Representation Theory - Examples Sheet 2

On this sheet all representations are complex representations

1. Let (ρ, V) be a representation of a finite group G with character χ. Show that ker $\rho=\{g \in G \mid \chi(g)=\chi(1)\}$. Show further that $|\chi(g)| \leq \chi(1)$ for all $g \in G$, with equality precisely if $\rho(g)=\lambda \operatorname{id}_{V}$ for some $\lambda \in \mathbb{C}^{\times}$. Explain how the set of normal subgroups of G may be calculated directly from the character table.
2. Let χ be the character of a representation of a group G and let $g \in G$. If g has order 2 show that $\chi(g) \in \mathbb{Z}$ and that $\chi(g) \equiv \chi(1) \bmod 2$. Show that if in addition G is a non-cyclic simple group then $\chi(g) \equiv \chi(1) \bmod 4$. If instead g has order 3 and is conjugate to g^{2} show that $\chi(g) \equiv \chi(1) \bmod 3$.
3. Construct the character tables of the dihedral group D_{8} and the quaternion group Q_{8}. What do you notice? Compare the determinants of their respective two dimensional representations.
4. Construct the character tables of the dihedral groups D_{10} and D_{12}. How do the irreducible representations decompose when restricted to the subgroups of rotations?
5. Construct the character tables of A_{4}, S_{4}, A_{5} and S_{5}. The action of S_{n} on A_{n} by conjugation induces an action on the character table of A_{n} by permuting the conjugacy classes. Describe what this does to the rows of the character table for $n=4,5$.
6. Show that there is only one non-abelian group of order 21 up to isomorphism. Construct its character table.
7. A group of order 720 has 11 conjugacy classes. Two representations of the group are known and have corresponding characters α and β. The table below summarises the sizes of the conjugacy classes and the values of α and β on them. Prove that the group has an irreducible representation of degree 16 and calculate its character.

$\|[g]\|$	1	15	40	90	45	120	144	120	90	15	40
α	6	2	0	0	2	2	1	1	0	-2	3
β	21	1	-3	-1	1	1	1	0	-1	-3	0

8. A group of order 168 has 6 conjugacy classes. Three representations of this group are known and have characters α, β and γ summarised in the table below. Construct the character table of the group. You may assume if required that $\sqrt{7}$ is not in the field generated by \mathbb{Q} and a primitive $7^{\text {th }}$ root of unity.

$\|[g]\|$	1	21	42	56	24	24
α	14	2	0	-1	0	0
β	15	-1	-1	0	1	1
γ	16	0	0	-2	2	2

9. Consider the action of a finite group G by conjugation. What is the character of the corresponding permutation representation $\mathbb{C} G$? Prove that the sum of elements in any row of the character table of G is a non-negative integer.
10. Show that the character table of a finite group G is invertible when viewed as a matrix.

By considering the actions induced on the rows and on the columns of the character table by complex conjugation, show that the number of irreducible characters of G that only take real values is the number of self-inverse conjugacy classes.
11. Let G be a finite group and χ be an irreducible character of G. By beginning with the irreducible representations, show that if (ρ, V) is any representation of G then $\frac{\chi(1)}{|G|} \sum_{g \in G} \overline{\chi(g)} \rho(g)$ is a G-linear projection onto a subspace of V. Deduce that every representation can be decomposed uniquely into isotypical components.

Comments and Corrections to S.J.Wadsley@dpmms.cam.ac.uk.

