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Lecture 1

1. Introduction

Recall the following famous result in Number Theory.

Theorem 1.1. Suppose that p is a odd prime. If x, y and z are integers such that
xp + yp = zp then xyz = 0.

One possible approach to trying to prove this is to begin by factorising the
equation in Q[ζp] where ζp = e2πi/p denotes a primitive p-th root of 1 in C.

Before we discuss this we should recall some notation. If F is a finite field
extension of Q then its ring of integers is denoted OF . A fractional ideal in F is
then a non-zero finitely generated OF -submodule of F . If I and J are two fractional
ideals then their product IJ = {

∑
xiyi | xi ∈ I, yi ∈ J} is a fractional ideal. Since

OF is a Dedekind domain the set of fractional ideals of F forms an abelian group
with respect to this product.

The ideal class group CF = Cl(OF ) (also known as the Picard group of OF )
is then defined to be the group of fractional ideals in F modulo the subgroup
of principal fractional ideals. Although any abelian group can arise as the ideal
class group of a Dedekind domain, Cl(OF ) is known to always be finite. When
Cl(OF ) = 1, OF is a UFD.

In 1850 Kummer was able to prove that if CQ(ζp) has order coprime to p then
Theorem 1.1 is true. However there are infinitely many primes where this is not
the case (the first being 37). These latter are known as the irregular primes.

In the 1950s Iwasawa studied the following situation. For an odd prime p he
considered for each n > 1 a primitive pn-root of 1 called ζpn and then defined
Fn = Q(ζpn+1) giving a tower of Galois extensions over Q,

F0 ⊂ F1 ⊂ · · · ⊂ Fn ⊂ · · · .

Given σ ∈ Gal(Fn/Q), σ(ζpn+1) = ζ
χ(σ)
pn+1 for some χ(σ) ∈ (Z/pn+1Z)×. This defines

a group homomorphism

χn : Gal(Fn/Q)→ (Z/pn+1Z)×.

It can be shown that for each n, OFn = Z[ζpn+1 ], Fn is Galois of degree pn(p − 1)
over Q and each χn is a group isomorphism.

Taking F∞ =
⋃
Fn then F∞/Q is an infinite Galois extension with Galois group

G = Gal(F∞/Q) = lim←−Gal(Fn/Q) and the χn patch to an isomorphism χ : G→ Z×p
called the cyclotomic character. Here Zp = lim←−Z/pmZ as rings and Z×p

∼= Zp×Cp−1
as groups.

The question that Iwasawa addressed is how the groups An = CFn [p∞], that is
the Sylow p-subgroups of the ideal class groups, grow with n in the tower.
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Theorem 1.2 (Iwasawa, 1958). For any prime p, there are natural numbers λ, µ
and c such that for any sufficiently large n

logp |An| = λn+ µpn + c.

For each n the action of Gn = Gal(Fn/Q) on Fn induces an action of Gn on CFn
and so on An. That is we may view An as a Z[Gn]-module. Since An is a finite
abelian p-group this action factors through (Z/pNZ)[Gn] for N sufficiently large
and so even Zp[Gn] acts on An.

Now there are norm maps Am → An for m > n coming from

I 7→
∏

σ∈Gal(Fm/Fn)

Iσ.

These make A∞ = lim←−An into a module over the Iwasawa algebra Zp[[G]] =

lim←−Zp[Gn] ∼= Zp[[T ]][Cp−1]. Here Λ = Zp[[T ]] is a power series ring in one variable
over Zp. In particular it is a commutative Noetherian integral domain of dimension
2.

Fact 1.3. Using class field theory one can show A∞ is finitely generated and torsion
as a Λ-module.

One can also prove the following using commutative algebra.

Proposition 1.4. If M is a finitely generated torsion Λ-module M there is a Λ-
module map

M →
t⊕
i=1

Λ/paiΛ⊕
s⊕
j=1

Λ/fjΛ

with finite kernel and cokernel where the ai ∈ N and the fj are monic elements of
Zp[T ].

Then to prove Theorem 1.2 we take M = A∞ in the Proposition and then
µ =

∑
ai and λ =

∑
deg fj . The idea is that because Λ is so well-behaved studying

A∞ is easier than directly studying each of the pieces An that make it up. But
then An can be recovered from A∞.

One can play similar games with more general families of field extensions or
covering spaces and the action of related Galois groups on cohomology groups
associated to the these extensions/covernings.

In this course we will focus on the algebraic (and p-adic analytic) background to
this kind of arithmetic set up which turns out to be interesting from a ring-theoretic
and representation theoretic point of view apart from the arithmetic applications;
i.e. we will be more interested in results like Proposition 1.4 than Fact 1.3.

I should note that almost all the material in this course and more can be
found in Lazard’s monumental paper ‘Groupes analytiques p-adiques’ Publications
Mathématiques de l’IHÉS, Volume 26 (1965), p. 5-219.

To prepare the lectures I’ve also used an exposition of Lazard’s material by
Schneider in his book p-adic Lie groups published by Springer in 2011, and unpub-
lished lecture notes by Ardakov for a similar course to this one given in Oxford in
2016.
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2. Filtrations

2.1. Ring filtrations.

Definition 2.1. A (descending) filtration on a ring R is a function

v : R→ R>0 ∪ {∞}

such that for all r, s ∈ R:

(a) v(r − s) > min(v(r), v(s));
(b) v(rs) > v(r) + v(s);
(c) v(1) = 0 and
(d) v(0) =∞.

We say that the pair (R, v) is a filtered ring. We say that the filtration v is
separated if v−1(∞) = {0}.

Remarks 2.2.

(1) Notice that condition (c) in Definition 2.1 follows from condition (b) unless
v(r) =∞ for all r ∈ R.

(2) Similarly condition (d) in Definition 2.1 follows from condition (b) unless v(r) =
0 for all r ∈ R.

Example 2.3. Let p ∈ Z be prime and let vp : Z→ R>0 ∪ {∞} be given by

vp(n) = sup{k ∈ N0 | pk divides n}.

Then (Z, vp) is a separated filtration.

Lecture 2

Exercise 2.4. Suppose that Mn(R) denotes the ring of n× n matrices with coef-
ficients in a filtered ring (R, v) and let vn : Mn(R)→ R>0 ∪ {∞} be given by

vn(A) = min
16i,j6n

{v(Aij)}.

Show that vn is a filtration on Mn(R). Moreover vn is separated if and only if v is
separated.

Remark 2.5. For any filtered ring (R, v) there is a family of two-sided ideals of R
given by (Rλ = {r ∈ R | v(r) > λ})λ∈R>0 . This family satisfies the following three
conditions:

R0 = R;

Rλ =
⋂
µ<λ

Rµ for all λ ∈ R>0

and

RλRµ ⊆ Rλ+µ for all λ, µ ∈ R>0.

In fact any family of additive subgroups (Rλ)λ∈R>0 of R satisfying these three
conditions corresponds to a filtration on R via v(r) = sup{λ ∈ R>0 | r ∈ Rλ}.

Example 2.6. Let M denote the free monoid on X and Y so that elements of M
consist of finite (possibly empty) strings w of Xs and Y s and the binary operation
is given by concatenation. We write `(w) for the length of a string w so

`(X) = `(Y ) = 1 and `(uv) = `(u) + `(v) for any two strings u, v ∈M.
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Let Z[M ] denote the free associative ring on two generators so that Z[M ] may
be viewed as a free Z-module on M and multiplication is given by the Z-bilinear
extension of multiplication in M . Let v : Z[M ]→ R>0 ∪ {∞} be given by

v

(∑
m∈M

cmm

)
= inf `(m)

where the infinum is taken over the (finite) set of m such that cm 6= 0.1 Then v is
a separated filtration on Z[M ].

Definition 2.7. If (R, v) and (S,w) are filtered rings then a morphism of filtered
rings from (R, v) to (S,w) is a ring homomorphism f : R→ S with w(f(r)) > v(r)
for all r ∈ R.

2.2. Topology and completion. A filtration v on a ring R induces a topology on
R; a subset of R is open if and only if it is a union of cosets r+Rλ. This makes R
into a topological ring — that is the addition and multiplication maps R×R→ R
are both continuous. Moreover if f : R → S is a morphism of filtered rings (R, v)
to (S,w) then f is continuous with respect to the induced topologies.

Definition 2.8. The completion of a filtered ring (R, v)

R̂ = lim←−R/Rλ =

(rλ +Rλ)λ∈R>0 ∈
∏

λ∈R>0

R/Rλ | (∀µ < λ)rλ +Rµ = rµ +Rµ


is a ring when equipped with pointwise operations. Moreover there is a natural ring
homomorphism R→ lim←−R/Rλ given by r 7→ (r +Rλ).

We say that a filtered ring (R, v) is complete if the natural map R → R̂ is a
isomorphism.

Exercise 2.9. Show that R̂ has a separated filtration

v̂((rλ +Rλ)λ>0) = inf{λ | rλ 6∈ Rλ} = v(rµ) whenever rµ 6∈ Rµ
with respect to which it is complete. Show moreover the natural map ιR : (R, v)→
(R̂, v̂) is then a morphism of filtered rings and ιR is injective precisely if v is sepa-
rated.

Examples 2.10.

(1) If R = Z with the p-adic filtration then R̂ is the ring of p-adic integers Zp
(2) If R = Z[M ] with M the free monoid on X and Y with the filtration given

in Example 2.6 then R̂ is isomorphic to the Magnus algebra M of associative
(not commutative) formal power series in X and Y with coefficients in Z.
Elements of M are formal sums

∑
m∈M cmm and Mn = {

∑
m∈M cmm | cm =

0 whenever `(m) < n}.

2.3. Associated graded rings.

Definition 2.11. An (R>0)-graded ring is a ring A equipped with a decomposition
A =

⊕
λ∈R>0 Aλ as a direct sum of abelian groups such that AλAµ ⊂ Aλ+µ for all

λ, µ ∈ R>0.

1Recall inf ∅ =∞.
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Definition 2.12. If (R, v) is a filtered ring let Rλ+ = {r ∈ R | v(r) > λ} and
grλR = Rλ/Rλ+ for λ > 0. The associated graded ring is the graded ring

grR =
⊕
λ∈R>0

grλR

with multiplication the bilinear extension of

grλR× grµR→ grλ+µR;

(r +Rλ+)(s+Rµ+) = rs+R(λ+µ)+ .

Lecture 3

Example 2.13. If Z is given the p-adic filtration then

gr Z = ⊕∞i=0Fpt
i = Fp[t]

where ti has degree i.

Proof. (Z)λ = (pn) when n − 1 < λ 6 n so grλ Z = 0 for λ 6∈ Z>0 and grn Z =
(pn)/(pn+1) for n ∈ Z>0. Moreover if t = p+(p)2 ∈ (gr Z)1+ then tn = pn+(Z)n+ ∈
grn Z is non-zero. �

Definition 2.14. If A = ⊕λ∈R>0Aλ and B = ⊕λ∈R>0Bλ are graded rings. Then
f : A→ B is a graded ring homomorphism if it is a ring homomorphism such that
f(Aλ) ⊂ Bλ for all λ ∈ R>0.

Exercise 2.15. Prove that for any filtered ring (R, v) there is an isomorphism of

graded rings grR ∼= gr R̂. In particular gr Zp ∼= Fp[t].

Exercise 2.16. Show that if (R, v) is a filtered ring and Mn(R) is given the
filtration vn given in Exercise 2.4 then there is an isomorphism of graded rings
grMn(R) ∼= Mn(grR).

Notation 2.17. If (R, v) is a filtered ring and r ∈ v−1(R>0) then we’ll write
σ(r) = r+Rv(r)+ . If v(r) =∞ then we write σ(r) = 0. We call σ(r) the symbol of
r in grR.

2.4. Filtrations on groups.

Definition 2.18. A filtration on a group G is a function ω : G→ R>0 ∪{∞} such
that, for all x, y ∈ G,

(a) ω(xy−1) > min(ω(x), ω(y));
(b) ω(x−1y−1xy) > ω(x) + ω(y).

A filtered group is a group G equipped with a filtration ω.

Lemma 2.19. Suppose that (G,ω) is a filtered group. Then

(i) ω(eG) =∞; and for all x, y ∈ G
(ii) ω(x) = ω(x−1);

(iii) ω(y−1xy) = ω(x);
(iv) ω(xy) = min(ω(x), ω(y)) whenever ω(x) 6= ω(y);
(v) if H is a subgroup of G then ω restricts to a filtration on H.
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Proof. (i) Take x = y = eG in Definition 2.18(b) to get ω(eG) > 2ω(eG) > 0. So
ω(eG) =∞.

(ii) Take x = eG in Definition 2.18(a) to get ω(y−1) > min(ω(eG), ω(y)) = ω(y)
and use symmetry.

(iii)

ω(y−1xy) = ω(x(x−1y−1xy))

> min(ω(x−1), ω(x−1y−1xy) (Definition 2.18(a))

> min(ω(x), ω(x) + ω(y)) = ω(x). (Definition 2.18(b) and part (ii))

Thus ω(ghg−1) > ω(h) for all g, h ∈ G. So writing x = y−1(yxy−1)y we see
ω(x) > ω(y−1xy).

(iv) WLOG ω(x) > ω(y). Then

ω(y) > min(ω(x−1), ω(x−1y)) > min(ω(x), ω(y)) = ω(y).

(v) is immediate. �

Definition 2.20. As for ring filtrations we say that a filtration ω is separated if
ω−1(∞) = {eG}.

Proposition 2.21. Suppose that (R, v) is a filtered ring. Let

G = {x ∈ R | x is a unit and v(x− 1) > 0}.

Then G is a group under the ring multiplication and

ω : G→ R>0 ∪ {∞}; ω(x) = v(x− 1)

defines a filtration on G. Moreover ω is separated if v is separated.

Proof. First v(1− 1) = v(0) =∞ so 1 ∈ G.
Next if x, y ∈ G then as

xy−1 − 1 = (x− 1)− (y − 1)− (xy−1 − 1)(y − 1)

we see that

v(xy−1−1) > min(v(x−1), v(y−1), v(xy−1−1)+v(y−1)) = min(v(x−1), v(y−1))

so xy−1 ∈ G and ω(xy−1) > min(ω(x), ω(y)). Similarly

x−1y−1xy − 1 = x−1y−1((x− 1)(y − 1)− (y − 1)(x− 1))

gives ω(x−1y−1xy) > ω(x) + ω(y). The last part is immediate. �

Example 2.22. Mn(Zp) has a separated filtration on it induced from the p-adic
filtration on Zp as in Exercise 2.4. This induces a separated filtration on

GL1
n(Zp) = ker(GLn(Zp)→ GLn(Fp))

via Proposition 2.21.

Notation 2.23. Given a filtered group (G,ω) and λ > 0 we write

Gλ = {x ∈ G | ω(x) > λ} and

Gλ+ = {x ∈ G | ω(x) > λ}.

Lemma 2.24. For any filtered group (G,ω) and λ > 0, Gλ and Gλ+ are normal
subgroups of G. Moreover Gλ/Gλ+ is contained in the centre of G/Gλ+ .



IWASAWA ALGEBRAS 7

Proof. The statements that Gλ and Gλ+ are normal subgroups of G follow imme-
diately from Exercise 2.19. For the last part we see that for any x, y ∈ G

ω(x−1y−1xy) > ω(x) + ω(y) > ω(x)

so x−1y−1xy ∈ Gω(x)+ and xyGω(x)+ = yxGω(x)+ ie xGω(x)+ is central. �

It is also straightforward to see that

(a) G =
⋃
λ>0Gλ

(b) x−1y−1xy ∈ Gλ+µ for all x ∈ Gλ and y ∈ Gµ with λ, µ ∈ R>0 and
(c) Gλ =

⋂
µ<λGµ for all λ ∈ R>0.

Moreover any family (Gλ)λ∈R>0 of subgroups of G satisfying properties (a)-(c)
determines a filtration on G via ω(x) = sup{λ | x ∈ Gλ}.2

Lecture 4

Aside on group commutators. We recall some general group theoretic facts. For
x, y in a group we write xy = y−1xy for the conjugate of x by y (on the right) and
(x, y) = x−1y−1xy = x−1xy for the commutator of x and y.

Exercise 2.25. Suppose that G is a group and x, y, z ∈ G.

(1) (xy, z) = (x, z)y(y, z);
(2) (x, yz) = (x, z)(x, y)z;
(3) (xy, (y, z))(yz, (z, x))(zx, (x, y)) = eG.

Notation 2.26. If G is a group and H and K are subgroups of G we write (H,K)
to denote the subgroup of G generated by commutators (h, k) with h ∈ H and
k ∈ K.

Definition 2.27. The lower central series for G is defined recursively: γ1(G) = G;
γn(G) = (G, γn−1(G)) for n > 2. We say that G is nilpotent if there is some n > 1
such that γn(G) = {eG}.

Exercise 2.28. Show that ω : G→ R>0∪{∞} given by ω(x) = sup{n | x ∈ γn(G)}
defines a filtration on G. Show moreover that γn+1(G) is the smallest normal
subgroup of G such that γn(G)/γn+1(G) is contained in the centre of G/γn+1(G)
for all n > 1.

Theorem 2.29. [Hall–Petrescu Formula; P. Hall 1932, Lazard 1953] Let G be a
group, x, y ∈ G and n ∈ N. Then

xnyn = (xy)nc
(n2)
2 c

(n3)
3 · · · cnn−1cn

for some ci ∈ γi(G)

Exercise 2.30. Verify this for n 6 4.

2Something similar is true for the family Gλ+ .
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2.5. The associated graded Lie algebra of a filtered group. In this section
we suppose that G is a group equipped with a filtration ω.

Definition 2.31. The associated graded group of G

grG =
⊕

λ∈R>0

Gλ/Gλ+ .

We will write grλG for the λ-component Gλ/Gλ+ of grG.

Notation 2.32. As for associated graded rings for g ∈ ω−1(R>0), we write σ(g) =
gGω(g)+ .

We note that by Lemma 2.24 each component grλG is an abelian group. Thus
we may view itself grG as an abelian group. The goal of this section is to explain
how to give grG the structure of a Z-Lie algebra in a way that only depends on
the pair (G,ω). Moreover the Lie bracket

[−,−] : grG× grG→ grG

will respect the grading in the sense that [a, b] ∈ grλ+µG whenever a ∈ grλG and

b ∈ grµG. We will say that grG is a graded Lie algebra.3

Definition 2.33. For any λ, µ > 0 let

[−,−] : grλG× grµG→ grλ+µG

be given by
[xGλ+ , yGµ+ ] = (x, y)Gλ+µ+ .

Proposition 2.34. The Z-bilinear extension of [−,−] to grG makes grG into an
Z-Lie algebra.

Proof. First we check that [−,−] is well-defined on grG. Suppose that xGλ+ ,
yGµ+ are homogeneous elements of grG. Then (x, y) ∈ Gλ+µ by condition (b) for
a filtration on a group. Moreover if l ∈ Gλ and m ∈ Gµ then

(xl, y) = (x, y)l(l, y) ∈ (x, y)(l, y)Gλ+µ+

and
(x, ym) = (x,m)(x, y)m ∈ (x, y)(x,m)Gλ+µ+

by Exercise 2.25 and the centrality of Gλ+µ/Gλ+µ+ in G/Gλ+µ+ (Lemma 2.24).
Moreover (l, y) ∈ Gλ+µ+ (resp. (x,m) ∈ Gλ+µ+) if l ∈ Gλ+ (resp. m ∈ Gµ+).

Thus each map grλG× grµG→ grλ+µG is a well defined Z-bilinear map.
Next we see that

[σ(x), σ(x)] = 0

since (x, x) = eG and
[σ(x), σ(y)] = −[σ(y), σ(x)]

since (x, y)−1 = (y, x). Thus [−,−] extends to an alternating Z-bilinear form on
grG.

Suppose now that additionally z ∈ G. Then the Jacobi identity

[σ(x), [σ(y), σ(z)]] + [σ(y), [σ(z), σ(x)]] + [σ(z), [σ(x), σ(y)]] = 0

holds on homogeneous elements by Exercise 2.25(3) and Lemma 2.19 and thus by
multilinearity on the whole of grG. �

3Warning: this isn’t always what is meant by this term!
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Exercise 2.35. Let R be a commutative ring and let G denote the group of 3× 3
upper-unitriangular matrices with entries in R

G =


1 x z

0 1 y
0 0 1

 | x, y, z ∈ R


equipped with the filtration coming from the lower central series as in Exercise 2.28.
Show that G is nilpotent and grG is an R-Lie algebra RX⊕RY ⊕RZ (free of rank
3 as an R-module) with

gr1G = RX ⊕RY and gr2G = RZ,

[X,Y ] = Z and [X,Z] = [Y, Z] = 0.

Exercise 2.36. Suppose now that R = Zp and

G =


1 x z

0 1 y
0 0 1

 | x, y, z ∈ pR


with the filtration ω induced by restricting the one in Example 2.22.
Show that grG = ⊕n∈N grnG is an gr Zp = Fp[t]-Lie algebra,

grnG = Fpt
nX ⊕ Fpt

nY ⊕ Fpt
nZ for n > 1

with tX, tY and tZ free generators all of degree 1, [tX, tY ] = t2Z and [tX, tZ] =
[tY, tZ] = 0.

Lecture 5

3. p-valued groups

3.1. Definitions and basic properties. We will be most interested in special
filtrations of groups called p-valuations. The reason for this will become apparent
later.

Definition 3.1. Let p be a prime. A separated filtration ω on a group G is called
a p-valuation if for all g ∈ G
(a) ω(g) > 1

p−1 and

(b) ω(gp) = ω(g) + 1.

Lemma 3.2. If G has a p-valuation ω then for all λ > 0

(i) Gλ/Gλ+ has exponent p;
(ii) G/Gλ is a p-group and

(iii) G is torsion-free.

Proof. (i) Suppose gGλ+ ∈ Gλ/Gλ+ . Then ω(g) > λ so ω(gp) > λ+ 1 > λ and so
(gGλ+)p = e.

(ii) Choose n ∈ N such that n > λ. For any g ∈ G, ω(gp
n

) = ω(g) + n > λ. So
(gGλ)p

n

= 1.
(iii) Suppose for contradiction that g ∈ G\{e} and gn = e. Write n = pam for

(m, p) = 1. Then ω(gp
a

) = ω(g) + a <∞. So we may choose µ > ω(gp
a

)
Now (gp

a

)m = e so, asG/Gµ is a p-group and (m, p) = 1, we see that gp
a

Gµ = Gµ
ie gp

a ∈ Gµ and ω(gp
a

) > µ contrary to the choice of µ. �



10 SIMON WADSLEY

Exercise 3.3. Show that if ω is a p-valuation on G and g ∈ γn(G) then ω(g) >
n/(p − 1). Show moreover that if g ∈ γn(< x, y >) and n > 2 then ω(g) >
n−1
p−1 + max{ω(x), ω(y)}.

Proposition 3.4. Suppose that (R, v) is a separated filtered ring such that v(pr) =
v(r)+1 for all r ∈ R and that (G,ω) is obtained from (R, v) as in Proposition 2.21.
Then ω restricts to a p-valuation on G1/(p−1)+ .

Proof. That ω restricts to a separated filtration on G1/(p−1)+ satisfying condition
(a) for a p-valuation is immediate from Proposition 2.21.

Suppose that x ∈ G1/(p−1)+ . We must show ω(xp) = ω(x) + 1. Now

xp − 1 = (1 + (x− 1))p − 1 =

p∑
i=1

(
p

i

)
(x− 1)i

But v(p(x− 1)) = ω(x) + 1 and for 2 6 i 6 p− 1

v

((
p

i

)
(x− 1)i

)
= 1 + v

(
p−1
(
p

i

)
(x− 1)i

)
> 1 + iω(x) > ω(x) + 1.

Finally v((x − 1)p) > pω(x) > ω(x) + 1.4 Thus ω(xp) = v(xp − 1) = ω(x) + 1 as
required. �

Example 3.5. Recall the filtration on GL1
n(Zp) as in Example 2.22. For p > 2,

GL1
n(Zp)1/(p−1)+ = GL1

n(Zp)

so this group has a p-valuation on it. For p = 2

GL2
n(Zp) = ker

(
GLn(Zp)→ GLn(Z/p2Z)

)
has a p-valuation on it.

Since it is easy to verify that the restriction of a p-valuation to a subgroup is a
p-valuation on the subgroup it follows that any subgroup of GL1

n(Zp) can be given
a p-valuation for p odd and likewise any subgroup of GL2

n(Zp) when p is even. In
particular in Exercise 2.36 the given ω is a p-valuation on the given group G.

3.2. Finite rank p-valued groups.

Lemma 3.6. Suppose that G is a group with a p-valuation ω. Let x, y ∈ G, n ∈ N
and ω(y) > ω(x), then the following hold:

(a) ω (y−px−p(xy)p) > ω(y) + 1; and
(b) ω(x−p

n

yp
n

) = ω(x−1y) + n for all n > 0.

Proof. (a) By the Hall–Petrescu formula (Theorem 2.29), there are ci ∈ γi(< x, y >)
for 2 6 i 6 p such that

y−px−p(xy)p = c
(p2)
2 · · · cpp−1cp.

Now by Exercise 3.3, for each 2 6 i 6 p− 1

ω(ci) > ω(y) and

ω(cp) > ω(y) + 1.

4this last inequality is equivalent to ω(x) > 1
p−1
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Thus

ω

(
c
(p2)
2 · · · cpp−1cp

)
> ω(y) + 1

since vp(
(
p
i

)
) > 1 for 2 6 i < p.

(b) An inductive argument reduces us to the case n = 1. Note that

ω(x−1y) > ω(x)

so we may apply (a) to the pair (x, x−1y) and see that

ω((x−1y)−px−pyp) > ω(x−1y) + 1 = ω
(
(x−1y)p

)
.

So by Lemma 2.19(iv) ω(x−1y) + 1 = ω((x−1y)p) = ω(x−pyp) �

Proposition 3.7. If (G,ω) is a p-valued group there is a family of well-defined
group homomorphisms

Pλ : grλG→ grλ+1G

given by Pλ(xGλ+) = xpGλ+1+ .
Moreover if a ∈ grλG and b ∈ grµG then [Pλa, b] = Pλ+µ[a, b].

Proof. If x, y ∈ Gλ then xp, yp, (xy)p ∈ Gλ+1 and (xy)pGλ+1+ = xpypGλ+1+ by
Lemma 3.6(a). Moreover if y ∈ Gλ+ then yp ∈ Gλ+1+ . Thus each Pλ is a group
homomorphism.

Let a = xGλ+ 6= 0 and b = yGµ+ and set ν = λ+ µ+ 1 then

[Pa, b] = (xp, y)Gν+

and

P [a, b] = (x, y)pGν+ .

Now (xp, y) = x−p(xp)y = x−p(xy)p. So we must show

(x, y)−p(x−1)p(xy)p ∈ G+
ν .

Now ω(x) = ω(xy) = λ and ω((x, y)) > λ + µ > ω(x). Since x(x, y) = xy we may
use Lemma 3.6(a) this time applied to the pair (x, (x, y)) to deduce the result. �

We will write P for the degree 1 operator on grG given by ⊕Pλ. Recall that
Fp[t] can be viewed as the graded ring gr Zp where Zp is given the p-adic filtration
so that t has degree 1.

Lecture 6

Corollary 3.8. If (G,ω) is a p-valued group then grG is naturally a graded Fp[t]-
Lie algebra where t acts by P and has degree 1.

Proof. grG is a graded Z-Lie algebra by Proposition 2.34. By Lemma 3.2 it has
exponent p as an abelian group so is a graded Fp-Lie algebra. Proposition 3.7 shows
that defining ta = P (a) for a ∈ grG is a degree 1 operator such that t[a, b] = [ta, b]
for all a, b ∈ grG. Thus p(t)[a, b] = [p(t)a, b] for all p(t) ∈ Fp[t] and a, b ∈ grG.
Since [−,−] is alternating it follows that it is Fp[t]-bilinear. �

Lemma 3.9. grG is torsion-free as an Fp[t]-module.
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Proof. Suppose that 0 6= q(t) ∈ Fp[t] and 0 6= a ∈ grG. We wish to show qa 6= 0.
We can write q(t) =

∑m
i=0 qit

i with qi ∈ Fp and qm 6= 0 and a =
∑
λ aλ a finite

sum with aλ ∈ grλG. If µ is largest with aµ 6= 0 then the degree µ + m part of
qa is qmt

maµ. Since grG is a p-group and qm ∈ Fp\0, it thus suffices to show that
tmaµ 6= 0 ie that t acts injectively on grG.5 Now if aµ = xGµ+ then ω(x) = µ
and taµ = Paµ = xpGµ+1+ . But ω(xp) = ω(x) + 1 since ω is a p-valuation. Thus
Paµ 6= 0 as required. �

Definition 3.10. We say that a p-valued group (G,ω) has finite rank if grG is
finitely generated as an Fp[t]-module. The rank of (G,ω) is then the minimal
number of generators of grG over Fp[t]

Example 3.11. The computation in Example 2.36 shows that the pair (G,ω) there
has rank 3.

Note that the structure theorem for modules over a principal ideal domain to-
gether with Lemma 3.9 gives that if (G,ω) is finite rank then grG is in fact a free
Fp[t]-module of the same rank.

Exercise 3.12. Show that if (G,ω) has finite rank then grG is free as a graded
Fp[t]-module. That is there are λ1, . . . , λn > 1/(p− 1) and xi ∈ Gλi such that

grG = ⊕ni=1Fp[t]xiGλ+
i
.

Lemma 3.13. Suppose that (G,ω) is a finite rank p-valued group and g1, . . . , gd ∈
G such that {σ(g1), . . . , σ(gd)} spans grG as an Fp[t]-module.

(a) For all x ∈ G\{e} there are integers n1, . . . , nd such that ω(gi) + vp(ni) = ω(x)
whenever ni 6= 0 and σ(x) = σ(gn1

1 · · · g
nd
d ).

(b) ω(G\{e}) is a discrete subset of R.

Proof. (a) Let x ∈ G\{e} so that σ(x) ∈ grG\{0}. There are homogeneous el-

ements u1, . . . , ud ∈ Fp[t] not all zero such that σ(x) =
∑d
i=1 uiσ(gi). Moreover

when ui 6= 0 then we may assume deg ui +ω(gi) = ω(x). For each i we may choose
ni ∈ Z such that ui = σ(ni) and then, whenever ni 6= 0,

ω(gnii ) = ω(gi) + deg(ui) = ω(x).

Moreover

σ(gn1
1 · · · g

nd
d ) =

∑
i

σ(gnii ) =
∑
i

uiσ(gi) = σ(x).

(b) It follows from (a) that for x ∈ G\{e}, ω(x) ∈ (ω(g1)+N)∪· · ·∪ (ω(gd)+N)
which is a discrete subset of R. �

Notation 3.14. If (R, v) is a complete filtered ring and (rn)n>0 is a sequence in

R such that v(rn)→∞ as n→∞ then identifying R with R̂ we write∑
n>0

rn =

(
mλ∑
n=0

rn +Rλ

)
λ>0

where the mλ are chosen so that v(rn) > λ for all n > mλ.

5Note that the argument so far works for any graded Fp[t]-module.
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Exercise 3.15. Show that if rn and sn are two such sequences then so are (rn+sn)
and (

∑
i+j=n sirj). Moreover∑

n>0

rn

+

∑
n>0

sn

 =
∑
n>0

(rn + sn)

and ∑
n>0

rn

∑
n>0

sn

 =
∑
n>0

 ∑
i+j=n

risj

 .

Example 3.16. Suppose that p > 2 and G = GL1
n(Zp) with the p-valuation ω

given in Example 2.22. Note that ω in N-valued in this case and thus grG is
N-graded. Moreover for each m ∈ N

Gm = {g ∈ G | ω(g) > m} = {A ∈Mn(Zp) | v(A− I) > m} = I + pmMn(Zp)

since (I + pmA) =
∑
i>0(−pmA)i. Note moreover that if E ∈Mn(Zp)

(I + pmA+ pm+1E)(I + pmA)−1 = I + pm+1E′

for some E′ ∈ Mn(Zp) ie if g, g′ ∈ Gm are congruent as matrices mod pm+1 then
gGm+1 = g′Gm+1. Thus we may consider the surjective map

φm : pmMn(Zp)→ grmG

such that φm(pmA) = (1 + pmA)Gm+1. Since

(1+pmA)(1+pmB)Gm+1 = (1+pm(A+B)+p2mAB)Gm+1 = (1+pm(A+B))Gm+1

we see that φm is a group homomorphism with kernel pm+1Mn(Zp). Thus φ = ⊕φm
defines an group isomorphism

⊕m>1p
mMn(Zp)/p

m+1Mn(Zp)→ grG.

Now the map pmMn(Zp)→Mn(Fp) given by pmA 7→ A+ pMn(Fp) is a surjective
group homomorphism with kernel pm+1Mn(Zp). So we obtain an isomorphism of
N-graded Fp-spaces

θ : tMn(Fp[t])→ grG

given by linear extension of θ(tmA) = (I + pmA)Gm+1 where A ∈ Mn(Zp) is any

lift of A ∈Mn(Fp).
We claim that θ is even as isomorphism of Fp[t]-Lie algebras where the Lie

bracket on tMn(Fp[t]) is given by [X,Y ] = XY − Y X.

Lecture 7

First we note that, for m > 1 and A ∈Mn(Zp),

tθ(tmA) = t · (I + pmA)Gm+1 = (I + pmA)pGm+2

= (I + pm+1A)Gm+2 = θ(tm+1A)

so θ is Fp[t]-linear.
Next we prove that

θ([tmA, tlB]) = [θ(tmA), θ(tlB)]
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for l,m > 1 and A,B ∈Mn(Fp). By the last calculation it suffices to consider the
case m = l = 1. That is

[θ(tA), θ(tB)] = (1 + pA)−1(1 + pB)−1(1 + pA)(1 + pB)G3

= (1− pA+ p2A2)(1− pB + p2B2)(1 + pA)(1 + pB)G3

=
(
1− p(A+B) + p2(A2 +AB +B2)

) (
1 + p(A+B) + p2AB)

)
G3

= (1 + p(A+B −A−B) + p2(A2 + 2AB +B2 − (A+B)2)G3

= (1 + p2(A2 + 2AB +B2 − (A2 +AB +BA+B2)))G3

= (1 + p2(BA−AB))G3

= θ([tA, tB])

Thus we see that grG ∼= tgln(Fp[t]) has rank n2 as an Fp[t]-module.

Exercise 3.17. Show that if (G,ω) is a finite rank p-valued group and H 6 G is
a subgroup then (H,ω|H) is a finite rank p-valued group.

3.3. Complete p-valued groups. As for filtered rings, we can define a topology
on a filtered group.

Definition 3.18. If (G,ω) is a filtered group we give G a topology by declaring a
subset open if and only if it is a union of cosets of the from gGλ with λ > 0.

This makes G into a topological group; i.e. the multiplication map G×G→ G;
(g, h) 7→ gh and the inversion map G→ G; g 7→ g−1 are both continuous.6

We can also define the completion of a filtered group.

Definition 3.19. If (G,ω) is a filtered group then its completion

Ĝ = lim←−
λ>0

G/Gλ = {(gλGλ)λ>0 ∈
∏
λ>0

G/Gλ | gλGµ = gµGµ for all µ < λ}.

We say that G is complete if the natural group homomorphism

G→ Ĝ; g 7→ (gGλ)λ>0

is an isomorphism.

Exercise 3.20.

(1) Show that Ĝ has a separated filtration given by

ω̂((gλGλ)λ>0) = inf ω(gλ | gλ 6∈ Gλ)

with respect to which it is complete.

(2) Show that the natural map G → Ĝ is injective if and only if ω is sepa-
rated. Show that moreover that this map always induces a natural isomorphism

grG→ gr Ĝ.
(3) Show that if (R, v) is a complete filtered ring then the filtered group (G,ω)

obtained as in Proposition 2.21 is complete.

Example 3.21. For any odd prime p if ω denotes the usual p-valutation on
GL1

n(Zp) then (GL1
n(Zp), ω) is a complete filtered group.

In the remainder of this section (G,ω) will be a complete p-valued group.

6Here G×G is given the product topology.
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Lemma 3.22. Suppose that x ∈ G and λ ∈ Zp. There is a unique element xλ ∈ G
such that for each t > 0, xλGt = xλtGt whenever λt ∈ Z and vp(λ− λt) > t.
Proof. Since G is complete with respect to the filtration, the natural map G →
lim←−tG/Gt is a bijection. Thus it suffices to show that there is a unique element

(xtGt)t>0 of lim←−tG/Gt such that xtGt = xλtGt for any λt ∈ Z such that vp(λ−λt) >
t.

If λt, λ
′
t ∈ Z such that vp(λ − λt) > t and vp(λ − λ′t) > t, then vp(λt − λ′t) > t

so ω(xλt−λ
′
t) > ω(x) + t > t. Thus xλtGt = xλ

′
tGt so the coset xλtGt only depends

on x, λ and t. That is there is a unique element (xtGt)t>0 of
∏
t>0G/Gt such that

xtGt = xλtGt for λt ∈ Z such that vp(λ− λt) > t.
Now if s > t, vp(λ − λs) > s and vp(λ − λt) > t then vp(λs − λt) > t and

xλsGt = xλtGt. Thus (xtGt)t>0 ∈ lim←−t>0
G/Gt as required. �

Definition 3.23. When G is a complete p-valued group and x ∈ G the function
Zp → G; λ 7→ xλ given by Lemma 3.22 is called p-adic exponentiation.

Remark 3.24. The function λ 7→ xλ is the unique continuous extension of the
group homomorphism Z→ G; n 7→ xn.

Exercise 3.25. For any x ∈ G and λ ∈ Zp, ω(xλ) = ω(x) + vp(λ) and that
σ(xλ) = σ(λ) · σ(x).

Given any d-tuple (g1, . . . , gd) in a complete p-valued group G we have a contin-
uous map

Zdp → G

given by
(λ1, . . . , λd) 7→ gλ1

1 · · · g
λd
d .

We will often write this as λ 7→ gλ for λ = (λ1, . . . , λd) ∈ Zdp. This map is a group
homomorphism if and only if the gi pairwise commute.

Proposition 3.26. Suppose that (g1, . . . , gd) is a d-tuple of non-identity elements
in G. The following are equivalent:

(a) σ(g1), . . . , σ(gd) ∈ grG are linearly independent over Fp[t];
(b) ω(gλ) = min{ω(gi) + vp(λi)} for any λ ∈ Zdp;.

(c) ω((gµ)−1gλ) = min{ω(gi) + vp(λi − µi)} whenever λ, µ ∈ Zdp.

Note that (c) implies (b) is immediate since (b) is the special case where µ = 0.
Moreover if (c) holds then the map λ 7→ gλ is injective since ω((gµ)−1gλ) < ∞
whenever λ 6= µ.

Lecture 8

Proof of Proposition 3.26. Throughout this proof we will write xi = σ(gi) for each
i = 1, . . . , d.

Suppose (a) holds and λ ∈ Zdp\0. Then

ω(gλ) > min{ω(gλii )} = min{vp(λi) + ω(gi)} = s,

say, by Exercise 3.25.
Writing

ui(t) =

{
σ(λi) ∈ Fp[t] if ω(gλii ) = s

0 otherwise,
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we see that at least one ui 6= 0 and so∑
i

uixi = gλGs+ 6= 0

since uixi = σ(gλii ) when ui 6= 0 and the xi are linearly independent over Fp[t].
Thus ω(gλ) = s and (b) holds.

Next suppose that (b) holds and
∑
uixi = 0 is a linear relation. We wish to

show that all the ui = 0. If not, then s = min{ω(gi) + deg(ui)} is finite. Since
the xi are homogeneous we may assume that the ui are also homogeneous and
ω(gi) + deg ui = s whenever the left-hand side is finite. Let

λi =

{
aip

ni ∈ Zp when ui = ait
ni 6= 0

0 otherwise.

Then ω(gλ) = s by assumption and

gλGs+ =
∑

ui.xi = 0

yielding the desired contradiction. Thus (a) holds.
Suppose that (b) holds and λ, µ ∈ Zdp. Then let s = min{ω(gi) + vp(λi − µi)}.

We compute

(gµ)−1gλGs+ = g−µdd · · · g−µ1

1 gλ1
1 · · · g

λd
d Gs+

= g−µdd · · · g−µ2

2 gλ1−µ1

1 gλ2
2 · · · g

λd
d

= gλ1−µ1

1 gµdd · · · g
−µ2

2 gλ2
2 · · · g

λd
d Gs+

since gλ1−µ1

1 ∈ Gs and Gs/Gs+ is central in G/Gs+ by Lemma 2.24. Continuing in
this fashion we see that

(gµ)−1gλGs+ = gλ−µGs+ .

By assumption ω(gλ−µ) = s so (c) holds. �

Definition 3.27. A d-tuple (g1, . . . , gd) is called an ordered basis for (G,ω) if the
map Zdp → G; λ 7→ gλ is a bijection (and so a homeomorphism since it always

continuous, Zdp is compact and G is Hausdorff) and

ω(gλ) = min{vp(λi) + ω(gi)} for all λ ∈ Zdp.

Theorem 3.28. Let (G,ω) be a complete p-valued group and {g1, . . . , gd} ⊂ G.
The following are equivalent

(a) {σ(g1), . . . , σ(gd)} is a free generating set for grG over Fp[t].
(b) (g1, . . . , gd) is an ordered basis for G.

Proof. Suppose first that (b) holds. Then by Proposition 3.26, {σ(g1), . . . , σ(gd)}
is linearly independent and we must show that it spans. Consider 1 6= gλ ∈ G, let
s = ω(gλ) = min{ω(gi) + vp(λi)} and

{i1 < · · · < ir} = {1 6 i 6 d | ω(gλii ) = s}.
Then

σ(gλ) = g
λi1
i1
· · · gλirir Gs+ =

r∑
j=1

σ(λij )σ(gij ).

Thus every homogeneous element of grG is in the span of {σ(g1), . . . , σ(gd)} are
we’re done.
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Conversely suppose (a) holds. By Proposition 3.26 it suffices to show that every
element of G is of the form gλ with λ ∈ Zdp. That is if X is the image of the

map Zdp → G; λ 7→ gλ then we must show X = G. Since Zdp is compact and G is

Hausdorff, X is closed. Let h 6= eG be in G. It suffices to show that for all s ∈ R>0

there is xs ∈ X such that xsGs = hGs.
7

We suppose for contradiction that there is some s ∈ R>0 such that there is no
x ∈ X with xGs = hGs. Since ω(G\{1}) is a discrete subset of R (Lemma 3.13(b))
there is some t < s maximal such that we can find x = gλ ∈ X with xGt = hGt.
Since xGu 6= hGu for all u > t, ω(x−1h) = t. Thus by Lemma 3.13(a) there is some
µ ∈ Zd such that gµ = x−1h and ω(gµii ) = t whenever µi 6= 0. Since Gt/Gt+ is
central in G/Gt+ (Lemma 2.24) we obtain

gλ+µGt+ = gλgµGt+ = hGt+ .

But the discreteness of ω(G\{1}) gives that Gt+ = Gs for some s > t contradicting
the maximality of t. �

Remark 3.29. It follows that any complete p-valued group of finite rank has an
ordered basis and so is compact and Hausdorff.

Exercise 3.30. If (G,ω) is as in Exercise 2.36 then the triple of matricesx =

1 p 0
0 1 0
0 0 1

 , y =

1 0 0
0 1 p
0 0 1

 z =

1 0 p
0 1 0
0 0 1


form an ordered basis. Rewrite (xλ1yλ2zλ3) · (xµ1yµ2zµ3) as xν1yν2zν3 for general
λ, µ ∈ Z3

p.

Exercise 3.31. Find an ordered basis for (GL1
n(Zp), ω) where p is an odd prime

and ω is an in Example 2.22.

Lecture 9

Proposition 3.32. Suppose that (g1, . . . , gd) is an ordered basis for G and, for

s ∈ R, let ni = ni(s) = inf{n ∈ N0} | gp
n

i ∈ Gs}.
(a) (gp

n1

1 , . . . , gp
nd

d ) is an ordered basis for (Gs, ω|Gs).

(b) G/Gs = {gλGs | 0 6 λi < pni for i = 1 . . . d}.
(c) |G/Gs| = pn1+···+nd .

Proof. (a) Since (g1, . . . , gd) is an ordered basis we see that, for λ ∈ Zdp, g
λ ∈ Gs if

and only if ω(gi)+vp(λi) > s for each 1 6 i 6 d. This is easily seen to be equivalent
to vp(λi) > ni (that is pni divides λi) for each such i. Thus every element of Gs can

be written uniquely as (gp
nµ) with µ ∈ Zdp and n = (n1, . . . , nd) ∈ Nd

0. Moreover

ω(gp
nµ) = min{ω(gp

ni

i ) + vp(µi)}
as required.

(b) & (c) The function {λ ∈ Zd | 0 6 λi < pni} → G/Gs sending λ to gλGs
is a bijection since, for λ, µ ∈ Zdp, ω((gµ)−1gλ) = min{ω(gi) + vp(λi − µi)} by

Proposition 3.26, and for all µ ∈ Zdp there is a unique λ ∈ Zd with 0 6 λi < pni

and vp(λi − µi) + ω(gi) > s for all i. �

7Since then h is in the closure of the set {xs | s ∈ R>0}.
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Corollary 3.33. Any complete p-valued group of finite rank is an inverse limit of
finite p-groups.

Exercise 3.34. If g is an element of an ordered basis for a complete p-valued group
(G,ω) then g is not a p-th power in G.

4. Universal objects

We want to recall the construction of some universal objects. First we recall the
definition of a category.

Definition 4.1. A category C is a collection of objects Ob(C) together with a set
of morphisms HomC(A,B) for each pair A,B ∈ Ob(C) which have a compostion
rule

HomC(A,B)×HomC(B,C)→ HomC(A,C)

for every triple of objects A,B and C written

(f, g) 7→ g ◦ f
such that if f ∈ HomC(A,B), g ∈ HomC(B,C) and h ∈ HomC(C,D) then

h ◦ (g ◦ f) = (h ◦ g) ◦ f ; 8

and for every object A there is an identity morphism idA ∈ HomC(A,A) such that

idA ◦f = f and g ◦ idA = g

whenever these compositions make sense.

Examples 4.2.

(1) Set is the category whose objects are all sets and HomSet(A,B) is the set of
functions A→ B.

(2) Grp is the category whose objects are all groups and HomGrp(G,H) is the set
of group homomorphisms G→ H.

(3) Mon is the category whose objects are all monoids (ie sets M with an associa-
tive binary operation and an identity eM ) HomMon(M,N) is the set of monoid
homomorphisms (ie functions f : M → N such that f(ab) = f(a)f(b) for all
a, b ∈M and f(eM ) = eN .

(4) FiltGrp is the category whose objects are all filtered groups (G,ωG) and
whose morphisms are filtered group homomorphisms; ie a group homomor-
phism f : G→ H such that ωH(f(g)) > ωG(g) for all g ∈ G. CFiltGrp is the
subcategory whose objects are the complete filtered groups and morphisms as
in FiltGrp.

(5) Similary FiltRing and CFiltRing are the categories of filtered rings/complete
filtered rings and filtered ring homomorphisms.

Suppose that k is a commutative ring
(6) Modk is the category whose objects are k-modules and whose morphisms are

k-linear maps — if k is a field we write Vectk.
(7) Commk is the category whose objects are all commutative k-algebras and

whose morphisms are all k-algebra homomorphisms.
(8) Assk is the category whose objects are all associative k-algebras and whose

morphisms are all k-algebra homomorphisms.

8i.e. composition is associative
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(9) Liek is the category whose objects all all k-Lie algebras and whose morphisms
are all k-Lie algebra homomorphisms.

(10) There are graded versions grModk, grCommk, grAssk and grLiek of Modk,
Commk, Assk and Liek.

Definition 4.3. Suppose that C and D are categories. A functor F : C → D is a
rule that assigns

• an object FC ∈ Ob(D) to every C ∈ Ob(C) and
• a morphism F (f) ∈ HomD(F (A), F (B)) to every f ∈ HomC(A,B)

such that
• F (gf) = F (g)F (f) whenever the compositon gf makes sense.
• F (idA) = idF (A) for every object A in C.

A functor F is faithful if F : HomC(A,B) → HomD(FA,FB) is injective for
every pair of objects A,B ∈ Ob(C).
Examples 4.4. In any of the examples of categories above there is a faithful func-
tor C → Set assigning an object to its underlying set and any morphism to its
underlying function. Similarly for any commutative ring there are faithful functors
Commk → Modk, Assk → Modk and Liek → Modk sending objects to their
underlying vector spaces and morphisms to their underlying linear maps. There
is also a faithful functor Assk → Mon sending objects to their underlying mul-
tiplicative monoids and morphism to the underlying function viewed as a monoid
homomorphism. There are also faithful ‘inclusion’ functors CFiltGrp→ FiltGrp
and CFiltRing→ FiltRing. We call all of these examples ‘forgetful functors’.

Definition 4.5 (Universal property for a free object). Suppose that F : C → D is
a functor between two categories. For any object X in D we say that an object
U(X) in C together with a morphism ι ∈ HomD(X,FU(X)) is free on X if for
every object A in C and morphism f ∈ HomD(X,FA) there is a unique morphism
g ∈ HomC(U(X), A) such that f = F (g)ι.

We say that a morphism f ∈ HomC(A,B) is an isomorphism A → B if there is
g ∈ HomC(B,A) such that gf = idA and fg = idB .

Examples 4.6.

(1) Given a commutative ring k and the forgetful functor Modk → Set a free
object on a set X is a k-module M together with an injective function ι : X →
M whose image is a free generating set.9 We can construct such a free module
as the set k[X] of functions X → k which take non-zero values at only finitely
many x ∈ X with the natural k-linear structure and ι : X → k[X] sending x to
the indicator function of x.

(2) In Example 2.6 we constructed the free monoid and the free associative k-
algebra on the set {X,Y }. These constructions generalise to any set.

(3) Given the forgetful functor Assk → Mon a free-associative k-algebra on a
monoid M is the monoid algebra whose underlying k-module is (k[M ], ι), the
free k-module on M and whose multiplication is given by k-bilinear extension of
the multiplication on the basis ι(M) — ι(a)ι(b) = ι(ab) for a, b in M . Note that
ι can then be viewed as a monoid homomorphism from M to the underlying
monoid of k[M ]. In the case that a monoid M happens to be a group this gives
the group algebra of M .

9ie it is a linearly independent spanning set.
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(4) Given the forgetful functors CFiltRing → FiltRing (resp. CFiltGrp →
FiltGrp) a free complete filtered ring (resp. group) on a filtered ring R (resp.

group G) is the completion R̂ (resp. Ĝ) together with the natural map R→ R̂

(resp. G → Ĝ). The ring case is the content of Example Sheet 1 Q5. The
group case is similar.

Lemma 4.7. If (U(X), ι) and (U ′(X), ι′) are both free on X then there is a unique
isomorphism f : U(X)→ U ′(X) such that ι′ = F (f)ι.

Proof. The universal property for (U(X), ι) applied to the morphsim ι′ gives a
unique morphism f : U(X)→ U ′(X) such that ι′ = F (f)ι that we must show is an
isomorphism. Similarly the universal property for (U ′(X), ι′) applied to ι gives a
unique morphism g : U(X ′)→ U(X) such that ι = F (g)ι′. Then

ι = F (g)F (f)ι = F (gf)ι and ι′ = F (fg)ι′.

The universal property for (U(X), ι) applied to ι gives that there is a unique mor-
phism h ∈ HomC(U(X), U(X)) such that ι = hι but both F (gf) and idFU(X)

satisfy this equation. Thus F (fg) = idFU(X) = F (idU(X)) so fg = idU(X) since F
is faithful. By symmetry gf = idU ′(X) as required. �

Remark 4.8. In general given a functor F : C → D and X ∈ Ob(D), a free
object U(X) on X need not exist but when one does the Lemma tells us that they
are uniquely determined up to unique isomorphism (provided that the morphism
ι : X → FU(X) is considered part of the data.

Example 4.9. Given the forgetful functor Assk → Modk the free associative
algebra on a k-module V can be constructed as follows. Let Tn(V ) = V ⊗n ie
T 0(V ) = k, T 1(V ) = V and Tn(V ) = Tn−1(V )⊗k V for n > 2. Then

⊕
n>0 T

n(V )

is the underlying k-module for the free associative k-algebra k〈V 〉 on V and the
multiplication is given by k-bilinear extension of

(v1 ⊗ · · · ⊗ vn) · (w1 ⊗ · · · ⊗ wm) = (v1 ⊗ · · · vn ⊗ w1 ⊗ · · ·wm)

and ιV : V → k〈V 〉 is given by the natural inclusion map V → T 1(V ) → T (V ): if
R is an associative k-algebra and f : V → R is a k-linear map there is a unique
k-algebra map g : k〈V 〉 → R such that f = gι given by linear extension of

g(v1 ⊗ · · · ⊗ vn) = f(v1) · · · f(vn).

If instead we consider the forgetful functor grAssk → grModk we can construct
the free graded associative algebra on a graded vector space in a similar fashion: if
V = ⊕Vλ we define a grading on each Tn(V ) via

Tn(V )λ =
⊕

λ1+···+λn=λ

Vλ1 ⊗ · · ·Vλn .

Example 4.10. There is a forgetful functor from Assk → Liek that sends an
associative k-algebra R to the k-Lie algebra with the same k-module and Lie bracket
[r, s] = rs−sr. Then the free associative algebra on a k-Lie algebra g is the universal
enveloping algebra U(g). This can be constructed by taking the free associative
algebra k〈g〉 on the k-module underlying g and modding out by the ideal generated
by all elements xy − yx− [x, y] for x, y ∈ g i.e.

U(g) = k〈g〉/(xy − yx− [x, y] | x, y ∈ g)).
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The k-Lie algebra map ιg is given by the natural map that is the composite

g→ k〈g〉 → U(g).

Exercise 4.11. Show that if g is a graded k-Lie algebra then the grading on k〈g〉
induces a grading on U(g) making it free on g with respect to the forgetful functor
grAss→ grLie.

Exercise 4.12. Show that if f : A → B is a morphism of rings there is a functor
from ModB →ModA that sends a B-module M to its underlying abelian group
together with the map A ×M → M ; (a,m) 7→ f(a)m and sends a morphism in
ModB to its underlying function in ModA viewed as an A-linear map. Show that,
with respect to this functor, given an A-module N , B ⊗A N together with the
A-linear map N → B ⊗A N ; n 7→ 1⊗ n is the ‘free B-module on N ’.

5. The group ring

In this section we suppose that O is a complete discrete valuation ring with
uniformiser p (so that k = O/pO is a field of characteristic p) and (G,ω) will
denote a p-valued group of finite rank. O[G] will denote the group algebra of G
with coefficients in O i.e. the free associative O-algebra on the monoid G and k[G]
the corresponding group algebra with coefficients in k.

We filter O p-adically and then we say that an O-algebra R is filtered if has ring
filtration v such that v(pr) > v(r) + 1 for all r ∈ R.

Notation 5.1. For λ > 0 let

O[G]λ = O · {pr(g1 − 1) · · · (gs − 1) | r +

s∑
i=1

ω(gi) > λ for g1, . . . , gs ∈ G}.

Lemma 5.2. The family (O[G]λ)λ>0 defines a filtration v on O[G] making it into
a filtered O-algebra. Moreover we may view grO[G] as a graded k[t] algebra via

t.α+O[G]λ+ = pα+O[G]λ+1+

Proof. We can easily check that O[G]0 = O[G], O[G]λ =
⋂
µ<λO[G]µ for all λ > 0

and O[G]λO[G]µ ⊆ O[G]λ+µ for all λ, µ > 0. So by Remark 2.5

v(r) = sup{λ > 0 | r ∈ O[G]λ}

defines a ring filtration.
Now p ∈ O[G]1 so v(pr) > 1 + v(r) for all r ∈ O[G] and O[G] is thus a filtered

O-algebra. It follows that grO[G] is a k-algebra and the given action of t does
define a graded k-linear map on grO[G] of degree 1 commuting with the ring
multiplication. �

Exercise 5.3. Show that there is a natural functor F from the category of filtered
O-algebras and filtered O-algebra homomorphisms to FiltGrp given on objects by

F ((R, v)) = ({x ∈ R | x is a unit and v(x− 1) > 0}, ω)

where ω(x) = v(x− 1) such that (O[G], v) is free on G with respect to F .
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Proposition 5.4. The family of functions ϕλ : grλG 7→ grλO[G] given by

gGλ+ → (g − 1) +O[G]λ+

induce a map ϕ =
⊕
ϕλ of graded Fp[t]-Lie algebras where the Lie structure on

grO[G] is given by commutators.

Proof. If ω(g) = λ then g − 1 ∈ O[G]λ so ϕλ is well-defined. If also ω(h) = λ then

gh− 1 = (g − 1)(h− 1) + (g − 1) + (h− 1) ∈ (g − 1) + (h− 1) +O[G]λ+

since v((g − 1)(h − 1)) > 2λ > λ so ϕλ is a group homomorphism for each λ > 0
and ϕ = ⊕ϕλ is an graded Fp-linear map.

Next ϕ(tσ(g)) = gp − 1 + O[G]λ+1+ whereas tϕ(σ(g)) = p(g − 1) + O[G]λ+1+ .
Thus to see that ϕ is Fp[t]-linear we must show that (gp−1)−p(g−1) ∈ O[G]λ+1+ .
But

gp − 1− p(g − 1) = (1 + (g − 1))p − 1− p(g − 1)

=

p∑
i=2

(
p

i

)
(g − 1)i.

Since v(p) = 1 and v((g − 1)i) > iλ we see that

v(p(g − 1)i) > 2λ+ 1 > λ+ 1 for 2 6 i < p.

Moreover λ > 1/(p− 1) by definition of a p-valuation so

v((g − 1)p) > pλ > λ+ 1

and so
∑p
i=2

(
p
i

)
(g−1)i ∈ O[G]λ+1+ as required — since vp

((
p
i

))
= 1 for 2 6 i < p.

Finally if ω(g) = λ and ω(h) = µ then

ϕ([σ(g), σ(h)]) = (g, h)− 1 +O[G]λ+µ+

and

[ϕ(σ(g)), ϕ(σ(h))] = (g − 1)(h− 1)− (h− 1)(g − 1) +O[G]λ+µ+

= gh− hg +O[G]λ+µ+ .

So to see that ϕ is a Lie-algebra map we must show

v ((g, h)− 1− (gh− hg)) > λ+ µ.

Now

(g, h)− 1− (gh− hg) = (g−1h−1 − 1)(gh− hg)

= (g−1h−1 − 1)([g − 1, h− 1]).

But v(g−1h−1−1) > min{λ, µ} > 0 and v([g−1, h−1]) > λ+µ so we’re done. �

Proposition 5.5. The graded Fp[t]-Lie algebra map ϕ : grG→ grO[G] in Propo-
sition 5.4 extends to a surjective graded k[t]-algebra homomorphism

ϕ : Uk[t](k ⊗Fp grG)→ grO[G]
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Proof. That grG→ grO[G] extends to a graded k[t]-algebra homomorphism

ϕ : Uk[t](k ⊗Fp grG)→ grO[G]

follows immediately from the universal properties for k ⊗Fp − and U(−). Now
grO[G] is generated an a k[t]-algebra by {(g − 1) + O[G]ω(g)+ | g ∈ G} by the
definition of the filtration:

pr(g1 − 1) · · · (gs − 1) +O[G]λ+ = tr · ϕ(σ(g1)) · · ·ϕ(σ(gs))).

Since these are all in the image of ϕ it is indeed surjective. �

We will show that in fact this map ϕ is an isomorphism whenever G is a complete
p-valued group of finite rank. To this end we fix a complete p-valued group (G,ω)
of finite rank and an ordered basis (g1, . . . , gd) for it.

Notation 5.6. For 1 6 i 6 d write xi = σ(gi) ∈ grG ⊆ Uk[t](k ⊗Fp grG) and

bi = gi − 1 ∈ O[G]. Then given α ∈ Nd
0 write

bα = bα1
1 · · · b

αd
d ∈ O[G]

We also recall the notation from Proposition 3.32: for s ∈ R>0,

ni(s) = inf{n | gp
n

i ∈ Gs}.

Lemma 5.7. The image of {bα | 0 6 αi < pni(s)} in O[G/Gs] is an O-module
basis.

Proof. If β ∈ {α ∈ Nd
0 | 0 6 αi < pni} then

gβ = (1 + b1)β1 · · · (1 + bd)
βd =

∑
α∈Nd

0

(
β

α

)
bα

where
(
β
α

)
denotes the image of

∏d
i=1

(
βi
αi

)
in O. Since

(
β
α

)
= 0 unless αi 6 βi for all

i, Proposition 3.32 gives that the given set spansO[G/Gs]. As it has size |G/Gs| and
O[G/Gs] is a free O-module of this rank it must also be linearly independent. �

Corollary 5.8. The set {bα | α ∈ Nd
0} is linearly independent in O[G].

Proof. Suppose that S is a finite subset of Nd
0 such that there is a non-trivial linear

relation
∑
α∈S λαbα = 0 in O[G]. We may choose s ∈ R>0 large enough that if

α ∈ S then αi < pni(s) for all i. Then the image of
∑
α∈S λαbα in O[G/Gs] gives

a linear relation contradicting Lemma 5.7. �

Lemma 5.9. If H is a finite p-group and JH = ker(k[H]→ k) then JH is nilpotent.

Proof. By induction on |H|. Recall that Z(H) 6= 1 so we can pick z ∈ Z(H) of
order p. H/〈z〉 is a p-group of order smaller than |H| so by the induction hypothesis

JH/〈z〉 = ker(k[H/〈z〉]→ k)

is nilpotent. i.e. there is some N > 1 such that JNH/〈z〉 = 0. It follows easily that

JNH ⊂ ker(k[H]→ k[H/〈z〉]) = k[H] · (z − 1). Now if α1, . . . αp ∈ K[H] then

α1(z − 1) · · ·αp(z − 1) = α1 · · ·αp(z − 1)p.

But (z − 1)p = zp − 1 = 0 so JNpH = 0. �
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Corollary 5.10. For all m ∈ N and s ∈ R>0 the kernel J of the augmentation
homomorphism (O/pmO)[G/Gs]→ k is nilpotent.

Proof. The group G/Gs is a p-group by Proposition 3.32(c). Thus by Lemma 5.9
there is some N > 1 such that JN ⊂ (p). It follows that JmN ⊂ (pm) = 0. �

Corollary 5.11. For all m ∈ N and s ∈ R>0 there is some λ ∈ R>0 such that
O[G]λ ⊂ ker(ψs,m : O[G]→ (O/pmO)[G/Gs]).

Proof. Let J = (p, g− 1 | g ∈ G) an ideal in O[G]. By Corollary 5.10 there is some
N > 1 such that ψs,m(J)N = 0. We take λ = N(s+ 1).

Each α ∈ O[G]λ is an O-linear combination of elements of the form

αj = pr(h1 − 1) · · · (hk − 1) with hi ∈ G and r +

k∑
i=1

ω(hi) > λ.

It thus suffices to show that each such αj lies in kerψs,m.
If ω(hi) > s for some i then ψs,m(hi − 1) = 0 so αj ∈ kerψs,m as required.

Similarly if r > N then pr ∈ Jr ⊂ JN ⊂ kerψs,m so ψs,m(αj) = 0.
Finally if r < N and ω(hi) < s for all i then k > N so αj ∈ JN and αj ∈ kerψs,m.
So in all cases αj ∈ kerψs,m and ψs,m(O[G]λ) = 0 as claimed. �

Notation 5.12. Now we let

B =
⊕
α∈Nd0

Obα ⊂ O[G]

and define u : B → R>0 ∪ {∞} by

u
(∑

rαb
α
)

= min

{
vp(rα) +

d∑
i=1

αiω(gi)

}
and write Bλ = {x ∈ B | u(x) > λ. Notice that v(x) > u(x) for all x ∈ B.

Lemma 5.13. For all λ < µ in R>0 the natural map

Bλ/Bµ → O[G]λ/O[G]µ

is surjective.

Proof. Since x1, . . . , xd is a spanning set for grG over Fp[t], Proposition 5.5 tells
us that σ(b1), . . . , σ(bd) generate grO[G] as an Fp[t]-algebra. Thus

Bλ → O[G]λ/O[G]λ+

is surjective i.e. Bλ +O[G]λ+ = O[G]λ. Since v(O[G]\0) is a discrete subset of R
there is some ν > λ such that O[G]λ+ = O[G]ν . Then Bλ + O[G]ν = O[G]λ. By
induction on the number of values of v(O[G]) between λ and µ we have

O[G]ν = Bν +O[G]µ.

Thus

O[G]λ = Bλ +Bν +O[G]µ = Bλ +O[G]µ

as required. �

Proposition 5.14. v(x) = u(x) for all x ∈ B.
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Proof. We know that v(x) > u(x) for all x ∈ B. Suppose for contradiction that
v(x) > u(x) for some x =

∑
α∈S⊂Nd

0
rαbα with S finite and rα 6= 0 for all α ∈ S.

Choose m ∈ N and s ∈ R>0 such that m > vp(rα) and αi < pni(s) for all α ∈ S
and all 1 6 i 6 d. Then consider ψs,m : O[G]→ (O/pmO)[G/Gs].

By Lemma 5.11 there is some λ > v(x) such that ψs,m(O[G]λ) = 0. Moreover
by Lemma 5.13, O[G]v(x) = Bv(x) +O[G]λ.

So choose y =
∑
α∈Nd

0
sαbα ∈ Bv(x) and z ∈ O[G]λ such that x = y + z. Then

ψs,m(x) = ψs,m(y) and u(y) > v(x) > u(x).
By Lemma 5.7 ψs,m(bα) with α ∈ S are linearly independent in (O/pmO)[G/Gs]

and so rα ≡ sα mod pm for all α ∈ S. Since vp(rα) < m for all α ∈ S,

vp(sα) = vp(rα) for all α ∈ S.
Thus

u(x) = min
α∈S
{vp(rα) +

∑
αiω(gi)} = min

α∈S
{vp(sα) +

∑
αiω(gi)} > u(y) > u(x)

the required contradiction. �

Theorem 5.15 (Poincaré–Birkhoff–Witt (PBW)). Let g be a Lie algebra over a
commutative ring A and suppose that x1, . . . , xn is a spanning set for g as an A-
module. Then every element of U(g) is an A-linear combination of elements of the

form xk11 · · ·xknn with k1, . . . , kn ∈ N0. Moreover if x1, . . . , xn are a free generating

set for g over A so is xk11 . . . xknn for U(g).

Remark 5.16. We won’t prove the PBW theorem but the first part is a straight-
forward consequence of the construction of U(g). The second part is more fiddly.
There are other forms of it but this what we will need.

Theorem 5.17. The morphism ϕ : Uk[t](k ⊗Fp grG) → grO[G] of graded Fp-
algebras is an isomorphism.

Proof. Recall that xi = σ(gi) and x1, . . . , xd is a basis for grG as an Fp[t]-module.
So, by the PBW theorem, U(k⊗FpgrG) consists elements that are finite sums of the
form u =

∑
α∈Nd

0
λαx

α with λα ∈ k[t]. Moreover since ϕ is a map of graded algebras

its kernel is also graded, so to prove that it is injective it suffices to show that no
non-zero homogeneous elements lie in the kernel. That is we need only consider
non-zero elements of the form u =

∑
λαx

α with each λα ∈ k[t] homogeneous
and deg λα +

∑
αiω(gi) = s is the same for all non-zero terms in the sum. Now

ϕ(
∑
λαx

α) =
∑
λαbα + O[G]s+ and we must show that such an element is not

zero.
Pick rα ∈ O with σ(rα) = λα for each α. Then ϕ(u) =

∑
rαbα + O[G]s+ . By

Proposition 5.14

s = u
(∑

rαbα
)

= v
(∑

rαbα
)

so ϕ(u) 6= 0 as required. �

Lecture 13

6. The completed group ring

6.1. Inverse limits.

Definition 6.1. A pre-ordered set is a set I equipped with a binary relation 6
that is
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(a) reflexive (a 6 a for all a ∈ I) and
(b) transitive (a 6 b and b 6 c implies a 6 c).

Definition 6.2. We say that a pre-ordered set (I,6) is directed if it is non-empty
and for any a, b ∈ I there is some c ∈ I such that a 6 c and b 6 c (ie every finite
subset has an upper bound).

Examples 6.3.

(1) N, Z and R are all directed pre-ordered sets with respect to their usual orders.
(2) If G is a group then the finite index subgroups are directed with respect to

reverse inclusion i.e. H 6 K precisely if K ⊆ H — since if H,K 6 G have
finite index then H ∩K has finite index.

Definition 6.4. Suppose that C is a category and (I,6) is a pre-ordered set then
an inverse system of shape (I,6) in C is a family of objects (Ca)a∈I and morphisms
cbc : Cc → Cb whenever b 6 c in I such that cbcccd = cbd whenever b 6 c 6 d.

Example 6.5. If R is a filtered ring and I = R>0 is given the usual ordering 6
then the family of rings (R/Rλ)λ>0 together with the canonical surjections R/Rν →
R/Rµ for µ 6 ν form an inverse system.

Definition 6.6. The inverse limit of an inverse system C = (Ca, cbc) of shape
(I,6) in a category C is an object lim←−I C of C together with a family of morphisms

πa : lim←−I C → Ca for each a ∈ I such that cbcπc = πb whenever b 6 c which satisfies

the universal property:

• for any object D in C and family of morphims ρa : D → Ca for each a ∈ I
such that cbcρc = ρb whenever b 6 c there is a unique morphism

f : D → lim←−
I

C

such that πaf = ρa for all a ∈ I.

Note that this universal property is dual to the one for a free object.10 It is
possible to make this precise but we won’t.

Exercise 6.7. Suppose I is a pre-ordered set and C = (Ca, cbc) is an inverse system
of shape I.

(a) Show that, if it exists, lim←−I C together with the family of morphisms(
πa : lim←−

I

C → Ca

)
a∈I

is uniquely determined up to unique isomorphism.
(b) Show that if I has a largest element t (i.e. a 6 t for all a ∈ I) then lim←−I C = Ct

and πa = cat for all a ∈ I.
(c) More generally suppose that I is directed and J ⊂ I such that for all a ∈ I

there is j ∈ J with a 6 j11 and consider the restriction of C to J i.e. the
subfamily of objects (Cj)j∈J and morphisms (cjk : Ck → Cj)j6k∈J . Show
that if lim←−J C exists then so does lim←−I C and there is a canonical isomorphism

lim←−J C → lim←−I C.

10in the sense that the morphisms go the other way
11We say J is cofinal in I
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Exercise 6.8. Suppose that I is a pre-ordered set and C is Grp or Ring and
C = (Ca, cbc) is an inverse system in C. Show that

lim←−
I

C ∼= {(xa) ∈
∏
a∈I

Ca | cbc(xc) = xb whenever b 6 c}

together with the projection maps πa((xa)a∈I) = xa is the inverse limit of C.
In both of these cases lim←−I C is usually given the weakest topology such that

all the projection maps πa are continous when each object Ca is given the discrete
topology. Then lim←−I C is a topological group/ring. In particular the inverse limits

in Definitions 2.8 and 3.19 are consistent with Definition 6.6.

Lemma 6.9. Suppose that S is a ring and {Iα}α∈A and {Jβ}β∈B are two families
of two-sided ideals in S that are directed with respect to reverse inclusion such that
for all α ∈ A there is β ∈ B such that Jβ ⊆ Iα and for all β ∈ B there is α ∈ A
such that Iα ⊆ Jβ then there is a natural isomorphism

lim←−
A
S/Iα ∼= lim←−

B
S/Jβ .

Proof. Consider C = A ∪ B and for γ ∈ C, let

Kγ =

{
Iγ if γ ∈ A
Jγ if γ ∈ B.

Then {Kγ}γ∈C is directed with respect to reverse inclusion since if we have Kγ1 ,Kγ2

with γ1 ∈ A and γ2 ∈ B there is α ∈ A such that Iα ⊆ Jγ2 = Kγ2 then, as I is
directed, there is α′ ∈ A such that Kα′ = Iα′ ⊆ Iγ1 ∩ Iα. Then Kα ⊆ Kγ1 ∩Kγ2

the other cases are easier. Now by Exercise 6.7(c)

lim←−
A
S/Iα

∼→ lim←−
C
S/Kγ

∼← lim←−
B
S/Jβ

as required. �

Exercise 6.10. Suppose that I and J are directed pre-ordered sets. Show that I×J
is a directed pre-ordered set with respect to the relation (i, j) 6 (i′, j′) precisely if
i 6 i′ and j 6 j′. Assuming that all relevant inverse limits exist, show that if C
is a diagram of shape I × J then (lim←−{i}×J C)i∈I has canonical maps making it a

diagram of shape I and (lim←−I×{j} C)j∈J has canonical maps making it a diagram

of shape J . Finally show that

lim←−
I

(
lim←−
{i}×J

C

)
∼= lim←−
I×J

C ∼= lim←−
J

(
lim←−
I×{j}

C

)
.

6.2. Completing group algebras.

Definition 6.11. We say that a topological group G is profinite if it is isomorphic
to an inverse limit of finite groups. We say that is pro-p if is isomorphic to an
inverse limit of finite p-groups.

Exercise 6.12 (Optional). Show that a profinite group is compact, Hausdorff
and totally disconnected12. Show conversely that any compact Hausdorff, totally
disconnected topological group is profinite.

12i.e. any connected subspace is a single point
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Suppose that G is a profinite group. The set {N | N Eo G} of open normal
subgroups of G forms a directed pre-ordered set under reverse inclusion and then
for any commutative ring R there are natural maps R[G/N1]→ R[G/N2] whenever
N2 6 N1.

Lecture 14

Definition 6.13. For any commutative ring R and profinite group G the completed
group ring with coefficients in R is

RG = R[[G]] = lim←−
NEoG

R[G/N ].

If R = Zp and G has an open normal subgroup N that can be given a p-valuation
ω making (N,ω) into a complete p-valued group of finite rank then we call RG an
Iwasawa algebra.

It is a theorem of Lazard that the profinite groups G with a finite index normal
subgroup that can be viewed as a complete p-valued group are precisely the compact
p-adic Lie groups; that is the compact locally analytic manifolds over Qp with a
group structure such that the group multiplication is locally analytic13. We’ve seen
that a complete p-valued group has a global chart Zdp → G given by an ordered
basis. So the claim in one direction is that if (g1, . . . , gd) is an ordered basis and

gλ · gµ = gν

then each νi(λ, µ) : Z2d
p → Zp is given locally by convergent power series.

Note that G can be viewed as a subgroup of the group of units of RG under the
family of maps g 7→ (gN)NEoG ∈ lim←−R[G/N ].

Definition 6.14. A crossed product of a ring S by a group G is a ring S ∗H which
contains S as a subring and contains a set of units H = {h̄ | h ∈ H} such that

• S ∗H is a free left S-module on H → S ∗H; h 7→ h̄ and
• for all x, y ∈ H, x̄S = Sx̄ and x̄.ȳS = xyS.

Example 6.15. If G is a group with normal subgroup N and R is a commutative
ring then R[G] can be viewed as a crossed product R[N ] ∗ (G/N). The set G/N
can be formed as the image of a set of coset representatives of N in G in the ring
R[G]. Then all the conditions are straightforward to verify. Notice that it may not

be possible to choose G/N to closed under multiplication.

Lemma 6.16. If H is an open normal subgroup of a profinite group G then H has
finite index. Moreover RG is a crossed product of RH by the finite group G/H.

Proof. Since G is compact and the left cosets of H in G form a disjoint open cover
of G, H must have finite index in G. Fix a set of coset representatives x1, . . . , xk
of H in G.

Let I be the set of open normal subgroups of G contained in H ordered by reverse
inclusion. Now for each N ∈ I,

R[G/N ] =

k⊕
i=1

R[H/N ]xi = R[H/N ] ∗G/H.

13A locally analytic function is one that is locally given by convergent power series
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Then

lim←−
I

R[G/N ] ∼=
k⊕
i=1

(lim←−
I

R[H/N ])xi ∼= (lim←−
I

R[H/N ]) ∗ (G/H).

Since N∩H ∈ I for each N Eo G, I is cofinal in the set of open normal subgroups
of G and RG = lim←−I R[G/N ].

Similary if K Eo H then
⋂
g∈G gKg

−1 is a finite intersection so lives in I and so
I is cofinal in the set of open normal subgroups of H. So

RH = lim←−
I

R[H/N ]

and the result follows. �

The idea of these observations about crossed products is that a reasonable strat-
egy for understanding RG and its representation theory is to first understand RH
and its representation theory and then use the crossed product structure to deduce
things about RG. In particular to understand Iwasawa algebras an important first
case will be to understand the case where the group is complete p-valued of finite
rank.

Theorem 6.17. Let (G,ω) be a complete p-valued group of finite rank and recall
the filtration on O[G] from Lemma 5.2. Then

OG ∼= lim←−
λ∈R>0

O[G]/O[G]λ.

Proof. Since O is p-adically complete and for N Eo G, it follows from Exercise 6.10
that

OG ∼= lim←−
NEoG

(
lim←−
m∈N0

(O/pmO)[G/N ]

)
∼= lim←−

N0×{N |NEG}
O[G]/Im,N

where Im,N = ker(O[G]→ (O/pmO)[G/N ]) = (n− 1, pm | n ∈ N) E O[G].
Now for each N Eo G there is some s ∈ R>0 such that Gs 6 N since the Gs

form a basis of open neighbourhoods of the identity. Thus by Lemma 5.11, for all
m ∈ N0 there is some λ ∈ R>0 such that O[G]λ ⊆ Im,N .

Conversely given λ ∈ R>0, if m ∈ N0 is bigger than λ then Im,Gλ ⊆ O[G]λ so
we’re done by Lemma 6.9. �

Definition 6.18. If R is a ring then an ascending N0-filtration is a family of
additive subgroups (FnR)n∈N0

of R such that

• 1 ∈ FnR for all n ∈ N0;
• FnRFmR ⊆ Fn+mR for all n,m ∈ N0 and
• R =

⋃
n>0 FnR.

Given an ascending N0-filtration on R the associated graded ring of R is the N0-
graded ring

grR =
⊕
n∈N0

FnR/Fn−1R

(where F−1R = 0) with multiplication the bilinear extension of

(FnR/Fn−1R)× (FmR/Fm−1R) → Fn+mR/Fn+m−1R

(r + Fn−1R, s+ Fm−1R) 7→ rs+ Fm+n−1
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Recall that a ring R is Noetherian if it is both left and right Noetherian and is
a domain if it has no non-trivial zero-divisors.

Exercise 6.19. Suppse thatR has either an ascending N0-filtration or a descending
R>0-filtration.

(1) Show that if grR is a domain then R is a domain.
(2) Show that if grR is Noetherian and, in the descending case R is complete with

v(R>0\{0}) discrete and closed in R>0, then R is Noetherian.

Lecture 15

Corollary 6.20. If (G,ω) is a complete p-valued group of finite rank then OG is
a Noetherian domain.

Proof. By Theorem 6.17 and Exercise 2.15 we may filter OG so that it is complete
and grOG ∼= grO[G]. Moreover by Theorem 5.17 grO[G] ∼= Uk[t](k⊗Fp grG) = U .
Now we may give U an ascending N0-filtration via F0U = k[t], F1U = k[t]+k[t] grG
and FnU = (F1U)n for n > 2. Since k ⊗Fp grG is a free k[t]-module of rank d say,
the PBW Theorem gives that grU ∼= Symk[t](k ⊗Fp grG) a polynomial ring over

k[t] in d-variables. Since this is a Noetherian domain we may use Exercise 6.19 to
deduce that U is a Noetherian domain and then that OG is a Noetherian domain
since OG is complete with respect to its filtration. �

Exercise 6.21. Deduce that if r, s ∈ OG then v(rs) = v(r) + v(s).

Corollary 6.22. Any Iwasawa algebra ZpG is Noetherian.

Proof. G has an open normal subgroup N that can be viewed as a complete p-valued
group of finite rank. By Lemma 6.16 ZpG ∼= ZpN ∗ (G/N). By Corollary 6.20 ZpN
is a Noetherian domain. Since ZpG is a finitely generated ZpN -module it follows
that ZpG is Noetherian — ZpG is a finitely generated left/right ZpN -module and
so every left/right ideal of ZpG is finitely generated as a left/right ZpN -module
and so also as a left/right ZpG-module. �

We can understand the O-linear structure of OG when (G,ω) is complete p-
valued of finite rank with ordered basis (g1, . . . , gd). Recall that bi = gi− 1 ∈ O[G]
and bα = bα1

1 · · · b
αd
d for α ∈ Nd

0.

Proposition 6.23. There is an O-linear bijection

θ :
∏
α∈Nd0

O → OG

given by

θ((rα)α∈Nd
0
) =

 ∑
∑d
i=1 αiω(gi)6s

rαbα +O[G]s


s∈R>0

∈ lim←−O[G]/O[G]s ∼= OG.

Proof. Recall that by Proposition 5.14

v
(∑

rαbα
)

= min
α

{
vp(rα) +

d∑
i=1

αiω(gi)

}
for any finite sum

∑
rαbα.
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For s > 0, let Ss be the finite set
{
α ∈ Nd

0 |
∑d
i=1 αiω(gi) 6 s

}
. Since for t > s,

Ss ⊂ St and v
(∑

α∈St\Ss rαbα
)
> s, it is straightforward to verify that θ is well-

defined and O-linear.
Moreover if θ((rα)α∈Nd

0
) = 0 then v(

∑
α∈Ss rαbα) > s for all s > 0. Thus

vp(rα) > s−
d∑
i=1

αiω(gi)

for all α ∈ Nd
0 and all s > 0 and so vp(rα) =∞ for all α ∈ Nd

0. It follows that θ is
injective.

Now suppose that (xs)s>0 ∈ lim←−O[G]/O[G]s. By Lemma 5.13

O[G] =
⊕
α∈Nd

0

Obα +O[G]s

for each s > 0 and so we can find xα,s ∈ O such that xs =
∑
α∈Ss xα,sb

α +O[G]s.

If t > s then xt +O[G]s = xs +O[G]s so∑
α∈Ss

(xα,s − xα,t)bα ∈ O[G]s

ie vp(xα,t − xα,s) > s−
∑
αiω(gi) for all α ∈ Ss and t > s.

Now given α ∈ Nd
0 we can choose s such that α ∈ Ss and then

vp(xα,t − xα,u) > t−
∑

αiω(gi)

for all u > t > s ie there is some xα = limt→∞ xα,t ∈ O since O is complete.
Now we can verify that θ((xα)α∈Nd

0
) + O[G]s = xs for each s > 0 and so θ is

surjective. �

Remark 6.24. We may view θ as an O-module isomorphism O[[b1, . . . , bd]]→ OG.
This will not be a ring isomorphism in general as OG will not be commutative.

Examples 6.25.

(a) If G = Zdp with ω(λ) = min16i6d{vp(λi)} + 1 Then OG is isomorphic to the
commutative formal power series ring O[[T1, . . . , Td]] as claimed for d = 1 in
Lecture 1.

(b) If (G,ω) is as in Exercise 2.36,

x =

1 p 0
0 1 0
0 0 1

 , y =

1 0 0
0 1 p
0 0 1

 and z =

1 0 p
0 1 0
0 0 1


then writing X = x− 1, Y = y − 1, Z = z − 1 ∈ OG we can compute that

OG =

 ∑
l,m,n>0

λlmnX
lY mZn | λlmn ∈ O


as an O-module with multiplication such that Z is central and

(1 + Y )(1 +X) = (1 +X)(1 + Y )(1 + Z)−p ie

Y X = XY + (1 +X + Y +XY )

∑
j>1

(
−p
j

)
Zj

 .
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Exercise 6.26. Show that if G is a complete p-valued group of rank d and k =
O/(p) as usual then there is a k-linear isomorphism kG ∼= {

∑
α∈Nd

0
xαbα | xα ∈ k}.

Lecture 16

Exercise 6.27. Show that kG ∼= OG/(p). Let M be a finitely generated OG-
module and write M [pk] = {m ∈ M | pkm = 0}. Show that there is some n > 0
such that M [pk] = M [pn] for all k > n, that M [pk]/M [pk−1] is naturally a finitely
generated kG-module for each 1 6 k 6 n and that M/M [pn] is an OG-module with
no p-torsion elements.

It follows that many questions about finitely generated OG-modules can an-
swered by considering finitely generated kG-modules (i.e. those OG-modules killed
by p) and finitely generated OG[1/p]-modules separately.

7. Centres of Iwasawa algebras

In this section k will denote a finite field of characteristic p and G will denote a
profinite group. Our goal will be to compute Z(RG) in the case G has a p-valuation
with respect to which it is complete and R = Zp or R = k. We will follow Ardakov
‘The Centre of Completed Group Algebras of Pro-p Groups’ (2004).

Definition 7.1. The category G− Setf has objects finite sets X14 equipped with
a continous G-action G×X → X and morphisms

HomG−Setf (X,Y ) = {f : X → Y | g.f(x) = f(gx) for all g ∈ G, x ∈ X}.
We may view this as a subcategory of the category of all topological G-sets with
continuous action map.

Exercise 7.2. Show that an action G × X → X on a finite set is continuous
precisely if StabG(x) is an open subgroup of G for each x ∈ X.

For each object X ∈ G− Setf we can form the permutation module R[X] which
is the free R-module with basis X and with G-action the R-linear extension of the
G-action on the basis. A morphism f : X → Y in G− Setf naturally induces a
G-linear map f : R[X] → R[Y ] sending the basis vector x ∈ X to the basis vector
f(x) ∈ Y .

Given an inverse system(Xn, πn,m) in G− Setf of shape (N,6) we can form
the inverse limit lim←−Xn in the category of all topological G-Sets with continuous

G-action and RX = lim←−R[Xn] in the category of all topological kG-modules. All

of these spaces are compact and Hausdorff and indeed metrizable15 In particular
we give kX = lim←− k[Xn] the metric

d((αn)n∈N, (βn)n∈N) = p− inf{n∈N|αn 6=βn}.

We will compute (kX)G and (ZpX)G when G is a pro-p group and then apply
this to the case where G acts on itself by conjugation and is complete p-valued.

14with the discrete topology
15We topologise ZpX = lim←−n,m Zp/(pm)[Xn] with the weakest topology so that all maps

ZpX → Zp/(pm)[Xn] are continuous where the codomain is always discrete or equivalently so

that all maps ZpX → Zp[Xn] are continuous where Zp[Xn] ∼= Z
|Xn|
p is given the product topology

with respect to the usual topology on Zp.
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Notation 7.3. Given a set X with a G-action and a finite orbit C ⊆ X we write

[C] =
∑
x∈C

x ∈ R[X]

for its orbit sum. We write

XG = {x ∈ X | gx = x for all g ∈ G}.

Exercise 7.4. If X is any set with a G-action then R[X]G is spanned by the orbit
sums [C] as C ranges over all finite G-orbits in X.

Lemma 7.5. Suppose that G is pro-p and f : X → Y is a morphism in G− Setf .
Then under f : k[X] → k[Y ] the image of k[X]G in k[Y ] is spanned by the orbit
sums [f(C)] where C ranges over the orbits of X such that |f(C)| = |C|.

Proof. It is easy to verify that if C is an orbit in X then f(C) is an orbit in Y .
Moreover if y ∈ f(C) then

|{x ∈ C | f(x) = y} = |StabG(y)|/|StabG(x)| = |C|/|f(C)|.

This number is independent of the choice of y ∈ f(C) and is always a power of p
since G is pro-p.

Thus

f([C]) =
|C|
|f(C)|

[f(C)] =

{
[f(C)] if |C| = |f(C)|
0 otherwise.

The result follows immediately via Exercise 7.4. �

Proposition 7.6. If G is pro-p and X is the inverse limit of an inverse system of
shape (N,6) in G− Setf then

kXG = k[X]G

Proof. Since the action of G on kX is continuous, kXG is closed in kX and so

k[X]G ⊂ kXG.
Suppose that α = (αn)n ∈ kXG. We will show that for each r ∈ N there is some

β ∈ k[X]G such that d(α, β) < p−r and so α ∈ k[X]G as required.
We fix r ∈ N. Since the πn : kX → k[Xn] are maps of G-spaces each αn ∈

k[Xn]G. In particular we may write

αr =
∑
C
λC [C]

where the sum is over all G-orbits C in Xr.
We consider some orbit C such that λC 6= 0. Since for all n > r the map

πn,r : k[Xn] → k[Xr] sends αn ∈ k[Xn]G to αr, by Lemma 7.5 we can find an
orbit Cn in Xn such that πn,r(Cn) = C and |C| = |Cn|. Indeed we may inductively
construct the Cn so that πn,n−1(Cn) = Cn−1 for each n > r (and Cr = C). Thus for
xr ∈ C we can find a unique xn ∈ Cn such that πn,r(xn) = xr. This family (xn)n>r
defines an element x ∈ X = lim←−Xn. The G-orbit C∞ of x is lim←−n>r Cn and has the

same order as C by construction.
Repeating this construction for each orbit C in Xr with λC 6= 0 we can then

define β =
∑
λC [C∞] ∈ k[X]G. Then πs(β) = αs for all s 6 r and so d(α, β) < p−r

as required. �
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Lecture 17

Corollary 7.7. If G and X are as in Proposition 7.6 then (ZpX)G = Zp[X]G.

Proof. Once again since the action of G on ZpX is continuous, (ZpX)G is closed

in ZpX and so Zp[X]G ⊂ (ZpX)G.
Let q : ZpX → FpX denote the reduction map mod p. Then for α ∈ (ZpX)G,

q(α) ∈ FpX
G = Fp[X]G. Thus for each n > 0 we may find βn ∈ (Fp[X])G such

that d(q(α), βn) < p−n. For each such βn we may find γn ∈ Zp[X]G such that
q(γn) = βn. Since ZpX is compact and Hausdoff, by Bolzano–Weierstrass γn has

a convergent subsequence with limit δ0, say. Moreover as Zp[X]G is closed it must
contain δ0. Then q(δ0) = q(α) by construction so

α− δ0 ∈ (ZpX)G ∩ ker q = (ZpX)G ∩ pZpX = p(ZpX)G

since pr ∈ (ZpX)G precisely if r ∈ (ZpX)G. Thus we may write α = δ0 + pα1 for
some α1 ∈ (ZpX)G. Repeating this argument we obtain α is equal to a convergent

sum
∑
i>0 p

iδi with each δi ∈ Zp[X]G. Thus α ∈ Zp[X]G as required. �

Theorem 7.8. If (G,ω) is a complete p-valued group with centre Z then Z(kG) =
kZ and Z(ZpG) = ZpZ.

Proof. Since N is cofinal in R>0, G = lim←−G/Gn. Moreover G is pro-p by Lemma
3.2. Thus by Proposition 7.6

Z(kG) = (kG)G = k[G]G = Z(k[G]).

Similarly by Corollary 7.7

Z(ZpG) = (ZpG)G = Zp[G]G = Z(Zp[G]).

Thus it suffices to show that Z(k[G]) = k[Z] and Z(Zp[G]) = Zp[Z].
By Exercise 7.4, Z(R[G]) is spanned by all the finite orbit sums under the con-

jugation action. So it is equivalent to prove that all the finite conjugacy classes
have order 1. Let C be a finite conjugacy class in G and x ∈ C. Then CG(x) is a
closed subgroup of finite index. Thus for all y ∈ G there is some n ∈ N such that
yp

n ∈ CG(x) i.e.

yp
n

= xyp
n

x−1 = (xyx−1)p
n

.

But by Lemma 3.6(b) if g, h ∈ G then ω(g−p
n

hp
n

) = ω(g−1h) + n. Thus if
gp
n

= hp
n

then g = h. In particular we can deduce that y = xyx−1 as required. �

8. The Campbell-Baker-Hausdorff formula

8.1. Coalgebras and Primitive elements.

Definition 8.1. Let k be a commutative ring. A k-coalgebra is a k-module C
equipped with k-linear maps ∆: C → C⊗kC (the co-multiplication) and ε : C → k
such that

(1) (∆⊗ id)∆ = (id⊗∆)∆ (∆ is co-associative); and
(2) (ε⊗ id)∆ = id = (id⊗ε)∆ (ε is a counit).

A k-bialgebra A is a k-coalgebra (A,∆, ε) such that A also has the structure of
an (associative unital) algebra with respect to which ∆ and ε are algebra homo-
morphisms.
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Example 8.2. Let G be a group. Then we can define

∆: k[G]→ k[G]⊗k k[G]

to be the k-linear extension of the map g 7→ g ⊗ g for g ∈ G and

ε : k[G]→ k

to be the k-linear extension of g 7→ 1 for g ∈ G. Then k[G] is a k-bialgebra.

Definition 8.3. In general we call c in a coalgebra C grouplike if ∆(c) = c⊗ c.

Examples 8.4.

(a) Let G be a finite group. Then kG = {f : G→ k} is an k-algebra under pointwise
operations. If we identify kG ⊗k kG with kG×G and set ∆(f)(x, y) = f(xy) for
f ∈ kG and x, y ∈ G and ε(f) = f(eG) then kG is a bialgebra that is in some
sense dual to k[G].

(b) Let g be a Lie algebra over k. Then the map x 7→ (x, x) defines a Lie algebra
homomorphism g→ g× g that extends to a k-algebra homomorphism

∆: U(g)→ U(g× g) ∼= U(g)⊗k U(g)

such that ∆(x) = x⊗ 1 + 1⊗ x for x ∈ g. Moreover the trivial representation
g→ k; x 7→ 0 gives a k-algebra homomorphism U(g)→ k. Thus U(g) equipped
with ∆ and ε is a k-bialgebra.

Definition 8.5. In general we call c in a k-bialgebra C primitive if ∆(c) = 1⊗ c+
c⊗ 1. The set of primitive elements is denoted P(C)

Lemma 8.6. If A is a k-bialgebra then P(A) is a k-Lie algebra under the commu-
tator bracket [a, b] = ab− ba with respect to the algebra structure on A.

Proof. If x, y ∈ A are primitive and λ ∈ k then

∆(λx) = λ∆(x) = λx⊗ 1 + 1⊗ λx

and

∆(x+ y) = ∆(x) + ∆(y) = (x+ y)⊗ 1 + 1⊗ (x+ y)

so P(A) is a k-module. Moreover

∆(xy − yx) = [∆(x),∆(y)]

= (x⊗ 1 + 1⊗ x)(y ⊗ 1 + 1⊗ y)− (y ⊗ 1 + 1⊗ y)(x⊗ 1 + 1⊗ x)

= (xy − yx)⊗ 1− 1⊗ (xy − yx)

so xy − yx is primitive. �

Lecture 18

At this point we need a generalisation of the form of the PBW theorem we had
before.

Theorem 8.7 (PBW). If g is a k-Lie algebra whose underlying k-module is free
on a set X. Then the ascending N0-filtration on U = U(g) given by F0U = k,
F1U = k+ g and FnU = (F1U)n for n > 2 (known as the PBW filtration) satisfies
grU(g) ∼= Sym(g) ∼= k[X] the polynomial ring over k with variables in X.

If X is finite this is just a rephrasing of Theorem 5.15.
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Theorem 8.8. Suppose that k is torsion free as an additive group and g is a k-Lie
algebra that is free as a k-module. Then P(U(g)) = g.

Proof. First we notice that with respect to PBW-filtration on U = U(g) and the
tensor product filtration on U ⊗k U given by

Fn(U ⊗k U) =
∑

l+m=n

FlU ⊗k FmU for all n > 0,

∆ is a filtered k-algebra homomorphism.
Thus ∆ induces a graded algebra map gr ∆: grU → gr(U ⊗k U). If x1, . . . , xn ∈

gr1 U then

gr ∆(x1 · · ·xn) =

n∏
i=1

gr ∆(xi) =

n∏
i=1

(xi ⊗ 1 + 1⊗ xi).

So writing µ : grU × grU → grU to denote the multiplication in the graded ring,

µ(∆(x1 · · ·xn)) = 2nx1 · · ·xn.

Thus µ∆ acts by 2n on grn U .
However if u ∈ U is primitive then σ(u) ∈ grU is also primitive, since

gr∆(σ(u)) = σ(∆(u)),

and so

µ gr ∆(σ(u)) = µ(σ(u)⊗ 1 + 1⊗ σ(u)) = 2σ(u).

It follows that for primitive u ∈ FnU\Fn−1U we have (2n − 2)σ(u) = 0. By
Theorem 8.7 and our assumption that (k,+) is torsion-free it follows that all non-
zero primitive u live in F1U\F0U i.e. u = λ + y for some λ ∈ k and y ∈ g. Since
such y is primitive and P(U) is a k-submodule of U it follows that λ is primitive.
Since λ ∈ F0U it must be 0. �

8.2. Free non-associative algebras and free Lie algebras.

Definition 8.9. A magma is a set M with a binary operation. Mag is the category
whose objects are magmas and whose morphisms HomMag(M,N) are functions
f : M → N such that f(ab) = f(a)f(b) for all a, b ∈M .

Given a set X we can construct a magma as follows: X(1) = X. For n >
2, X(n) is the disjoint union

∐
p+q=nX(p) × X(q). Then M(X) is the disjoint

union
∐
n>1X(n). The binary operation on M(X) is defined by assembling the

inclusion maps µm,n : X(m)×X(n)→ X(m+ n) together to give a (graded) map
µ : M(X)×M(X)→M(X).

Example 8.10. If X = X(1) = {1} we can write X(2) = {(1 · 1)} then

X(3) = {(1 · (1 · 1)), ((1 · 1) · 1)},

X(4) = {(1 · (1 · (1 · 1))), (1 · ((1 · 1) · 1)), (1 · 1) · (1 · 1), ((1 · (1 · 1)) · 1), (((1 · 1) · 1) · 1)}
etc.

Exercise 8.11. M(X) is the free magma on X with respect to the forgetful functor
Mag→ Set.
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Definition 8.12. Given a commutative ring k, a (not necessarily associative not
necessarily unital) k-algebra A is a k-module together with a k-linear multipli-
cation map µA : A × A → A. Algk is the category whose objects are such k-
algebras and whose morphisms HomAlgk(A,B) are k-linear maps f : A → B such
that f(µA(x, y)) = µB(f(x), f(y)) for all x, y ∈ A.

Exercise 8.13. The free k-algebra on a set X with respect to the forgetful functor
Algk → Set is the free k-module on M(X) with multiplication given by bilinear
extension of the natural multiplication on the basis. Moreover the natural grading
on M(X) induces a grading on the free algebra k[M(X)].

Exercise 8.14. The free k-Lie algebra LX on a set X is the (graded) Lie algebra
of k obtained from the free k-algebra on X by quotienting out by the (graded) ideal
(a · a, a · (b · c) + b · (c · a) + c · (a · b)|a, b, c ∈M(X)).

Proposition 8.15. Let X be a set. Then the free associative algebra k〈X〉 on X
is naturally isomorphic to the universal enveloping algebra U(LX) of the free Lie
algebra on X.

Proof. We identify X with its image in LX , U(LX) and k〈X〉 and identify LX with
its image in U(LX) under the maps given by the various universal properties.

Then the univeral property of k〈X〉 gives a unique associative k-algebra map
ϕ : k〈X〉 → U(LX) sending x ∈ X to itself. Similarly by the universal property of
LX there is a unique Lie algebra map α : LX → k〈X〉 sending x ∈ X to itself.16 By
the universal property of U(LX) this extends uniquely to an associative k-algebra
map ψ : U(LX)→ k〈X〉.

Now ϕψ : k〈X〉 → k〈X〉 is an associative k-algebra map such that ϕψ(x) = x
for all x ∈ X so by the universal property for k〈X〉 it is the identity map on k〈X〉.
Similarly ψϕ : LX → U(LX) is k-Lie algebra map such that ψϕ(x) = x for all
x ∈ X. Thus by the universal property for LX , ψϕ(y) = y for all y ∈ LX and so
by the universal property for U(LX), ϕψ = id. �

It follows that we may transport usual the coalgebra structure on U(LX) to
k〈X〉.

Exercise 8.16. Show that the isomorphism ϕ : k〈X〉 → U(LX) is in fact an iso-
morphism of graded algebras where k〈X〉 is given the grading

k〈X〉 =
⊕
n>0

Tn(k[X])

and U(LX) is given the grading induced from the grading on LX as in Exercise
4.11.

Lecture 19

8.3. The Campbell-Hausdorff formula. Recall that given a set X we have con-
structed an N-graded k-Lie-algebra LX that is free on the set X. We will assume
for the rest of this section that k is a field of characteristic 0.

Notation 8.17. We write L
(n)
X for the nth-graded piece for n ∈ N. Similarly we

write k〈X〉(n) to denote the nth graded piece of k〈X〉 for n ∈ N0.

16As always the Lie structure on k〈X〉 is the commutator one.
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In particular L
(1)
X is the k-vector space with basis X and in general L

(n)
X is

spanned by n-fold commutators of elements of X ⊂ L
(1)
X . Similarly k〈X〉(n) is

spanned by all products of n elements of X ⊂ k〈X〉.
By Exercise 8.16 we may identify LX as a graded Lie-subalgebra of the graded

Lie algebra k〈X〉. Indeed after transporting the coalgebra structure on U(LX)
along the graded k-algebra isomorphism U(LX) → k〈X〉 we see, using Theorem

8.8, that under this identification L
(n)
X consists of the primitive elements of k〈X〉

of degree n.
We filter k〈X〉 by

v

∑
n>0

rn

 = inf{n ∈ N0 | rn 6= 0}

when each rn ∈ k〈X〉(n). Similarly we filter the free Lie algebra LX by

v

(∑
n>0

xn

)
= inf{n ∈ N | xn 6= 0}

when each xn ∈ L(X)n.17

Exercise 8.18. Show that k̂〈X〉 ∼=
∏
n>0 k〈X〉(n) can be viewed as a ring of formal

(non-commutative) power series in the variables X and18 L̂X ∼=
∏
n>1(LX)(n)

Let m̂X = m̂ denote the ideal k̂〈X〉1 given by filtration v̂ on k̂〈X〉.
Lemma 8.19.

(a) k̂〈X〉
×

= k× + m̂;

(b) m̂ is the unique maximal ideal in k̂〈X〉 and;

(c) 1 + m̂ is a subgroup of k̂〈X〉.

Proof. The map ε : k̂〈X〉 → k〈X〉0/k〈X〉1 = k is a homomorphism of unital k-

algebras. Therefore any unit in k̂〈X〉 must lie in the complement of the kernel of ε

i.e. in k×+ m̂. Conversely if r ∈ k̂〈X〉 with ε(r) = r0 6= 0 then r−r0 = r1 ∈ ker ε =
m̂ i.e. r = r0(1 − u) with u = −r−10 r1 ∈ m̂ since r0 is a unit in k. By Notation

3.14 and Exercise 3.15
∑
i>0 u

i ∈ k̂〈X〉 is an inverse for 1 − u. (a) & (b) follow

immediately as does (c) by noting that 1 + m̂ = ker ε : k̂〈X〉
×
→ k×. �

Remark 8.20. Note that if X = {T} then k̂〈X〉 = k[[T ]] the usual commutative
power series ring in one variable with its T -adic filtration. In general, given any
u ∈ m̂ there is a unique filtered K-algebra homomorphism

evu : k[[T ]]→ k̂〈X〉
sending T → u: since v̂(λnu

n) > n for all λn ∈ K and n ∈ N0, Exercise 3.15
shows that evu : f(T ) 7→ f(u) is a well-defined filtered algebra homomorphism and
uniqueness follows from Example Sheet 1 Q5.

17A filtration on a Lie algebra L is a function v : L → R>0 ∪ {∞} such that v(x + y) >
min(v(x), v(y)), v(λx) > v(x) and v([x, y]) > v(x) + v(y) for all x, y ∈ L and λ ∈ k.

18writing L̂X to denote the completion of the filtered Lie algebra L̂X = lim←−λ>0
LX/(LX)λ for

(LX)λ the Lie ideal {x ∈ L | v(x) > λ}.
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Lemma 8.21. The maps

exp: m̂→ 1 + m̂;u 7→
∑
n>0

un/n!

and

log : 1 + m̂→ m̂; 1 + u 7→
∑
n>1

(−1)n+1un/n

are well defined mutual inverses.

Proof. exp(u) = evu(exp(T )) and log(1 + u) = evu(log(1 + T ) so the maps are
well-defined by Remark 8.20. Moreover exp(log(1 + u)) = evu(exp(log(1 + T )) and
log(exp(u)) = evu(log(exp(T )) so it suffices to solve the following exercise which is
a special case of the Lemma. �

Exercise 8.22. Show that the pair of functions exp: TQ[[T ]] → 1 + TQ[[T ]] and
log : 1 + TQ[[T ]→ TQ[[T ]] are mutual inverses.

Hint: Prove a chain rule for formal differentiation of formal power series in one
variable and apply it to exp(log(1 + T )) and log(exp(T )).

Lemma 8.23. If a, b ∈ m̂ commute then exp(a+ b) = exp(a) · exp(b).

Proof. We compute

exp(a+ b) =
∑
n>0

(a+ b)n/n!

=
∑
n>0

∑
i+j=n

ai/i!bj/j!

= exp(a) exp(b)

as claimed. �

Lemma 8.24. The comultiplication on k〈X〉 extends uniquely to a k-algebra ho-
momorphism

∆̂ : k̂〈X〉 → ̂k〈X〉 ⊗k k〈X〉.
Moreover

P(k̂〈X〉) = {u ∈ k̂〈X〉 | ∆̂(u) = u⊗ 1 + 1⊗ u} = L̂X .

Proof. If we give k〈X〉 ⊗ k〈X〉 the tensor product filtration then ∆ is a morphism
of filtered rings since

∆(k〈X〉0) = ∆(k) = k = (k〈X〉 ⊗k k〈X〉)0
and for n > 1

∆(k〈X〉n) = ∆(k〈X〉1)n

= (k.{1⊗ 1, x⊗ 1 + 1⊗ x | x ∈ X)n

⊂ (k〈X〉 ⊗k k〈X〉)n.

Thus by Example Sheeet 1 Q5 ∆ extends as claimed. Moreover if r =
∑
n>0 rn ∈

k̂〈X〉 is primitive with each rn ∈ k〈X〉(n) then ∆̂(r) =
∑
n>0 ∆(rn). Since ∆(rn)

is in degree n in the graded ring k〈X〉 ⊗k k〈X〉, each rn is primitive and so lives in

L
(n)
X by Theorem 8.8. Thus r ∈ L̂X as claimed. �
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Lecture 20

Lemma 8.25. G = G(k̂〈X〉) = {r ∈ k̂〈X〉
×
| ∆̂(r) = r ⊗ r} is a subgroup of the

multiplicative group 1 + m̂.

Proof. If r = r0 + x ∈ G with r0 ∈ k× and x ∈ m̂ then

r0 ⊗ r0 = σ(r ⊗ r) = σ(∆̂(r)) = σ(∆(r0) + ∆̂(x)) = r0 ⊗ 1

so r20 = r0 and r0 = 1.
Suppose that r, s ∈ G then

∆̂(rs) = ∆̂(r)∆̂(s) = (r ⊗ r)(s⊗ s) = rs⊗ rs

so rs ∈ G. Moreover

∆(r−1) = ∆(r)−1 = (r ⊗ r)−1 = r−1 ⊗ r−1

so r−1 ∈ G. Finally 1 ∈ G and we’re done. �

Proposition 8.26. exp restricts to a bijection

L̂X → G.

Proof. Suppose u ∈ L̂X . Since 1⊗ u and u⊗ 1 commute in ̂k〈X〉 ⊗k k〈X〉,

∆̂(exp(u)) = exp(∆̂(u)) = (exp(u)⊗ 1)(1⊗ exp(u)) = exp(u)⊗ exp(u)

i.e. exp(L̂X) ⊆ G. Similarly if v ∈ G there is some u ∈ m̂X such that exp(u) = v.
Then

∆̂(u) = ∆̂(log v)

= log(∆̂(v))

= log(exp(u)⊗ exp(u))

= u⊗ 1 + 1⊗ u.

Thus u ∈ L̂X and exp(L̂X) = G. �

Definition 8.27. The Hausdorff series in variables U, V is

Φ(U, V ) = log(exp(U) exp(V )) ∈ Q̂〈U, V 〉.

We will write Φn(U, V ) ∈ L̂{U,V } for the nth homogeneous component of Φ(U, V )
for n > 1.

Exercise 8.28. Compute directly that Φ1(U, V ) = U +V , Φ2(U, V ) = 1
2 [U, V ] and

Φ3(U, V ) =
1

12
([U, [U, V ]] + [V, [V,U ]]).

We will find an easier way to do these computations.

Corollary 8.29 (Campbell–Hausdorff).

Φ(U, V ) ∈ L̂{U,V } ⊂ ̂k〈U, V 〉.

Proof. Let X = {U, V }. Then U, V ∈ L̂X so exp(U) and exp(V ) are in G(k̂〈X〉) by

Proposition 8.26 and so exp(U) exp(V ) ∈ G(k̂〈X〉) by Lemma 8.25. Thus Φ(U, V ) =

log(exp(U) exp(V )) ∈ L̂X by Proposition 8.26 again. �
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Lemma 8.30. Let m = k〈X〉1 and define a k-linear map α : m → LX by linearly
extending

α(x1 · · ·xn) = [x1, [x2, [· · · , [xn−1, xn] · · · ]]] ∈ L(n)
X

for x1, . . . , xn ∈ X and let θ : U(LX) → Endk(LX) be the extension to U(LX) of
the adjoint representation ad: LX → Endk(LX). Then

α(uv) = θ(u)α(v)

for all u in U(LX) and v ∈ m.

Proof. Since α and θ are k-linear we may assume that u = x1 · · ·xn with xi ∈ X.
We proceed by induction on n. If n = 0, 1 the result is immediate.

Suppose that n > 1. Then

α(x1 · · ·xnv) = θ(x1)α(x2 · · ·xnv) = θ(x1)θ(x2 · · ·xn)α(v) = θ(u)α(v)

by the induction hypothesis and because θ is a ring homomorphism. �

Proposition 8.31. α(u) = nu for all u ∈ L(n)
X and n > 1.

Proof. Again by induction on n. When n = 1 the result is clear as L
(1)
X is spanned

by X. If u ∈ L(n)
X for some n > 1 then u is a sum of terms

∑
[ai, bi] with ai, bi ∈ LX ,

deg ai + deg bi = n and deg ai,deg bi < n. By linearity we can reduce to the case
u = [a, b].

Now

α([a, b]) = α(ab)− α(ba) = θ(a)α(b)− θ(b)α(a) = deg(b)θ(a)(b)− deg(a)θ(b)a

by the induction hypothesis. But

deg(b)θ(a)(b)− deg(a)θ(b)a = deg(b)[a, b]− deg(a)[b, a] = n[a, b]

as required. �

Corollary 8.32. The map φ : m→ LX given by φ(
∑
n>1 xn) =

∑
n>1

1
nα(xn) for

xn ∈ k〈X〉(n) is a projection onto LX .

Proof. If
∑
xn ∈ LX then xn ∈ L(n)

X so α(xn) = nxn and the result follows easily.
�

Notation 8.33. Given p, q ∈ N0 and m ∈ N let Smp,q denote the set of 2m-tuples

(i1, . . . , im, j1, . . . , jm) ∈ N2m
0 such that i1 + · · · + im = p, j1 + · · · + jm = q and

ik + jk > 1 for k = 1, . . . ,m.

Theorem 8.34 (Dynkin). For p, q ∈ N0. Write

Φm,1p,q (U, V ) =
∑

(i,j)∈Smp,q
jm=1

ad(U)i1 ad(V )j1 · · · ad(U)im(V )

i1!j1! · · · im!jm!

and

Φm,2p,q (U, V ) =
∑

(i,j)∈Smp,q
im=1,jm=0

ad(U)i1 ad(V )j1 · · · ad(V )jm−1(U)

i1!j1! · · · im!jm!
.

Then

Φn(U, V ) =
1

n

n∑
m=1

(−1)m+1

m

( ∑
p+q=n

Φm,1p,q (U, V ) + Φm,2p,q (U, V )

)
.
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Proof. By definition

Φ(U, V ) = log(exp(U) exp(V )) =
∑
m>1

(−1)m+1

m

 ∑
i+j>1

U i

i!

V j

j!

m

so

Φn(U, V ) =
∑
m>1

(−1)m+1

m

∑
p+q=n

 ∑
(i,j)∈Smp,q

U i1

i1!

V j1

j1!
· · · U

im

im!

V jm

jm!


Now

α(U i1V j1 · · ·U imV jm) =

{
ad(U)i1 ad(V )j1 · · · ad(V )jm−1(V ) if jm > 1

ad(U)i1 ad(V )j1 · · · ad(U)im−1(U) if jm = 0.

These values are zero unless jm = 1 or jm = 0 and im = 1 since

ad(U)(U) = ad(V )(V ) = 0.

Thus as Φn(U, V ) ∈ L(n)
{U,V } and Smp,q = ∅ if m > p+q, Φn(U, V ) = 1

nα(Φn(U, V ))

is given by the required formula. �

Lecture 21

9. p-adic Lie Theory

Definition 9.1. A (descending) R-filtration on a ring R is a function

v : R→ R>0 ∪ {∞}
that satisfies the usual defining properties19 of a filtration as in Definiton 2.1. In
particular (R0 = {r ∈ R | v(r) > 0}, v|R0) is a filtered ring in the sense of Definition
2.1. Such a filtration is a valuation if v(ab) = v(a)v(b) for all a, b ∈ R.

As in section 5 here we suppose that O is a complete discrete valuation ring with
uniformiser p and K will denote its field of fractions20 equipped with the valuation
vp such that K0 = O and vp(p) = 1.

9.1. Some p-adic estimates.

Lemma 9.2. Let n =
∑k
i=0 aip

i ∈ N with a0, . . . , ak ∈ {0, 1, . . . , p − 1} and let
s(n) =

∑
ai. Then

vp(n!) =
n− s(n)

p− 1
6

n

p− 1

Proof.

vp(n!) = bn/pc+ bn/p2c+ · · · bn/pkc
= a1 + a2(p+ 1) + a3(p2 + p+ 1) + · · · ak(pk−1 + pk−2 + · · ·+ 1)

=

k∑
i=0

ai
(pi − 1)

p− 1

=
n− s(n)

p− 1

19conditions (a)-(d) of Definition 2.1
20which can be viewed as O localised at {pn | n ∈ N0}
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as required. �

Lemma 9.3. vp(n) < logp(n) + 1 for all n ∈ N.

Proof. Let k ∈ N such that pk 6 n < pk+1. Then vp(n) < k+1 and k 6 logp(n). �

Definition 9.4. A Banach K-algebra is an associative K-algebra A equipped with
a filtration w : A→ R ∪ {∞} such that

(1) w(λa) = vp(λ) + w(a) for all λ ∈ K amd a ∈ A.
(2) A0 is complete with respect to w|A0 i.e. A0

∼= lim←−λ>0
A0/Aλ. A morphism

(A,w)→ (B,w′) of Banach K-algebras is a filtered K-algebra homomorphism
A→ B.

Proposition 9.5. Suppose A is a Banach K-algebra and let I = A(1/p−1)+ and
m = A0+ .

(a) exp: I → 1 + m converges.
(b) log : 1 + m→ A converges.
(c) Φ: I2 → A converges.

Proof. (a) Let x ∈ I. Then w(xn/n!) = w(xn) − vp(n!) > nw(x) − n
p−1 → ∞ as

n → ∞ since w(x) > 1/p − 1. Moreover w(xn/n!) > 0 for all n > 1 for the same
reason. Thus

∑
xn/n! ∈ A0 by Notation 3.14.

(b) Let x ∈ m. Then w(xn/n) = w(xn) − v(n) > nw(x) − logp(n) − 1 → ∞ as
n→∞ since w(x) > 0. Thus log(1 + x) converges.

(c) Let x, y ∈ I. Let t = min(w(x), w(y)) > 1/(p− 1). Then

Φn(x, y) =

n∑
m=1

(−1)m+1

m

∑
a+b=n

 ∑
(i,j)∈Sma,b

xi1

i1!

yj1

j1!
· · · x

im

im!

yjm

jm!

 .

Now

w(xi1yj1 · · ·ximyjm) > nt,

vp(1/m) > − logp(m)− 1 and

vp

(
1

i1!j1! · · · im!jm!

)
= vp

((
n

i1, · · · , jm

))
− vp(n!)

> − n

p− 1

since
(

n
i1,j1,··· ,jm

)
∈ N. Thus w(Φn(x, y)) > n(t− 1

p−1 )− logp(n)−1→∞ as n→∞
and so

∑
n>1 Φn(x, y) converges. �

Exercise 9.6. With the notation of Proposition 9.5 show that

(a) exp(log(1 + x)) = 1 + x for all x ∈ I;
(b) log(exp(x)) = x for all x ∈ I and
(c) Φ(x, y) = log(exp(x) exp(y)) for all x, y ∈ I.
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9.2. The Banach algebra associated to OG. Now we consider a complete p-
valued group (G,ω) of finite rank with ordered basis (g1, . . . , gd). We recall, Remark
6.24, that

OG =

 ∑
α∈Nd

0

λαbα | λα ∈ O

 21

has valuation v given by

v
(∑

λαbα
)

= min
α∈Nd

0

{
vp(λα) +

d∑
i=1

αiω(gi)

}
Notation 9.7. We write KG to denote the K-algebra K ⊗O OG = OG[1/p]. 22

Since OG has no p-torsion we may view it as a subring of KG. Moreover
the elements of KG can be viewed as sums

∑
α∈Nd

0
λαbα with each λα ∈ K and

{vp(λα) | α ∈ Nd
0} ⊂ R bounded below.

Lemma 9.8. The valuation v on OG extends uniquely to a valuation

w : KG→ R ∪ {∞}

such that w(λr) = vp(λ) + w(r) for all λ ∈ K and r ∈ KG.

Proof. Suppose that w is such an extension of v to KG. For r ∈ KG there is n ∈ N
such that pnr ∈ OG. Then

w(r) = vp(p
−n) + v(pnr) = v(pnr)− n

so such a w is necessarily unique. It is straightforward to verify that if we define
w(r) to be vp(p

−n) + v(pnr) for n ∈ N such that pnr ∈ OG, the definition does not
depend on the choice of n and does define a valuation on KG extending v. �

Remark 9.9. OG is a subring of KG0 but these are not equal unless G is trivial.
For example p−1bn1 ∈ KG0\OG if nω(g1) > 1.

Notation 9.10. We will write K̂G to denote the completion of KG with respect
to w. That is

K̂G =

(
lim←−
λ>0

KG0/KGλ

)
[1/p].

Thus K̂G is a Banach K-algebra whose elements may be viewed as convergent
sums∑

α∈Nd
0

λαbα with each λα ∈ K and vp(λα) +
∑

αiω(gi)→∞ as |α| → ∞

and

ŵ

 ∑
α∈Nd

0

λαbα

 = min
α∈Nd

0

{
vp(λα) +

∑
αiω(gi)

}
.

21For bi = gi − 1
22This is inconsistent with Definition 6.13 and so replaces it in this case.
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Lecture 22

Definition 9.11. We say that G is p-saturated if for all g ∈ G with ω(g) > p
p−1

there is h ∈ G with hp = g.

Note that there is a sequence of natural inclusion maps

G→ O[G]→ OG→ KG→ K̂G

and that for g ∈ G,

ŵ(g − 1) = w(g − 1) = v(g − 1) > ω(g) >
1

p− 1
.

Thus by Proposition 9.5 and Exercise 9.6, log(g) converges in K̂G and

exp log(g) = g.

Proposition 9.12. If G is p-saturated then logG is a Zp-Lie subalgebra of K̂G.

Proof. Suppose that u = log g and v = log h are in logG. By Lemma 3.6(b) for
each n ∈ N, ω(gp

n

hp
n

) = ω(gh)+n. So since G is p-saturated there is some xn ∈ G
such that gp

n

hp
n

= xp
n

n .
Then

pn log xn = log(gp
n

hp
n

) = log(exp(pnu) exp(pnv)) = Φ(pnu, pnv)

by Exercise 9.6(c). So

log(xn) = u+ v +
∑
k>2

p−nΦk(pnu, pnv)

= u+ v +
∑
k>2

p(k−1)nΦk(u, v)

→ u+ v as n→∞
Since G is compact and log |G is continuous, logG is compact and so closed in K̂G.
Thus u+ v = limn→∞ xn ∈ logG and logG is closed under +.

If λ ∈ Zp then by continuity of log, log(gλ) = λu so logG is a Zp-submodule of

K̂G.
Writing

Ψ(X,Y ) = log(exp(−X) exp(−Y ) exp(X) exp(Y ))

= Φ(−X,Φ(−Y,Φ(X,Y )))

for the commutator Campbell-Baker-Hausdorff series we see that

Ψ(X,Y ) = XY − Y X +
∑
k>3

Ψk(X,Y );

where Ψk denotes the homogeneous degree k part of Ψ. Thus by a similar argument
to the above

log(g−p
n

h−p
n

gp
n

hp
n

) = Ψ(pnu, pnv) ∈ p2n[u, v] + K̂G3n+w(u)+w(v).

In particular ω
(
(gp

n

, hp
n

)
)
> 2n+ 1

p−1 so there exists yn ∈ G such that

yp
2n

n = (gp
n

, hp
n

)

By a similar argument to the above limn→∞ log yn = [u, v] and so [u, v] ∈ logG. �
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Exercise 9.13. Show that there is a canonical functor from the category of com-
plete p-valued groups of finite rank to the category of K-Banach algebras that sends

G to K̂G and such that each natural diagram

H

��

// G

��
K̂H // K̂G

commutes.

Exercise 9.14. Show that if we equip G×G with the filtration

ωG×G ((g, h)) = min(ω(g), ω(h))

then (G×G,ω) is a complete p-valued group with gr(G×G) ∼= grG× grG.

It follows from these two exercises that there are natural morphisms

ι1, ι2,∆: K̂G→ ̂K(G×G)

associated to the morphisms of filtered groups ι1, ι2,∆: G → G × G such that
ι1(g) = (g, eG), ι2(g) = (eG, g) and ∆(g) = (g, g) and a natural morphism

ε : K̂G→ K

associated to the morphism of filtered groups G→ {e}.

Definition 9.15. Let

G(K̂G) = {x ∈ K̂G | ∆(x) = ι1(x)ι2(x)}

and

P(K̂G) = {x ∈ K̂G | ∆(x) = ι1(x) + ι2(x)}.

Exercise 9.16. Show that G(K̂G) is a subgroup of K̂G
×

containing the image of G

in K̂G and that P(K̂G) is a Lie K-subalgebra of K̂G equipped with its commutator
bracket. Finally show that exp restricts to a bijection

P(K̂G) ∩ K̂G 1
p−1

+ → G(K̂G) ∩
(

1 + K̂G 1
p−1

+

)
with inverse log.

Definition 9.17. The Lie algebra of G is L(G) = P(Q̂pG) with its natural Lie
structure.

Theorem 9.18. Let ui = log(gi) ∈ Q̂pG ⊂ K̂G. Then {u1, . . . , ud} is a K-basis

for P(K̂G) and

w

(
d∑
i=1

λiui

)
= min

16i6d
{vp(λi) + ω(gi)}

for λ1, . . . , λd ∈ K.

Corollary 9.19. If G is p-saturated then

logG = L(G) 1
p−1

+ =

d⊕
i=1

Zpui
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Proof. The gi cannot be pth powers by Exercise 3.34 and so each ω(gi) 6
p
p−1 since

G is p-saturated. Thus by Theorem 9.18 for λ1, . . . , λd ∈ Qp, w (
∑
λiui) >

1
p−1

if and only if each vp(λi) > 0; i.e. precisely if each λi ∈ Zp. This establishes the
second equality.

Now each ui ∈ logG so Proposition 9.12 gives that
∑

Zpui ⊆ logG.
Suppose that

g ∈ G ⊂ G(Q̂pG) ∩ (1 + Q̂pG 1
p−1

+).

Then log g ∈ L(G) 1
p−1

+ by Exercise 9.16. Thus logG ⊆ L(G) 1
p−1

+ . �

Corollary 9.20. If G is p-saturated then there is a natural isomorphism of Qp Lie
algebras

L(G) ∼= Qp ⊗Zp logG.

Corollary 9.21. If G is p-saturated then the group operation on G is given by the
Campbell–Hausdorff formula:

gh = exp(Φ(log g, log h)) ∈ Q̂pG.

Proof. For g, h ∈ G, log g, log h ∈ L(G) 1
p−1

+ so

Φ(log g, log h) = log (exp(log g) exp(log h)) = log(gh)

by Exercise 9.6. But log(gh) ∈ logG = L(G) 1
p−1

+ so exp Φ(log g, log h) converges

to gh by Exercise 9.6 again. �

Lecture 23

Proof of Theorem 9.18. Suppose z =
∑d
i=1 λiui. Then as ui = log(gi) = log(1+bi)

we see that

z =

d∑
i=1

∑
n>1

λi
(−1)n+1

n
bni .

Thus

w(z) = min
16i6d
n>1

{vp(λi/n) + nω(gi)}

= min
16i6d

{
vp(λi) + min

n>1
{nω(gi)− vp(n)}

}
= min

16i6d
{vp(λi) + ω(gi)}

Thus u1, . . . , ud are linearly independent over K.

It remains to show that every element of P(K̂G) is in the span of u1, . . . , un. So

suppose that z =
∑
λαbα ∈ P(K̂G). We compute that

∆(bni ) = ∆(gi − 1)n = (ι1(1 + bi)ι2(1 + bi)− 1)
n

= (ι1(bi) + ι2(bi) + ι1(bi)ι2(bi))
n

=
∑

j+k+l=n

(
n

j, k, l

)
ι1(bi)

j+lι2(bi)
k+l

=
∑
a,b6n
a+b>n

(
n

n− b, n− a, a+ b− n

)
ι1(bi)

aι2(bi)
b;



48 SIMON WADSLEY

where a = j + l and b = k + l so a+ b = n+ l. Thus

∆(z) =
∑
α∈Nd

0

λα
∑
β,γ6α
β+γ>α

(
α

α− β, α− γ, β + γ − α

)
ι1(bβ)ι2(bγ)

= ι1(z) + ι2(z)

=
∑
β∈Nd

0

λβι1(bβ) +
∑
γ∈Nd

0

λγι2(bγ).

Equating constant coefficients we get λ0 = λ0 + λ0 = 0. Equating ι1(bβ)ι2(bγ)
coefficients when β = ei and γ 6= 0 arbitrary we see that the pairs of conditions
β, γ 6 α and β + γ > α is equivalent to αi > 1 and α = γ or γ + ei. Thus

λγ

(
γ

γ − ei

)
+ λγ+ei

(
γ + ei
γ

)
= 0

i.e. λγ+ei = − γi
γi+1λγ for each 1 6 i 6 d and γ ∈ Nd

0 with γi > 1; and λγ+ei = 0 if

γ 6= 0 but γi = 0.

In particular λnei = (−1)n+1

n λei and λγ = 0 if there are i 6= j with γi, γj > 1.

Thus z =
∑d
i=1 λei

∑
n>1

(−1)n+1

n bni as required. �

Definition 9.22. Suppose that g is a Lie algebra over O that is free of finite rank.
We can filter U(g) p-adically so that

v(α) = sup {n ∈ N0 | α ∈ pnU(g)}
The affinoid enveloping algebra of g is

Û(gK) = K ⊗O Û(g).

There is a unique way to define a filtration v̂K extending v̂ on Û(g) that will

make Û(gK) is a K-Banach algebra

Example 9.23. If g = sl2(O) = Oe ⊕ Oh ⊕ Of then elements of Û(gK) can be
written uniquely as convergent sums

∑
i,j,k∈N0

λijkf
ihjek with each λijk ∈ K and

vp(λijk)→∞ as i+ j + k → 0.

Theorem 9.24. Suppose that p is odd, G is p-saturated, and that ω(gi) = 1 for
i = 1, . . . , d. Let

g = {x ∈ P(K̂G) | w(x) > 0}.
Then g is an O-Lie algebra free of finite rank over O and there is an isomorphism
of Banach algebras

Û(gK)
∼→ K̂G.

Proof. By Theorem 9.18, P(K̂G) =
⊕d

i=1Kui and, writing x =
∑d
i=1 λiui with

λi ∈ K,
w(x) = min

16i6d
{v(λi) + ω(gi)}.

Thus, as ω(gi) = 1 for all i, w(x) > 0 if and only if v(λi) > −1 for each i = 1, . . . , d.
Then w(x) > 0 if and only if λi ∈ p−1O for 1 6 i 6 d i.e. (u1/p, . . . , ud/p) is an

O-module basis for g.
Since for x, y ∈ g, w([x, y]) > w(x) + w(y) > 0 we see that g is an O-Lie-

subalgebra of P(K̂G). Thus the universal property of the universal enveloping
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algebra induces an O-algebra map U(g) → (K̂G)0. Since this is a filtered O-

algebra map and (K̂G)0 is complete, this in turn extends to a filtered O-algebra
map

Û(g)→ (K̂G)0

and thence to a morphism of K-Banach algebras

ϕ : Û(g)K → K̂G.

We must show that this is an isomorphism of Banach algebras.
Since for g ∈ G,

ŵ(g − 1)m/m) > mω(g)− vp(m)

we see that

log g =
∑
m>1

(−1)m+1

m
(g − 1)m ∈ P(K̂G) ∩ (K̂G)ω(g).

Thus log g ∈ pω(g)g ⊆ pg and

G→ Û(g)
×

; g 7→ exp(log g)

converges by Proposition 9.5 with v̂(exp log(g)) > ω(g).
Since

exp(log g) exp(log h) = exp log(gh) ∈ Û(g)
×
,

the universal property of O[G], i.e. Example Sheet 2 Q10, shows that this extends

to a filtered ring map O[G] to Û(g). Since the latter is complete, this extends a

filtered ring map OG→ Û(g) and thence to a filtered ring map KG→ Û(g)K , and
finally to a morphism of K-Banach algebras

ψ : K̂G→ Û(g)K

Since

ϕψ(gi) = ϕ(exp(log(gi)) = exp(ϕ(log gi)) = exp(ϕ(ui)) = gi

for i = 1, . . . , d. By various universal properties ϕψ = id
K̂G

. Similarly

ψϕ(ui) = ψ(ui) = ψ(log(gi)) = log(ψ(gi)) = log(exp(log(gi))) = log(gi) = ui

and by various other universal properties ψϕ = id
Û(g)K

�

Exercise 9.25. Repeat this argument in the case p = 2, G is p-saturated and
ω(gi) = 2 for each i = 1, . . . , d.

Exercise 9.26. Show that the conditions of Theorem 9.24 (resp. Exercise 9.25)
are satisfied when G = GL1

n(Zp) (resp G = GL2
n(Z2)) with respect to its usual

p-valuation.

Exercise 9.27 (Harder). Show that G(K̂G)∩(1+K̂G) 1
p−1

+ is always a p-saturated

complete p-valued group of the same rank of G and that G is isomorphic to an open
subgroup of it.


