Lent 2019

Iwasawa Algebras Examples Sheet 4

1. Recall that the free associative k-algebra on a set X, has a unique N_0 -grading as a k-algebra

$$k\langle X\rangle = \bigoplus_{n\geq 0} k\langle X\rangle^{(n)}$$

such that the image of X in $k\langle X \rangle$ has degree 1. Show that the completion of $k\langle X \rangle$ with respect to the filtration

$$v\left(\sum_{n\geq 0}r_n\right) = \inf\{n\in \mathbf{N}_0 \mid r_n\neq 0\} \text{ for } r_n\in k\langle X\rangle^{(n)}$$

is isomorphic to $\prod_{n\geq 0} k\langle X \rangle^{(n)}$.

Similarly prove that if the free k-Lie algebra L_X on X is given its unique N-grading such that the image of X in L_X is in degree 1 then the completion of L_X with respect to the filtration

$$v\left(\sum_{n\geq 0} x_n\right) = \inf\{n \in \mathbf{N}_0 \mid x_n \neq 0\} \text{ for } x_n \in L_X$$

is isomorphic to $\prod_{n\geq 0} L_X^{(n)}$.

- 2. Show that the pair of functions exp: $T\mathbf{Q}[[T]] \rightarrow 1 + T\mathbf{Q}[[T]]$ and $\log: 1 + T\mathbf{Q}[[T]]$ are mutual inverses.
- 3. Compute directly the terms $\Phi_1(U, V)$, $\Phi_2(U, V)$ and $\Phi_3(U, V)$ of the Hausdorff series. Then compute them again using Dynkin's formula for Φ .
- 4. Suppose that (A, w) is a Banach \mathbf{Q}_p -algebra. Show that for all $x, y \in A$ with $w(x), w(y) > \frac{1}{p-1}$:
 - (a) $\exp(\log(1+x) = 1 + x;$
 - (b) $\log(\exp(x)) = x$ and
 - (c) $\Phi(x, y) = \log(\exp(x) \exp(y)).$
- 5. Show that there is a canonical functor from the category of complete *p*-valued groups of finite rank to the category of \mathbf{Q}_p -Banach algebras that sends G to $\widehat{\mathbf{Q}_p G}$ and such that each natural diagram

commutes.

6. Show that if (G, ω) is a complete *p*-valued group then we can equip $G \times G$ with a *p*-filtration $\omega_{G \times G}$ such that

$$\omega_{G \times G}\left((g,h)\right) = \min\left\{\omega(g), \omega(h)\right\}$$

so that $(G \times G, \omega_{G \times G})$ is a complete *p*-valued group and $gr(G \times G) \cong gr G \times gr G$.

7. Show that $\mathcal{G}(\widehat{KG})$ is a subgroup of \widehat{KG}^{\times} containing the image of G in \widehat{KG} and that $\mathcal{P}(\widehat{KG})$ is a Lie K-subalgebra of \widehat{KG} equipped with its commutator bracket. Finally show that exp restricts to a bijection

$$\mathcal{P}(\widehat{KG}) \cap \widehat{KG}_{\frac{1}{p-1}} \to \mathcal{G}(\widehat{KG}) \cap \left(1 + \widehat{KG}_{\frac{1}{p-1}} + \right)$$

with inverse log.

S.J.Wadsley@dpmms.cam.ac.uk

March 2019

- 8. Show that if p is odd and $GL_n^1(\mathbf{Z}_p)$ has its usual p-valuation ω then G is p-saturated and has an ordered basis (g_1, \ldots, g_{d^2}) with $\omega(g_i) = 1$ for each i.
- 9. Suppose that p = 2, G is *p*-saturated, and that $\omega(g_i) = 2$ for $i = 1, \ldots, d$. Let

$$\mathfrak{g} = \{ x \in \mathcal{P}(\widehat{K}\widehat{G}) \mid w(x) \ge 0 \}.$$

Show that \mathfrak{g} is an \mathcal{O} -Lie algebra free of finite rank over \mathcal{O} and there is an isomorphism of Banach algebras

$$\widehat{U(\mathfrak{g}_K)} \xrightarrow{\sim} \widehat{KG}.$$

Show that these conditions are satisfied for $GL_n^2(\mathbf{Z}_2)$ with its usual *p*-valuation.

10. + Show that if G is any complete p-valued group of rank d then the filtration ω on

$$\mathcal{G}(\widehat{KG})_{\frac{1}{p-1}^+} = \mathcal{G}(\widehat{KG}) \cap \left(1 + \widehat{KG}_{\frac{1}{p-1}^+}\right)$$

given by $\omega(g) = \widehat{w}(g-1)$ makes $\mathcal{G}(\widehat{KG})_{\frac{1}{p-1}+}$ into a complete *p*-valued group of rank *d* and that *G* is isomorphic to an open subgroup of it.