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2 SIMON WADSLEY

Purpose of notes. Please note that these are not notes of the lectures but notes
made by the lecturer in preparation for the lectures. This means they may not
exactly correspond to what was said and/or written during the lectures.

This version has had all the proofs removed to aid those who wish to revise.

LECTURE 1
1. EXAMPLES OF GROUPS

Groups are fundamentally about symmetry. More precisely they are an algebraic
tool designed to abstract the notion of symmetry. Symmetry arises all over mathe-
matics; which is to say that groups arise all over mathematics. Roughly speaking a
symmetry is a transformation of an object that preserves certain properties of the
object.

As T understand it, the purpose of this course is two-fold. First to introduce
groups so that those who follow the course will be familiar with them and be better
equipped to study symmetry in any mathematical context that they encounter.
Second as an introduction to abstraction in mathematics, and to proving things
about abstract mathematical objects.

It is perfectly possible to study groups in a purely abstract manner without
geometric motivation. But this seems to both miss the point of why groups are
interesting and make getting used to reasoning about abstract objects more difficult.
So we will try to keep remembering that groups are about symmetry. So what do
we mean by that?

1.1. A motivating example.

Question. What are the distance preserving functions from the integers to the
integers? That is what are the members of the set

Isom(Z) := {f: Z — Z such that | f(n) — f(m)| = |[n — m| for all n,m € Z}?

These functions might reasonably be called the symmetries of the integers; they
describe all the ways of ‘rearranging’ the integers that preserve the distance between
any pair.

Let’s begin to answer our question by giving some examples of such functions.
Suppose that a € Z is an integer. We can define the function ‘translation by a’ by

to: m—n-+aforneZ.
For any choice of m,n € Z
ta(n) = ta(m)| = [(n+a) = (m+a)| = [n—m|.

Thus t, is an element of Isom(Z). We might observe that if a and b are both integers
then

(taoty)(n) =ta(b+n)=a+b+n=tsp(n)
for every integer n, that is that t,,, = t, o t;,*. Moreover t, is the identity or ‘do
nothing’ function id: Z — Z that maps every integer n to itself. Thus for every
a € Z, t_, is the inverse of t,, that ist,ot_, =id =t_, ot,.

LThis is because two functions f,9: X — Y are the same function, i.e. f = g, precisely if
they have the same effect on every element of the set they are defined on, i.e. f(z) = g(z) for all
reX.
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Suppose now that f € Isom(Z) is a symmetry of the integers. Consider the
function g :=1t_¢() o f. Then for n,m € Z,

lg(n) —g(m)| = [(f(n) = f(0)) = (f(m) = f(O)] = [f(n) = f(m)| = [n —ml],
so g € Isom(Z) is also a symmetry of the integers.

Moreover g(0) = t_¢y(f(0)) = f(0) — f(0) =0, i.e. g fixes the integer 0. What
does this tell us about g? For example, what does it tell us about ¢g(1)? Since g is
a symmetry and g(0) = 0 it must be the case that

lg(D)] = 1g(1) = 0] = |g(1) = g(0)] = [1 - 0] = 1.
That is g(1) = £1.
If g(1) = 1, what else can we say? For any n € Z,

lg(n)| = 1g(n) — g(0)] = [n = 0] = |n|
i.e. g(n) = +n. But also,

l9(n) =1 = lg(n) = g(1)] = |n =1
ie. g(n) =1+ (n—1). These two conditions together force g(n) = n and so g = id.
Now in this case

tyo) =ty oid =ts) © (t—y) © f) = (ts0) © t—y(0)) o f =idof = .
Thus f is translation by f(0) in this case.
What about the case when ¢g(1) = —17 In this case we still must have g(n) = +n
for every integer n but now also

lg(n) + 1] = lg(n) = g(1)] = |n -1
i.e. g(n) = =1+ (n —1). These two conditions together force g(n) = —n and so g
is the ‘reflection about 0’-function

s:n— —n for all n € Z.

Now we’ve seen that s = g =1_s() o f in this case. It follows that f = ;) o s.
We’ve now proven that every element of Isom(Z) is either a translation ¢, or of
the form ¢, o s (with a € Z in either case). That is all symmtries of Z are of the
form n +— n + a or of the form n +— a — n.
It is worth reflecting at this point on some key facts we’ve used in the argument
above which is sometimes known as a ‘nailing to the wall argument’.

(1) We've used that the composition of two symmetries of the integers is itself
a symmetry of the integers. In fact, we’ve only used this for some special
cases but it is true in general since if f, g € Isom(Z) and n,m € Z then

[f(g(n)) = flg(m))| = |g(n) — g(m)| = [n —m].
We might note that for a,n € Z,
s(ta(n)) =s(n+a) = —a—n=1t_4,(s(n))
and so sot, =t_, 0s. Thus order of composition matters.

(2) We've used that there is a ‘do nothing’ symmetry of the integers id and
that for any other symmetry f, foid = f =idof.

(3) We've used that symmetries are ‘undo-able’, that is that given any sym-
metry f there is a symmetry g such that go f =id = f o g (in fact we've
only used this for f = t, and f = s and only that there is a g such that
g o f =1id but again it is true as stated. (Why?).
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(4) We've used that composition of symmetries is associative, that is that for
symmetries f,g and h, (fog)oh = fo(goh).
We'll see that these properties say precisely that Isom(Z) is a group.

1.2. Some initial definitions. First we need to make some definitions.
Definition. Suppose that S is a set. A binary operation on S is a function
0: Sx 8= S;(x,y)—xoy.

This defintion means that a binary operation is something that takes an ordered
pair of elements of S and uses them to produce an element of S. If roy =youx
then we say that x and y commute (with respect to o). We say o is commutative
if every pair of elements of S commute.

FEzxzamples.

(1) Composition of functions is a non-commutative binary operation on Isom(Z).

(2) Addition, multiplication, and subtraction are all binary operations on Z.
Note that addition and multiplication are both commutative operations on
Z but distinct integers never commute with respect to subtraction.

(3) Addition and multiplication are also binary operations on N := {1,2,3,...}.
Subtraction is not a binary operation on N since 2 — 3 ¢ N.

(4) Exponentiation: (a,b) — b* is a binary operation on N.

(5) If X is any set and S = {f : X — X} is the set of all functions from X to
itself then composition of functions is a binary operation on S.

Definition. A binary operation o on a set S is associative if (zoy)oz =xo(yoz)
for all z,y,z € S.

This means that when o is associative there is a well-defined element zoyoz € S
i.e. it doesn’t matter which of the two o we use first. It will be instructive to
convince yourself that if o is an associative binary operation on S and w,z,y,z € S
then

wo(zoyoz)=(woxr)o(yoz)=(woxroy)oz
Having done this you should also convince yourself that there is nothing special
about four and the obvious generalisation holds for any (finite) number of elements
of S whenever o is associative. This means that whenever o is an associative binary
operation we may (and will!) omit brackets, writing for example woxzoyoz without
ambiguity. If it is clear what operation we have in mind we will often omit it too,
writing wxyz, for example.

Ezxzamples.
(1) Addition and multiplication are associative when viewed as binary opera-
tions on Z or N. Subtraction is not associative on Z since ((0—1)—2) = —3
but 0— (1—2) =1 —3.
(2) Exponentiation (a,b) — b* is not associative on N since 2% = 29 but

(23)2 =26 £ 29,
(3) Composition is always an associative operation on the set of functions from
X to X since if f,g and h are three such functions and z € X then

((fog)oh)(x) = f(g(h(z))) = (f o (g0 h))(z).
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Definition. A binary operation o on a set S has an identity if there is some element
e € S such that forallz € S, ecx=x=xo0e.

FEzxzamples.

(1) 0 is an identity for addition on Z but addition has no identity on N. 1 is
an identity for multiplication on both these sets. Subtraction on Z does
not have an identity since if e — x = x for all x € Z then e = 2z for all
x € Z and this is absurd. Note however that x — 0 = z for all x € Z. We
sometimes say that 0 is a right identity for subtraction to d9escribe this.

(2) (a,b) — b* does not have an identity but 1 is a left identity in the obvious
sense.

(3) If X is any set then the identity function id: X — X;s +— s is an identity
for composition of functions from X to X.

Lemma. If a binary operation o on a set S has an identity then it is unique.

LECTURE 2

Definition. If a binary operation o on a set S has an identity e then we say that
it has inverses if for every x € S there is some y € S such that roy=e=youz.

FEzxzamples.

(1) 4+ on Z has inverses since for every n € Z, n+ (—n) = 0 = (—n) + n.
Multiplication does not have inverses on N or Z since there is no integer
(and therefore no natural number) n such that 2n = 1.

(2) Multiplication defines an associative binary operation on the rationals Q
with an identity (1) but it still does not have inverses. Although for every
non-zero rational ¢, 1/q is also rational and ¢-1/¢g =1=1/q- ¢, 0 is also
rational and there is no rational r such that -0 = 1. However multiplication
does have inverses on the set Q\{0}.

(3) In general composition on the set of functions X — X does not have in-
verses. For example the function f: Z — Z;n — 0 has no inverse since if
g: Z — 7Z were an inverse then we'd have f(g(n)) = n for all n € Z but in
fact however g is defined f(g(1)) = 0. This idea can be adapted to show
that whenever | X| > 1 there is a function f: X — X that has no inverse.

Definition. A set G equipped with a binary operation o is a group if

(i) the operation o is associative;
(ii) the operation o has an identity;
(iii) the operation o has inverses.

FEzxzamples.
(1) Isom(Z) is a group (under composition).
2) (Z,+) is a group since + is associative and has an identity and inverses.

+)
(N, +) is not a group since it does not have an identity.
(Z,-)
( i

w

is not a group since — is not associative.?
s not a group since it does not have inverses but (Q\{0}, -) is a group.

Y

(2)
(3)
(4) (2,-
() (Z,-)

5

2recall that it also does not have an identity but to see that it is not a group it suffices to see
that any one of the three properties fails.
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(6) If X is a set with more than one element then the set of functions X — X
is not a group under composition of functions since not all such functions
have inverses.

We will sometimes say that G is a group without specifying the operation o.
This is laziness and the operation will always be implicit and either clear what it is
(in concrete settings) or unimportant what it is (in abstract settings). We’ll nearly
always call the identity of a group e (or e if we want to be clear which group it is
the identity for) if we don’t know it by some other name.

Definition. We say that a group G is abelian if any pair of elements of G commute.

Definition. We say that a group G is finite if it has finitely many elements as a
set. We call the number of elements of a finite group G the order of G written |G|.

Ezample. For every integer n > 1 we can define a group that is the set Z, :=
{0,1,...,n — 1} equipped with the operation +, where x +, y is the remainder
after dividing  + y by n®. It is straightforward to see that Z, is an abelian group
of order n.

Lemma. Suppose that G is a group.

(i) inverses are unique i.e. if g € G there is precisely one element g=* in G such
that g~'g = e = gg~*;
(ii) for allg € G, (971"t =g;
(iii) for all g,h € G, (gh)™!t = h=tg=! (the shoes and socks lemma,).
O

Notation. For each element ¢ in a group G and natural number n we define g”
recursively by g' := ¢ and g" := g¢" ! for n > 1. We'll also write ¢° := e and
g" = (¢g71)™™ for integers n < 0. It follows that g%¢® = ¢+ for all a,b € Z.

Definition. If G is a group then we say that ¢ € G has finite order if there is
a natural number n such that g™ = e. If g has finite order, we call the smallest
natural number n such that ¢g" = e the order of g and write o(g) = n.

1.3. Further geometric examples.

1.3.1. Symmetry groups of regular polygons. Suppose we want to consider the set
Dy, of all symmetries of a regular polygon P with n vertices (for n > 3) living
in the complex plane C. By symmetry of P we will mean a distance preserving
transformation of the plane that maps P to itself. We might as well assume that
the centre of P is at the origin 0 and that one of the vertices is the point 1 = 1+0:i*.

Proposition. Ds, is a group of order 2n under composition.
O

LECTURE 3

1.3.2. Symmetry groups of regular solids. Suppose that X is a regular solid in R3.
We can consider Sym(X), the group of distance preserving transformations p of
R? such that p(X) = X. These form a group. We will consider the cases X a
tetrahedron and X a cube later in the course.

3712 is familiar from everyday life. When is it used?
4we’ll be able to make precise why this assumption is reasonable later but it should at least
seem reasonable already.
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1.3.3. The Symmetric group. We might hope that given any set X the set of in-
vertible functions from X to X forms a group under composition; that is the set of
functions f: X — X such that there is some g: X — X such that fog =id = go f.
This is true but not immediate: we need to check that composition of functions is
a binary operation on this set; that is that the composition of two invertible func-
tions is invertible. Some people would say that we need to check that the binary
operation is closed but ‘closure’ is built into our definition of binary operation.

Lemma. Suppose that f1, fo: X — X are invertible. Then fi o fo: X — X s
invertible.

O

It follows that for every set X, the set S(X) ={f: X — X | f is invertible} is a

group under the composition of functions. It is called the symmetric group on X°.

We call elements of the symmetric group permutations of X. If X = {1,...,n} we
write S, instead on S(X). We will return to the groups S, later in the course.

1.4. Subgroups and homomorphisms. Sometimes when considering the sym-
metries of an object we want to restrict ourselves to considering symmetries that
preserve certain additional properties of the object. In fact we’ve already seen this,
the sets of distance preserving transformations of C and of R? are both groups of
symmetries under composition. The groups D, and Sym(X) for X a regular solid
are defined to consist of those symmetries that preserve a certain subset of the
whole space. Similary, instead of considering Ds,,, the group of all symmetries of
a regular n-gon we might want to restrict only to those symmetries that preserve
orientation, that is the rotations. This idea leads us to the notion of subgroup.

Definition. If (G, o) is a group then a subset H C G is a subgroup if o restricts to
a binary operation on HS and (H,o) is a group. We write H < G to denote that
H is a subgroup of G.

Examples.

(1) Isom(Z) < S(Z).

(2) Dsp, < Isom(C) < S(C).

(3) Isom™(Z) :={f: Z = Z | f(n) — f(m) =n —m for all n,m € Z} < Isom(Z).
(4) Z is a subgroup of (Q,+).

(5) If H C Dy, consists of all rotations of the n-gon then H is a subgroup.

(6) For any n € Z, nZ = {an € Z | a € Z} is a subgroup of (Z,+).

(7) For every group G, {e} < G (the trivial subgroup) and G < G (we call a
subgroup H of G with H # G a proper subgroup).

)
)
)
5)
6)
7)

LECTURE 4

Lemma (Subgroup criteria). A subset H of a group G is a subgroup if and only if
the following conditions hold

(i) for every pair of elements hy,hy € H, hihy € H;

(ii) the identity e € H;

5The name comes from the fact that it can be viewed as the set of symmetries of the set X.
This is quite a subtle idea but you might like to think further about it when you come to revise
the course

6precisely hioho € H for all hi,hes € H
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(iii) for every h € H, h~* € H.
]

Remark. Our subgroup criteria contain no mention of associativity since as noted
in the proof it is immediate from the associativity of the operation on G.

There is an even shorter set of criteria for a subset to be a subgroup.

Corollary. A subset H of G is a subgroup precisely if it is non-empty and h;lhg €
H for all hy,hs € H.

]

Ezample. The set H = {f € Isom(Z)|f(0) = 0} is a subgroup of Isom(Z). We can
see this using the corollary. Certainly id(0) = 0 so H # 0. Moreover if hy, hy € H
then

hitha(0) = k1 (0) = hythy(0) = id(0) = 0.
Note that this argument isn’t much simpler than verifying conditions (i)-(iii) of the
lemma in practice.

We will also be interested in maps between groups. However we won’t typically
be interested an arbitary functions between two groups but only those that respect
the structure of the two groups. More precisely we make the following definition.

Definition. If (G,0) and (H, ) are two groups then 6: H — G is a group homo-
morphism (or just homomorphism) precisely if 6(hy * ha) = 0(h1) o §(ha) for all
hi,ho € H.

Definition. A group homomorphism 0: H — G is an isomorphism if € is invertible
as a function; ie if there is a function #~': G — H such that § 0 §~! = idg and
010 = idg.

FEzamples.

(1) If H < G then the inclusion map ¢: H — G;h — h is a group homomorphism.
It is not an isomorphism unless H = G.

(2) The function 6: Z — Z,, such that 6(a) is the remainder after dividing a by n
is always a homomorphism from (Z,+) to (Z,,, +,) but never an isomorphism.

(3) If G is any group and g € G is any element then 6: Z — G; n +— g™ is a
homomorphism from (Z,+) to G. Indeed every homomorphism from (Z, +) to
G arises in this way.

(4) 0: Z — Isom™*(Z); n + t,,” is an isomorphism.

(5) The exponential function defines an isomorphism

exp: (R,+) = ({r e R|r>0},-);a — e
The inverse map is given by log = log,.

If you are alert you will be asking why we don’t require homomorphisms 6: H —
G to satisfy 0(ey) = eq and O(h~') = 0(h)~* for all h € H. The following lemma
shows that this is because these properties follow from our definition.

Lemma. Suppose that 6: H — G is a group homomorphism.
(Z) 9(6]{) = €qg-

Trecall t, denotes translation by n
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(ii) For allh € H, O(h=') = 6(h)~".
(]

Definition. If §: H — G is a group homomorphism then the kernel of 6 is defined
by
kerf:={h e H|0(h) =eq}
and the image of 0 is defined by
Imé :=6(H).

Proposition. If0: H — G is a homomorphism then ker 6 is a subgroup of H and
Im @ is a subgroup of G.

O

LECTURE 5

Theorem (Special case of the isomorphism theorem). A group homomorphism
0: H — G is an isomorphism if and only if ker = {eg} and Im@ = G. In this
case, =11 G — H is a group homomorphism (and so also an isomorphism,).

O

Lemma. The composite of two group homomorphisms is a group homomorphism.
In particular the composite of two isomorphisms is an isomorphism.

O

Definition. We say that a group G is cyclic if there is a homomorphism f: Z — G
such that Im f = G. Given such a homomorphism f we call f(1) a generator of G.

Note that G is cyclic with generator g if and only if every element of G is of the
form ¢ with i € Z. More generally we say that a subset S of G generates G if
every element of G is a product of elements of S and their inverses — that is if G
the unique smallest subgroup of G containing S%.

Ezxamples.

(1) The identity map id: Z — Z; n — n and the ‘reflection about 0’ map s: Z — Z;
n +— —n are both homomorphisms with image Z. Thus Z is cyclic and both 1
and —1 are generators. No other element generates Z.

(2) Z,, is cyclic. In Numbers and Sets it is proven that an element of {0,1,...,n—1}
generates Z, if and only if it is coprime to n°. The ‘if’ part is a conseqeunce
from Euclid’s algorithm; the only if part is elementary.

Lemma. Suppose that G is a group containing an element g with g" = e. There is
a unique group homomorphism f: Z, — G such that f(1) = g. In particular every
group of order n with an element of order n is isomorphic to Z,,.

O

Notation. We'll write C,, for any group that is cyclic of order n. We've verified
that any two such groups are isomorphic.

8The curious will be reflecting on why G should have a unique smallest subgroup containing
S. Their reflections will do them good

9Recall that non-negative integers a, b are coprime if and only if their only common factor is
1.
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Recall that we showed that Do, = {r® r’s |i=0,1,...,n — 1} where r denotes
a rotation by 27/n and s denotes a reflection. And that

phopl = pktal
rkorls = pktalg
rFs.rt rFtr(=Dg and
rks . rls rk+"(*l).

Lemma. Let n > 2 and suppose that G is a group containing elements g, h such
that ¢g" = e, h®> = e and hgh™' = g~ . There is a unique group homomorphism
f: Dap, — G such that f(r) =g and f(s) = h. Moreover if o(g) = n and |G| = 2n
then f is an isomorphism.

O

LECTURE 6

1.5. The Mobius Group. Informally, a Mobius transformation is a function
f: C— C of the form
. az+b
fizm— =1 d
with a,b,c,d € C and ad — bc # 0. The reason for the condition ad — bc # 0 is that
for such a function if z,w € C then

az+b aw+b

(z —w)
(cz + d)(cw + d)

(ad — be)

so f would be constant if ad — be were 0.'°

Unfortunately the function is not well defined if z = —d/c since we may not
divide by zero in the complex numbers. This makes composition of M&bius trans-
formations problematic since the image of one Mobius transformation may not
coincide with the domain of defintion of another. We will fix this by adjoining an
additional point to C called co.!!

Notation. Let Co := CU {oo} which we call the extended complezx plane.

Definition. Given (a,b,¢c,d) € C* such that ad — bc # 0 we can define a function
f: Cy — C as follows:

if ¢ # 0 then
Zjig if zeC\{-d/c};
f(z) =4 oo it z=-d/c
afc if  z=o0;
if ¢ =0 then

f(z)z{ % if zeC

00 if  z=o0.
We call all functions from C, to C,, that arise in this way Mdbius transformations
and let
M :={f: Csx — Cs | f is a M&bius transformation}.

10This is bad because we’re really interested in invertible functions
H And pronounced ‘infinity’.
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We’ll see another way to interpret this definition later in the course involving
projective geometry. But for now we’ll work with it as it stands and also take for
granted a result that will will prove later.'?

Theorem. The set M defines a subgroup of S(Cs).

Lemma. Suppose that f € M such that f(0) =0, f(1) =1 and f(co0) = co. Then
f=id.
(]

Theorem (Strict triple transitivity of Mobius transformations). If (21, 22, 23) and
(w1, wa, w3) are two sets of three distinct points then there is a unique f € M such
that f(z;) = w; fori=1,2 and 3.

O

Definition. Given distinct points z1, 29, 23, 24 € Co the cross-ratio of z1, 29, 23, 24
written [z1, 29, 23, 24] := f(24) where f is the unique Mobius transformation such
that f(z1) =0, f(z2) = 1 and f(z3) = 00.?

_ (za—z1)(22—23) 14

Lemma. If 21, 29, 23,24 € C then [z1, 29, 23, 24] = CEncrEral

O

Theorem (Invariance of Cross-Ratio). For all zq,22,23,24 € Co and g € M,
[9(21), 9(22), 9(23), 9(24)] = [21, 22, 23, 24] -

O

Proposition. FEvery element of M is a composite of Mobius transformations of
the following forms.

(a) Dy: 2+ az = 2280 with a € C\{0} (rotation/dilations);

0z+1
(b) Tp: z—2+b= ézfl’ with b € C (translations);
(c) S:z—1/z= ?;ié (inversion).
U
LECTURE 7

Definition. A circle in Co, is a subset that is either of the form {z € C | |z—a| = r}
for some a@ € C and r > 0 or of the form {z € C | aRe(2) + bIm(z) = ¢} U {0}
for some a, b, c € R with (a,b) # (0,0)*°

It follows that any three distinct points in C,, determine a unique circle in Cq,.

L2There is a straight-forward if slightly fiddly way to prove it directly that demands care with
the point co. We will give a slightly more sophisticated but less fiddly proof.

3 There are 6 essentially different definitions of cross-ratio depending on how we order 0, 1
and oo in this definition. It doesn’t really matter which we choose as long as we are consistent.

MyWe could’ve defined the cross-ratio by this formula but we’d need to be more careful when
some z; = 0.

15 e. a usual circle in C

16 e. a line in C together with oo
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Lemma. The general equation of a circle in Co is
AzZ+ Bz+ Bz+C =0

with A,C € R, B € C and AC < |B2.7

O
Theorem (Preservation of circles). If f € M and C is a circle in C then f(C)
is a circle in C.

O
Corollary. Four distinct points z1, z2, 23 and z4 in Co, lie on a circle if and only
if |21, 22, 23, 24] € R.

O

Remark. It is possible to prove the corollary directly and then use a similar argu-
ment to deduce that Mdbius transformations preserve of circles from it.

Definition. Given two elements z,y of a group G we say y is conjugate to x if

there is some g € G such that y = grg™?.

Note that if y = gzg~! then 2 = g~ 1y(g~!)~! so the notion of being conjugate
is symmetric in  and y. Morever if also z = hyh~! then z = (gh)z(gh)~! so if z
is conjugate to y and y is conjugate to x then z is conjugate to x.

Proposition. Every Mdbius transformation f except the identity has precisely one
or two fized points. If f has precisely one fixed point it is conjugate to the translation
zw z+ 1. If f has precisely two fixed points it is conjugate to a map of the form
z +— az with a € C\{0}.

(I
Remark. Suppose that f € M. If gfg~': 2 — z+ 1 then for each n > 0,
9f"g = (9fg )" 2= 240
so f(z) = g~ (g(2)+n) for z € Co, not fixed by f. Similarly if gfg=1: 2 + az then

for n >0, f*(z) = g~ (a"g(z)) for z not fixed by f. Thus we can use conjugation
to compute iterates of f € M in a simple manner.

LECTURE 8
2. LAGRANGE’S THEOREM
2.1. Cosets.

Definition. Suppose that (G,o) is a group and H is a subgroup. A left coset of
H in G is a set of the form go H := {goh | h € H} for some g € G. Similarly a
right coset of H in G is a set of the form H o g := {hg | h € H} for some g € G.
We write G/H to denote the set of left cosets of H in G and H\G to denote the
set of right cosets of H in G'8.

As usual we will often suppress the o and write gH or Hg.

17where oo is understood to be a solution of this equation precisely if A =0
18T his latter is a little unfortunate in the \ is normally used to denote set-theoretic difference
but this should not cause confusion. Why?
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FEzxzamples.

(1) Suppose n € Z, so that nZ := {an | a € Z} is a subgroup of (Z,+). Then
O0+nZ=nZ=n+nZ. 1+nZ={1+an|a € Z} =(1—n)+nZ. More
generally, b + nZ is the set of integers x such that x — b is a multiple of n.'?

(2) Suppose that G = Dg = {e,r,72,s,75,7%s} and H = {e, s} then

eH ={es} =sH
rH ={r,rs} =rsH
r?H = {r?r?s} =r?sH.
However,
He ={es} =Hs
Hr ={r,r?s} = Hr’s
Hr? ={r?rs} = Hrs.
Thus left cosets and right cosets need not agree when the group is not abelian.
However if K = {e,r,7?} < Dg then K = eK = rK = r’K = Ke = Kr = Kr?
and {s,rs,r?s} = sK = rsK = r?>sK = Ks = Krs = Kr?s. So in this case
the left and right cosets are the same.

(3) Suppose that M is the Mobius group and H = {f € M | f(0) = 0}. Then, for

geM,
gH = {feM]|f(0)=g(0)} whereas
Hg = {feM]|f0)=97"10)}
We’ll return to this idea later in the course.

2.2. Lagrange’s Theorem.

Theorem (Lagrange’s Theorem). Suppose that G is a group and H is a subgroup
of G then the left cosets of H in G partition G. In particular if G is finite then |H|
divides |G|.
O
Remark. By a very similar argument the right cosets of H in G also partition G.
Corollary. If G is a finite group, then every element of G has order dividing |G|.
O

Proposition. Suppose that p is prime. Then every group of order p is isomorphic
to Cjp.

d

2.3. Groups of order at most 8. In this section we will classify all groups of
order at most 8 under the perspective that two groups are the same precisely if
they are isomorphic. We've already seen that every group of order 2,3,5 or 7 is
isomorphic to the cyclic group of the same order. It is evident that the trivial group
is the only group of order 1 up to isomorphism.

Before we begin this we’ll need the following construction that enables us to
build new groups from old ones.

L9Note that because the operation on Z is addition we don’t suppress it when we name cosets,
i.e. we write a + nZ rather than anZ because the latter would create confusion.
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FEzample. Suppose that G and H are groups. We can define a binary operation on
G x H via (gl,hl)(gg,hg) = (glgg,hlhg) for 91,92 € G and hl,hg € H. We claim
that this makes G x H into a group.

Proof of claim. Since

((g91,h1)(92, h2))(g3, h3) = (919293, hihah3) = (g1, h1)((92, h2)(93, h3))

for all g1, 92,93 € G and hq, ho, hs € H, the operation on G x H is associative.
Since (eg,em)(g,h) = (g,h) = (9,h)(eq,en), (eq,em) is an identity for the
operation on G x H.
Finally since (g7, h=1)(g,h) = (eg,ern) = (g,h)(g~',h™1) the operation on
G x H has inverses. O

Ezercise. Show that if G1,G4 and G5 are groups then G x G5 is isomorphic to
G2 x G1 and (G7 X G2) x Gy is isomorphic to G1 X (G2 x Gs).

LECTURE 9

Theorem (Direct Product Theorem). Suppose that Hy, Hy < G such that
(Z) H NH; = {6},‘
(i) if hy € Hy and he € Hy then hy and he commute;
(iii) for all g € G there are hy € Hy and he € Hy such that g = hihs.
Then there is an isomorphism Hy x Hy — G.
O
We also need the following result that also appeared on the first example sheet.

Lemma. If G is a group such that every non-identity element has order two®® then
G is abelian.

O

We also recall that every a group of order n with an element of order n is

isomorphism to C,, and that every group of order 2n that has an element g of order
n and an element h of order 2 such that hg = g~ 'h is isomorphic to Ds,,.

Proposition. FEvery group of order 4 is isomorphic to precisely one of Cy and
CQ X CQ.

|

Proposition. Every group of order 6 is isomorphic to precisely one of Cg or Dg.
O

FEzample. The following set of matrices form an non-abelian group Qg of order 8

10 i 0 0 1 0 ¢
0 1)=6 2= (o) =0 o))
It is common to write
1 0y, (4« 0y. (0 1 {0
(o 1) 2= (G 0) e (3 )

Then Qs = {1, +1i, +j, +k}. Then we can compute that 1 is an identity, —1 has
order 2 commutes with everything and multiplies as you’d expect given the notation.

200f course in any group the identity has order 1
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Morever i,j and k all have order 4 (all of them square to —1), ij = k = —ji,
ki =j =ik and jk =i = —kj.

Exercise. Verify that Qg is a group.

LECTURE 10

Proposition. Fvery group of order 8 is isomorphic to precisely one of Cg, Cy x Cy,

CQ X CQ X CQ, Dg or Qg.
(]

2.4. The Quaternions.

Definition. The quaternions are the set of matrices
H:= {al +bi+cj+dk|a,b,c,d e R} C Maty(C)

where as before

10\ . (i 0. (0 1 (0 i
(o 9= (o 8= (o) e (00),

The sum or product of two elements of H lives in H and + and - obey the
same associativity and distributivity laws as Q,R and C with identities 0 and 1
respectively. Although the multiplication in H is not commutative (since ij = —ji),
(H,+) is an abelian group and (H\{0},-) is a (non-abelian) group.?! To see the
latter we can define ‘quaternionic conjugation’ by

(al+bi+cj+dk)" =al —bi—cj —dk
and then verifying that if x = al + bi 4 ¢j + dk then
rx* =%z = (a® + b + & 4+ d?*)1

= zx* for x # 0.

1
SO0 T C = rpriiva

2.5. Fermat—Euler theorem. We can define a multiplication operation on the
set Z, ={0,1,...,n— 1} by setting a -, b to be the remainder after dividing ab by
n.

Definition. Let U, := {a € Z,, | 3b € Z,, s.t. a -, b = 1} be the set of invertible
elements of Z,, with respect to -,.

It is a result from Numbers and Sets that follows from Euclid’s algorithm that
|U,| = ¢(n) where ¢(n) denotes the number of elements of Z,, coprime to n. Indeed
Up={a €Zn|(a,n) =1}

Lemma. (U,,-y,) is an abelian group.

Theorem (Fermat-Euler Theorem). If (a,n) = 1 then a®™ =1 mod n.

O

21ywe say that H is a division algebra. R, C and H are the only division algebras that are finite
dimensional as vector spaces over R.
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LECTURE 11
3. GROUP ACTIONS

We started the course by saying that groups are fundamentally about symmetry
but the connection has been opaque for the last three lectures. In this chapter we
will discuss how to recover the notion of symmetry from the group axioms.

3.1. Definitions and examples.
Definition. An action of a group G on a set X is a function
2 GEGxX = X;(g,x)—g-x

such that for all z € X

(i) e-z=um;
(ii) g- (h-x) = (gh) -z for all g,h € G.

FEzxzamples.

(1) Isom(Z) acts on Z via f -n = f(n).

(2) The Mobius group M acts on the extended complex plane Co, via f -z = f(z).

(3) Generalising both the examples above, if H < S(X) then H acts on X via
h-x = h(z). We call this the natural action of H on X.

(4) M also acts on the set of circles in Co,. We proved in §1.5 that if f € M
and C C Cy is a circle then f(C) C C4 is also a circle so (f,C) — f(C) is a
function. Moreover for all circles C' the conditions id(C) = C and f(g(C)) =
(fg)(C) for f,g € M are both clear.

(5) Ds,, acts on the set of points a regular n-gon. Dy, also acts on the set of
vertices of a regular n-gon and on the set of edges of a regular n-gon.

(6) If X is a regular solid then Sym(X) acts on the set of points (and on the sets
of vertices/edges/faces) of X.

(7) If H < G then G acts on G/H, the set of left cosets of G in H via g-kH = gkH
for g,k € G. To see this we need to check that if kH = k’'H then gkH = gk'H.
But if kH = k'H then k' = kh for some h € H so gk’ = gkh € gk’ HNgkH and
gkH = gk’H by Lagrange. Given this we see that for all k € G, ekH = kH
and g1(g2kH) = (g192)kH for all g1, g2 € G.

(8) For any group G and set X we can define the trivial action via g -x = x for all
g€ Gandze X.

Theorem. For every group G and set X there is a 1 — 1 correspondence
{actions of G on X} +— {0: G — S(X) | 0 is a homomorphism}

such that an action -: Gx X — X corresponds to the homomorphism 0: G — S(X)
given by 0(g)(x) =g - x.
O

Definition. We say that an action of G on X is faithful if the kernel of the corre-
sponding homomorphism G — S(X) is the trivial group.
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3.2. Orbits and Stabilisers.

Definition. Suppose a group G acts on a set X and that z € X. The orbit of x
under the action is given by

Orbg(z) :={g-z|ge G} C X.
The stabiliser of x under the action is given by
Stabg(z) :={g € G|g-z =2} CG.

Thus an action is faithful precisely if Stabg(x) = {e}.

zeX

Ezxzamples.
(1) Under the natural action of Isom(Z) on Z, for all n € Z

Orbigom(zy(n) = Z
and
Stabrsom(z) = {id, m = 2n —m}
(2) Under the natural action of M on C., for all z € Co
Orbp(z) = Coo

and

Stabay(c0) = {z — giidb | ad # O}.

(3) Under the action of Da, on the set of points of a regular n-gon the orbit of a
vertex of the n-gon is the set of all vertices of the n-gon and the stabliser of a
vertex consists of the identity and reflection in the line through the centre of
the n-gon and the vertex.??

(4) For the left coset action of G on G/H defined earlier

Orbg(eH) =G/H

and
Stabg(eH) ={9€ G| gH =eH} =H.
More generally
Stabg(kH) ={g € G |gkH =kH} ={g € G |k 'gkH = H} = kHk*.
(5) For the trivial action of G on X and any = € X,
Orbg(z) = {z} and Stabg(z) = G.

Lemma. Suppose that G is a group acting on a set X.
(i) Each stabiliser Stabg(x) is a subgroup of G.

(ii) The orbits Orbg(z) partition X. In particular if X is finite and the distinct
orbits are O1,...,0,, then

m

X1 =>_10i]

i=1

O

221t would be instructive to think about what the orbits and stabilisers of other points of n-gon
are under the action of Da,,.
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LECTURE 12

Definition. We say that an action of G on X is transitive if there is only one orbit
ie. if X = Orbg(z) for any z € X.

Theorem (Orbit-Stabiliser Theorem). Suppose a group G acts on a set X and
x € X. There is a (natural) invertible function

G/ Stabg(z) — Orbg(z).
In particular if G is finite
|G| = [Orbg(z)] - | Stabe (z)].
O

FEzxzamples.

(1) For the natural action of Isom(Z) on Z the set of left cosets of Stabsom(z)(0) =
{e,n — —n} in Isom(Z) is in bijection with Z. We secretly used this fact when
we computed Isom(Z) in the first lecture.

(2) For the usual action of Dy, on the vertices of the n-gon and v such a vertex we
see that |Day,| = |Stabp,, (v)|| Orbp,, (v)| = 2n. Again we secretly used this
when we computed |Da,| = 2n.

(3) The symmetric group S, acts on X = {1,2,...,n} via the natural action
f-x = f(x). Then Orbg, (n) = X since for each ¢ € X the function f;: X — X;
fi(t) = n, filn) =4, fi(x) = x for x ¢ {i,n} is an element of S,. Thus
|Sn| = nStabg, (n). But Stabg, (n) is isomorphic to S,,_; by restricting f € S,
that fixes n to a permutation of {1,...,n —1}. Thus |S,| = n|S,_1]. Since
|S1]| = 1%* we deduce that |S,,| = n!.

LECTURE 13

Fact. If f: R3 — R3 is an isometry that fixes 4 non-coplanar points then f is
the identity.

(4) Let X be a regular tetrahedron. Then Sym(X) acts transitively on the set of
4 vertices of X and the stabiliser of a vertex v € X consists of three rotations
and three reflections. Thus | Sym(X)| =6-4 = 24.

This calculation enables us to prove that Sym(X) ~ Sy: if we label the
vertices by the numbers 1,2, 3,4 then the action of Sym(X) on the vertices
defines a homomorphism #: Sym(X) — S;. Since any isometry of R? fixing all
four vertices is the identity we can conclude that ker § = {id}. By counting we
can deduce Im 6 = Sy.

(5) Let X be a cube. Then Sym(X) acts transitively on the set of 6 faces of X and
the stabiliser H := Stabgym,x)(F) of a face F' acts transitively on the set of 4
vertices contained in it?4. If v is one of these vertices and w is the diagonally
opposite vertex in F' then

Staby (v) = {e, reflection in plane containing v,w and the centre of X }°.

230r if you prefer [So| = 1

24This can be seen by considering rotations about an axis through the centre of F' and the
centre of its opposite face.

25Since if an isometry of R? fixes all vertices of F' and the centre of X then it is the identity.
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Thus
Sym(X) =6|H| =6-|Orbg(v)||Staby (v)] =6-4-2 = 48.
3.3. Conjugacy classes.

Definition. If G is a group then the conjugation action of G on itself is given by

G xG =G g =gxg .

Note that the conjugation action is indeed an action since for g, h,x € G,

e-r=ere ' =x

and
g-(h-z)=g(hah™")g~! = (gh)x(gh)~" = (gh) - z.

Definition. The orbits of G on itself under the conjugation action are called the
conjugacy classes of G: the orbit of z € G will be denoted ccl(z); i.e.

cl(z) = {gzg™" | g € G}.*°

The stabliser of x € G under this action is called the centraliser of x and will be
denoted Cq ().

FEzxamples.

(1) Suppose G = Isom(Z) = {to:n — a+n,s:n — a—n | a € Z}. Let
H := {t, | a € Z} denote the subgroup of translations We know that for any
a,bezZ,

totaty ' =t
and for n € Z,
sptasy () = spta(b—n) = spla+b—n)=n—a
ie
sbtasgl =1_,
so for a # 0
Cq(te) = H and ccl(t,) = {ta,t_o}>".
Similarly for n € Z
tysaty 1(n) = tpsa(n —b) = ty(a — (n — b)) = (2b+ a — n) = sp1a(n)
and
spSasy H(n) = spsa(b—n) = sp(a— (b—n)) =b—(a+n—0) =2b—a—n = syp_4(n)

so as a = —a mod 2

Cai(sa) = {to, sa} and ccl(sy) = {sat2p | b € Z}.

That is there are two conjugacy classes of reflections ccl(sq) and ccl(sq).?®

26gince conjugacy classes are orbits of an action they partition G; that is every element of G
lies in precisely one conjugacy class.

270f course Cg(to) = G and ccl(to) = {to}.

28What is the geometric meaning of this?
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(2) We saw in section 1.5 that in the Mdobius group M the conjugacy class of
z +— z+ 1 consists of all Mobius transformations with precisely one fixed point
ie.

ccl(z— z4+1) = {f € M| f has precisely one fixed point}
and that every M&bius transformation with precisely two fixed points is in the
same conjugacy class as a Mobius transformation of the form z +— az. We will
return later to the question of when ccl(z — az) = ccl(z — bz) and what the
centralisers of these elements are.?? Of course ccl(id) = {id} and Cy,(id) = M.

Definition. The kernel of the homomorphism G — S(G) given by the conjugation
action of G on itself is called the centre of G and written Z(G).

Lemma. Suppose that G is a group.
(a) Forx € G, Cg(z) ={g € G | zg = gz}.
(b) Z(G) ={9 € G| gz =xg forallz € G} =, Ca(x).
(c) Z(G) ={g € G| ccl(g)| = 1}.
(]

3.4. Cayley’s Theorem. Cayley’s Theorem will tell us that every group is iso-
morphic to a subgroup of a symmetric group.

Definition. If G is a group then the left reqular action of G on itself is given by
the function -: G x G — G; g - = = gx.

Example. The left regular action of Z on itself is by translations. i.e. the corre-
sponding homomorphism Z — S(Z) is given by n + t,,.3°

Lemma. The left reqular action of G on G is an action that is both tra nsitive and
faithful.

(]

LECTURE 14

Theorem (Cayley’s Theorem). If G is a group then G is isomorphic to a subgroup
of S(G).

|

It perhaps should be said that this theorem is simultaneously deep and almost

useless. Deep because it tells us that anything satisfying our abstract definition of a

group can be viewed as symmetries of something. Almost useless because knowing
this doesn’t really help prove things about groups.

3.5. Cauchy’s Theorem.

Theorem (Cauchy’s Theorem). Supppose that p is a prime and G is a finite group
whose order is a multiple of p. Then G contains an element of order p.

O

298poiler: ccl(z — az) = ccl(z — bz) if and only if b € {a,1/a}, Ca(z — z+1) =
{translations in M} and, for a # 1, Cg(z — az) = {dilations/rotations in M}. Can you prove
these facts now? Hint: if g(z + az)g~! = 2z + bz for ¢ € M what can you say about g(0) and
g(00)?

30recall tn denotes translation by n
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4. QUOTIENT GROUPS

4.1. Normal subgroups. Suppose that G is a group. Let &(G) denote the set of
subsets of G, i.e. the power set of G. There is a natural binary operation on Z(QG)
given by

AB:={ab|ac Abe B}.

FEzamples.

(1) If A e Z(G) then AP =0 = DA. If A is non-empty then AG = G = GA.

(2) If H < G then the binary operation on &(G) restricts to a binary operation
on Z(H).

(3) If H < G then the sets {g}H are precisely the left cosets gH of H in G.

Lemma. This operation on P(G) is associative and has an identity but does not
have inverses.

|

We'll be particularly interested in the product of two cosets under this operation

— in particular if H < G we’d like to use it to put a group structure on the set of
left cosets G/H of H in G. If G is abelian then this is straightforward:

g1HgoH = {g1h1g2ho | h1,ha € H} = {g192h1h2 | h1,he € H} = g192H

and one can easily®! show that this does define a group structure on G/ H. However
in general things are not so straightforward.

Ezample. Consider G = Dg = {e,r,7%,s,7s,7%s} where r denotes a non-trivial
rotation in the group and s a reflection.

If H is the subgroup of rotations {e,r, %} then the cosets of H in G are H and
sH. We can compute

HH = H
HsH = sH
sHH = sH and

sHsH = H.

So G/H with this operation is isomorphic to Cs.
However if K is the subgroup {e, s} of G then

rKr?K = {r,rs}{r?,r?s} = {e,r?s,s,1?}
which is not a left coset of K in G.

Proposition. Suppose H < G. The product of two left cosets of H in G is always
a left coset of H in G if and only if gHg™' = H®? for all g € G. In this case
G1HgoH = g1g2H for all g1,92 € G.

]

3land we will later

32Here gHg~! means {g}H{g~ 1}
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Remark. Notice that along the way we proved that whenever gHg~! C H for all
g € G, infact gHg™' = H for all g € G.

Definition. We say that a subgroup H of a group G is normal if gHg~' = H for
all g € G.

Warning. To show that a subset of G is a normal subgroup we must show
that it is a subgroup as well as that it satisfies the above conditon.

FEzamples.

(1) If G is abelian then every subgroup is normal.

(2) The group Isom™(Z) is normal in Isom(Z) but the subgroup {idz, s: n +— —n}
is not normal is Isom(Z).

(3) The subgroup of rotations in Dy, is normal in Ds, but no subgroup generated
by a reflection is normal in Da,,.

(4) Stabag(oco) is not a normal subgroup of M.

Lemma. A subgroup H of a group G is normal if and only if every left coset is a
right coset.>

O

Proposition. If H is a normal subgroup of G then the restriction of the binary
operation on P (G) makes G/H into a group such that g1HgoH = g1g2H .

Definition. We call G/H the quotient group of G by H.

4.2. The isomorphism theorem.

Theorem (The (first) isomorphism theorem). Suppose that f: G — H is a group
homomorphism. Then ker f is a normal subgroup of G, Im f is a subgroup of H
and f induces an isomorphism

f:G/ker f = Imf
given by f(gker f) = f(g).
O

Remark. Often a good way to prove that a subset of a group G is a normal subgroup
is to show that it is the kernel of some homomorphism from G to another group.

33We'll often just say coset in this case.
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Ezxample. The homomorphism Z — Z,, that sends a to the remainder after dividing
a by n has kernel nZ and image Z,,. Thus it induces an isomorphism Z/nZ 57,3

Ezample. Let : (R,+) — (C\{0},-) be given by 8(r) = €2™". Then 0(r + s) =
e?(r+5) = 9(r)f(s) so 6 is a homomorphism. Moreover

Imf=S8":={2eC||z| =1},

the unit circle in C and
ker6 =7

thus we can deduce that R/Z ~ S*.
Ezample. Let §: Dy, — {£1} such that

0(g) = +1 if g is a rotation
9= -1 if g is a reflection.

Then we can verify that 6 is a homomorphism since the product of two reflections
or two rotations is a rotation and the product of a rotation and a reflection in
either order is a reflection. Moreover Im 6 = {£1} and ker 6 is the subgroup of all
rotations of the regular n-gon. Thus Da,, /{rotations in Da,} ~ Cs.

Ezample (Group-theoretic understanding of gth powers mod p). Let p and ¢ be
distinct primes and G = (Z,\{0}, -,). Define

0:G— G;x— 29

Then for z,y € G, 0(xy) = (zy)? = 2% = 6(z)0(y) i.e. 0 is a homomorphism.
Then

ker0={ze€G|z?=1}={x e G|o(x)=1o0r q}.
We now divide into two cases.

First suppose that ¢ is not a factor of p—1. Since |G| = p— 1, G has no elements
of order ¢ by Lagrange. Thus ker § = {1}. Tt follows that § induces an isomorphism
G ~ Im#6. By counting we can conclude that Imf = G. In particular we see that
every element of Z,, is a gth power when p is not 1 mod gq.

Next suppose that ¢ is a factor of p — 1. In this case G does have an element
of order ¢ by Cauchy’s Theorem. Thus |kerf| > ¢.>* Since G/kerf ~ Im6 and
|G/ ker 6] = |G|/|ker 0] < % we see that Z, has at most % +1 gth-powers when

pis 1 mod ¢.%6

Ezample. If G acts on a set X and K = {g € G| g(x) = zforallz € X} =
N.cx Stabg(z) then the homomorphism G — S(X) given by the action induces
an isomorphism from G/K to a subgroup of S(X). Thus the action of G on X
induces a faithful action of G/K on X.37

34The notation Z, as we have defined it is rarely used and instead Z/nZ is used to describe
essentially the same thing.

35Since an element of order q generates a subgroup of order g contained in the kernel. In fact
it is not too hard to prove that ker 6 has precisely g elements.

361n fact precisely this many.

37This means that to understand all actions of a group G it is equivalent to understand all
faithful actions of all quotients of G.
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Ezample. Suppose that X is a regular tetrahedron in R3. X has six edges and each
edge has four neighbours.®® Thus we can partition the set of edges into three pairs
with each pair consisting of non-adjacent edges. Let P denote the set of such pairs.
Then the action of Sym(X) on X induces an action on P since if f € Sym(X) and v
and w are non-adjacent edges of X then f(v) and f(w) are also non-adjacent edges
of X. Thus by the last example there is a homomorphism 6: Sym(X) — S(P).
It is easy to verify by hand that Im# = S(P). Then the isomorphism theorem we
can deduce that Sym(X)/ker § ~ S(P). We showed earlier than Sym(X) ~ Sy and
it is straightforward to see that S(P) ~ S5.3° Thus we can deduce that S, has a
normal subgroup K such that Sy/K ~ S5.40

LECTURE 17
5. MATRIX GROUPS

Suppose that throughout this section F denotes either R or C.

5.1. The general and special linear groups. Let M, (F) denote the set of n xn
matrices with entries in F.
Here are some facts proven in Vectors and Matrices.

Facts.

(1) Every element A of M, (F) defines a linear map A: F" — F" via A: v+ Av.*!
Moreover every linear map F™ — F™ arises in this way and A can be recovered
from A since the ith column of A is A(e;) where e; denotes the element of F™
with ith entry 1 and all other entries 0.

(2) AB corresponds to the composite Ao B. Thus associativity of multiplication of
(square) matrices follows from associativity of composition of functions F* —
F.

(3) The matrix I,, with 1s down the main diagonal and Os elsewhere is an identity
for matrix multiplication on M, (F). Moreover I,, = idpn.

(4) There is a function det: M, (F) — F such that A has an inverse in M, (F) if and
only if det A # 0. Moreover det(AB) = det(A) det(B) for any A, B € M, (F)
and det I,, = 1.

Definition. The general linear group GL,(F) := {A € M, (F) | det A # 0} is the
group of invertible n X n matrices with entries in F.

Proposition. GL,(F) is a group under matriz multiplication.
([l

Remark. There is a natural action of GL,(F) on F” via (A,v) — Av. One can
show that the homomorphism GL,(F) — S(F") coming from this action induces
an isomorphism GL,(F) with the subgroup of S(F") consisting of all invertible
linear maps F"* — F".

38There are two edges sharing each vertex of a given edge.

390r S(P) ~ Dg if you prefer

40Can you say which elements of S4 live in K? There must be four of them by Lagrange. If
you find this too hard at this stage then try again when you revise the course having studied the
groups Sy, in more detail.

4IRecall that A is linear means that A(Av+uw) = AA(v)+pA(w) for all A, 4 € F and v, w € F™.
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Lemma. The function det: GL,(F) — (F\{0},) is a group homomorphism with
image F\{0}.

(I
Definition. The special linear group SL, (F) is the kernel of det: GL, (F) — F\{0}
ie.
SL,(F):={A € M,(F)|det A=1}.
Remarks.

(1) The action of GL,,(F) on F” induces an action of SL, (IF) on F™ by restriction
and the resulting homomorphism SL, (F) — S(F") induces an isomorphism
of SL,(F) with the subgroup of S(F") consisting of volume preserving linear
maps F* — F™.

(2) SL,(F) a normal subgroup of GL,(F and GL,(F)/SL,(F) ~ F\{0}.

Ezxamples.

GLy(F) = {(‘CL Z)adbc;éo} and

SLy(F) = {(c Z)ad—dc:l}

5.2. Mobius maps as projective linear transformations.

IS

Notation. Given v € C?\{0} let [v] denote the (unique) line {\v | A € C} through
0 and v in C2. The set of all such lines is called the complex projective line typically
written P*(C).

The following lemma gives a parameterisation of the elements of P!(C).
Lemma. Every element of PY(C) is either of the form [(i)] with z € C or

[(é)} Moreover these lines are all distinct.

O
)} for z € C and

z

It follows that we may identify C,, and P!(C) via z {(1

<))

Proposition. GLs(C) acts on P1(C) via (A, [v]) — [Av] for v € C2\{0}.
We note that under this action of GLy(C) on P!(C)
(¢ 8) 1G] = [(E2a)] = ()] o e
(¢ ) [C3)]=1G)
¢ [O]- ][] e

—aole
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a b\ [(1)\|_|(1
0 d o/| |\o/|"
Thus, under the identification of C., with P(C)
0: GLy(C) — S(Cy)

, the homomorphism

corresponding to this action sends the matrix (Ccl Z) to the Mobius map repre-

sented by z — gzzis, and so Im# = M. Thus M is a subgroup of S(Cy).

Moreover ker § consists of invertible matrices (Z Z) fixing every line through

the origin in C2.

" s (O] (€ 2 cen@1em).
Stabar, @) ([()D {( )eGh(Cb:O} and
Staber, (o) (KDD = {(i Z) € GLy(C) | a+bc+d}.

Since a Mobius transformation that fixes three distinct points is the identity, ker 6
is the intersection of these three sets i.e.

ker@LQ(CHM){(g 0)' 7“)}

is the group of non-zero scalar matrices.*?

Thus PGL2(C) := GLy(C)/{A\ | A € C # 0} ~ M. It is not hard to see that a
similar argument shows that PSLy(C) := SLy(C)/{£1} ~ M.
We can summarize this discussion with the following theorem.

Theorem. The action of GL2(C) onP!(C) induces an isomorphism from PG Ly(C)
to M. In particular M is a subgroup of S(Cs).

LECTURE 18

5.3. Change of basis. Recall that if A is a linear map F"” — F™ corresponding to
the matrix A and ey, ..., e, is the standard basis for F™ then A(e;) = Z?Zl Aje;.

If f1,..., fn is another basis for F" then there is an invertible linear map P such
that P(e;) = f; fori =1,...,n. i.e. P corresponds to the matrix P whose columns
fi,--, frnand f; = Z Pjie; fori=1,...,n. It follows that for j =1,...,n,

Zpkjlfk_zpkj Zplk:el Z PP_I)ljel:ej.
=1

42WWe can sce this another way: the kernel of 0 is certainly contains in the intersection of these
three stabilisers so it would suffice to check that any scalar matrix is in the kernel ie [AI2v] = [v]
for all non-zero A in C. Indeed this is how we showed that a Mdbius map that fixes 0, 1 and oo is
the identity in §1.5.
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Then
A(fi) = AP(e)

= > (AP)jie;
j=1

= > (AP Pt )
j=1 k=1

(P~ AP)ki fr

[
MS

>
Il
—

Thus P~ ' AP represents A with respect to the basis fi,..., fn.
Proposition. GL,(F) acts on M, (F) by conjugation.

(I

It is now straightforward to see that two distinct matrices in M, (F) represent

the same linear map with respect to different bases if and only if they are in the
same GL,,(IF)-orbit under this conjugation action.

Ezample (See Vectors and Matrices). If A: C? — C? is a linear map then precisely
one of the following three things is true:

(i) there is a basis for C? such that A is represented by a matrix of the form

A0
0 n
with A,z € C distinct — in this case {\, u} is determined by A** but they

may appear in either order in the matrix;
(i) there is a basis for C? such that A is represented by a matrix of the form

A0
0 X
with A € C — in this case A is determined by A indeed A = Aidc2 and A is

represented by this matrix with respect to every basis;
(iii) there is a basis for C? such that A is represented by a matrix of the form

6 3)

We may interpret this group-theoretically: every GLo(C)-orbit in Ms(C) with
respect to the conjugation action is one of the following:

Ox.u i= Orbgr, (o) ((3 2)) with A, p € C distinct,

again \ is determined by A.**

O := Orbap, () <<3 g)) with A € C and

43)\ and 1 are its eigenvalues and the basis vectors are the corresponding eigenvectors
44it is the unique eigenvalue of A and A # Aidc.
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Al .
05\2) = OrbGLz((C)(((() /\)> with A € C.
These are all disjoint except that Oy, = O, . More explicitly,
Oxp={A € M3(C) | det(tls — A) = (t — A)(t — ) for all t € C},

ol = {ALL} and

O = {A € My(C) | det(t] — A) = (t — A\)? for all t € C, A # Ay}

We can also compute
A 0\ [fa b\ _[faXx bA
0 u)\c dJ \eu du
a b\ (X 0\ [(a\ bu
c dJ\O u)  \ex du
A0 a 0
(D)6 9o

and StabGLz(C)(/\Ig) = GLy(C).
Similarly

A1 a b\ [falx4+c bA+d

0 XN \ec d) cA d\
a b\ (A 1\ (ax a+DbA
c d)\0 XN \eh c+dX

Al a b
s () {6 3140

and

so that for A # p,

and

SO

All other stabilisers are conjugate to these ones. We can easily read off the conju-

gacy classes and centralisers in GLo(C) by restricting to the case A, u # 0.

Ezercise. Deduce that in M ~ PGLy(C), ccl(z — az) = ccl(z — z — bz) if and
only if b € {a,1/a} thus provide a description of all the conjugacy classes in M

and compute centralisers of suitable representatives of each class.

LECTURE 19

5.4. The orthogonal and special orthogonal groups. Recall that any (square)
matrix A has a transpose A7 with Az;- = Aj; and det AT = det A. Moreover if A, B

are square matrices of the same size then (AB)T = BT AT,

Definition. The orthogonal group O(n) :== {A € M,,(R) | ATA =1, = AAT} C

GL,(R) is the group of orthogonal n x n matrices.

Lemma. O(n) is a subgroup of GL,(R).
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(]
Recall that R™ comes with an inner product v - w = Z?zl v;w; which defines a
length function on R™ via |v| = (v-v)!/2. We also recall the definition of Kronecker’s

delta
P 1 if i=y;
YT 0 i i A
A basis f1,..., fn of R™ is said to be orthonormal if f; - f; = §ij.45

Lemma.

(a) If {f1,..., fu} CR™ such that f;- f; = d;; for all1 < i,j < mn, then {fi,..., fn}
is an orthonormal basis for R™.

(b) If v,w € R™ then v-w = 1(jv+w|> — [v — w|?).

(Il
Proposition. Suppose that A € M, (R). The following are equivalent:
(1) AeO(n);
(i) Av- Aw =v-w for all v,w € R"™;
(iii) the columns of A form an orthonormal basis;
(iv) |Av| = |v| for all v € R™.
O

Thus O(n) is isomorphic to the subgroup of S(F™) consisting of linear maps that
preserve the scalar product or equivalently to the subgroup of S(F™) consisting of
linear maps that preserve length.

The conjugation action GL,(R) on M, (R) restricts to an action of O(n) on
M, (R). The equivalence of (i) and (iii) in the propostion shows that two distinct
matrices in M, (R) are in the same O(n)-orbit if and only if they represent the same
linear map with respect to two different orthonormal bases (see the last lecture).

Proposition. det: O(n) — (R\{0},-) has image {£1}.

Definition. The special orthogonal group
SO(n) :== O(n) N SL,(R) = ker(det: O(n) — {£1}).

SO(n) is isomorphic to the subgroup of S(R™) consisting of linear maps that
preserve the scalar product and orientation.* It is a normal subgroup of O(n) and
O(n)/SO(n) ~ Cs.

There are complex versions of the orthogonal group and the special orthogonal
group called the unitary group and the special unitary group. We won’t have time
to discuss them but they do appear on Example Sheet 4.

45There is a little apparent notational ambiguity here since we use subscripts to index the
basis vectors as well as to index the coordinates of a vector. Each f; is in R™ so can be written
as o (fi)wer and fi - f5 = 3201 (f)k(f5)k-

461 have not defined an orientation of R™. One way would be as an SO(n)-orbit of orthonormal
bases for R™ which would make this completely tautological. There are more sophisticated ways
that make it less so. With this definition the next sentence gives that there are exactly two
orientations of R™.
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LECTURE 20
5.5. Reflections.

Definition. Suppose that n € R™ has length 1 then the reflection in the plane
normal to n is the function R, : R™ — R™ given by
R, (x) =2 —2(z - n)n.
Note that if y - n = 0 then R, (y) =y, and R,(n) =n —2n = —n.

Lemma. Suppose n € R™ has length 1 then

(a) R, € O(m);

(b) R™ has a basis with respect to which R,, is represented by a diagonal matriz D
such that D11 = =1, Dy =1 for 2 <i < m;

(c) (R,)? =idgm and;

(d) det R, = —1.

O

Proposition. Ifz,y € R™ with x #y but x-x = y-y then there isn € R™ of unit
length such that R, (x) =y. Moreover n may be chosen to be parallel to x —y.

(]

Theorem. FEvery element of O(3) is a product of at most three reflections of the
form R, with n € R3 of length 1. *7

O
Proposition. If A € O(2) then either
(1)) A= S0(2) and there is some 0 < 0 < 271 such that
[ cos@ sinf) 45
A= (— sind cos 9) or
(ii)) A ¢ SO(2) and A = R,, for some n € R? of unit length.
[

Theorem. If A € SO(3) then there is some non-zero v € R?® such that Av = v.*

([l
LECTURE 21
Corollary. Every A in SO(3) is conjugate in SO(3) to a matrix of the form
1 0 0
0 cosf sind
0 —sinf cosf
([l

47 There is nothing special about three here. In general every element of O(m) is a product of
at most m reflections of the form R,. The proof is exactly similar to this one.
48i 6. A is a rotation

OThat is every rotation in R® has an axis.
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6. PERMUTATIONS

Recall that a permutation of a set X is an element of the group S(X); that is
an invertible function X — X. In this chapter we will study permutations of finite
sets. More particularly we will study permutations of [n] := {1,2,...,n}. Since
there is a 1-1 correspondence (i.e. invertible function) between any finite set and
[n] for some value of n this amounts to the same thing.

6.1. Permutations as products of disjoint cycles.

Definition. We say that a permutation o: [n] — [n] is a cycle if the natural action
of the cyclic subgroup of S;, generated by ¢ has precisely one orbit of size greater
than one.

Ezample. If o: [5] — [5] such that o(1) = 3, 0(2) = 2, 0(3) = 5, 0(4) = 4 and

o(5) =1 then o € S;. WeM

1\3/2/,3¥4/,5.

We can compute 0*(2) = 2 and o¥(4) = 4 for all k € Z. We can also compute
o%(1) =o(3) =5, 0%(3) = 0(5) = 1 and 02(5) = o(1) = 3. Finally 03(1) = 0(5) =
1, 03(3) = o(1) = 3 and 03(5) = 0(3) = 5. So 03 = id, the group generated by o
is {id, 0,02} and the orbits are {1,3,5}, {2} and {4}. Thus o is a cycle.

Suppose that o is a cycle of order k. Then o generates the subgroup
(o) :={id,0,...,a" 1}
For any b € [n] in an orbit of size 1
o'(b)y="bforallicZ
and if a € [n] is in the orbit of size greater than one then for ¢ = 07 (a) € Orb(,y(a),
a'(c) = 0" (a) = o’ (0'(a)).

Thus o'(c) = ¢ whenever o'(a) = a. ie. o' € Stab ) (a) only if o' = id. Thus
Stab sy (a) = {e} and | Orb(s(a)| = k.

Notation. If ¢ is a cycle of order k such that the orbit of size greater than one
contains the element a € [n] then we write

o = (ac(a)o*(a)- - " 1(a)).

The discussion above shows that the elements a, o(a), ..., " ~!(a) are all distinct
and exhaust the orbit of @ under (¢). Thus (ac(a)---c*~!(a)) uniquely determines
o since o(b) = b for b & {a,0(a),...,c¥"(a)} and o(c?(a)) = o'+ (a).

Ezample. If o: [5] — [5] is as in the example above then o = (135) = (351) = (513).
Definition. We say that (aq,...,ax) and (by,...,b;) are disjoint cycles if
{a1,...,apt N {b1,.... b0} = 0.
Lemma.
(a) Foray,...,an, € [n] distinct
(a1az - am) = (agas -+ - amar) = (azaq - - amarag) = - - -

i.e. cycles can be cycled.
(b) If o and 7 are disjoint cycles then o = 10 i.e. disjoint cycles commute.
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d

Theorem (Disjoint cycle decomposition). Everyw € S,, may be written as a (possi-
bly empty) product of disjoint cycles. Moreover the representation of w as a product
of disjoint cycles is unique up to reordering.

Ezample. Consider (135) and (145) in S5. How is (135)(145) expressed as a product
of disjoint cycles? We can chase elements one at a time. (145) sends 1 to 4 and
(135) fixes 4. (145) sends 4 to 5 and (135) sends 5 to 1. Thus (14) is one of the
cycles in the disjont cycle decompositon of (135)(145). 2 is fixed by both (145) and
(135) so we can ignore it. (145) fixes 3 and (135) sends 3 to 5. (145) sends 5 to 1
and (135) sends 1 to 3. So (35) is another cycle in the decomposition. It follows
that (135)(145) = (14)(35). Pictorally

i.e. (145)(135) = (13)(45).

O
LECTURE 22
Lemma. If 7 is a product of disjoint cycles of order ni,ns,...,ny then
o(m) =lem(ny, ..., ng).
O
6.2. Permuations as products of transpositions.
Definition. We call a cycle of order 2 a transposition.
Lemma. FEvery w € S, is a product of transpositions.
O

Remark. The representation of 7 as a product of transpositions is not unique. For
example

(12)(23)(34) = (1234) = (14)(13)(12).



GROUPS 33

Despite the remark it is true that m € S,, cannot be written both as a prod-
uct of an even number of transpositions and as a product of an odd number of
transpositions.

Theorem. Given m € Sy, let [(7) be the number of orbits of (m) in [n]. For any
7w € Sy, and any transposition (ab) € S,

I(m(ab)) = I(r) £ 1.

O
Corollary. There is a well-defined group homomorphism
e: S, — ({£1},9)
such that e(m) = 1 if ® is a product of an even number of transpositions and
e(r) = =1 if m is a product of an odd number of transpositions. Moreover, for
n>2, Ime={£1}.
O

Definition. Given 7 € S,, we say that 7 is even if e(m) = 1 and that 7 is odd if
e(m) =—1.

Remark. Notice that a cycle of odd order is even and a cycle of even order is odd.?”

Definition. The alternating group on [n], A, := ker(e: S,, — {£1}) is the normal
subgroup of S,, consisting of all even permutations.

Since |S,| = n! it follows easily from the isomorphism theorem that, for n > 2,
‘Anl = %'
LECTURE 23

6.3. Conjugacy in S,, and in A,. We now try to understand the conjugacy
classes in S,, and in A,,. In S,, they have a remarkably simple description.

Lemma. Ifo € S, and (ay---an) is a cycle then
olay - am)o = (o(ay) - o(am)).
|

Theorem (Conjugacy classes in S,,). Two elements of Sy, are conjugate if and only
if they are the product of the same number of disjoint cycles of each length.>*

O

Example. Conjugacy classes in Sy

representative element e | (12) | (12)(34) | (123) | (1234)
cycle type 1] 212 22 3.1 4
number of elements in class | 1 3 8 6
size of centraliser 24| 4 8 3 4
sign 1| -1 1 1 —1

50This is just another of those frustrating facts of life.
51We sometimes say that they have the same cycle type.
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Corollary (Conjugacy classes in A,). If m € A, then its conjugacy class in A,, is
equal to its conjugacy class in Sy, if and only if Cs, (7) contains an odd element.
Moreover if Cg, (m) C A, then the conjugacy class of m in S, is a union of two
conjugacy classes in A, of equal size.

O

Ezample (Conjugacy classes in Ay).

The even cycle types in Sy are 14, 22 and 3.1. Now (12) € Cs,(e) and (12) €
Cs,((12)(34)) so the centralisers of elements of conjugacy classes of cycle type 1
and 22 contain elements of odd order. Thus these classes are the same in A4 and
Sy.

Since Cg,((123)) has order 3 it must be generated by (123) and so it is equal to
C4,((123)). Thus the conjugacy class with cycle type 3.1 splits into two parts of
equal size.

representative element e | (12)(34) | (123) | (132)
cycle type 14 22 3.1 3.1
number of elements in class | 1 3 4 4
size of centraliser 12 4 3 3

Corollary. Ay has no subgroup of index 2.

LECTURE 24
6.4. Simple groups.

Definition. We say a non-trivial group G is simple if G has no normal subgroups
except itself and its trivial subgroup.

Since if N is a normal subgroup of G one can view G as ‘built out of’ N and
G/N, one way to try to understand all groups is to first understand all simple
groups and then how they can fit together.

Ezxample. If p is prime then C), is simple since C), has no non-trivial proper sub-
groups. These are the only abelian simple groups.

Theorem. As is simple.

O
The remainder of the course is non-examinable.
In fact we can prove a stronger result.
Theorem. A, is simple for alln > 5.
Remark. Ay is not simple since it has a normal subgroup of order 4 namely V =
{id, (12)(34), (13)(24), (14)(23)}. A3 ~ Cj5 is simple, A, is trivial so not simple.
O

A triumph of late 20th century mathematics was the classification of all finite
simple groups. Roughly speaking this says that every finite simple group is either
e cyclic of prime order;
e an alternating group;
e a matrix group over a field of finite order (for example PSL, (Z/pZ));
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e one of 26 so-called sporadic simple groups the largest of which is known as
‘the monster’ and has approximately 8 x 1053 elements.
One first important step in the proof was a result by Feit and Thompson that there
is no non-abelian simple group of odd order that first appeared as a circa 250 page
paper in 1963. The first proof of the whole classification theorem was annouced in
the early 1980s. It ran to over ten of thousand pages spread across a large number
of journal articles by over 100 authors. It turned out not to be quite complete. In
2004 it appeared to experts to be complete.
In this course we have seen a little of how symmetry can be understood using
the language of groups. But even when considering only finite groups there is much
more to learn.
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