continuous, (Z,X)¢ is closed
in Z,X and so Z,[X]% C (Z,X)°.

Let ¢: Z,X — F,X denote the reduction map mod p. Then for a € (Z,X)%,
q(a) € F,XE = F,[X]C. Thus for each n > 0 we may find 3, € (F,[X])¢ such
that d(g(a),3,) < p~™. For each such B, we may find v, € Z,[X]“ such that
q(¥n) = Bn. Since Z,X is compact and Hausdoff, by Bolzano—Weierstrass 7, has

a convergent subsequence with limit &y, say. Moreover as Z,[X]¢ is closed it must
contain dg. Then ¢(dp) = ¢() by construction so

a—6 € (Z,X)% Nkerq = (Z,X)% NpZ,X = p(Z,X)“

since pr € (Z,X)% precisely if r € (Z,X)“. Thus we may write a = dp + pa; for
some a; € (Z,X)®. Repeating this argument we obtain « is equal to a convergent

sum Y-, p'd; with each §; € Z,[X]¢. Thus a € Z,[X]% as required. O

Theorem 7.8. If (G,w) is a complete p-valued group with centre Z then Z(kG) =
kZ and Z(Z,G) =17Z,Z.

Proof. Since N is cofinal in R*%, G = Jim
3.2. Thus by Proposition 7.6

Z(kG) = (k@) = k[G)¢ = Z(k[G]).
Similarly by Corollary 7.7
Z2(2yG) = (ZPG)G = Z,[Gl% = Z(Z,[G]).

Thus it suffices to show that Z(k[G]) = k[Z] and Z(Z,[G]) = Z,[Z].

By Exercise 7.4, Z(R[G]) is spanned by all the finite orbit sums under the con-
jugation action. So it is equivalent to prove that all the finite conjugacy classes
have order 1. Let C be a finite conjugacy class in G and « € C. Then Cg(x) is a
closed subgroup of finite index. Thus for all ¥ € G there is some n € N such that
yP" € Ca(x) ie.

G/G,,. Moreover G is pro-p by Lemma

g =y e = (aya TP
But by Lemma 3.6(b) if g,h € G then w(g~?"h?") = w(g~'h) + n. Thus if
g"" = h?" then g = h. In particular we can deduce that y = zyz~! as required. [

8. THE CAMPBELL-BAKER-HAUSDORFF FORMULA
8.1. Coalgebras and Primitive elements.

Definition 8.1. Let k be a commutative ring. A k-coalgebra is a k-module C
equipped with k-linear maps A: C' — C ®y, C (the co-multiplication) and e: C' — k
such that
(1) (A®id)A = (iId®A)A (A is co-associative); and
(2) (e®id)A =id = (id ®€)A (e is a counit).

A k-bialgebra A is a k-coalgebra (A, A, €) such that A also has the structure of
an (associative unital) algebra with respect to which A and e are algebra homo-
morphisms.
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Example 8.2. Let G be a group. Then we can define
A: k[G] — K[G] @y k[G]
to be the k-linear extension of the map g — g ® g for g € G and
e: k[G] = k
to be the k-linear extension of g — 1 for g € G. Then k[G] is a k-bialgebra.
Definition 8.3. In general we call ¢ in a coalgebra C' grouplike if A(c) =c® c.

Examples 8.4.

(a) Let G be a finite group. Then k¢ = {f: G — k} is an k-algebra under pointwise
operations. If we identify k¢ @y k¢ with k%% and set A(f)(z,y) = f(zy) for
f €k and z,y € G and €(f) = f(eg) then k¢ is a bialgebra that is in some
sense dual to k[G].

(b) Let g be a Lie algebra over k. Then the map x — (x,z) defines a Lie algebra
homomorphism g — g x g that extends to a k-algebra homomorphism

A:U(g) —» U(g x g) = U(g) @k Ulg)

such that A(z) =2z ® 1+ 1®z for x € g. Moreover the trivial representation
g — k; x — 0 gives a k-algebra homomorphism U(g) — k. Thus U(g) equipped
with A and € is a k-bialgebra.

Definition 8.5. In general we call ¢ in a k-bialgebra C primitive if A(c) = 1®c+
¢ ® 1. The set of primitive elements is denoted P(C)

Lemma 8.6. If A is a k-bialgebra then P(A) is a k-Lie algebra under the commu-
tator bracket [a,b] = ab — ba with respect to the algebra structure on A.

Proof. If x,y € A are primitive and X\ € k then
AAz) =XA(z) =1+ 1 A\
and
Alz+y)=A)+Aly) =(z+y) @1 +1®@ (z+y)
so P(A) is a k-module. Moreover
Afzy —yz) = [Az), Ay)]
= @1+1e2)ye1+1y) - Y1+1ey)(re1+1xw)
= (sy—yr)®1 -1 (zy —yz)

SO xy — yx is primitive. (Il

LECTURE 18

At this point we need a generalisation of the form of the PBW theorem we had
before.

Theorem 8.7 (PBW). If g is a k-Lie algebra whose underlying k-module is free
on a set X. Then the ascending Ny-filtration on U = U(g) given by FoU = k,
U =k+g and F,U = (FLU)™ forn > 2 (known as the PBW filtration) satisfies
grU(g) = Sym(g) = k[X] the polynomial ring over k with variables in X.

If X is finite this is just a rephrasing of Theorem 5.15.
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Theorem 8.8. Suppose that k is torsion free as an additive group and g is a k-Lie
algebra that is free as a k-module. Then P(U(g)) = g.

Proof. First we notice that with respect to PBW-filtration on U = U(g) and the
tensor product filtration on U ® U given by

FU®pU)= > FU @ FuU for all n >0,
l+m=n
A is a filtered k-algebra homomorphism.

Thus A induces a graded algebra map grA: grU — gr(U®,U). If 21,...,2, €
gr; U then

n

grA(zy - x,) = ngA(mi) = H(a:l ®1+1®ay).
i=1

i=1

So writing p: grU x grU — grU to denote the multiplication in the graded ring,

wA(xy - xp)) =221 -+ Xy
Thus pA acts by 2" on gr,, U.
However if u € U is primitive then o(u) € grU is also primitive, since
gri(o(u)) = o(A(u)),
and so
ngr Alo(w) = plo(u) & 1+18 a(u)) = 20(u).

It follows that for primitive v € F,,U\F,_1U we have (2" — 2)o(u) = 0. By
Theorem 8.7 and our assumption that (k,+) is torsion-free it follows that all non-
zero primitive u live in FyU\FyU i.e. u = A+ y for some A € k and y € g. Since
such y is primitive and P(U) is a k-submodule of U it follows that A is primitive.
Since A € FoU it must be 0. O

8.2. Free non-associative algebras and free Lie algebras.

Definition 8.9. A magma is a set M with a binary operation. Mag is the category
whose objects are magmas and whose morphisms Homnag (M, N) are functions
f: M — N such that f(ab) = f(a)f(b) for all a,b € M.

Given a set X we can construct a magma as follows: X (1) = X. For n >
2, X(n) is the disjoint union [[,, _, X(p) x X(g). Then M(X) is the disjoint
union [[,-, X(n). The binary operation on M (X) is defined by assembling the
inclusion maps iy, n: X(m) x X(n) — X (m + n) together to give a (graded) map
p: M(X) x M(X) = M(X).

Example 8.10. If X = X (1) = {1} we can write X(2) = {(1- 1)} then
X(3) ={1-(1-1),((1-1)- 1)},
X(4) = {1 (- (1-1))), (1-((1-1)- 1)), (1-1) - (1-1), (1-(1-1))- 1), ((1-1)-1) - 1)}

Exercise 8.11. M(X) is the free magma on X with respect to the forgetful functor
Mag — Set.
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Definition 8.12. Given a commutative ring k, a (not necessarily associative not
necessarily unital) k-algebra A is a k-module together with a k-linear multipli-
cation map pa: A x A — A. Alg, is the category whose objects are such k-
algebras and whose morphisms Homag, (4, B) are k-linear maps f: A — B such

that f(pa(z,y)) = pup(f(2), f(y)) for all z,y € A.

Exercise 8.13. The free k-algebra on a set X with respect to the forgetful functor
Alg, — Set is the free k-module on M (X) with multiplication given by bilinear
extension of the natural multiplication on the basis. Moreover the natural grading
on M(X) induces a grading on the free algebra k[M (X)].

Exercise 8.14. The free k-Lie algebra Lx on a set X is the (graded) Lie algebra
of k obtained from the free k-algebra on X by quotienting out by the (graded) ideal
(a-a,a-(b-c)+b-(c-a)+c-(a-b)la,b,ce M(X)).

Proposition 8.15. Let X be a set. Then the free associative algebra k(X) on X
is naturally isomorphic to the universal enveloping algebra U(Lx) of the free Lie
algebra on X.

Proof. We identify X with its image in Lx,U(Lx) and k(X) and identify Lx with
its image in U(Lyx) under the maps given by the various universal properties.

Then the univeral property of k(X) gives a unique associative k-algebra map
v: k(X) = U(Lx) sending = € X to itself. Similarly by the universal property of
Lx there is a unique Lie algebra map a: Lx — k(X) sending z € X to itself.1® By
the universal property of U(Lx) this extends uniquely to an associative k-algebra
map ¢: U(Lx) — k(X).

Now ¢9: k(X) — k(X) is an associative k-algebra map such that pi(z) = =
for all z € X so by the universal property for k(X) it is the identity map on k(X).
Similarly ¢¢: Lx — U(Lx) is k-Lie algebra map such that ¥p(x) = x for all
x € X. Thus by the universal property for Ly, ¥p(y) =y for all y € Lx and so
by the universal property for U(Lx), p¢ = id. (]

It follows that we may transport usual the coalgebra structure on U(Lyx) to
kE(X).

Exercise 8.16. Show that the isomorphism ¢: k(X) — U(Lx) is in fact an iso-
morphism of graded algebras where k(X) is given the grading

k(X) = DT (kX))

and U(Lx) is given the grading induced from the grading on Lx as in Exercise
4.11.

LECTURE 19

8.3. The Campbell-Hausdorff formula. Recall that given a set X we have con-
structed an N-graded k-Lie-algebra Lx that is free on the set X. We will assume
for the rest of this section that k is a field of characteristic 0.

Notation 8.17. We write Lg?) for the nth-graded piece for n € N. Similarly we
write k(X)) to denote the nth graded piece of k(X) for n € Ny.

1675 always the Lie structure on k(X) is the commutator one.
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In particular Lgp is the k-vector space with basis X and in general Lg?) is
spanned by n-fold commutators of elements of X C L()p. Similarly k(X)) is
spanned by all products of n elements of X C k(X).

By Exercise 8.16 we may identify Lx as a graded Lie-subalgebra of the graded
Lie algebra k(X). Indeed after transporting the coalgebra structure on U(Lx)

along the graded k-algebra isomorphism U(Lx) — k(X) we see, using Theorem

8.8, that under this identification Lg?) consists of the primitive elements of k(X)
of degree n.
We filter k(X)) by

v Zrn =inf{n € Ng | r, # 0}

n=>0

when each 7, € k(X)(™. Similarly we filter the free Lie algebra Lx by

v(an> =inf{n € N |z, # 0}

n>0
when each z, € L(X),,.1"

Exercise 8.18. Show that I@ =0 k(X)) can be viewed as a ring of formal

(non-commutative) power series in the variables X and'® Ly = [Ls: (L x)™

— —

Let mx = m denote the ideal k(X), given by filtration 0 on k(X).
Lemma 8.19.

—

X
(a) k(X) =k*+m;
(b) m is the unique mazimal ideal in k(X) and;

(c) 1+m is a subgroup oflﬁ.

—

Proof. The map e: k(X) — k(X),/k(X)1 = k is a homomorphism of unital k-
algebras. Therefore any unit in k£(X) must lie in the complement of the kernel of €

i.e. in kX +m. Conversely if r € k(X) with e(r) = 1o # 0 then r —r9 = ry € kere =
mie r = ro(l —u) with u = —ry'r; € M since 7 is a unit in k. By Notation

3.14 and Exercise 3.15 3 .- u® € k(X) is an inverse for 1 — u. (a) & (b) follow
— X
immediately as does (c) by noting that 1 +m = kere: k(X) — k*. O

—

Remark 8.20. Note that if X = {T'} then k(X) = k[[T]] the usual commutative
power series ring in one variable with its T-adic filtration. In general, given any
u € M there is a unique filtered K-algebra homomorphism

cvy: K[[T]) = k(X)
sending T — u: since D(A,u™) = n for all A, € K and n € Ny, Exercise 3.15
shows that ev,: f(T) — f(u) is a well-defined filtered algebra homomorphism and
uniqueness follows from Example Sheet 1 Q5.

17A filtration on a Lie algebra L is a function v: L — R>% U {oco} such that v(z + y) >
min(v(z),v(y)), v(Az) > v(z) and v([z,y]) > v(z) + v(y) for all z,y € L and X € k.

18writing Lx to denote the completion of the filtered Lie algebra Z} = 1<iLnA>0 Lx/(Lx)x for
(Lx)a the Lie ideal {x € L | v(z) > A}.
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Lemma 8.21. The maps
exp: m — 1+ mju— Zu”/n!
n=0
and
log: 1+m—m;1+u— Z(—l)"“u”/n
n>1
are well defined mutual inverses.
Proof. exp(u) = ev,(exp(T)) and log(l + u) = ev,(log(l + T') so the maps are
well-defined by Remark 8.20. Moreover exp(log(1 + u)) = e, (exp(log(1+T')) and

log(exp(u)) = ev, (log(exp(T)) so it suffices to solve the following exercise which is
a special case of the Lemma. O

Exercise 8.22. Show that the pair of functions exp: TQI[T]] — 1 + TQI[T]] and
log: 14+ TQ[[T] — TQI[T]] are mutual inverses.

Hint: Prove a chain rule for formal differentiation of formal power series in one
variable and apply it to exp(log(1 + T)) and log(exp(T)).

Lemma 8.23. If a,b € m commute then exp(a + b) = exp(a) - exp(b).

Proof. We compute

exp(a +b) = Z(a—l—b)”/n!

n=0

= > > d'/iv/j!
n201i+j=n

= exp(a)exp(d)

as claimed. O

Lemma 8.24. The comultiplication on k(X) extends uniquely to a k-algebra ho-
momorphism

A B(X) = k(XY @5 k(X).

Moreover
P(m):{uelﬁ|£(u)=u®1+1®u}=f}.
Proof. If we give k(X) ® k(X) the tensor product filtration then A is a morphism
of filtered rings since
A(k(X)o) = A(k) = k = (k{X) @k k(X))o
and for n > 1
AR(X)n) = A(KX)1)"

= k{l®lzl+l®z|zeX)"

C  (k(X) @k k(X))n.
Thus by Example Sheeet 1 Q5 A extends as claimed. Moreover if r = En>0 Tn €
l@ is primitive with each r, € k(X)) then 3(7‘) = > 50 A(rn). Since A(ry)
is in degree n in the graded ring k({X) ®j k(X), each r,, is primitive and so lives in
Lg?) by Theorem 8.8. Thus r € I//;\( as claimed. (I
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— — X ~
Lemma 8.25. G = G(k(X)) = {r € k(X) | A(r) =r ®r} is a subgroup of the
multiplicative group 1+ m.

Proof. If r = ro + 2 € G with rg € kX and z € m then
ro@ro=o(r@r)= 0(3(7‘)) =o(A(ro) + E(m)) =rg®1

sord =79 and 1o = 1.
Suppose that r,s € G then

A(rs) =AMAGs)=(r@r)(s®@s)=rs@rs
so rs € G. Moreover
ArhH =AMt =@rer)t=rter!
so r~! € G. Finally 1 € G and we’re done. O
Proposition 8.26. exp restricts to a bijection
L/)\( — G.

Proof. Suppose u € L. Since 1 ® u and u ® 1 commute in k<X>/®;c<X>,
Alexp(u)) = exp(A(u)) = (exp(u) ® 1)(1 ® exp(u)) = exp(u) @ exp(u)

ie. exp(L/;() C G. Similarly if v € G there is some u € mx such that exp(u) = v.

Then

A(w) = A(logv)
= log(A(v))
= log(exp(u) @ exp(u))
= u®1+1Qu.
Thus u € Lx and exp(L/)\() =4g. O

Definition 8.27. The Hausdorff series in variables U,V is

—

O(U,V) = log(exp(U) exp(V)) € Q(U, V).

We will write ®,,(U,V) € L{/U;} for the nth homogeneous component of ®(U, V)

for n > 1.

Exercise 8.28. Compute directly that ®1(U,V) =U+V, ®(U,V) = 3[U, V] and
1

We will find an easier way to do these computations.

Corollary 8.29 (Campbell-Hausdorff).
®(U,V) € Ly, C KU, V).

Proof. Let X ={U,V}. Then U,V € Lx so exp(U) and exp(V) are in g(@) by

—

Proposition 8.26 and so exp(U) exp(V') € G(k(X)) by Lemma 8.25. Thus ®(U,V) =
log(exp(U) exp(V')) € Lx by Proposition 8.26 again. O
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Lemma 8.30. Let m = k(X)) and define a k-linear map a: m — Lx by linearly
extending

a(ar--a) = [or oo, [ s, @] 1)) € L
for xy,...,xn, € X and let : U(Lx) — Endi(Lx) be the extension to U(Lx) of
the adjoint representation ad: Lx — Endg(Lx). Then

a(uv) = 0(u)a(v)
for allw in U(Lx) and v € m.
Proof. Since « and @ are k-linear we may assume that w = z1 - - - x,, with x; € X.
We proceed by induction on n. If n = 0,1 the result is immediate.
Suppose that n > 1. Then
a(xy - xpv) = 0(z)a(xe - - xyv) = 0(21)0(22 - - 2p) (V) = O(u)a(v)

by the induction hypothesis and because 6 is a ring homomorphism. O

Proposition 8.31. a(u) = nu for all u € LE?) andn > 1.

Proof. Again by induction on n. When n = 1 the result is clear as L()?

is spanned

by X. Ifu e Lg?) for some n > 1 then u is a sum of terms Y [a;, b;] with a;,b; € Lx,

dega; + degb; = n and dega,;,degb; < n. By linearity we can reduce to the case
u = [a,b].
Now

a(la,b]) = a(ab) — a(ba) = 08(a)a(b) — 0(b)a(a) = deg(b)f(a)(b) — deg(a)f(b)a
by the induction hypothesis. But
deg(b)0(a)(b) — deg(a)f(b)a = deg(b)[a, b] — deg(a)[b, a] = nla, b
as required. (I
Corollary 8.32. The map ¢: m — Lx given by ¢(3_, 5, Tn) = D5, La(z,) for
x, € k(X)) is a projection onto Lx.

Proof. If " x,, € Lx then xz, € Lg?) so a(x,) = nz, and the result follows easily.
O

Notation 8.33. Given p,q € Ny and m € N let S]", denote the set of 2m-tuples
(i17"'aimajla"'aj’m) € Ngm such that i1+ F iy, =D, jl ++Jm =q and

ik +jr=1fork=1,...,m.
Theorem 8.34 (Dynkin). For p,q € Ngo. Write
m.1 ad(U)" ad(V)7* - --ad(U)" (V)
ol (U V)= >

ALY L
(.9)esp, 11010 b Im
Jm=1
b d(U)" ad(V)7" - ad(V)m— (U)
m.2 — a gy Y Jm—1
oA (UV) = Z . .
(i.)EST,
"m:ij:O
Then

(-1t

@, (U, V) = % i ~— < S el V) + A, V)) .

m
m=1 p+g=n
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Proof. By definition

m

(U, V) = log(exp(U) exp(V)) = 3 % y o

SO

Ui i Uim Vim
Z .

- (_1)m+1
POV =D FURTIR

m>1 p+g=n \(i,j)€Sy,

(]

Now
ad(U) ad(V)7t - ad(V)Im =1 (V) if jp > 1
ad(U) ad(V)t ---ad(U)~Y(U) if j,, = 0.
These values are zero unless j,, =1 or j,, = 0 and i, = 1 since
ad(U)(U) =ad(V)(V) =0.
Thus as @,(U, V) € L) 1 and S7, = B if m > p+q, (U, V) = La(®,(U,V))

{u.v}
is given by the required formula. 0

a(Ull V71 e Ui'm Vj'm) — {

LECTURE 21
9. p-ADIC LIE THEORY

Definition 9.1. A (descending) R-filtration on a ring R is a function
v: R — RZY U {00}

that satisfies the usual defining properties’® of a filtration as in Definiton 2.1. In
particular (Ry = {r € R | v(r) > 0},v|g,) is a filtered ring in the sense of Definition
2.1. Such a filtration is a valuation if v(ab) = v(a)v(b) for all a,b € R.

As in section 5 here we suppose that O is a complete discrete valuation ring with
uniformiser p and K will denote its field of fractions?® equipped with the valuation
vp such that Ky = O and v,(p) = 1.

9.1. Some p-adic estimates.

Lemma 9.2. Let n = Zf:o a;p' € N with ag,...,a; € {0,1,...,p— 1} and let
s(n) =>"a;. Then
n— s(n) n
<
p—1 p—1

vp(nl) =
Proof.

vp(n!)

[n/p) + [n/p?] + - [n/p"]

= atax(p+1)+az(p’ +p+ 1) +oa HP )
k .

N, =)

_ ; e

n—s(n)

p—1

conditions (a)-(d) of Definition 2.1
20which can be viewed as O localised at {p™ | n € No}
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as required. O

Lemma 9.3. v,(n) <log,(n) +1 for alln € N.

Proof. Let k € N such that p* <n < p"™. Then v,(n) < k+1and k <log,(n). O

Definition 9.4. A Banach K-algebra is an associative K-algebra A equipped with
a filtration w: A — R U {oc} such that

(1) w(Aa) =vp(A) + w(a) for all A € K amd a € A.

(2) A is complete with respect to w|q0 ie. Ay = Hm Ao/Ax. A morphism
(A,w) = (B,w’) of Banach K-algebras is a filtered K-algebra homomorphism
A— B.

Proposition 9.5. Suppose A is a Banach K-algebra and let I = A p_1)+ and
m= A0+ .

(a) exp: I — 14+ m converges.
(b) log: 1 +m — A converges.
(c) ®: I?> — A converges.
Proof. (a) Let z € I. Then w(z"/nl) = w(z") — vy(n!) = nw(z) — ;%5 — oo as
n — oo since w(z) > 1/p — 1. Moreover w(x™/n!) > 0 for all n > 1 for the same
reason. Thus Y z™/n! € Ag by Notation 3.14.

(b) Let € m. Then w(z"/n) = w(z") — v(n) > nw(z) —log,(n) — 1 — oo as
n — oo since w(z) > 0. Thus log(1 + ) converges.

(¢) Let z,y € I. Let t = min(w(x),w(y)) > 1/(p — 1). Then

n

(_1)m+1 [L'il y]l (Eim y]m
Cu(wy) =3 —— > | DX i
m .. 21 J1- tm: Im:
m=1 a+b=n (I,J)GS(T}]
Now
w(zilyjl e mimyjm) > nt,
vp(1/m) > —log,(m)—1 and
1 n
UVp\ V5 = v . . — vp(n!
p<21!31!"'lm!]m!> p<(7’17"' 7.7m>) P( )
n
> -0
p—1

since (, . " . ) €N. Thus w(®,(z,y)) > n(t—

115715 5Im

and so ), -, @, (7, y) converges. O

%)flogp(n)fl —ooasn — 0o

Exercise 9.6. With the notation of Proposition 9.5 show that

(a) exp(log(l+x)) =1+« for all x € T;
(b) log(exp(z)) =« for all z € I and
(c) ®(z,y) = log(exp(x)exp(y)) for all z,y € I.
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9.2. The Banach algebra associated to OG. Now we consider a complete p-
valued group (G, w) of finite rank with ordered basis (g1, . .., ga). We recall, Remark
6.24, that

OG =14 > Ab*[A€0}?
aeNd

has valuation v given by

v (Z /\aba> = anelgd {Up()\a) + zd:oziw(gi)}

Notation 9.7. We write KG to denote the K-algebra K ®o OG = OG[1/p]. #

Since OG has no p-torsion we may view it as a subring of KG. Moreover
the elements of KG can be viewed as sums ZaeNg Aob® with each A\, € K and

{v,(M\a) | @ € N&} C R bounded below.

Lemma 9.8. The valuation v on OG extends uniquely to a valuation
w: KG — RU{o0}

such that w(Ar) = vp(A) +w(r) for all A € K and r € KG.

Proof. Suppose that w is such an extension of v to KG. For r € KG thereisn € N
such that p"r € OG. Then
w(r) =vp(p~") +o(p"r) = v(p"r) —n

so such a w is necessarily unique. It is straightforward to verify that if we define
w(r) to be v,(p~™) +v(p"r) for n € N such that p"r € OG, the definition does not
depend on the choice of n and does define a valuation on KG extending v. (]

Remark 9.9. OG is a subring of KGj but these are not equal unless G is trivial.
For example p~ 107 € KGo\OG if nw(g1) > 1.

Notation 9.10. We will write KG to denote the completion of KG with respect
to w. That is

KG = (1@ KGO/KGA> [1/p].

A>0

Thus KG is a Banach K -algebra whose elements may be viewed as convergent
sums

Z Aab® with each A\, € K and v,(Ay) + Zaiw(gi) — 00 as |a| = oo

aENg
and

W Z Aeb® | = min {vp()\a)—&—Zaiw(gi)}.

aeNE
aENg 0

2lpor bi=9i—1
22This is inconsistent with Definition 6.13 and so replaces it in this case.
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LECTURE 22

Definition 9.11. We say that G is p-saturated if for all g € G with w(g) > p%
there is h € G with h? = g.

Note that there is a sequence of natural inclusion maps
G = 0[G] = OG = KG - KG

and that for g € G,
g~ 1) =g~ 1) =l = 1) > wlg) > —.
Thus by Proposition 9.5 and Exercise 9.6, log(g) converges in KG and
explog(g) = g-
Proposition 9.12. If G is p-saturated then log G is a Z,-Lie subalgebra of KG.

Proof. Suppose that v = logg and v = logh are in logG. By Lemma 3.6(b) for
each n € N, w(g?" h?") = w(gh)+n. So since G is p-saturated there is some x, € G
such that g¢" h?" = 22",
Then
p"log @, = log(g”" h¥") = log(exp(p"u) exp(p"v)) = ©(p"u, p"v)
by Exercise 9.6(c). So

log(z,) = u+v+ Zp‘"@k(p"u,p"v)
k>2

= w+tv+ Y pF I (u,0)
k>2
- u+tv as n — oo
Since G is compact and log |¢ is continuous, log G is compact and so closed in KG.

Thus v + v = lim,_,~ =, € log G and log G is closed under +.
If A € Z, then by continuity of log, log(¢*) = AMu so log G is a Z,-submodule of

KG.
Writing
U(X,Y) = log(exp(—X)exp(=Y)exp(X)exp(Y))
O(—X,2(-Y,®(X,Y)))
for the commutator Campbell-Baker-Hausdorff series we see that
U(X,Y)=XY -YX+ ) U(X,Y);
k>3

where W, denotes the homogeneous degree k part of ¥. Thus by a similar argument
to the above

log(g™"" h™"" g?" hP") = U(p"u, p"v) € p*"[u, v] + K Gaptaw(u) u(v)-
In particular w ((gp", hpn)) > 2n + ]ﬁ so there exists y,, € G such that

2n

yr = (g"" hP")

By a similar argument to the above lim,,_, log y, = [u,v] and so [u,v] € logG. O
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Exercise 9.13. Show that there is a canonical functor from the category of com-
plete p-valued groups of finite rank to the category of K-Banach algebras that sends
G to KG and such that each natural diagram

H G
KH——>KG

commutes.
Exercise 9.14. Show that if we equip G x G with the filtration
waxa (9, 7)) = min(w(g),w(R))
then (G x G,w) is a complete p-valued group with gr(G x G) 2 grG x grG.
It follows from these two exercises that there are natural morphisms
tyia, A KG = K(G x Q)

associated to the morphisms of filtered groups t1,t2,A: G — G x G such that
11(g) = (9, €a), t2(9) = (eq,g) and A(g) = (g, 9) and a natural morphism

¢: KG— K
associated to the morphism of filtered groups G — {e}.
Definition 9.15. Let
G(KG) = {z € KG | A(z) = 11(2)i2(x)}
and

PKG) = {z € KG | A(x) = 11 (x) + 12(2)}.

Exercise 9.16. Show that G (I/(Z?) is a subgroup of KG containing the image of G
in KG and that P(KG) is a Lie K-subalgebra of KG equipped with its commutator
bracket. Finally show that exp restricts to a bijection

P(KG)NKG .+ »G(KG) N (1+KG . +)
with inverse log.

Definition 9.17. The Lie algebra of G is L(G) = P(@) with its natural Lie
structure.

Theorem 9.18. Let u; = log(g;) € @ c KG. Then {u1,...,uq} is a K-basis
for P(KG) and

d
w (Z )\iui> = lgliigd {vp(Xi) +w(g:)}

for A,..., g € K.
Corollary 9.19. If G is p-saturated then

d
log G = L(G)_1_+ =P Zyu:
E
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Proof. The g; cannot be pth powers by Exercise 3.34 and so each w(g;) < ;7 since
G is p-saturated. Thus by Theorem 9.18 for A,..., ¢ € Qp, w (3 Au;) > p%l
if and only if each v,(\;) > 0; i.e. precisely if each \; € Z,. This establishes the
second equality.
Now each u; € log G so Proposition 9.12 gives that Y Z,u; C logG.
Suppose that
QEGCQ(@)Q(1+®ﬁ+).

Then logg € L(G) 1 _+ by Exercise 9.16. Thus logG C L(G) 1 +. O
p—1

p—1

Corollary 9.20. If G is p-saturated then there is a natural isomorphism of Q,, Lie
algebras
L(G) = Q, ®z, logG.

Corollary 9.21. If G is p-saturated then the group operation on G is given by the
Campbell-Hausdorff formula:

gh = exp(®(log g, log h)) € Q,G.
Proof. For g,h € G, logg,logh € L(G)_1 + so

=1
®(log g,log h) = log (exp(log g) exp(log h)) = log(gh)

by Exercise 9.6. But log(gh) € log G = [Z(G)%+ so exp ®(log g,log h) converges

to gh by Exercise 9.6 again. a

LECTURE 23

Proof of Theorem 9.18. Suppose z = Zle Ait;. Then as u; = log(g;) = log(1+b;)
we see that

d (_1)n+1
=y Ay
i=1n>1
Thus
w(z) = min{v,(Ai/n) +nw(gi)}
1<i<d
n>1
= s {00 + min{nstan) - 0,001
= in {up(Ai) +w(gi)}
Thus u1,...,uq are linearly independent over K.
It remains to show that every element of P(KG) is in the span of uy, ..., u,. So
suppose that z = > A,b® € P(KG). We compute that
A®Y) = Algi—1)" = (@ +bi)ea(1+b;) —1)"

= (Ll(bi) + Lg(bi) + Ll(bi)Lg(bi))n

j+kHl=n

— n @ ,b-
N Z (n—b,n—a,a—f—b—n)bl(bz) 12(bi)’s

a,b<n
a+b>n
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wherea=j+landb=k+1soa+b=n+1. Thus

A = Lo X ( ) Jaa(b)a)

o — o — —
N porea Bya—n,8+7
° +7>a

= 11(2) +12(2)

= > Apu®d?)+ D M)

BENE veENE

Equating constant coefficients we get \g = Ao + Ao = 0. Equating ¢ (b®)ia(b?)
coefficients when 8 = e; and v # 0 arbitrary we see that the pairs of conditions
8,7 < aand 8+ > «is equivalent to a; > 1 and o = =y or v + ¢;. Thus

Y Y +e;
A Mte =0
7(’Y&')+ W+1< Y >

ie. Ayje, = —%)\7 for each 1 < i < d and v € N& with v; > 1; and Ay4e, = 0 if
~v # 0 but v; = 0.
In particular A, = Ae, and A, = 0 if there are 7 # j with ;,v; > 1.

—_\d =D n ;
Thus 2 =371 Ae; D51~ b7 as required. O

(_1)n+1

Definition 9.22. Suppose that g is a Lie algebra over O that is free of finite rank.
We can filter U(g) p-adically so that

v(er) =sup{n € No | a € p"U(g)}
The affinoid enveloping algebra of g is

— —

Ulgr) = K @0 U(g).

There is a unique way to define a filtration vx extending ¥ on U/'(E) that will
make U(gk) is a K-Banach algebra

Example 9.23. If g = 5(2(O0) = Oe ® Oh @ Of then elements of U(gx) can be
written uniquely as convergent sums Aijk f*hieF with each Aijk € K and
Up()‘ijk) —ooasi+j+k—0.

i.j,k€Ng

Theorem 9.24. Suppose that p is odd, G is p-saturated, and that w(g;) = 1 for
i=1,....,d. Let

g ={z € P(KG) | w(z) > 0}.
Then g is an O-Lie algebra free of finite rank over O and there is an isomorphism
of Banach algebras

Ulgr) > KC.
Proof. By Theorem 9.18, P(@) = @le Ku; and, writing x = Z?zl Aju; with
A € K,
w(z) = min {v(;) +w(g:)}.

1<i<d
Thus, as w(g;) = 1 for all ¢, w(x) > 0 if and only if v(\;) > —1 foreach i =1,...,d.
Then w(x) > 0 if and only if \; € p~1O for 1 <i < die. (u1/p,...,uq/p) is an
O-module basis for g.
Since for z,y € g, w([z,y]) > w(z) + w(y) = 0 we see that g is an O-Lie-
subalgebra of P(I?E’) Thus the universal property of the universal enveloping
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algebra induces an O-algebra map U(g) — (I/(a)o. Since this is a filtered O-
algebra map and (KG)g is complete, this in turn extends to a filtered O-algebra
map

Ula) — (KG)o
and thence to a morphism of K-Banach algebras
0: Ulg)x — KG.
We must show that this is an isomorphism of Banach algebras.
Since for g € G,
(g — 1)™/m) > me(g) — v,(m)
we see that

—1)ym+1 _ _
logg = Z %(g — 1) e P(KG) N (KG)yg)-
m2>=1

Thus log g € p*9g C pg and

— X

G—-U(g) : g~ exp(logg)

converges by Proposition 9.5 with v(explog(g)) = w(g).
Since

— X

exp(log g) exp(log h) = explog(gh) € U(g)
the universal property of O[G], i.e. Example Sheet 2 Q10, shows that this extends
to a filtered ring map O[G] to U(g). Since the latter is complete, this extends a

— —

filtered ring map OG — U(g) and thence to a filtered ring map KG — U(g)k, and
finally to a morphism of K-Banach algebras
v KG — Ulg)x
Since

©(g:) = w(exp(log(g:)) = exp(p(log g:)) = exp(p(us)) = gi

for i =1,...,d. By various universal properties p1 = idz. Similarly

Yo(ui) = P(u;) = P(log(gi)) = log(¥(g:)) = log(exp(log(g:))) = log(gi) = wi

and by various other universal properties Yp = idU/@\K

O

Exercise 9.25. Repeat this argument in the case p = 2, GG is p-saturated and
w(g;) =2foreachi=1,...,d.

Exercise 9.26. Show that the conditions of Theorem 9.24 (resp. Exercise 9.25)
are satisfied when G = GL}(Z,) (resp G = GL2(Z)) with respect to its usual
p-valuation.

Exercise 9.27 (Harder). Show that g(l/(b)ﬂ(1+@)#+ is always a p-saturated
1

p
complete p-valued group of the same rank of G and that G is isomorphic to an open
subgroup of it.



