Lent 2019

Iwasawa Algebras Examples Sheet 3

1. Suppose that I is a pre-ordered set and C is **Grp** or **Ring** and $C = (C_a, c_{bc})$ is an inverse system in C. Show that

$$\varprojlim_{I} C \cong \{(x_a) \in \prod_{a \in I} C_a \mid c_{bc}(x_c) = x_b \text{ whenever } b \le c\}$$

together with the projection maps $\pi_a((x_a)_{a \in I}) = x_a$ is the inverse limit of C.

- 2. Suppose I is a pre-ordered set and $C = (C_a, c_{bc})$ is an inverse system of shape I in some category C.
 - (a) Show that, if it exists, $\varprojlim_I C$ together with the family of morphisms $\pi_a : \varprojlim_I C \to C_a$ is uniquely determined up to unique isomorphism.
 - (b) Show that if I has a largest element t (i.e. $a \leq t$ for all $a \in I$) then $\varprojlim_I C = C_t$ and $\pi_a = c_{at}$ for all $a \in I$.
 - (c) More generally suppose that I is directed and $J \subset I$ such that for all $a \in I$ there is $j \in J$ with $a \leq j$ and consider the restriction of C to J i.e. the subfamily of objects $(C_j)_{j \in J}$ and morphisms $(c_{jk}: C_k \to C_j)_{j \leq k \in J}$. Show that if $\varprojlim_J C$ exists then so does $\varprojlim_I C$ and there is a canonical isomorphism $\varprojlim_J C \to \varprojlim_I C$.
- 3. Suppose that I and J are directed pre-ordered sets. Show that $I \times J$ is a directed pre-ordered set with respect to the relation $(i, j) \leq (i', j')$ precisely if $i \leq i'$ and $j \leq j'$. Assuming that all relevant inverse limits exist, show that if C is a diagram of shape $I \times J$ then $(\lim_{i \in I \times J} C)_{i \in I}$ has canonical maps making it a diagram of shape I and $(\lim_{I \to \{j\}} C)_{j \in J}$ has canonical maps making it a diagram of shape J. Finally show that

$$\underbrace{\lim_{i \to I} \left(\lim_{\{i\} \times J} C \right)}_{I \times J} \cong \underbrace{\lim_{i \to J} C}_{I \times J} \cong \underbrace{\lim_{i \to J} \left(\lim_{i \to \{j\}} C \right)}_{J}.$$

- 4. Suppose that R is a ring with an ascending \mathbf{N}_0 -filtration $(F_n R)_{n \in \mathbf{N}_0}$. Show that
 - (a) if gr R is Noetherian then R is Noetherian and;
 - (b) if gr R is a domain then R is a domain.
- 5. Show that if G is a complete p-valued group of finite rank and $\mathbf{Z}_p[G]$ has its usual filtration v then v(rs) = v(r) + v(s) for all $r, s \in \mathbf{Z}_p[G]$.
- 6. Show that if (G, ω) is a complete *p*-valued group of rank $d < \infty$ with ordered basis (g_1, \ldots, g_d) then there is an \mathbf{F}_p -linear isomorphism $\mathbf{F}_p G \cong \mathbf{F}_p[[T_1, \ldots, T_d]]$ with

$$(g_1-1)^{n_1}\cdots(g_d-1)^{n_d}\mapsto T_1^{n_1}\cdots T_d^{n_d}.$$

7. Let p be an odd prime and suppose that (G, ω) is a complete p-valued group of rank $d < \infty$ with ordered basis (g_1, \ldots, g_d) . Suppose moreover that $\omega(g_i) = 1$ for each $1 \le i \le d$ and that in grG

$$[\sigma(g_i), \sigma(g_j)] = \sum_{k=1}^d t \lambda_{ijk} \sigma(g_k) \text{ with } \lambda_{ijk} \in \mathbf{F}_p.$$

Writing $b_i = g_i - 1 \in \mathbf{Z}_p[G]$ as usual show that

$$b_i b_j - b_j b_i + \mathbf{Z}_p[G]_3 = \sum_{k=1}^d p \tilde{\lambda}_{ijk} b_k \mod \mathbf{Z}_p[G]_3$$

with respect to the usual filtration on $\mathbf{Z}_p[G]$ where each λ_{ijk} is a lift of λ_{ijk} in \mathbf{Z}_p .

S.J.Wadsley@dpmms.cam.ac.uk

Show that if instead we work in $\mathbf{F}_p[G]$ then

$$b_i b_j - b_j b_i + J^{p+1} = \sum_{i=1}^d \lambda_{ijk} b_k^p + J^{p+1}$$

where $J = \ker(\mathbf{F}_p[G] \to \mathbf{F}_p; g \mapsto 1).$

8. Suppose that $\mathbf{Z}_p G$ is an Iwasawa algebra. Show that $\mathbf{F}_p G \cong \mathbf{Z}_p G / p \mathbf{Z}_p G$.

Let M be a finitely generated \mathbf{Z}_pG -module and write $M[p^k] = \{m \in M \mid p^k m = 0\}$. Show that there is some $n \geq 0$ such that $M[p^k] = M[p^n]$ for all $k \geq n$, that $M[p^k]/M[p^{k-1}]$ is a naturally a finitely generated \mathbf{F}_pG -module for each $1 \leq k \leq n$ and that $M/M[p^n]$ has no p-torsion elements.

- 9. Suppose that a profinite group G acts on a finite set X equipped with the discrete topology. Show that the action map $G \times X \to X$ is continuous if and only if each stabiliser $\operatorname{Stab}_G(x)$ is an open subgroup of G.
- 10. Suppose that X is a set with a G-action and R is a commutative ring. Writing R[X] for the permutation representation show that $R[X]^G$ is spanned by the sums $[\mathcal{O}] = \sum_{x \in \mathcal{O}} x \in R[X]$ as \mathcal{O} ranges over the finite G-orbits of X.
- 11. Show that given any set X there is a free magma M(X) with respect to the forgetful functor $\operatorname{Mag} \to \operatorname{Set}$. An N-graded magma is a magma M with a decomposition as a disjoint union $M = \bigcup_{n \ge 1} M_n$ such that $M_n M_m \subset M_{n+m}$ for all $n, m \in \mathbb{N}$. Show that there is a unique N-grading on M(X) such that the image of X in M(X) lies in $M(X)_1$.

Deduce that for any commutative ring k the free (non-unital non-associative) k-algebra $k\langle\langle X\rangle\rangle$ on X with respect to the forgetful functor $\operatorname{Alg}_k \to \operatorname{Set}$ exists and is naturally isomorphic as a k-module to the free k-module k[M(X)] on X and that there is a unique way to view $k\langle\langle X\rangle\rangle$ as a graded k-algebra such that the image of X in $k\langle\langle X\rangle\rangle$ lies in degree 1. Use this to construct the free Lie algebra L(X) on X with respect to the forgetful functor $\operatorname{Lie}_k \to \operatorname{Set}$ and show that there is a unique way to make L(X) a graded Lie algebra such that the image of X in L(X) is contained in $L(X)_1$.

Show that the natural isomorphism $k\langle X \rangle \to U(L_X)$ from the free (unital and) associative algebra on X to the universal enveloping algebra $U(L_X)$ is an isomorphism of graded algebras.