SJW

Iwasawa Algebras Examples Sheet 2

1. Let (R, v) be a complete filtered ring and $(r_n)_{n\geq 0}$ be a sequence of elements of R such that $v(r_n)\to\infty$ as $n\to\infty$. Show that

$$\sum_{n\geq 0} r_n = \left(\sum_{n=0}^{m_\lambda} r_n + R_\lambda\right)_{\lambda>0}$$

is a well-defined element of $R \cong \widehat{R}$ when the m_{λ} are chosen so that $v(r_n) \geq \lambda$ whenever $n > m_{\lambda}$.

Show moreover that if (s_n) is another such sequence then $(r_n + s_n)$ and $(\sum_{i+j=n} r_i s_j)$ are also such sequences and that

$$\left(\sum_{n\geq 0} r_n\right) + \left(\sum_{n\geq 0} s_n\right) = \sum_{n\geq 0} (r_n + s_n)$$

and

$$\left(\sum_{n\geq 0} r_n\right) \left(\sum_{n\geq 0} s_n\right) = \sum_{n\geq 0} \left(\sum_{i+j=n} r_i s_j\right).$$

2. Show that if (G, ω) is a *p*-valued group and $H \leq G$ is a subgroup equipped with the restricted *p*-valuation $\omega|_H$ then there is a natural inclusion $gr H \to gr G$ of graded Lie algebras.

Deduce that if G has finite rank then H has finite rank and that if p > 2 and $G = GL_n^1(\mathbf{Z}_p)$ then gr H is a sub-Lie algebra of $t\mathfrak{gl}_n(\mathbf{F}_p[t])$.

- 3. Suppose that (G, ω) is a filtered group.
 - (a) Show that \widehat{G} has a separated filtration given by

$$\widehat{\omega}((g_{\lambda}G_{\lambda})_{\lambda>0}) = \inf \omega(g_{\lambda} \mid g_{\lambda} \notin G_{\lambda})$$

with respect to which it is complete.

- (b) Show that the natural map $G \to \widehat{G}$ is injective if and only if ω is separated and always induces a natural isomorphism $qr G \to qr \widehat{G}$.
- (c) Show that if (R, v) is a complete filtered ring then every r in R with v(r-1) > 0 is a unit. Moreover show that if $G = \{g \in R \mid v(g-1) > 0\}$ and $\omega(g) = v(g-1)$ for $g \in G$ then (G, ω) is complete.
- 4. Suppose that (G, ω) is a complete *p*-valued group, $x \in G$ and $\lambda \in \mathbf{Z}_p$. Show that $\omega(x^{\lambda}) = \omega(x) + v_p(\lambda)$ and $\sigma(x^{\lambda}) = \sigma(x) \cdot \sigma(\lambda)$.
- 5. Suppose that p is an odd prime.
 - (a) Show that if

$$G = \left\{ \begin{pmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix} : x, y, z \in p\mathbf{Z}_p \right\}$$

with the filtration ω induced by restricting the *p*-adic filtration on $M_n(\mathbf{Z}_p)$. Find an ordered basis (g_1, g_2, g_3) for G and compute

$$(g_1^{\lambda_1}g_2^{\lambda_2}g_3^{\lambda_3})(g_1^{\mu_1}g_2^{\mu_2}g_3^{\mu_3}) = g_1^{\nu_1}g_2^{\nu_2}g_3^{\nu_3}$$

for $\lambda, \mu \in \mathbf{Z}_n^3$.

(b) Find an ordered basis for $GL_n^1(\mathbf{Z}_p)$ with respect to its usual p-adic filtration.

6. Suppose that (R, v) is a filtered ring and let I be a left ideal of R. For $\lambda \in \mathbf{R}^{\geq 0}$ let $I_{\lambda} = \{r \in I \mid v(r) \geq \lambda\}$ and $I_{\lambda^+} = \{r \in I \mid v(r) > \lambda\}$. Show that

$$gr I = \bigoplus_{\lambda \in \mathbf{R}^{\geq 0}} I_{\lambda} / I_{\lambda^{+}}$$

can be viewed as a left ideal in gr R.

Suppose now that (R, v) is complete and $v(R \setminus 0)$ is a closed discrete subset of $\mathbb{R}^{\geq 0}$. Show that I is finitely generated if gr I is finitely generated and deduce that R is left Noetherian if gr R is left Noetherian.

- 7. Show that if (G, ω) is a complete p-valued group then an ordered basis for (G, ω) cannot contain a p-th power in G.
- 8. Let k be a commutative ring. Show that if \mathfrak{g} is a graded k-Lie algebra then $U(\mathfrak{g})$ may be given the structure of a graded associative k-algebra in such a way that $U(\mathfrak{g})$ is free on \mathfrak{g} with respect to the forgetful functor $\mathbf{grAss}_k \to \mathbf{grLie}_k$
- 9. Show that if $f: A \to B$ is a morphism of commutative rings and M is an A-module then $B \otimes_A M$ is the free B-module on M with respect to the restriction functor $\mathbf{Mod}_B \to \mathbf{Mod}_A$ along f.
- 10. Let (G, ω) be a p-valued group of finite rank. Show that there is a natural functor from the category of filtered \mathbb{Z}_p -algebras and filtered \mathbb{Z}_p -algebra homomorphisms to \mathbf{FiltGp} such that $\mathbb{Z}_p[G]$ equipped with the filtration

$$\mathbf{Z}_p[G]_{\lambda} = \mathbf{Z}_p \cdot \{ p^r(g_1 - 1) \cdots (g_s - 1) \mid r + \sum \omega(g_i) \ge \lambda \text{ for } g_1, \dots, g_s \in G \}$$

is free on (G, ω) with respect to this functor.