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Purpose of notes. Please note that these are not notes of the lectures but notes
made by the lecturer in preparation for the lectures. This means they may not
exactly correspond to what was said and/or written during the lectures.

This version has had all the proofs removed to aid those who wish to revise.

Lecture 1

1. Examples of groups

Groups are fundamentally about symmetry. More precisely they are an algebraic
tool designed to abstract the notion of symmetry. Symmetry arises all over mathe-
matics; which is to say that groups arise all over mathematics. Roughly speaking a
symmetry is a transformation of an object that preserves certain properties of the
object.

As I understand it, the purpose of this course is two-fold. First to introduce
groups so that those who follow the course will be familiar with them and be better
equipped to study symmetry in any mathematical context that they encounter.
Second as an introduction to abstraction in mathematics, and to proving things
about abstract mathematical objects.

It is perfectly possible to study groups in a purely abstract manner without
geometric motivation. But this seems to both miss the point of why groups are
interesting and make getting used to reasoning about abstract objects more difficult.
So we will try to keep remembering that groups are about symmetry. So what do
we mean by that?

1.1. A motivating example.

Question. What are the distance preserving functions from the integers to the
integers? That is what are the members of the set

Isom(Z) := {f : Z→ Z such that |f(n)− f(m)| = |n−m| for all n,m ∈ Z}?

These functions might reasonably be called the symmetries of the integers; they
describe all the ways of ‘rearranging’ the integers that preserve the distance between
any pair.

Let’s begin to answer our question by giving some examples of such functions.
Suppose that a ∈ Z is an integer. We can define the function ‘translation by a’ by

ta : n 7→ n+ a for n ∈ Z.

For any choice of m,n ∈ Z

|ta(n)− ta(m)| = |(n+ a)− (m+ a)| = |n−m|.

Thus ta is an element of Isom(Z). We might observe that if a and b are both integers
then

(ta ◦ tb)(n) = ta(b+ n) = a+ b+ n = ta+b(n)

for every integer n, that is that ta+b = ta ◦ tb1. Moreover t0 is the identity or ‘do
nothing’ function id: Z → Z that maps every integer n to itself. Thus for every
a ∈ Z, t−a is the inverse of ta, that is ta ◦ t−a = id = t−a ◦ ta.

1This is because two functions f, g : X → Y are the same function, i.e. f = g, precisely if
they have the same effect on every element of the set they are defined on, i.e. f(x) = g(x) for all

x ∈ X.



GROUPS 3

Suppose now that f ∈ Isom(Z) is a symmetry of the integers. Consider the
function g := t−f(0) ◦ f . Then for n,m ∈ Z,

|g(n)− g(m)| = |(f(n)− f(0))− (f(m)− f(0))| = |f(n)− f(m)| = |n−m|,
so g ∈ Isom(Z) is also a symmetry of the integers.

Moreover g(0) = t−f(0)(f(0)) = f(0)− f(0) = 0, i.e. g fixes the integer 0. What
does this tell us about g? For example, what does it tell us about g(1)? Since g is
a symmetry and g(0) = 0 it must be the case that

|g(1)| = |g(1)− 0| = |g(1)− g(0)| = |1− 0| = 1.

That is g(1) = ±1.
If g(1) = 1, what else can we say? For any n ∈ Z,

|g(n)| = |g(n)− g(0)| = |n− 0| = |n|
i.e. g(n) = ±n. But also,

|g(n)− 1| = |g(n)− g(1)| = |n− 1|
i.e. g(n) = 1± (n−1). These two conditions together force g(n) = n and so g = id.
Now in this case

tf(0) = tf(0) ◦ id = tf(0) ◦ (t−f(0) ◦ f) = (tf(0) ◦ t−f(0)) ◦ f = id ◦f = f.

Thus f is translation by f(0) in this case.
What about the case when g(1) = −1? In this case we still must have g(n) = ±n

for every integer n but now also

|g(n) + 1| = |g(n)− g(1)| = |n− 1|
i.e. g(n) = −1± (n− 1). These two conditions together force g(n) = −n and so g
is the ‘reflection about 0’-function

s : n 7→ −n for all n ∈ Z.
Now we’ve seen that s = g = t−f(0) ◦ f in this case. It follows that f = tf(0) ◦ s.

We’ve now proven that every element of Isom(Z) is either a translation ta or of
the form ta ◦ s (with a ∈ Z in either case). That is all symmtries of Z are of the
form n 7→ n+ a or of the form n 7→ a− n.

It is worth reflecting at this point on some key facts we’ve used in the argument
above which is sometimes known as a ‘nailing to the wall argument’.

(1) We’ve used that the composition of two symmetries of the integers is itself
a symmetry of the integers. In fact, we’ve only used this for some special
cases but it is true in general since if f, g ∈ Isom(Z) and n,m ∈ Z then

|f(g(n))− f(g(m))| = |g(n)− g(m)| = |n−m|.
We might note that for a, n ∈ Z,

s(ta(n)) = s(n+ a) = −a− n = t−a(s(n))

and so s ◦ ta = t−a ◦ s. Thus order of composition matters.
(2) We’ve used that there is a ‘do nothing’ symmetry of the integers id and

that for any other symmetry f , f ◦ id = f = id ◦f .
(3) We’ve used that symmetries are ‘undo-able’, that is that given any sym-

metry f there is a symmetry g such that g ◦ f = id = f ◦ g (in fact we’ve
only used this for f = ta and f = s and only that there is a g such that
g ◦ f = id but again it is true as stated. (Why?).
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(4) We’ve used that composition of symmetries is associative, that is that for
symmetries f, g and h, (f ◦ g) ◦ h = f ◦ (g ◦ h).

We’ll see that these properties say precisely that Isom(Z) is a group.

1.2. Some initial definitions. First we need to make some definitions.

Definition. Suppose that S is a set. A binary operation on S is a function

◦ : S × S → S; (x, y) 7→ x ◦ y.

This defintion means that a binary operation is something that takes an ordered
pair of elements of S and uses them to produce an element of S. If x ◦ y = y ◦ x
then we say that x and y commute (with respect to ◦). We say ◦ is commutative
if every pair of elements of S commute.

Examples.

(1) Composition of functions is a non-commutative binary operation on Isom(Z).
(2) Addition, multiplication, and subtraction are all binary operations on Z.

Note that addition and multiplication are both commutative operations on
Z but distinct integers never commute with respect to subtraction.

(3) Addition and multiplication are also binary operations on N := {1, 2, 3, . . .}.
Subtraction is not a binary operation on N since 2− 3 6∈ N.

(4) Exponentiation: (a, b) 7→ ba is a binary operation on N.
(5) If X is any set and S = {f : X → X} is the set of all functions from X to

itself then composition of functions is a binary operation on S.

Definition. A binary operation ◦ on a set S is associative if (x ◦ y) ◦ z = x ◦ (y ◦ z)
for all x, y, z ∈ S.

This means that when ◦ is associative there is a well-defined element x◦y◦z ∈ S
i.e. it doesn’t matter which of the two ◦ we use first. It will be instructive to
convince yourself that if ◦ is an associative binary operation on S and w, x, y, z ∈ S
then

w ◦ (x ◦ y ◦ z) = (w ◦ x) ◦ (y ◦ z) = (w ◦ x ◦ y) ◦ z.
Having done this you should also convince yourself that there is nothing special
about four and the obvious generalisation holds for any (finite) number of elements
of S whenever ◦ is associative. This means that whenever ◦ is an associative binary
operation we may (and will!) omit brackets, writing for example w◦x◦y◦z without
ambiguity. If it is clear what operation we have in mind we will often omit it too,
writing wxyz, for example.

Examples.

(1) Addition and multiplication are associative when viewed as binary opera-
tions on Z or N. Subtraction is not associative on Z since ((0−1)−2) = −3
but 0− (1− 2) = 1 6= −3.

(2) Exponentiation (a, b) 7→ ba is not associative on N since 23
2

= 29 but
(23)2 = 26 6= 29.

(3) Composition is always an associative operation on the set of functions from
X to X since if f, g and h are three such functions and x ∈ X then

((f ◦ g) ◦ h)(x) = f(g(h(x))) = (f ◦ (g ◦ h))(x).
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Definition. A binary operation ◦ on a set S has an identity if there is some element
e ∈ S such that for all x ∈ S, e ◦ x = x = x ◦ e.

Examples.

(1) 0 is an identity for addition on Z but addition has no identity on N. 1 is
an identity for multiplication on both these sets. Subtraction on Z does
not have an identity since if e − x = x for all x ∈ Z then e = 2x for all
x ∈ Z and this is absurd. Note however that x − 0 = x for all x ∈ Z. We
sometimes say that 0 is a right identity for subtraction to d9escribe this.

(2) (a, b) 7→ ba does not have an identity but 1 is a left identity in the obvious
sense.

(3) If X is any set then the identity function id: X → X; s 7→ s is an identity
for composition of functions from X to X.

Lemma. If a binary operation ◦ on a set S has an identity then it is unique.

�

Lecture 2

Definition. If a binary operation ◦ on a set S has an identity e then we say that
it has inverses if for every x ∈ S there is some y ∈ S such that x ◦ y = e = y ◦ x.

Examples.

(1) + on Z has inverses since for every n ∈ Z, n + (−n) = 0 = (−n) + n.
Multiplication does not have inverses on N or Z since there is no integer
(and therefore no natural number) n such that 2n = 1.

(2) Multiplication defines an associative binary operation on the rationals Q
with an identity (1) but it still does not have inverses. Although for every
non-zero rational q, 1/q is also rational and q · 1/q = 1 = 1/q · q, 0 is also
rational and there is no rational r such that r·0 = 1. However multiplication
does have inverses on the set Q\{0}.

(3) In general composition on the set of functions X → X does not have in-
verses. For example the function f : Z → Z;n 7→ 0 has no inverse since if
g : Z→ Z were an inverse then we’d have f(g(n)) = n for all n ∈ Z but in
fact however g is defined f(g(1)) = 0. This idea can be adapted to show
that whenever |X| > 1 there is a function f : X → X that has no inverse.

Definition. A set G equipped with a binary operation ◦ is a group if

(i) the operation ◦ is associative;
(ii) the operation ◦ has an identity;

(iii) the operation ◦ has inverses.

Examples.

(1) Isom(Z) is a group (under composition).
(2) (Z,+) is a group since + is associative and has an identity and inverses.
(3) (N,+) is not a group since it does not have an identity.
(4) (Z,−) is not a group since − is not associative.2

(5) (Z, ·) is not a group since it does not have inverses but (Q\{0}, ·) is a group.

2recall that it also does not have an identity but to see that it is not a group it suffices to see
that any one of the three properties fails.
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(6) If X is a set with more than one element then the set of functions X → X
is not a group under composition of functions since not all such functions
have inverses.

We will sometimes say that G is a group without specifying the operation ◦.
This is laziness and the operation will always be implicit and either clear what it is
(in concrete settings) or unimportant what it is (in abstract settings). We’ll nearly
always call the identity of a group e (or eG if we want to be clear which group it is
the identity for) if we don’t know it by some other name.

Definition. We say that a group G is abelian if any pair of elements of G commute.

Definition. We say that a group G is finite if it has finitely many elements as a
set. We call the number of elements of a finite group G the order of G written |G|.
Example. For every integer n > 1 we can define a group that is the set Zn :=
{0, 1, . . . , n − 1} equipped with the operation +n where x +n y is the remainder
after dividing x+ y by n3. It is straightforward to see that Zn is an abelian group
of order n.

Lemma. Suppose that G is a group.

(i) inverses are unique i.e. if g ∈ G there is precisely one element g−1 in G such
that g−1g = e = gg−1;

(ii) for all g ∈ G, (g−1)−1 = g;
(iii) for all g, h ∈ G, (gh)−1 = h−1g−1 (the shoes and socks lemma).

�

Notation. For each element g in a group G and natural number n we define gn

recursively by g1 := g and gn := ggn−1 for n > 1. We’ll also write g0 := e and
gn := (g−1)−n for integers n < 0. It follows that gagb = ga+b for all a, b ∈ Z.

Definition. If G is a group then we say that g ∈ G has finite order if there is
a natural number n such that gn = e. If g has finite order, we call the smallest
natural number n such that gn = e the order of g and write o(g) = n.

1.3. Further geometric examples.

1.3.1. Symmetry groups of regular polygons. Suppose we want to consider the set
D2n of all symmetries of a regular polygon P with n vertices (for n > 3) living
in the complex plane C. By symmetry of P we will mean a distance preserving
transformation of the plane that maps P to itself. We might as well assume that
the centre of P is at the origin 0 and that one of the vertices is the point 1 = 1+0i4.

Proposition. D2n is a group of order 2n under composition.

�

Lecture 3

1.3.2. Symmetry groups of regular solids. Suppose that X is a regular solid in R3.
We can consider Sym(X), the group of distance preserving transformations ρ of
R3 such that ρ(X) = X. These form a group. We will consider the cases X a
tetrahedron and X a cube later in the course.

3Z12 is familiar from everyday life. When is it used?
4we’ll be able to make precise why this assumption is reasonable later but it should at least

seem reasonable already.
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1.3.3. The Symmetric group. We might hope that given any set X the set of in-
vertible functions from X to X forms a group under composition; that is the set of
functions f : X → X such that there is some g : X → X such that f ◦g = id = g◦f .
This is true but not immediate: we need to check that composition of functions is
a binary operation on this set; that is that the composition of two invertible func-
tions is invertible. Some people would say that we need to check that the binary
operation is closed but ‘closure’ is built into our definition of binary operation.

Lemma. Suppose that f1, f2 : X → X are invertible. Then f1 ◦ f2 : X → X is
invertible.

�
It follows that for every set X, the set S(X) = {f : X → X | f is invertible} is a

group under the composition of functions. It is called the symmetric group on X5.
We call elements of the symmetric group permutations of X. If X = {1, . . . , n} we
write Sn instead on S(X). We will return to the groups Sn later in the course.

1.4. Subgroups and homomorphisms. Sometimes when considering the sym-
metries of an object we want to restrict ourselves to considering symmetries that
preserve certain additional properties of the object. In fact we’ve already seen this,
the sets of distance preserving transformations of C and of R3 are both groups of
symmetries under composition. The groups D2n and Sym(X) for X a regular solid
are defined to consist of those symmetries that preserve a certain subset of the
whole space. Similary, instead of considering D2n, the group of all symmetries of
a regular n-gon we might want to restrict only to those symmetries that preserve
orientation, that is the rotations. This idea leads us to the notion of subgroup.

Definition. If (G, ◦) is a group then a subset H ⊂ G is a subgroup if ◦ restricts to
a binary operation on H6 and (H, ◦) is a group. We write H 6 G to denote that
H is a subgroup of G.

Examples.

(1) Isom(Z) 6 S(Z).
(2) D2n 6 Isom(C) 6 S(C).
(3) Isom+(Z) := {f : Z→ Z | f(n)− f(m) = n−m for all n,m ∈ Z} 6 Isom(Z).
(4) Z is a subgroup of (Q,+).
(5) If H ⊂ D2n consists of all rotations of the n-gon then H is a subgroup.
(6) For any n ∈ Z, nZ := {an ∈ Z | a ∈ Z} is a subgroup of (Z,+).
(7) For every group G, {e} 6 G (the trivial subgroup) and G 6 G (we call a

subgroup H of G with H 6= G a proper subgroup).

Lecture 4

Lemma (Subgroup criteria). A subset H of a group G is a subgroup if and only if
the following conditions hold

(i) for every pair of elements h1, h2 ∈ H, h1h2 ∈ H;
(ii) the identity e ∈ H;

5The name comes from the fact that it can be viewed as the set of symmetries of the set X.

This is quite a subtle idea but you might like to think further about it when you come to revise

the course
6precisely h1 ◦ h2 ∈ H for all h1, h2 ∈ H
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(iii) for every h ∈ H, h−1 ∈ H.

�

Remark. Our subgroup criteria contain no mention of associativity since as noted
in the proof it is immediate from the associativity of the operation on G.

There is an even shorter set of criteria for a subset to be a subgroup.

Corollary. A subset H of G is a subgroup precisely if it is non-empty and h−11 h2 ∈
H for all h1, h2 ∈ H.

�

Example. The set H = {f ∈ Isom(Z)|f(0) = 0} is a subgroup of Isom(Z). We can
see this using the corollary. Certainly id(0) = 0 so H 6= ∅. Moreover if h1, h2 ∈ H
then

h−11 h2(0) = h−11 (0) = h−11 h1(0) = id(0) = 0.

Note that this argument isn’t much simpler than verifying conditions (i)-(iii) of the
lemma in practice.

We will also be interested in maps between groups. However we won’t typically
be interested an arbitary functions between two groups but only those that respect
the structure of the two groups. More precisely we make the following definition.

Definition. If (G, ◦) and (H, ∗) are two groups then θ : H → G is a group homo-
morphism (or just homomorphism) precisely if θ(h1 ∗ h2) = θ(h1) ◦ θ(h2) for all
h1, h2 ∈ H.

Definition. A group homomorphism θ : H → G is an isomorphism if θ is invertible
as a function; ie if there is a function θ−1 : G → H such that θ ◦ θ−1 = idG and
θ−1 ◦ θ = idH .

Examples.
(1) If H 6 G then the inclusion map ι : H → G;h 7→ h is a group homomorphism.

It is not an isomorphism unless H = G.
(2) The function θ : Z→ Zn such that θ(a) is the remainder after dividing a by n

is always a homomorphism from (Z,+) to (Zn,+n) but never an isomorphism.
(3) If G is any group and g ∈ G is any element then θ : Z → G; n 7→ gn is a

homomorphism from (Z,+) to G. Indeed every homomorphism from (Z,+) to
G arises in this way.

(4) θ : Z→ Isom+(Z); n 7→ tn
7 is an isomorphism.

(5) The exponential function defines an isomorphism

exp: (R,+)→ ({r ∈ R | r > 0}, ·); a 7→ ea.

The inverse map is given by log = loge.

If you are alert you will be asking why we don’t require homomorphisms θ : H →
G to satisfy θ(eH) = eG and θ(h−1) = θ(h)−1 for all h ∈ H. The following lemma
shows that this is because these properties follow from our definition.

Lemma. Suppose that θ : H → G is a group homomorphism.

(i) θ(eH) = eG.

7recall tn denotes translation by n
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(ii) For all h ∈ H, θ(h−1) = θ(h)−1.

�

Definition. If θ : H → G is a group homomorphism then the kernel of θ is defined
by

ker θ := {h ∈ H | θ(h) = eG}
and the image of θ is defined by

Im θ := θ(H).

Proposition. If θ : H → G is a homomorphism then ker θ is a subgroup of H and
Im θ is a subgroup of G.

�

Lecture 5

Theorem (Special case of the isomorphism theorem). A group homomorphism
θ : H → G is an isomorphism if and only if ker θ = {eH} and Im θ = G. In this
case, θ−1 : G→ H is a group homomorphism (and so also an isomorphism).

�

Lemma. The composite of two group homomorphisms is a group homomorphism.
In particular the composite of two isomorphisms is an isomorphism.

�

Definition. We say that a group G is cyclic if there is a homomorphism f : Z→ G
such that Im f = G. Given such a homomorphism f we call f(1) a generator of G.

Note that G is cyclic with generator g if and only if every element of G is of the
form gi with i ∈ Z. More generally we say that a subset S of G generates G if
every element of G is a product of elements of S and their inverses — that is if G
the unique smallest subgroup of G containing S8.

Examples.

(1) The identity map id: Z→ Z; n 7→ n and the ‘reflection about 0’ map s : Z→ Z;
n 7→ −n are both homomorphisms with image Z. Thus Z is cyclic and both 1
and −1 are generators. No other element generates Z.

(2) Zn is cyclic. In Numbers and Sets it is proven that an element of {0, 1, . . . , n−1}
generates Zn if and only if it is coprime to n9. The ‘if’ part is a conseqeunce
from Euclid’s algorithm; the only if part is elementary.

Lemma. Suppose that G is a group containing an element g with gn = e. There is
a unique group homomorphism f : Zn → G such that f(1) = g. In particular every
group of order n with an element of order n is isomorphic to Zn.

�

Notation. We’ll write Cn for any group that is cyclic of order n. We’ve verified
that any two such groups are isomorphic.

8The curious will be reflecting on why G should have a unique smallest subgroup containing

S. Their reflections will do them good
9Recall that non-negative integers a, b are coprime if and only if their only common factor is

1.
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Recall that we showed that D2n = {ri, ris | i = 0, 1, . . . , n− 1} where r denotes
a rotation by 2π/n and s denotes a reflection. And that

rk · rl = rk+nl,

rk · rls = rk+nls,

rks · rl = rk+n(−l)s and

rks · rls = rk+n(−l).

Lemma. Let n > 2 and suppose that G is a group containing elements g, h such
that gn = e, h2 = e and hgh−1 = g−1. There is a unique group homomorphism
f : D2n → G such that f(r) = g and f(s) = h. Moreover if o(g) = n and |G| = 2n
then f is an isomorphism.

�

Lecture 6

1.5. The Möbius Group. Informally, a Möbius transformation is a function
f : C→ C of the form

f : z 7→ az + b

cz + d
with a, b, c, d ∈ C and ad− bc 6= 0. The reason for the condition ad− bc 6= 0 is that
for such a function if z, w ∈ C then

f(z)− f(w) =
az + b

cz + d
− aw + b

cw + d
= (ad− bc) (z − w)

(cz + d)(cw + d)

so f would be constant if ad− bc were 0.10

Unfortunately the function is not well defined if z = −d/c since we may not
divide by zero in the complex numbers. This makes composition of Möbius trans-
formations problematic since the image of one Möbius transformation may not
coincide with the domain of defintion of another. We will fix this by adjoining an
additional point to C called ∞.11

Notation. Let C∞ := C ∪ {∞} which we call the extended complex plane.

Definition. Given (a, b, c, d) ∈ C4 such that ad− bc 6= 0 we can define a function
f : C∞ → C∞ as follows:

if c 6= 0 then

f(z) :=


az+b
cz+d if z ∈ C\{−d/c};
∞ if z = −d/c;
a/c if z =∞;

if c = 0 then

f(z) :=

{
az+b
cz+d if z ∈ C
∞ if z =∞.

We call all functions from C∞ to C∞ that arise in this way Möbius transformations
and let

M := {f : C∞ → C∞ | f is a Möbius transformation}.

10This is bad because we’re really interested in invertible functions
11And pronounced ‘infinity’.
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We’ll see another way to interpret this definition later in the course involving
projective geometry. But for now we’ll work with it as it stands and also take for
granted a result that will will prove later.12

Theorem. The set M defines a subgroup of S(C∞).

Lemma. Suppose that f ∈M such that f(0) = 0, f(1) = 1 and f(∞) =∞. Then
f = id.

�

Theorem (Strict triple transitivity of Möbius transformations). If (z1, z2, z3) and
(w1, w2, w3) are two sets of three distinct points then there is a unique f ∈M such
that f(zi) = wi for i = 1, 2 and 3.

�

Definition. Given distinct points z1, z2, z3, z4 ∈ C∞ the cross-ratio of z1, z2, z3, z4
written [z1, z2, z3, z4] := f(z4) where f is the unique Möbius transformation such
that f(z1) = 0, f(z2) = 1 and f(z3) =∞.13

Lemma. If z1, z2, z3, z4 ∈ C then [z1, z2, z3, z4] = (z4−z1)(z2−z3)
(z2−z1)(z4−z3) .14

�

Theorem (Invariance of Cross-Ratio). For all z1, z2, z3, z4 ∈ C∞ and g ∈ M,
[g(z1), g(z2), g(z3), g(z4)] = [z1, z2, z3, z4].

�

Proposition. Every element of M is a composite of Möbius transformations of
the following forms.

(a) Da : z 7→ az = az+0
0z+1 with a ∈ C\{0} (rotation/dilations);

(b) Tb : z 7→ z + b = 1z+b
0z+1 with b ∈ C (translations);

(c) S : z 7→ 1/z = 0z+1
1z+0 (inversion).

�

Lecture 7

Definition. A circle in C∞ is a subset that is either of the form {z ∈ C | |z−a| = r}
for some a ∈ C and r > 015 or of the form {z ∈ C | aRe(z) + bIm(z) = c} ∪ {∞}
for some a, b, c ∈ R with (a, b) 6= (0, 0)16

It follows that any three distinct points in C∞ determine a unique circle in C∞.

12There is a straight-forward if slightly fiddly way to prove it directly that demands care with

the point ∞. We will give a slightly more sophisticated but less fiddly proof.
13There are 6 essentially different definitions of cross-ratio depending on how we order 0, 1

and ∞ in this definition. It doesn’t really matter which we choose as long as we are consistent.
14We could’ve defined the cross-ratio by this formula but we’d need to be more careful when

some zi =∞.
15i.e. a usual circle in C
16i.e. a line in C together with ∞
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Lemma. The general equation of a circle in C∞ is

Azz̄ +Bz̄ + B̄z + C = 0

with A,C ∈ R, B ∈ C and AC < |B|2.17

�

Theorem (Preservation of circles). If f ∈ M and C is a circle in C∞ then f(C)
is a circle in C∞.

�

Corollary. Four distinct points z1, z2, z3 and z4 in C∞ lie on a circle if and only
if [z1, z2, z3, z4] ∈ R.

�

Remark. It is possible to prove the corollary directly and then use a similar argu-
ment to deduce that Möbius transformations preserve of circles from it.

Definition. Given two elements x, y of a group G we say y is conjugate to x if
there is some g ∈ G such that y = gxg−1.

Note that if y = gxg−1 then x = g−1y(g−1)−1 so the notion of being conjugate
is symmetric in x and y. Morever if also z = hyh−1 then z = (gh)x(gh)−1 so if z
is conjugate to y and y is conjugate to x then z is conjugate to x.

Proposition. Every Möbius transformation f except the identity has precisely one
or two fixed points. If f has precisely one fixed point it is conjugate to the translation
z 7→ z + 1. If f has precisely two fixed points it is conjugate to a map of the form
z 7→ az with a ∈ C\{0}.

�

Remark. Suppose that f ∈M. If gfg−1 : z 7→ z + 1 then for each n > 0,

gfng−1 = (gfg−1)n : z 7→ z + n

so fn(z) = g−1(g(z)+n) for z ∈ C∞ not fixed by f . Similarly if gfg−1 : z 7→ az then
for n > 0, fn(z) = g−1(ang(z)) for z not fixed by f . Thus we can use conjugation
to compute iterates of f ∈M in a simple manner.

Lecture 8

2. Lagrange’s Theorem

2.1. Cosets.

Definition. Suppose that (G, ◦) is a group and H is a subgroup. A left coset of
H in G is a set of the form g ◦H := {g ◦ h | h ∈ H} for some g ∈ G. Similarly a
right coset of H in G is a set of the form H ◦ g := {hg | h ∈ H} for some g ∈ G.
We write G/H to denote the set of left cosets of H in G and H\G to denote the
set of right cosets of H in G18.

As usual we will often suppress the ◦ and write gH or Hg.

17where ∞ is understood to be a solution of this equation precisely if A = 0
18This latter is a little unfortunate in the \ is normally used to denote set-theoretic difference

but this should not cause confusion. Why?
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Examples.

(1) Suppose n ∈ Z, so that nZ := {an | a ∈ Z} is a subgroup of (Z,+). Then
0 + nZ = nZ = n + nZ. 1 + nZ = {1 + an | a ∈ Z} = (1 − n) + nZ. More
generally, b+ nZ is the set of integers x such that x− b is a multiple of n.19

(2) Suppose that G = D6 = {e, r, r2, s, rs, r2s} and H = {e, s} then

eH = {e, s} = sH

rH = {r, rs} = rsH

r2H = {r2, r2s} = r2sH.

However,

He = {e, s} = Hs

Hr = {r, r2s} = Hr2s

Hr2 = {r2, rs} = Hrs.

Thus left cosets and right cosets need not agree when the group is not abelian.
However if K = {e, r, r2} 6 D6 then K = eK = rK = r2K = Ke = Kr = Kr2

and {s, rs, r2s} = sK = rsK = r2sK = Ks = Krs = Kr2s. So in this case
the left and right cosets are the same.

(3) Suppose that M is the Möbius group and H = {f ∈M | f(0) = 0}. Then, for
g ∈M,

gH = {f ∈M | f(0) = g(0)} whereas

Hg = {f ∈M | f−1(0) = g−1(0)}.
We’ll return to this idea later in the course.

2.2. Lagrange’s Theorem.

Theorem (Lagrange’s Theorem). Suppose that G is a group and H is a subgroup
of G then the left cosets of H in G partition G. In particular if G is finite then |H|
divides |G|.

�

Remark. By a very similar argument the right cosets of H in G also partition G.

Corollary. If G is a finite group, then every element of G has order dividing |G|.
�

Proposition. Suppose that p is prime. Then every group of order p is isomorphic
to Cp.

�

2.3. Groups of order at most 8. In this section we will classify all groups of
order at most 8 under the perspective that two groups are the same precisely if
they are isomorphic. We’ve already seen that every group of order 2, 3, 5 or 7 is
isomorphic to the cyclic group of the same order. It is evident that the trivial group
is the only group of order 1 up to isomorphism.

Before we begin this we’ll need the following construction that enables us to
build new groups from old ones.

19Note that because the operation on Z is addition we don’t suppress it when we name cosets,
i.e. we write a+ nZ rather than anZ because the latter would create confusion.
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Example. Suppose that G and H are groups. We can define a binary operation on
G ×H via (g1, h1)(g2, h2) = (g1g2, h1h2) for g1, g2 ∈ G and h1, h2 ∈ H. We claim
that this makes G×H into a group.

Proof of claim. Since

((g1, h1)(g2, h2))(g3, h3) = (g1g2g3, h1h2h3) = (g1, h1)((g2, h2)(g3, h3))

for all g1, g2, g3 ∈ G and h1, h2, h3 ∈ H, the operation on G×H is associative.
Since (eG, eH)(g, h) = (g, h) = (g, h)(eG, eH), (eG, eH) is an identity for the

operation on G×H.
Finally since (g−1, h−1)(g, h) = (eG, eH) = (g, h)(g−1, h−1) the operation on

G×H has inverses. �

Exercise. Show that if G1, G2 and G3 are groups then G1 × G2 is isomorphic to
G2 ×G1 and (G1 ×G2)×G3 is isomorphic to G1 × (G2 ×G3).

Lecture 9

Theorem (Direct Product Theorem). Suppose that H1, H2 6 G such that

(i) H1 ∩H2 = {e};
(ii) if h1 ∈ H1 and h2 ∈ H2 then h1 and h2 commute;

(iii) for all g ∈ G there are h1 ∈ H1 and h2 ∈ H2 such that g = h1h2.

Then there is an isomorphism H1 ×H2 → G.

�
We also need the following result that also appeared on the first example sheet.

Lemma. If G is a group such that every non-identity element has order two20 then
G is abelian.

�
We also recall that every a group of order n with an element of order n is

isomorphism to Cn and that every group of order 2n that has an element g of order
n and an element h of order 2 such that hg = g−1h is isomorphic to D2n.

Proposition. Every group of order 4 is isomorphic to precisely one of C4 and
C2 × C2.

�

Proposition. Every group of order 6 is isomorphic to precisely one of C6 or D6.

�

Example. The following set of matrices form an non-abelian group Q8 of order 8{
±
(

1 0
0 1

)
,±
(
i 0
0 −i

)
,±
(

0 1
−1 0

)
,±
(

0 i
i 0

)}
.

It is common to write

1 =

(
1 0
0 1

)
, i =

(
i 0
0 −i

)
, j =

(
0 1
−1 0

)
and k =

(
0 i
i 0

)
.

Then Q8 = {±1,±i,±j,±k}. Then we can compute that 1 is an identity, −1 has
order 2 commutes with everything and multiplies as you’d expect given the notation.

20Of course in any group the identity has order 1
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Morever i, j and k all have order 4 (all of them square to −1), ij = k = −ji,
ki = j = ik and jk = i = −kj.

Exercise. Verify that Q8 is a group.

Lecture 10

Proposition. Every group of order 8 is isomorphic to precisely one of C8, C4×C2,
C2 × C2 × C2, D8 or Q8.

�

2.4. The Quaternions.

Definition. The quaternions are the set of matrices

H := {a1 + bi + cj + dk | a, b, c, d ∈ R} ⊂ Mat2(C)

where as before

1 =

(
1 0
0 1

)
, i =

(
i 0
0 −i

)
, j =

(
0 1
−1 0

)
and k =

(
0 i
i 0

)
.

The sum or product of two elements of H lives in H and + and · obey the
same associativity and distributivity laws as Q,R and C with identities 0 and 1
respectively. Although the multiplication in H is not commutative (since ij = −ji),
(H,+) is an abelian group and (H\{0}, ·) is a (non-abelian) group.21 To see the
latter we can define ‘quaternionic conjugation’ by

(a1 + bi + cj + dk)∗ = a1− bi− cj− dk

and then verifying that if x = a1 + bi + cj + dk then

xx∗ = x∗x = (a2 + b2 + c2 + d2)1

so x−1 = 1
a2+b2+c2+d2x

∗ for x 6= 0.

2.5. Fermat–Euler theorem. We can define a multiplication operation on the
set Zn = {0, 1, . . . , n− 1} by setting a ·n b to be the remainder after dividing ab by
n.

Definition. Let Un := {a ∈ Zn | ∃b ∈ Zn s.t. a ·n b = 1} be the set of invertible
elements of Zn with respect to ·n.

It is a result from Numbers and Sets that follows from Euclid’s algorithm that
|Un| = ϕ(n) where ϕ(n) denotes the number of elements of Zn coprime to n. Indeed
Un = {a ∈ Zn | (a, n) = 1}.

Lemma. (Un, ·n) is an abelian group.

�

Theorem (Fermat–Euler Theorem). If (a, n) = 1 then aϕ(n) ≡ 1 mod n.

�

21We say that H is a division algebra. R,C and H are the only division algebras that are finite
dimensional as vector spaces over R.
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Lecture 11

3. Group Actions

We started the course by saying that groups are fundamentally about symmetry
but the connection has been opaque for the last three lectures. In this chapter we
will discuss how to recover the notion of symmetry from the group axioms.

3.1. Definitions and examples.

Definition. An action of a group G on a set X is a function

· : G×X → X; (g, x) 7→ g · x

such that for all x ∈ X
(i) e · x = x;
(ii) g · (h · x) = (gh) · x for all g, h ∈ G.

Examples.

(1) Isom(Z) acts on Z via f · n = f(n).
(2) The Möbius groupM acts on the extended complex plane C∞ via f · z = f(z).
(3) Generalising both the examples above, if H 6 S(X) then H acts on X via

h · x = h(x). We call this the natural action of H on X.
(4) M also acts on the set of circles in C∞. We proved in §1.5 that if f ∈ M

and C ⊂ C∞ is a circle then f(C) ⊂ C∞ is also a circle so (f, C) 7→ f(C) is a
function. Moreover for all circles C the conditions id(C) = C and f(g(C)) =
(fg)(C) for f, g ∈M are both clear.

(5) D2n acts on the set of points a regular n-gon. D2n also acts on the set of
vertices of a regular n-gon and on the set of edges of a regular n-gon.

(6) If X is a regular solid then Sym(X) acts on the set of points (and on the sets
of vertices/edges/faces) of X.

(7) If H 6 G then G acts on G/H, the set of left cosets of G in H via g ·kH = gkH
for g, k ∈ G. To see this we need to check that if kH = k′H then gkH = gk′H.
But if kH = k′H then k′ = kh for some h ∈ H so gk′ = gkh ∈ gk′H ∩gkH and
gkH = gk′H by Lagrange. Given this we see that for all k ∈ G, ekH = kH
and g1(g2kH) = (g1g2)kH for all g1, g2 ∈ G.

(8) For any group G and set X we can define the trivial action via g · x = x for all
g ∈ G and x ∈ X.

Theorem. For every group G and set X there is a 1− 1 correspondence

{actions of G on X} ←→ {θ : G→ S(X) | θ is a homomorphism}

such that an action · : G×X → X corresponds to the homomorphism θ : G→ S(X)
given by θ(g)(x) = g · x.

�

Definition. We say that an action of G on X is faithful if the kernel of the corre-
sponding homomorphism G→ S(X) is the trivial group.
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3.2. Orbits and Stabilisers.

Definition. Suppose a group G acts on a set X and that x ∈ X. The orbit of x
under the action is given by

OrbG(x) := {g · x | g ∈ G} ⊂ X.

The stabiliser of x under the action is given by

StabG(x) := {g ∈ G | g · x = x} ⊂ G.

Thus an action is faithful precisely if
⋂
x∈X StabG(x) = {e}.

Examples.
(1) Under the natural action of Isom(Z) on Z, for all n ∈ Z

OrbIsom(Z)(n) = Z

and

StabIsom(Z) = {id,m 7→ 2n−m}
(2) Under the natural action of M on C∞, for all z ∈ C∞

OrbM(z) = C∞
and

StabM(∞) =

{
z 7→ az + b

0c+ d
| ad 6= 0

}
.

(3) Under the action of D2n on the set of points of a regular n-gon the orbit of a
vertex of the n-gon is the set of all vertices of the n-gon and the stabliser of a
vertex consists of the identity and reflection in the line through the centre of
the n-gon and the vertex.22

(4) For the left coset action of G on G/H defined earlier

OrbG(eH) = G/H

and

StabG(eH) = {g ∈ G | gH = eH} = H.

More generally

StabG(kH) = {g ∈ G | gkH = kH} = {g ∈ G | k−1gkH = H} = kHk−1.

(5) For the trivial action of G on X and any x ∈ X,

OrbG(x) = {x} and StabG(x) = G.

Lemma. Suppose that G is a group acting on a set X.

(i) Each stabiliser StabG(x) is a subgroup of G.
(ii) The orbits OrbG(x) partition X. In particular if X is finite and the distinct

orbits are O1, . . . ,Om then

|X| =
m∑
i=1

|Oi|

�

22It would be instructive to think about what the orbits and stabilisers of other points of n-gon
are under the action of D2n.
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Definition. We say that an action of G on X is transitive if there is only one orbit
i.e. if X = OrbG(x) for any x ∈ X.

Theorem (Orbit-Stabiliser Theorem). Suppose a group G acts on a set X and
x ∈ X. There is a (natural) invertible function

G/StabG(x)→ OrbG(x).

In particular if G is finite

|G| = |OrbG(x)| · | StabG(x)|.

�

Examples.
(1) For the natural action of Isom(Z) on Z the set of left cosets of StabIsom(Z)(0) =
{e, n 7→ −n} in Isom(Z) is in bijection with Z. We secretly used this fact when
we computed Isom(Z) in the first lecture.

(2) For the usual action of D2n on the vertices of the n-gon and v such a vertex we
see that |D2n| = |StabD2n(v)||OrbD2n(v)| = 2n. Again we secretly used this
when we computed |D2n| = 2n.

(3) The symmetric group Sn acts on X = {1, 2, . . . , n} via the natural action
f ·x = f(x). Then OrbSn

(n) = X since for each i ∈ X the function fi : X → X;
fi(i) = n, fi(n) = i, fi(x) = x for x 6∈ {i, n} is an element of Sn. Thus
|Sn| = nStabSn(n). But StabSn(n) is isomorphic to Sn−1 by restricting f ∈ Sn
that fixes n to a permutation of {1, . . . , n − 1}. Thus |Sn| = n|Sn−1|. Since
|S1| = 123 we deduce that |Sn| = n!.

Lecture 13

Fact. If f : R3 → R3 is an isometry that fixes 4 non-coplanar points then f is
the identity.

(4) Let X be a regular tetrahedron. Then Sym(X) acts transitively on the set of
4 vertices of X and the stabiliser of a vertex v ∈ X consists of three rotations
and three reflections. Thus |Sym(X)| = 6 · 4 = 24.

This calculation enables us to prove that Sym(X) ' S4: if we label the
vertices by the numbers 1, 2, 3, 4 then the action of Sym(X) on the vertices
defines a homomorphism θ : Sym(X)→ S4. Since any isometry of R3 fixing all
four vertices is the identity we can conclude that ker θ = {id}. By counting we
can deduce Im θ = S4.

(5) Let X be a cube. Then Sym(X) acts transitively on the set of 6 faces of X and
the stabiliser H := StabSym(X)(F ) of a face F acts transitively on the set of 4

vertices contained in it24. If v is one of these vertices and w is the diagonally
opposite vertex in F then

StabH(v) = {e, reflection in plane containing v, w and the centre of X}25.

23Or if you prefer |S0| = 1
24This can be seen by considering rotations about an axis through the centre of F and the

centre of its opposite face.
25Since if an isometry of R3 fixes all vertices of F and the centre of X then it is the identity.
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Thus

Sym(X) = 6|H| = 6 · |OrbH(v)||StabH(v)| = 6 · 4 · 2 = 48.

3.3. Conjugacy classes.

Definition. If G is a group then the conjugation action of G on itself is given by
· : G×G→ G; g · x = gxg−1.

Note that the conjugation action is indeed an action since for g, h, x ∈ G,

e · x = exe−1 = x

and

g · (h · x) = g(hxh−1)g−1 = (gh)x(gh)−1 = (gh) · x.

Definition. The orbits of G on itself under the conjugation action are called the
conjugacy classes of G: the orbit of x ∈ G will be denoted ccl(x); i.e.

ccl(x) = {gxg−1 | g ∈ G}.26

The stabliser of x ∈ G under this action is called the centraliser of x and will be
denoted CG(x).

Examples.
(1) Suppose G = Isom(Z) = {ta : n 7→ a + n, sa : n 7→ a − n | a ∈ Z}. Let

H := {ta | a ∈ Z} denote the subgroup of translations We know that for any
a, b ∈ Z,

tbtat
−1
b = ta

and for n ∈ Z,

sbtas
−1
b (n) = sbta(b− n) = sb(a+ b− n) = n− a

ie

sbtas
−1
b = t−a

so for a 6= 0

CG(ta) = H and ccl(ta) = {ta, t−a}27.
Similarly for n ∈ Z

tbsat
−1
b (n) = tbsa(n− b) = tb(a− (n− b)) = (2b+ a− n) = s2b+a(n)

and

sbsas
−1
b (n) = sbsa(b−n) = sb(a− (b−n)) = b− (a+n− b) = 2b−a−n = s2b−a(n)

so as a ≡ −a mod 2

CG(sa) = {t0, sa} and ccl(sa) = {sa+2b | b ∈ Z}.

That is there are two conjugacy classes of reflections ccl(s0) and ccl(s1).28

26Since conjugacy classes are orbits of an action they partition G; that is every element of G

lies in precisely one conjugacy class.
27Of course CG(t0) = G and ccl(t0) = {t0}.
28What is the geometric meaning of this?
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(2) We saw in section 1.5 that in the Möbius group M the conjugacy class of
z 7→ z+ 1 consists of all Möbius transformations with precisely one fixed point
i.e.

ccl(z 7→ z + 1) = {f ∈M | f has precisely one fixed point}
and that every Möbius transformation with precisely two fixed points is in the
same conjugacy class as a Möbius transformation of the form z 7→ az. We will
return later to the question of when ccl(z 7→ az) = ccl(z 7→ bz) and what the
centralisers of these elements are.29 Of course ccl(id) = {id} and CM(id) =M.

Definition. The kernel of the homomorphism G→ S(G) given by the conjugation
action of G on itself is called the centre of G and written Z(G).

Lemma. Suppose that G is a group.

(a) For x ∈ G, CG(x) = {g ∈ G | xg = gx}.
(b) Z(G) = {g ∈ G | gx = xg for all x ∈ G} =

⋂
x∈G CG(x).

(c) Z(G) = {g ∈ G | |ccl(g)| = 1}.

�

3.4. Cayley’s Theorem. Cayley’s Theorem will tell us that every group is iso-
morphic to a subgroup of a symmetric group.

Definition. If G is a group then the left regular action of G on itself is given by
the function · : G×G→ G; g · x = gx.

Example. The left regular action of Z on itself is by translations. i.e. the corre-
sponding homomorphism Z→ S(Z) is given by n 7→ tn.30

Lemma. The left regular action of G on G is an action that is both tra nsitive and
faithful.

�

Lecture 14

Theorem (Cayley’s Theorem). If G is a group then G is isomorphic to a subgroup
of S(G).

�
It perhaps should be said that this theorem is simultaneously deep and almost

useless. Deep because it tells us that anything satisfying our abstract definition of a
group can be viewed as symmetries of something. Almost useless because knowing
this doesn’t really help prove things about groups.

3.5. Cauchy’s Theorem.

Theorem (Cauchy’s Theorem). Supppose that p is a prime and G is a finite group
whose order is a multiple of p. Then G contains an element of order p.

�

29Spoiler: ccl(z 7→ az) = ccl(z 7→ bz) if and only if b ∈ {a, 1/a}, CG(z 7→ z + 1) =
{translations in M} and, for a 6= 1, CG(z 7→ az) = {dilations/rotations in M}. Can you prove
these facts now? Hint: if g(z 7→ az)g−1 = z 7→ bz for g ∈ M what can you say about g(0) and

g(∞)?
30recall tn denotes translation by n
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4. Quotient Groups

4.1. Normal subgroups. Suppose that G is a group. Let P(G) denote the set of
subsets of G, i.e. the power set of G. There is a natural binary operation on P(G)
given by

AB := {ab | a ∈ A, b ∈ B}.

Examples.
(1) If A ∈P(G) then A∅ = ∅ = ∅A. If A is non-empty then AG = G = GA.
(2) If H 6 G then the binary operation on P(G) restricts to a binary operation

on P(H).
(3) If H 6 G then the sets {g}H are precisely the left cosets gH of H in G.

Lemma. This operation on P(G) is associative and has an identity but does not
have inverses.

�
We’ll be particularly interested in the product of two cosets under this operation

— in particular if H 6 G we’d like to use it to put a group structure on the set of
left cosets G/H of H in G. If G is abelian then this is straightforward:

g1Hg2H = {g1h1g2h2 | h1, h2 ∈ H} = {g1g2h1h2 | h1, h2 ∈ H} = g1g2H

and one can easily31 show that this does define a group structure on G/H. However
in general things are not so straightforward.

Example. Consider G = D6 = {e, r, r2, s, rs, r2s} where r denotes a non-trivial
rotation in the group and s a reflection.

If H is the subgroup of rotations {e, r, r2} then the cosets of H in G are H and
sH. We can compute

HH = H

HsH = sH

sHH = sH and

sHsH = H.

So G/H with this operation is isomorphic to C2.
However if K is the subgroup {e, s} of G then

rKr2K = {r, rs}{r2, r2s} = {e, r2s, s, r2}

which is not a left coset of K in G.

Proposition. Suppose H 6 G. The product of two left cosets of H in G is always
a left coset of H in G if and only if gHg−1 = H32 for all g ∈ G. In this case
g1Hg2H = g1g2H for all g1, g2 ∈ G.

�

31and we will later
32Here gHg−1 means {g}H{g−1}
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Remark. Notice that along the way we proved that whenever gHg−1 ⊂ H for all
g ∈ G, in fact gHg−1 = H for all g ∈ G.

Definition. We say that a subgroup H of a group G is normal if gHg−1 = H for
all g ∈ G.

Warning. To show that a subset of G is a normal subgroup we must show
that it is a subgroup as well as that it satisfies the above conditon.

Examples.
(1) If G is abelian then every subgroup is normal.
(2) The group Isom+(Z) is normal in Isom(Z) but the subgroup {idZ, s : n 7→ −n}

is not normal is Isom(Z).
(3) The subgroup of rotations in D2n is normal in D2n but no subgroup generated

by a reflection is normal in D2n.
(4) StabM(∞) is not a normal subgroup of M.

Lemma. A subgroup H of a group G is normal if and only if every left coset is a
right coset.33

�

Proposition. If H is a normal subgroup of G then the restriction of the binary
operation on P(G) makes G/H into a group such that g1Hg2H = g1g2H.

Definition. We call G/H the quotient group of G by H.

�

4.2. The isomorphism theorem.

Theorem (The (first) isomorphism theorem). Suppose that f : G→ H is a group
homomorphism. Then ker f is a normal subgroup of G, Im f is a subgroup of H
and f induces an isomorphism

f : G/ ker f
'−→ Im f

given by f(g ker f) = f(g).

�

Remark. Often a good way to prove that a subset of a group G is a normal subgroup
is to show that it is the kernel of some homomorphism from G to another group.

33We’ll often just say coset in this case.
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Example. The homomorphism Z→ Zn that sends a to the remainder after dividing

a by n has kernel nZ and image Zn. Thus it induces an isomorphism Z/nZ '→ Zn.34

Example. Let θ : (R,+) → (C\{0}, ·) be given by θ(r) = e2πir. Then θ(r + s) =
e2πi(r+s) = θ(r)θ(s) so θ is a homomorphism. Moreover

Im θ = S1 := {z ∈ C | |z| = 1},

the unit circle in C and

ker θ = Z
thus we can deduce that R/Z ' S1.

Example. Let θ : D2n → {±1} such that

θ(g) :=

{
+1 if g is a rotation
−1 if g is a reflection.

Then we can verify that θ is a homomorphism since the product of two reflections
or two rotations is a rotation and the product of a rotation and a reflection in
either order is a reflection. Moreover Im θ = {±1} and ker θ is the subgroup of all
rotations of the regular n-gon. Thus D2n/{rotations in D2n} ' C2.

Example (Group-theoretic understanding of qth powers mod p). Let p and q be
distinct primes and G = (Zp\{0}, ·p). Define

θ : G→ G;x 7→ xq.

Then for x, y ∈ G, θ(xy) = (xy)q = xqyq = θ(x)θ(y) i.e. θ is a homomorphism.
Then

ker θ = {x ∈ G | xq = 1} = {x ∈ G | o(x) = 1 or q}.
We now divide into two cases.

First suppose that q is not a factor of p−1. Since |G| = p−1, G has no elements
of order q by Lagrange. Thus ker θ = {1}. It follows that θ induces an isomorphism
G ' Im θ. By counting we can conclude that Im θ = G. In particular we see that
every element of Zp is a qth power when p is not 1 mod q.

Next suppose that q is a factor of p − 1. In this case G does have an element
of order q by Cauchy’s Theorem. Thus | ker θ| > q.35 Since G/ ker θ ' Im θ and
|G/ ker θ| = |G|/| ker θ| 6 p−1

q we see that Zp has at most p−1
q + 1 qth-powers when

p is 1 mod q.36

Example. If G acts on a set X and K = {g ∈ G | g(x) = x for all x ∈ X} =⋂
x∈X StabG(x) then the homomorphism G → S(X) given by the action induces

an isomorphism from G/K to a subgroup of S(X). Thus the action of G on X
induces a faithful action of G/K on X.37

34The notation Zn as we have defined it is rarely used and instead Z/nZ is used to describe
essentially the same thing.

35Since an element of order q generates a subgroup of order q contained in the kernel. In fact
it is not too hard to prove that ker θ has precisely q elements.

36In fact precisely this many.
37This means that to understand all actions of a group G it is equivalent to understand all

faithful actions of all quotients of G.
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Example. Suppose that X is a regular tetrahedron in R3. X has six edges and each
edge has four neighbours.38 Thus we can partition the set of edges into three pairs
with each pair consisting of non-adjacent edges. Let P denote the set of such pairs.
Then the action of Sym(X) on X induces an action on P since if f ∈ Sym(X) and v
and w are non-adjacent edges of X then f(v) and f(w) are also non-adjacent edges
of X. Thus by the last example there is a homomorphism θ : Sym(X) → S(P ).
It is easy to verify by hand that Im θ = S(P ). Then the isomorphism theorem we
can deduce that Sym(X)/ ker θ ' S(P ). We showed earlier than Sym(X) ' S4 and
it is straightforward to see that S(P ) ' S3.39 Thus we can deduce that S4 has a
normal subgroup K such that S4/K ' S3.40

Lecture 17

5. Matrix groups

Suppose that throughout this section F denotes either R or C.

5.1. The general and special linear groups. Let Mn(F) denote the set of n×n
matrices with entries in F.

Here are some facts proven in Vectors and Matrices.

Facts.
(1) Every element A of Mn(F) defines a linear map A : Fn → Fn via A : v 7→ Av.41

Moreover every linear map Fn → Fn arises in this way and A can be recovered
from A since the ith column of A is A(ei) where ei denotes the element of Fn
with ith entry 1 and all other entries 0.

(2) AB corresponds to the composite A◦B. Thus associativity of multiplication of
(square) matrices follows from associativity of composition of functions Fn →
Fn.

(3) The matrix In with 1s down the main diagonal and 0s elsewhere is an identity
for matrix multiplication on Mn(F). Moreover In = idFn .

(4) There is a function det : Mn(F)→ F such that A has an inverse in Mn(F) if and
only if detA 6= 0. Moreover det(AB) = det(A) det(B) for any A,B ∈ Mn(F)
and det In = 1.

Definition. The general linear group GLn(F) := {A ∈ Mn(F) | detA 6= 0} is the
group of invertible n× n matrices with entries in F.

Proposition. GLn(F) is a group under matrix multiplication.

�

Remark. There is a natural action of GLn(F) on Fn via (A, v) 7→ Av. One can
show that the homomorphism GLn(F) → S(Fn) coming from this action induces
an isomorphism GLn(F) with the subgroup of S(Fn) consisting of all invertible
linear maps Fn → Fn.

38There are two edges sharing each vertex of a given edge.
39Or S(P ) ' D6 if you prefer
40Can you say which elements of S4 live in K? There must be four of them by Lagrange. If

you find this too hard at this stage then try again when you revise the course having studied the

groups Sn in more detail.
41Recall that A is linear means that A(λv+µw) = λA(v)+µA(w) for all λ, µ ∈ F and v, w ∈ Fn.



GROUPS 25

Lemma. The function det : GLn(F) → (F\{0}, ·) is a group homomorphism with
image F\{0}.

�

Definition. The special linear group SLn(F) is the kernel of det : GLn(F)→ F\{0}
i.e.

SLn(F) := {A ∈Mn(F) | detA = 1}.

Remarks.

(1) The action of GLn(F) on Fn induces an action of SLn(F) on Fn by restriction
and the resulting homomorphism SLn(F) → S(Fn) induces an isomorphism
of SLn(F) with the subgroup of S(Fn) consisting of volume preserving linear
maps Fn → Fn.

(2) SLn(F) a normal subgroup of GLn(F and GLn(F)/SLn(F) ' F\{0}.

Examples.

GL2(F) =

{(
a b
c d

)
| ad− bc 6= 0

}
and

SL2(F) =

{(
a b
c d

)
| ad− dc = 1

}
5.2. Möbius maps as projective linear transformations.

Notation. Given v ∈ C2\{0} let [v] denote the (unique) line {λv | λ ∈ C} through
0 and v in C2. The set of all such lines is called the complex projective line typically
written P1(C).

The following lemma gives a parameterisation of the elements of P1(C).

Lemma. Every element of P1(C) is either of the form

[(
z
1

)]
with z ∈ C or[(

1
0

)]
. Moreover these lines are all distinct.

�

It follows that we may identify C∞ and P1(C) via z 7→
[(
z
1

)]
for z ∈ C and

∞ 7→
[(

1
0

)]
.

Proposition. GL2(C) acts on P1(C) via (A, [v]) 7→ [Av] for v ∈ C2\{0}.

�
We note that under this action of GL2(C) on P1(C)(

a b
c d

)
·
[(
z
1

)]
=

[(
az + b
cz + d

)]
=

[(
az+b
cz+d

1

)]
when z 6= −d/c,(

a b
c d

)
·
[(
−d/c

1

)]
=

[(
1
0

)]
,(

a b
c d

)
·
[(

1
0

)]
=

[(
a
c

)]
=

[(
a
c
1

)]
when c 6= 0, and
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a b
0 d

)
·
[(

1
0

)]
=

[(
1
0

)]
.

Thus, under the identification of C∞ with P1(C), the homomorphism

θ : GL2(C)→ S(C∞)

corresponding to this action sends the matrix

(
a b
c d

)
to the Möbius map repre-

sented by z 7→ az+b
cz+d , and so Im θ =M. Thus M is a subgroup of S(C∞).

Moreover ker θ consists of invertible matrices

(
a b
c d

)
fixing every line through

the origin in C2.
Now

StabGL2(C)

([(
1
0

)])
=

{(
a b
c d

)
∈ GL2(C) | c = 0

}
,

StabGL2(C)

([(
0
1

)])
=

{(
a b
c d

)
∈ GL2(C | b = 0

}
and

StabGL2(C)

([(
1
1

)])
=

{(
a b
c d

)
∈ GL2(C) | a+ b = c+ d

}
.

Since a Möbius transformation that fixes three distinct points is the identity, ker θ
is the intersection of these three sets i.e.

ker(GL2(C)→M) =

{(
a 0
0 a

)
| a 6= 0

}
is the group of non-zero scalar matrices.42

Thus PGL2(C) := GL2(C)/{λI | λ ∈ C 6= 0} ' M. It is not hard to see that a
similar argument shows that PSL2(C) := SL2(C)/{±I} ' M.

We can summarize this discussion with the following theorem.

Theorem. The action of GL2(C) on P1(C) induces an isomorphism from PGL2(C)
to M. In particular M is a subgroup of S(C∞).

Lecture 18

5.3. Change of basis. Recall that if A is a linear map Fn → Fn corresponding to
the matrix A and e1, . . . , en is the standard basis for Fn then A(ei) =

∑n
j=1Ajiej .

If f1, . . . , fn is another basis for Fn then there is an invertible linear map P such
that P (ei) = fi for i = 1, . . . , n. i.e. P corresponds to the matrix P whose columns
f1, . . . , fn and fi =

∑n
j=1 Pjiej for i = 1, . . . , n. It follows that for j = 1, . . . , n,

n∑
k=1

P−1kj fk =

n∑
k=1

P−1kj

n∑
l=1

Plkel =

n∑
l=1

(PP−1)ljel = ej .

42We can see this another way: the kernel of θ is certainly contains in the intersection of these

three stabilisers so it would suffice to check that any scalar matrix is in the kernel ie [λI2v] = [v]
for all non-zero λ in C. Indeed this is how we showed that a Möbius map that fixes 0, 1 and ∞ is

the identity in §1.5.
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Then

A(fi) = AP (ei)

=

n∑
j=1

(AP )jiej

=

n∑
j=1

(AP )ji(

n∑
k=1

P−1kj fk)

=

n∑
k=1

(P−1AP )kifk

Thus P−1AP represents A with respect to the basis f1, . . . , fn.

Proposition. GLn(F) acts on Mn(F) by conjugation.

�
It is now straightforward to see that two distinct matrices in Mn(F) represent

the same linear map with respect to different bases if and only if they are in the
same GLn(F)-orbit under this conjugation action.

Example (See Vectors and Matrices). If A : C2 → C2 is a linear map then precisely
one of the following three things is true:

(i) there is a basis for C2 such that A is represented by a matrix of the form(
λ 0
0 µ

)
with λ, µ ∈ C distinct — in this case {λ, µ} is determined by A43 but they
may appear in either order in the matrix;

(ii) there is a basis for C2 such that A is represented by a matrix of the form(
λ 0
0 λ

)
with λ ∈ C — in this case λ is determined by A indeed A = λ idC2 and A is
represented by this matrix with respect to every basis;

(iii) there is a basis for C2 such that A is represented by a matrix of the form(
λ 1
0 λ

)
again λ is determined by A.44

We may interpret this group-theoretically: every GL2(C)-orbit in M2(C) with
respect to the conjugation action is one of the following:

Oλ,µ := OrbGL2(C)

((
λ 0
0 µ

))
with λ, µ ∈ C distinct,

O(1)
λ := OrbGL2(C)

((
λ 0
0 λ

))
with λ ∈ C and

43λ and µ are its eigenvalues and the basis vectors are the corresponding eigenvectors
44it is the unique eigenvalue of A and A 6= λ idC.
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O(2)
λ := OrbGL2(C)(

((
λ 1
0 λ

))
with λ ∈ C.

These are all disjoint except that Oλ,µ = Oµ,λ. More explicitly,

Oλ,µ = {A ∈M2(C) | det(tI2 −A) = (t− λ)(t− µ) for all t ∈ C},

O(1)
λ = {λI2} and

O(2)
λ = {A ∈M2(C) | det(tI −A) = (t− λ)2 for all t ∈ C, A 6= λI2}.

We can also compute (
λ 0
0 µ

)(
a b
c d

)
=

(
aλ bλ
cµ dµ

)
and (

a b
c d

)(
λ 0
0 µ

)
=

(
aλ bµ
cλ dµ

)
so that for λ 6= µ,

StabGL2(C)

((
λ 0
0 µ

))
=

{(
a 0
0 d

)
| ad 6= 0

}
and StabGL2(C)(λI2) = GL2(C).

Similarly (
λ 1
0 λ

)(
a b
c d

)
=

(
aλ+ c bλ+ d
cλ dλ

)
and (

a b
c d

)(
λ 1
0 λ

)
=

(
aλ a+ bλ
cλ c+ dλ

)
so

StabGL2(C)

((
λ 1
0 λ

))
=

{(
a b
0 a

)
| a 6= 0

}
.

All other stabilisers are conjugate to these ones. We can easily read off the conju-
gacy classes and centralisers in GL2(C) by restricting to the case λ, µ 6= 0.

Exercise. Deduce that in M ' PGL2(C), ccl(z 7→ az) = ccl(z 7→ z 7→ bz) if and
only if b ∈ {a, 1/a} thus provide a description of all the conjugacy classes in M
and compute centralisers of suitable representatives of each class.

Lecture 19

5.4. The orthogonal and special orthogonal groups. Recall that any (square)
matrix A has a transpose AT with ATij = Aji and detAT = detA. Moreover if A,B

are square matrices of the same size then (AB)T = BTAT .

Definition. The orthogonal group O(n) := {A ∈ Mn(R) | ATA = In = AAT } ⊂
GLn(R) is the group of orthogonal n× n matrices.

Lemma. O(n) is a subgroup of GLn(R).
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�
Recall that Rn comes with an inner product v · w =

∑n
i=1 viwi which defines a

length function on Rn via |v| = (v ·v)1/2. We also recall the definition of Kronecker’s
delta

δij :=

{
1 if i = j;
0 if i 6= j.

A basis f1, . . . , fn of Rn is said to be orthonormal if fi · fj = δij .
45

Lemma.

(a) If {f1, . . . , fn} ⊂ Rn such that fi ·fj = δij for all 1 6 i, j 6 n, then {f1, . . . , fn}
is an orthonormal basis for Rn.

(b) If v, w ∈ Rn then v · w = 1
4 (|v + w|2 − |v − w|2).

�

Proposition. Suppose that A ∈Mn(R). The following are equivalent:

(i) A ∈ O(n);
(ii) Av ·Aw = v · w for all v, w ∈ Rn;

(iii) the columns of A form an orthonormal basis;
(iv) |Av| = |v| for all v ∈ Rn.

�
Thus O(n) is isomorphic to the subgroup of S(Fn) consisting of linear maps that

preserve the scalar product or equivalently to the subgroup of S(Fn) consisting of
linear maps that preserve length.

The conjugation action GLn(R) on Mn(R) restricts to an action of O(n) on
Mn(R). The equivalence of (i) and (iii) in the propostion shows that two distinct
matrices in Mn(R) are in the same O(n)-orbit if and only if they represent the same
linear map with respect to two different orthonormal bases (see the last lecture).

Proposition. det : O(n)→ (R\{0}, ·) has image {±1}.

�

Definition. The special orthogonal group

SO(n) := O(n) ∩ SLn(R) = ker(det : O(n)→ {±1}).

SO(n) is isomorphic to the subgroup of S(Rn) consisting of linear maps that
preserve the scalar product and orientation.46 It is a normal subgroup of O(n) and
O(n)/SO(n) ' C2.

There are complex versions of the orthogonal group and the special orthogonal
group called the unitary group and the special unitary group. We won’t have time
to discuss them but they do appear on Example Sheet 4.

45There is a little apparent notational ambiguity here since we use subscripts to index the
basis vectors as well as to index the coordinates of a vector. Each fi is in Rn so can be written

as
∑n

k=1(fi)kek and fi · fj =
∑n

k=1(fi)k(fj)k.
46I have not defined an orientation of Rn. One way would be as an SO(n)-orbit of orthonormal

bases for Rn which would make this completely tautological. There are more sophisticated ways
that make it less so. With this definition the next sentence gives that there are exactly two

orientations of Rn.
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5.5. Reflections.

Definition. Suppose that n ∈ Rm has length 1 then the reflection in the plane
normal to n is the function Rn : Rm → Rm given by

Rn(x) = x− 2(x · n)n.

Note that if y · n = 0 then Rn(y) = y, and Rn(n) = n− 2n = −n.

Lemma. Suppose n ∈ Rm has length 1 then

(a) Rn ∈ O(m);
(b) Rm has a basis with respect to which Rn is represented by a diagonal matrix D

such that D11 = −1, Dii = 1 for 2 6 i 6 m;
(c) (Rn)2 = idRm and;
(d) detRn = −1.

�

Proposition. If x, y ∈ Rm with x 6= y but x ·x = y · y then there is n ∈ Rm of unit
length such that Rn(x) = y. Moreover n may be chosen to be parallel to x− y.

�

Theorem. Every element of O(3) is a product of at most three reflections of the
form Rn with n ∈ R3 of length 1. 47

�

Proposition. If A ∈ O(2) then either

(i) A = SO(2) and there is some 0 6 θ < 2π such that

A =

(
cos θ sin θ
− sin θ cos θ

)
48 or

(ii) A 6∈ SO(2) and A = Rn for some n ∈ R2 of unit length.

�

Theorem. If A ∈ SO(3) then there is some non-zero v ∈ R3 such that Av = v.49

�

Lecture 21

Corollary. Every A in SO(3) is conjugate in SO(3) to a matrix of the form1 0 0
0 cos θ sin θ
0 − sin θ cos θ

 .

�

47There is nothing special about three here. In general every element of O(m) is a product of

at most m reflections of the form Rn. The proof is exactly similar to this one.
48i.e. A is a rotation
49That is every rotation in R3 has an axis.
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6. Permutations

Recall that a permutation of a set X is an element of the group S(X); that is
an invertible function X → X. In this chapter we will study permutations of finite
sets. More particularly we will study permutations of [n] := {1, 2, . . . , n}. Since
there is a 1-1 correspondence (i.e. invertible function) between any finite set and
[n] for some value of n this amounts to the same thing.

6.1. Permutations as products of disjoint cycles.

Definition. We say that a permutation σ : [n]→ [n] is a cycle if the natural action
of the cyclic subgroup of Sn generated by σ has precisely one orbit of size greater
than one.

Example. If σ : [5] → [5] such that σ(1) = 3, σ(2) = 2, σ(3) = 5, σ(4) = 4 and
σ(5) = 1 then σ ∈ S5. We can draw σ as follows:

1 442 qq 3 444-- 5
yy

.

We can compute σk(2) = 2 and σk(4) = 4 for all k ∈ Z. We can also compute
σ2(1) = σ(3) = 5, σ2(3) = σ(5) = 1 and σ2(5) = σ(1) = 3. Finally σ3(1) = σ(5) =
1, σ3(3) = σ(1) = 3 and σ3(5) = σ(3) = 5. So σ3 = id, the group generated by σ
is {id, σ, σ2} and the orbits are {1, 3, 5}, {2} and {4}. Thus σ is a cycle.

Suppose that σ is a cycle of order k. Then σ generates the subgroup

〈σ〉 := {id, σ, . . . , σk−1}.
For any b ∈ [n] in an orbit of size 1

σi(b) = b for all i ∈ Z
and if a ∈ [n] is in the orbit of size greater than one then for c = σj(a) ∈ Orb〈σ〉(a),

σi(c) = σi+j(a) = σj(σi(a)).

Thus σi(c) = c whenever σi(a) = a. i.e. σi ∈ Stab〈σ〉(a) only if σi = id. Thus
Stab〈σ〉(a) = {e} and |Orb〈σ〉(a)| = k.

Notation. If σ is a cycle of order k such that the orbit of size greater than one
contains the element a ∈ [n] then we write

σ = (aσ(a)σ2(a) · · ·σk−1(a)).

The discussion above shows that the elements a, σ(a), . . . , σk−1(a) are all distinct
and exhaust the orbit of a under 〈σ〉. Thus (aσ(a) · · ·σk−1(a)) uniquely determines
σ since σ(b) = b for b 6∈ {a, σ(a), . . . , σk−1(a)} and σ(σi(a)) = σi+k1(a).

Example. If σ : [5]→ [5] is as in the example above then σ = (135) = (351) = (513).

Definition. We say that (a1, . . . , ak) and (b1, . . . , bl) are disjoint cycles if

{a1, . . . , ak} ∩ {b1, . . . , bl} = ∅.

Lemma.
(a) For a1, . . . , am ∈ [n] distinct

(a1a2 · · · am) = (a2a3 · · · ama1) = (a3a4 · · · ama1a2) = · · ·
i.e. cycles can be cycled.

(b) If σ and τ are disjoint cycles then στ = τσ i.e. disjoint cycles commute.
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�

Theorem (Disjoint cycle decomposition). Every π ∈ Sn may be written as a (possi-
bly empty) product of disjoint cycles. Moreover the representation of π as a product
of disjoint cycles is unique up to reordering.

Example. Consider (135) and (145) in S5. How is (135)(145) expressed as a product
of disjoint cycles? We can chase elements one at a time. (145) sends 1 to 4 and
(135) fixes 4. (145) sends 4 to 5 and (135) sends 5 to 1. Thus (14) is one of the
cycles in the disjont cycle decompositon of (135)(145). 2 is fixed by both (145) and
(135) so we can ignore it. (145) fixes 3 and (135) sends 3 to 5. (145) sends 5 to 1
and (135) sends 1 to 3. So (35) is another cycle in the decomposition. It follows
that (135)(145) = (14)(35). Pictorally
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i.e. (145)(135) = (13)(45).

�
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Lemma. If π is a product of disjoint cycles of order n1, n2, . . . , nk then

o(π) = lcm(n1, . . . , nk).

�

6.2. Permuations as products of transpositions.

Definition. We call a cycle of order 2 a transposition.

Lemma. Every π ∈ Sn is a product of transpositions.

�

Remark. The representation of π as a product of transpositions is not unique. For
example

(12)(23)(34) = (1234) = (14)(13)(12).
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Despite the remark it is true that π ∈ Sn cannot be written both as a prod-
uct of an even number of transpositions and as a product of an odd number of
transpositions.

Theorem. Given π ∈ Sn let l(π) be the number of orbits of 〈π〉 in [n]. For any
π ∈ Sn and any transposition (ab) ∈ Sn,

l(π(ab)) = l(π)± 1.

�

Corollary. There is a well-defined group homomorphism

ε : Sn → ({±1}, ·)
such that ε(π) = 1 if π is a product of an even number of transpositions and
ε(π) = −1 if π is a product of an odd number of transpositions. Moreover, for
n > 2, Im ε = {±1}.

�

Definition. Given π ∈ Sn we say that π is even if ε(π) = 1 and that π is odd if
ε(π) = −1.

Remark. Notice that a cycle of odd order is even and a cycle of even order is odd.50

Definition. The alternating group on [n], An := ker(ε : Sn → {±1}) is the normal
subgroup of Sn consisting of all even permutations.

Since |Sn| = n! it follows easily from the isomorphism theorem that, for n > 2,
|An| = n!

2 .
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6.3. Conjugacy in Sn and in An. We now try to understand the conjugacy
classes in Sn and in An. In Sn they have a remarkably simple description.

Lemma. If σ ∈ Sn and (a1 · · · am) is a cycle then

σ(a1 · · · am)σ−1 = (σ(a1) · · ·σ(am)).

�

Theorem (Conjugacy classes in Sn). Two elements of Sn are conjugate if and only
if they are the product of the same number of disjoint cycles of each length.51

�

Example. Conjugacy classes in S4

representative element e (12) (12)(34) (123) (1234)
cycle type 14 2.12 22 3.1 4
number of elements in class 1 6 3 8 6
size of centraliser 24 4 8 3 4
sign 1 −1 1 1 −1

50This is just another of those frustrating facts of life.
51We sometimes say that they have the same cycle type.
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Corollary (Conjugacy classes in An). If π ∈ An then its conjugacy class in An is
equal to its conjugacy class in Sn if and only if CSn(π) contains an odd element.
Moreover if CSn(π) ⊂ An then the conjugacy class of π in Sn is a union of two
conjugacy classes in An of equal size.

�

Example (Conjugacy classes in A4).
The even cycle types in S4 are 14, 22 and 3.1. Now (12) ∈ CS4

(e) and (12) ∈
CS4((12)(34)) so the centralisers of elements of conjugacy classes of cycle type 14

and 22 contain elements of odd order. Thus these classes are the same in A4 and
S4.

Since CS4
((123)) has order 3 it must be generated by (123) and so it is equal to

CA4
((123)). Thus the conjugacy class with cycle type 3.1 splits into two parts of

equal size.

representative element e (12)(34) (123) (132)
cycle type 14 22 3.1 3.1
number of elements in class 1 3 4 4
size of centraliser 12 4 3 3

Corollary. A4 has no subgroup of index 2.

�

Lecture 24

6.4. Simple groups.

Definition. We say a non-trivial group G is simple if G has no normal subgroups
except itself and its trivial subgroup.

Since if N is a normal subgroup of G one can view G as ‘built out of’ N and
G/N , one way to try to understand all groups is to first understand all simple
groups and then how they can fit together.

Example. If p is prime then Cp is simple since Cp has no non-trivial proper sub-
groups. These are the only abelian simple groups.

Theorem. A5 is simple.

�
The remainder of the course is non-examinable.
In fact we can prove a stronger result.

Theorem. An is simple for all n > 5.

Remark. A4 is not simple since it has a normal subgroup of order 4 namely V :=
{id, (12)(34), (13)(24), (14)(23)}. A3 ' C3 is simple, A2 is trivial so not simple.

�
A triumph of late 20th century mathematics was the classification of all finite

simple groups. Roughly speaking this says that every finite simple group is either

• cyclic of prime order;
• an alternating group;
• a matrix group over a field of finite order (for example PSLn(Z/pZ));
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• one of 26 so-called sporadic simple groups the largest of which is known as
‘the monster’ and has approximately 8× 1053 elements.

One first important step in the proof was a result by Feit and Thompson that there
is no non-abelian simple group of odd order that first appeared as a circa 250 page
paper in 1963. The first proof of the whole classification theorem was annouced in
the early 1980s. It ran to over ten of thousand pages spread across a large number
of journal articles by over 100 authors. It turned out not to be quite complete. In
2004 it appeared to experts to be complete.

In this course we have seen a little of how symmetry can be understood using
the language of groups. But even when considering only finite groups there is much
more to learn.
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