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1 Smooth manifolds

1.1 Definitions
A topological manifoldM of dimension n is a second countable Hausdorff topological space that
is locally homeomorphic to Rn; that is, for any p ∈ M there exists an open neighborhood U of p
and a homeomorphism h : U → O ⊆ Rn, where O is open in Rn. We call the homeomorphism
h : U → O a chart, and we call U a coordinate neighborhood of p. We write Mn to signify
that the dimension of M is n.

1.2 Charts
Let ri : Rn → R denote projection onto the ith coordinate, and given a chart h : U → O, let
xi = ri ◦h : U → R. The functions xi are the coordinates of h on U . Given two charts h : U → O
and k : V → Ω on a topological manifold M such that U ∩ V 6= ∅, the function

k ◦ h−1 : h(U ∩ V )→ k(U ∩ V )

is a homeomorphism between open sets of Rn. We call k ◦ h−1 the transition function between
the charts h and k.

1.3 Definitions
An atlas A on a topological manifold Mn is a collection {(Uα, hα) | α ∈ A} of charts on M such
that:

1. {Uα | α ∈ A} is an open cover of M ,

2. For any α, β ∈ A such that Uα ∩ Uβ 6= ∅, the transition function hαβ := hα ◦ h−1
β is smooth

(posesses continuous partial deriviatives of all orders).
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1 Smooth manifolds 2

In general, we say two charts satisfying the conditions of (2) above are compatible. Note that
this implies that the transition function between the two charts is a diffeomorphism.

A smooth structure on M is an atlas A that is maximal with respect to property (2) above.

1.4 Lemma
Any atlas determines a unique smooth structure.

J Let A ={(Uα, hα)|α ∈ A} be an atlas on M , and consider the collection of charts A∗
consisting of all charts on M that are compatible with all the charts in A. Clearly A ⊆ A∗.
We now check A∗ is an atlas. Indeed, property (1) is immediate, and to check property (2), let
h : U → O and k : V → Ω be two charts in A∗ such that U ∩ V 6= ∅. We must show that k ◦ h−1

is smooth, and it is enough to check this locally. Given p ∈ U ∩ V , choose a chart hα : Uα → Oα
in A such that p ∈ Uα. Then W = U ∩ V ∩ Uα is an open neighborhood of p and

k ◦ h−1
∣∣
h(W )

= k ◦ h−1
∣∣
φ(W )

= (k ◦ h−1
α ) ◦ (hα ◦ h−1) : h(W )→ k(W )

is smooth by assumption. Thus A∗ is an atlas, and clearly A∗ is maximal amongst atlases con-
taining A. I

Therefore it is enough to specify an atlas when defining a smooth structure on a topological
manifold, and we will do this without further comment.

1.5 Definition
A smooth manifold of dimension n is an n-dimensional topological manifold M equipped with
a smooth structure.

1.6 Examples
1. Any open subset V of a smooth manifoldMn is itself a smooth manifold; second countability,

the Hausdorff condition and the locally Euclidean property are inherited by subsets, and if
{(Uα, hα)|α ∈ A} is an atlas on M , then {(Uα ∩ V, hα|Uα∩V )|α ∈ A} forms an atlas on V .

2. Rn is Hausdorff and second countable (for a countable base, take all balls of rational radii
with rational centres), and certainly locally Euclidean. The identity map determines an atlas
on Rn (there are no transition functions to worry about) and smooth structure determined by
this atlas makes Rn into a smooth n-manifold. We call this the standard smooth structure
on Rn.

3. The n-dimensional sphere Sn ⊆ Rn+1 is a n-dimensional smooth manifold. Indeed, for
i = 1 . . . n + 1, let U+

i := {y ∈ Sn | yi > 0} and similarly let U−i denote the set of points
in Sn whose ith coordinate is negative. Note that {U±i } is an open cover of Sn. Now
define hi : U±i → Rn to be the map that forgets the ith coordinate; hi(y1, . . . , yn+1) =
(y1, . . . , ŷi, . . . , yn+1). Suppose i < j; then the transition function

hij :
(
u1, . . . , un

)
7→
(
u1, . . . , ûi, . . . ,±

√
1− ‖u‖2, . . . , un

)
,

which is smooth (note ‖u‖ ≤ 1). A similar formula holds for i > j, and for i = j the transition
function is just the identity map. Thus all the transition functions are diffeomorphisms (in
particular homeomorphisms), and we have a smooth structure on Sn.

4. RPn := Sn/{±1} is a smooth manifold of dimension n. Let U+
i := {x ∈ Sn|xi > 0} and

similarly define U−i ; note that {U±i | i = 1, . . . , n + 1} define an open cover of Sn. Let
π : Sn → Sn/{±1} =: RPn denote the canonical projection. Observe that π(U+

i ) = π(U−i ),
and that π restricted to U±i is a homeomorphism (RPn is given the quotient topology induced
by π). Hence the composition

π(U+
i ) π

−1

→ U+
i

hi→ Rn
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is a well defined homeomorphism, call it ki. Moreover we have

kj ◦ k−1
i = (hj ◦ π−1) ◦ (hi ◦ π−1)−1 = hj ◦ h−1

i

which is smooth. It follows that (π(U+
i ), ki) defines an atlas on RPn.

5. The two-dimensional torus T . Define an equivalence relation on R2 by x ∼ y if and only
if xi − yi ∈ Z for i = 1, 2. Let T denote R2/ ∼. Any unit square Q ⊆ R2 with vertices
(a, b), (a+1, b), (a, b+1) and (a+1, b+1) determines a homeomorphism int(Q)→ U(Q) ⊆ T ,
where U(Q) is an open subset of T (in fact, U(Q) is all of T apart from two circles). The
inverse map hQ : U(Q) → int(Q) then is a homeomorphism from an open set of T into
an open set of R2. Clearly the {U(Q)} cover T , and if Q1 and Q2 are two squares with a
non-empty intersection then one easily sees that the coordinate transformation hQ2 ◦ h−1

Q1
is

given locally by translations; that is, each component of hQ1(Q1 ∩Q2) (of which in general
there will be seven - draw a picture!) is mapped by a translation onto a corresponding
component of hQ2(Q1 ∩ Q2) by hQ2 ◦ h−1

Q1
. Thus we have a smooth structure, and T is a

smooth 2-manifold.

1.7 Definition
Let Mm and Nn be smooth manifolds. A continuous map Φ : M → N is called smooth if for
each p ∈ M for some (and hence all) charts h : U → O ⊆ Rm and k : V → Ω ⊆ Rn on M and
N respectively with p ∈ U and Φ(p) ∈ V such that the map the composite map (called the local
expression of Φ)

k ◦ Φ ◦ h−1 : h(U ∩ Φ−1(V ))→ k(Φ(U) ∩ V )

is smooth.
If Φ is a homeomorphism and its inverse Φ−1 : N → M is also smooth then we say Φ is a

diffeomorphism. We say that Φ is a local diffeomorphism if given any p ∈ M we can find a
neighborhood U of p such that Φ|U : U → Φ(U) is a diffeomorphism.

A smooth function on an open subset U ⊆M is a smooth map f : U → R where R is given
the standard smooth structure (cf. Example 1.6.2).

Observe that when we give Rn the standard smooth structure, the charts on manifolds become
diffeomorphisms (their local expression is the identity).

1.8 Germs
Let M be a manifold and p ∈ M . Functions f, g defined on open subsets U, V respectively
containing p are said to have the same germ at p if there exists a neighborhood W of p contained
in U ∩ V such that f |W ≡ g|W . More precisely, define an equivalence relation on the space of
smooth functions defined in a neighborhood of p, by (U, f) ∼ (V, g) if and only if there exists
a neighborhood W of p contained in U ∩ V such that f |W ≡ g|W . A germ is an equivalence
class under this relation. Notationally, we will not differentiate between a germ f at p and a
representative (U, f) of f . This will hopefully not be confusing.

Let C∞p denote the set of germs of smooth functions at p (occasionally we write C∞M,p when
there is more than one manifold under consideration). Observe that C∞p is a ring; given germs
f and g with representatives (U, f) and (V, g) respectively we define f + g to be germ containing
(U ∩ V, f + g) and f · g to be the germ containing (U ∩ V, f · g) (where f · g(p) := f(p) · g(p)).
Moreover we have a natural inclusion of the constant germs into C∞p , which induces a natural map
R ↪→ C∞p making C∞p into an R-algebra.

A germ f has a well defined value at p (although nowhere else though), and this defines a
surjective ring homomorphism eval : C∞p → R sending f 7→ f(p). If we let Fp denote the kernel
of eval, then Fp is an ideal of C∞p . In fact, since eval is surjective, Fp is a maximal ideal, and in
fact is the unique maximal ideal, since if f(p) 6= 0 then if (U, f) is any representative there exists
a neighborhood V ⊆ U of p such that f is never zero on V . Then the germ containing (V, 1/f) is
an inverse for f . Hence any germ in C∞p \Fp is invertible; equivalently Fp is the unique maximal
ideal and C∞p is thus a local ring.



1 Smooth manifolds 4

1.9 Definitions
A tangent vector v at p ∈M is a linear derivation of the R-algebra C∞p , that is, a linear map
C∞p → R such that v(f · g) = f(p)v(g) + v(f)g(p). The tangent vectors form a real vector space in
the obvious way; this space is denoted Tp(M) and is called the tangent space to M at p. Note
that if c is the constant germ c(p) = c ∈ R then if v is any tangent vector we have v(c) = 0. Indeed,
v(c) = cv(1) and v(1) = v(1 · 1) = v(1) + v(1) implies v(1) = 0.

1.10 Charts and tangent vectors
Let C∞0 denote C∞Rn,0 and let M be a smooth n-manifold, p ∈ M and h : U → O ⊆ Rn a chart
on M about p such that h(p) = 0 (in general we say such a chart is centred about p). Then h
defines an isomorphism h∗ of R-algebras h∗ defined by, for f ∈ C∞0 ,

h∗(f) = f ◦ h.

h∗ is an isomorphism precisely because φ is a diffeomorphism.
Then given v ∈ Tp (M) we can associate a tangent vector h∗(v) ∈ T0 (Rn) where h∗(v) is the

derivation of C∞0 defined by
h∗(v)(f) = v(h∗(h)).

As h∗ is an isomorphism, so is h∗ and thus we have defined an isomorphism h∗ : Tp (M) →
T0 (Rn).

1.11 A basis for the tangent space
Let (r1, . . . , rn) denote the standard coordinates on Rn. Consider the operator ∂

∂ri

∣∣
0
defined by

∂
∂ri

∣∣
0
(f) = ∂f

∂ri (0). Then ∂
∂ri

∣∣
0
is an linear derviation of C∞0 and hence an element of T0 (Rn).

Observe that ∂
∂ri

∣∣
0

(
rj
)

= δji . In fact, we claim that
{
∂
∂ri

∣∣
0
|i = 1, . . . , n

}
forms a basis for T0 (Rn).

To prove this we need the following result from calculus.

1.12 Calculus lemma
Let f : U → R be smooth, where U ⊆ Rn is open and convex. Then there exist smooth functions
gij : U → R (i, j = 1, . . . , n) such that for any y ∈ U we have

f(y) = f(0) +
∂f

∂ri
(0)ri(y) + ri(y)rj(y)gij(y), (1)

where as in the rest of these notes we use the summation convention that we sum over indices in
an expression that appear in the top and the bottom - we note that the index in ∂

∂ri

∣∣
0
is considered

to be on the bottom (it’s on the bottom of a fraction).

1.13 Proposition{
∂
∂ri

∣∣
0
|i = 1, . . . , n

}
is a basis of T0 (Rn).

J Suppose v = ai∂i|0 is the zero derivation (here and elsewhere, where possible we will
abbreviate an expression of the form ∂

∂xi

∣∣
0
to ∂i|0 - this of course won’t work if we are working

with several different coordinate systems at once). Then v(ri) = ai = 0, and so v = 0. Now let
v ∈ T0 (Rn), and set ai := v(ri). Consider v0 := ai∂i|0 ∈ T0 (Rn). Given a germ f ∈ C∞0 , pick a
representative (U, f), where we may assume U is convex. Write f as in (1) and compute:

v(f) = v(f(0)) +
∂f

∂ri
(0)v(ri) + v(ri · rj · gij).

Now the first term disappears, as v is zero on constants, and since ri(0) = 0, the derivation property
kills the last term. Thus

v(f) =
∂f

∂ri
(0)v(ri) = ai∂i|0(f) = v0(f).

Thus v = v0 and the we have a basis. I
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1.14 Observation
Observe we can canonically identify T0 (Rn) with Rn via ai∂i|0 ↔ aiei, where {ei} is the standard
basis of Rn (so ri(ej) = δij). In fact, given any p ∈ Rn, the same proof shows {∂i|p} forms a basis
of Tp (Rn) and thus the identification ai∂i|p ↔ aiei allows us to identify Tp (Rn) with Rn for any
p ∈ Rn.

1.15 A basis for Tp (M)

Now let Mn be a smooth manifold and p ∈ M . Pick a chart h : U → O ⊆ Rn centered about p.
Let (x1, . . . , xn) be the coordinates of h. Recall we have a map (h−1)∗ : T0 (Rn)→ Tp (M) that is
an isomorphism. Define the tangent vector ∂

∂xi

∣∣
p
by,

∂

∂xi
∣∣
p
(f) :=

(
h−1

)
∗

(
∂

∂ri
∣∣
0

)
(f) =

∂

∂ri
(
f ◦ h−1

)
(0).

Since (h−1)∗ is an isomorphism, we have the following immediate corollary.

1.16 Corollary
Let Mn be a smooth manifold and p in M . If (U, h) is a chart centred at p with coordinates
(x1, . . . , xn) then Tp (M) is a n-dimensional real vector space with basis

{
∂
∂xi

∣∣
p
|i = 1, . . . , n

}
.

Moreover if v ∈ Tp (M) then v = ai ∂
∂xi

∣∣
p
where ai := v(xi).

1.17 Jacobians
Suppose now (U, h) and (V, k) are both charts centred at p. Write (x1, . . . , xn) for the coordinates
of h and (y1, . . . , yn) for the coordinates of k. Let (r1, . . . rn) denote the coordinates on h(U) and
(s1, . . . , sn) the coordinates on k(V ).

Observe by the previous Corollary we have

∂

∂yj
∣∣
p
=
∂xi

∂yj
(p)

∂

∂xi
∣∣
p
. (2)

Let F be the coordinate transformation h ◦ k−1. We can write F = (F 1, . . . , Fn) where
F i = ri ◦ F . Now note

∂xi

∂yj
(p) =

∂

∂yj
∣∣
p
(xi)

=
∂

∂sj
(xi ◦ k−1)(0)

=
∂

∂sj
(ri ◦ h ◦ k−1)(0)

=
∂

∂sj
(ri ◦ F )(0)

=
∂F i

∂sj
(0),

and hence
∂xi

∂yj
(p) = JF (0), (3)

where JF (0) is the Jacobian of F at 0. Thus we have

∂

∂yj

∣∣
p
= JF (0)ij

∂

∂xi
∣∣
p
.
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1.18 General charts
More generally, given any chart (U, h) on Mn with coordinates (x1, . . . , xn), we can define ∂

∂xi

∣∣
p

for any p ∈ U by the formula

∂

∂xi
∣∣
p
(f) :=

∂

∂ri
(
f ◦ h−1

)
(h(p)),

where (r1, . . . , rn) are the coordinates on h(U). If, h(p) = c = (c1, . . . , cn), say if we consider the
linear coordinate transformation k = (y1, . . . , yn) where yi := xi − ci, then if (s1, . . . , sn) denote
the coordinates on k(U) we have

∂

∂yi
∣∣
p
(f) =

∂

∂si
(f ◦ k−1)(0)

=
∂

∂ri
(
f ◦ h−1

)
(c)

=
∂

∂xi
∣∣
p
(f).

Hence for any p ∈ U ,
{

∂
∂xi

∣∣
p

}
is a basis of Tp (M).

1.19 Changing coordinates
If v ∈ Tp (M) and (U, h) and (V, k) are charts about p with coordinates (x1, . . . , xn) and (y1, . . . , yn)
respectively then writing

ai
∂

∂xi
∣∣
p
= v = bj

∂

∂yj
∣∣
p

and using (2)we see that

ai = v(xi) = bj
∂

∂yj
∣∣
p
(xj) = bj

∂xi

∂yj
(p). (4)

1.20 Definition
Let Φ : M → N be a smooth map between smooth manifolds. Let p ∈ M . We have a map
Φ∗ : C∞N,Φ(p) → C∞M,p defined by Φ∗(f) = f ◦ Φ. Now define the derivative of Φ at p to be the
map

dΦ(p) : Tp (M)→ TΦ(p) (N)

defined by
dΦ(p)(v)(f) = v(Φ∗(f)).

Thus dΦ(p) is a linear map between the tangent spaces. Where possible we will omit the ‘p’ from
the notation and just write dΦ.

The chain rule is tautologous: if Ψ : N → P is a smooth map of smooth manifolds such that
Ψ ◦ Φ : M → P is defined then

d(Ψ ◦ Φ) = dΨ ◦ dΦ.

Indeed, if v ∈ Tp (M) and f ∈ AP,ΨΦ(p) then

d (Ψ ◦ Φ) (v)(f) = v((Ψ ◦ Φ)∗(f))
= v(Ψ ◦ Φ ◦ f)
= v(Φ∗(f ◦Ψ))

dΦ(v)(f ◦Ψ)
dΦ(v)(Ψ∗(f))
dΨ(dΦ(v))(f).
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If
{

∂
∂xi

∣∣
p

}
is a basis of Tp (M) and

{
∂
∂yj

∣∣
Φ(p)

}
is a basis of TΦ(p) (N) then

dΦ
(

∂

∂xj
∣∣
p

)(
yi
)

=
∂

∂xj
(yi ◦ Φ) =

∂Φi

∂xj
(p),

where Φi = yi ◦ Φ and thus

dΦ
(

∂

∂xj
∣∣
p

)
=
∂Φi

∂xj
(p)

∂

∂yi
∣∣
Φ(p)

.

Hence if
v = aj

∂

∂xj
∣∣
p
, dΦ(v) = bi

∂

∂yi
∣∣
Φ(p)

then

dΦ(v) = ajdΦ
(

∂

∂xj
∣∣
p

)
= aj

∂Φi

∂xj
(p)

∂

∂yi
∣∣
Φ(p)

,

and thus

bi = aj
∂Φi

∂xj
(p). (5)

1.21 Example
As a special case, if Φ : Rm → Rn is smooth and p ∈ Rm, with (r1, . . . , rm) the standard coordinates
on Rm and (s1, . . . , sn) the standard coordinates of Rn we have

dΦ
(
∂

∂ri
∣∣
p

)
= JΦ(p)ji

∂

∂sj
∣∣
Φ(p)

. (6)

In particular, under the identification of Tp (Rn) with Rd as in Section 1.14, the derivative dΦ(p)
is just the linear map determined by the Jacobian JΦ(p). Given this, one might ask why the chain
rule was so easy to prove (as it is not so simple to prove in standard multivariate calculus). The
answer is in our use of Lemma 1.12, which in turn used the standard chain rule in multivariate
calculus.

1.22 Definition
A smooth curve on a manifoldM is a smooth map c : (a, b)→M , where (a, b) ⊆ R is an interval
and R is given the standard smooth structure. For t ∈ (a, b) the tangent vector to c at t is

dc

(
d

dr

∣∣
t

)
∈ Tc(t) (M) ,

(we write d/dr instead of ∂/∂r when n = 1), and is denoted ċ(t).
If c : (a, b) → M is a smooth curve, and (x1, . . . , xn) local coordinates about c(t0) then for t

close to t0 we set ci(t) := xi ◦ c(t). Then

ċ(t)
(
xi
)

= dc

(
d

dr

∣∣
t

)
(xi) =

d

dr
(xi ◦ c) =

dci

dr
(t),

and hence

ċ(t) =
dci

dr
(t)∂i|c(t), (7)

that is,

ċ =
dci

dr
· ∂i ◦ c.

In particular if M = Rn and we use the identification of Tc(t) (Rn) with Rn given in Section
1.12 we have ċ(t) = dci

dr (t)ei, which recovers the standard definition from multivariate calculus for
the derivative of a smooth curve c : (a, b)→ Rn.
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1.23 An alternative definition of tangent vectors
We now focus our attention on smooth curves in M defined on a neighborhood of 0. A smooth
curve c : (−ε, ε) → M with c(0) = p defines a tangent vector ċ(0) ∈ Tp (M). Note that smooth
curves c and γ define the same tangent vector if and only if, for some (and hence every) chart h
centred at p we have h ◦ c and h ◦ γ defining the same tangent vector in T0 (Rn). By the previous
section, this is if and only if

d

dr
(h ◦ c) (0) =

d

dr
(h ◦ γ) (0). (8)

Conversely suppose v ∈ Tp (M) is any tangent vector. By making a linear change of coordinates
in the vector space Tp (M) we may assume that we have local coordinates h = (x1, . . . , xn) about
p such that v = ∂1|p. Define c(t) = h−1(t, 0, . . . , 0). Then for f ∈ C∞p we have

ċ(0)(f) = dc

(
d

dr

∣∣
0

)
(f)

=
d

dr
(f ◦ c)(0)

=
∂

∂r1
(f ◦ h) (0)

=
∂

∂x1

∣∣
p
(f)

= v(f).

Thus any tangent vector v ∈ Tp (M) can be written as ċ(0) for some smooth curve c : (−ε, ε)→
M . Thus we can make the following alternative definition of Tp (M): a tangent vector at p ∈M is
an equivalence class of smooth curves c : (−ε, ε)→M such that c(0) = p, where c ∼ γ if and only
if for some chart h centred at p, (8) holds.

1.24 Definition
Let M be a smooth manifold. The tangent bundle of M is the disjoint union of the tangent
spaces;

T (M) :=
∐
p∈M

Tp (M) .

We have a natural projection π : T (M) → M sending v ∈ Tp (M) 7→ p. When referring to an
element of T (M), we will often write (p, v) to indicate that v ∈ Tp (M).

1.25 Theorem
Let M be a smooth n-manifold. Then T (M) is naturally a smooth 2n-manifold such that π is
smooth.

J Let {(Uα, hα)} be an atlas on M , where hα : Uα → Oα has coordinates (x1
α, . . . , x

n
α). Define

a local trivialisation tα : T (Uα) :=
∐
p∈Uα Tp (M)→ Uα × Rn by

tα(p, v) =
(
p, v

(
x1
α

)
, . . . , v (xnα)

)
.

If Uα ∩ Uβ 6= ∅ then the map tα ◦ t−1
β : (Uα ∩ Uβ)× Rn → (Uα ∩ Uβ)× Rn sends

(
p, a1, . . . , an

)
7→

(
p, ai

∂x1
β

∂xiα
(p), . . . , ai

∂xnβ
∂xiα

(p)

)

(cf. (4)). In particular, the map ψαβ(p) := (tβ ◦ t−1
α )(p, ·) : Rn → Rn is a linear isomorphism, and

moreover the map
ψαβ : Uα ∩ Uβ → GL(n,R), p 7→ ψαβ(p)
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is smooth.
Now define h̄α : T (Uα) → Oα × Rn by h̄α = (hα × id) ◦ tα. Then observe for α, β such that

Uα ∩ Uβ 6= ∅ the transition function h̄α ◦ h̄−1
β : hβ (Uα ∩ Uβ)× Rn → hα (Uα × Uβ)× Rn sends

(
q, a1, . . . , an

)
7→
(
hαβ(q), ψαβ

(
h−1
β (q)

) (
a1, . . . , an

))
,

which is smooth. Moreover the collection
{(
T (Uα) , h̄α

)}
is a collection of bijections such that

T (M) =
⋃
α T (Uα). Now define a topology on T (M) by declaring the h̄α to be homeomorphisms.

This will make T (M) into a smooth 2n-dimensional manifold with atlas
{(
T (Uα) , h̄α

)}
as soon

as we know that is Hausdorff and second countable under this topology. If (p, v) 6= (q, w) then
either p 6= q and we can use the Hausdorff property of M or p = q and v 6= w and we can use the
Hausdorff property of Rn to separate (p, v) and (q, w). To see second countability, we may assume
that {Uα} is a countable cover of M ; then each Uα×Rn is second countable, and hence so are the
T (Uα) and since{T (Uα)} is a countable cover of T (M) it follows T (M) is second countable.

It is immediate that π is smooth, as its local expression with respect to charts (Uα, hα) and(
T (Uα) , h̄α

)
is the map proj1 : Uα × Rn → Uα. This completes the proof. I

In fact this proof actually shows that T (M) is a smooth vector bundle of rank n over M
(vector bundles will be defined in Chapter 5).

1.26 Bundle maps between tangent bundles
Let Φ : Mm → Nn be smooth. Then Φ induces a bundle morphism dΦ : T (M)→ T (N) defined
by

dΦ(p, v) = dΦ(p)(v).

Moreover, dΦ is smooth. Indeed, if (p, v) ∈ T (M) and (U, h) is a chart about p, and (V, k) a chart
on N about Φ(p) then the local expression k̄ ◦ dΦ ◦ h̄−1 is the map

(
h(p), a1, . . . , am

)
) 7→

(
k ◦ Φ ◦ h−1(h(p)), aj

∂Φ1

∂xj
(p), . . . , aj

∂Φn

∂xj
(p)
)
,

(cf. (5)) which is smooth.

2 Vector fields

2.1 Definition
A vector field on M is a smooth section of π : T (M) → M , that is, a smooth map X : M →
T (M) such that π ◦X = idM . Thus if X is a vector field, X(p), which we will often write as Xp,
lies in Tp (M) for all p ∈ M . The assertion that X is smooth is equivalent to the following. Let
(U, h) be a chart onM with coordinates (x1, . . . , xn). Then for p ∈ U we can write Xp = Xi(p)∂i|p
for some functions Xi : U → R, and to say X : M → T (M) is smooth is equivalent to saying that
the Xi are smooth functions on U . Indeed, with respect to the chart (T (U) , h̄) on T (M), X has
local expression

p 7→
(
x1(p), . . . , xn(p), X1(p), . . . , Xn(p)

)
and thus X is smooth if and only if all the Xi are smooth.

Let X (M) denote the set of all smooth vector fields on M . For f ∈ C∞(M) and X ∈ X (M),
we can define a new vector field fX : M → T (M) by (fX) (p) = f(p)Xp ∈ Tp (M). Similarly
we can also define for f, g ∈ C∞(M) and X,Y ∈ X (M) a vector field in the obvious way, and so
X (M) becomes a module over the ring C∞(M).

We can also define local vector fields to be smooth sections of π defined only on some open
set U ⊆ M . We denote the local vector fields over U ⊆ M by X (U). In particular if (x1, . . . , xn)
are local coordinates on U ⊆M then ∂i ∈ X (U).
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2.2 Proposition
Let Mn be a smooth manifold on which there exist n independent vector fields X1, . . . , Xn, that
is, for all p ∈ M , {X1(p), . . . , Xn(p)} is a basis of Tp (M). Then T (M) is isomorphic as a vector
bundle to M × Rn. By this we mean (this will be explained in more detail in Chapter 5 - see
Section 5.4 in particular) that there exists a diffeomorphism F : T (M) → M × Rn such that
F (Tp(M)) ⊆ {p} × Rn and the restriction of F to Tp(M), Fp : Tp(M) → {p} × Rn is a linear
isomorphism.

J Define F : T (M) → M × Rn by F (p, v) = (p, c1, . . . , cn) where v = ciXi(p) in the basis
{Xi(p)} of Tp (M). Then F is a bijection by assumption, and restricts as required. We thus need
only show F and F−1 are smooth. Given a chart (U, h) with local coordinates (x1, . . . , xn) on M ,
the local expression of F in the charts (T (U) , ĥ) and (U × Rn, h× id) is

(p, a1, . . . , an) 7→ (p, c1, . . . , cn)

where ai∂i|p = v = ciXi(p).
Now we can write Xi(p) = bji (p)∂j |p for some smooth functions bji : U → R. Then

aj∂j |p = v = ciXi(p) = cibji (p)∂j |p,

and thus aj = cib
j
i (p). This shows that F−1 is smooth, as the bji are smooth. Moreover, since

matrix inversion is smooth, and p 7→
[
bji (p)

]
is smooth, if

[
dij(p)

]
denotes the inverse matrix to[

bji (p)
]
then p 7→

[
dij(p)

]
is also smooth. Then as ci = dij(p)a

j , we see that F is also smooth. I

2.3 Definition
Given a smooth vector field X and f ∈ C∞(M), we can define a function Xf : M → R by
Xf(p) = Xp(f). If (U, h) is a chart about p with coordinates (x1, . . . , xn), then we can locally
write Xp = Xi(p)∂i|p, and thus

Xf(p) = Xi(p)
∂f

∂xi
(p).

In particular, Xf is smooth. Hence we may also view X as a derivation of C∞(M); since Xp is
a derivation of C∞p we immediately have

X(fg)(p) = Xf(p) · g(p) + f(p) ·Xg(p).

In fact, more is true.

2.4 Proposition
A map X : C∞(M)→ C∞(M) is a deriviation if and only if there exists X ∈ X (M) such that for
all f ∈ C∞(M), X(f) = Xf .

J We have just shown given X ∈ X (M), defining X : C∞(M)→ C∞(M) by X(f) = Xf does
indeed define a derivation. Conversely, suppose X is a derivation of C∞(M), p ∈ M and define a
tangent vector Xp ∈ Tp(M) by, for f ∈ C∞p ,

Xp(f) := X
(
f̃
)

(p),

where f̃ is any smooth function defined on all of M such that the image of f̃ in C∞p is f .
There are three things to check in order to conclude this is well defined. Firstly we need to

know that there exists a smooth extension f̃ of f to a function defined on all of M (a priori, we
only know that f defines a function on a neighborhood of p). Secondly we need to know that if
f̃ and f̃ ′ are two such extensions then X(f̃)(p) = X(f̃ ′)(p). Then we need to check Xp is indeed a
derivation of C∞p , and thus does indeed define an element of Tp(M).
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The key fact we need is the following: given any p ∈ M and any neighborhoods U ⊂ V of p
there exists a smooth function ψ : M → R such that ψ|U ≡ 1 and ψ|M\V ≡ 0. Such a function is
called a bump function. That such functions exist is not obvious, and depends on the existence
of partitions of unity. We will define these in Chapter 5, Theorem 5.17, and prove the existence
of bump functions in Corollary 5.18. For now however we will just accept such functions ψ exist.

It is then immediate that such an extension f̃ exists. In order to check Xp(f) is independent of
the choice of extension, it is enough to observe that if f̃ ∈ C∞(M) vanishes in a neighborhood of p
then X(f̃)(p) = 0. If f̃ |V ≡ 0 for some neighborhood of p, then choose a neighborhood U ⊂ V of p,
pick a bump function ψ such that ψ|U ≡ 1 and ψ|M\V ≡ 0, and then consider the smooth function
ψ′ : M → R, ψ′ := 1 − ψ. Then ψ′|U ≡ 0 and ψ′|M\V ≡ 1, and so as functions on M , f̃ = f̃ψ′.
The derivation property of X ensures X(f̃ψ′)(p) = 0, and so also X(f̃)(p) = 0 as required.

It is clear now that Xp is a derivation of C∞p , since X acts as a derivation on the chosen
extensions. To complete the proof, we show that p 7→ Xp is smooth, and thus this construction
defines us a vector field X on M . For this it is enough to check that if

(
x1, . . . , xn

)
are any local

coordinates on a neighborhood U of p then Xxi ∈ C∞(U), regarding xi : U → R as smooth
functions on U . But this is clear, since if f ∈ C∞(U) is any function then using a bump function
we extend f to f̃ ∈ C∞(M), and then observe that X(f̃) ∈ C∞(M). I

2.5 XY is not a derivation
Given X,Y ∈ X (M) and f ∈ C∞(M), we can define (XY ) f = X(Y f). However this does not
define a vector field, as this is not a derivation of C∞(M). Indeed,

(XY ) (fg) = X {(Y f)g + fY g} = (XY ) f ·g+Y f ·Xg+Xf ·Y g+f ·(XY ) g 6= (XY ) f ·g+f ·(XY ) g.

However, this shows that [X,Y ] := XY − Y X is a derivation of C∞(M). It thus follows that
[X,Y ] := XY − Y X defines a vector field on M . We call [X,Y ] the Lie bracket of X and Y .

2.6 Properties of the Lie bracket
1. The map [·, ·] : X (M)×X (M)→ X (M) is bilinear over R and skew-symmetric.

2. If f, g ∈ C∞(M) and X,Y ∈ X (M) then [fX, gY ] = fg[X,Y ] + f(Xg)Y − g(Y f)X.

3. If (U, h) is a chart on M with coordinates (x1, . . . , xn) and in this chart X(p) = Xi(p)∂i|p
and Y (p) = Y i(p)∂i|p then

[X,Y ](p) =
(
Xi(p)

∂Y j

∂xi
(p)− Y i(p)∂X

j

∂xi
(p)
)
∂j |p. (9)

4. The coordinate local vector fields ∂i, ∂j always satisfy [∂i, ∂j ] = 0.

5. The Jacobi identity: for X,Y, Z ∈ X (M),

[X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0.

J (1) is clear. To prove (2), we first compute X(gY ). Let ` ∈ C∞(M). Then

(X(gY )) ` = X(g · Y `) = Xg · Y `+ g · (XY )`,

and hence X(gY ) = (Xg) · Y + g ·XY . Then

[fX, gY ] = fX(gY )− gY (fX)
f (Xg)Y + fgXY − g (Y f)X + gfY X

fg[X,Y ] + f (Xg)Y − g (Y f)X.

Next, to prove (3) we compute

X(Y f) = X

(
Y j

∂f

∂xj

)
= Xi ∂Y

j

∂xi
∂f

∂xj
+XiY j

∂2f

∂xi∂xj
.

Symmetry of the mixed partial derivatives then proves (3). Finally both (4) and (5) follow from
(3). I
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2.7 Corollary
X (M) is an infinite dimensional Lie algebra under [·, ·].

2.8 Definition
Let Φ : M → N be a diffeomorphism and X ∈ X (M). We can define the pushforward of X to
N under Φ to be Φ∗X defined by

(Φ∗X) (q) = dΦ
(
XΦ−1(q)

)
∈ Tq(N). (10)

Thus if f ∈ C∞(N) we have
(Φ∗X) f = X(f ◦ Φ) ◦ Φ−1, (11)

so
dΦ ◦X = Φ∗X ◦ Φ.

2.9 Lemma
Let Φ : M → N be a diffeomorphism and X,Y ∈ X (M). Then

Φ∗[X,Y ] = [Φ∗X,Φ∗Y ].

In other words, Φ defines a Lie algebra isomorphism Φ∗ : X (M)→ X (N).

J Let q ∈ N and set p = Φ−1(q). Suppose f ∈ C∞(N). Then we compute:

(Φ∗[X,Y ])qf = dΦ ([X,Y ]p) f
= [X,Y ]p(f ◦ Φ)
= Xp(Y (f ◦ Φ))− Yp(X(f ◦ Φ))
= Xp((dΦ ◦ Y )(f))− Yp((dΦ ◦X)(f))
= Xp((Φ∗Y )(f) ◦ Φ)− Yp((Φ∗X)(f) ◦ Φ)
= dΦ (Xp) ((Φ∗Y )(f))− dΦ (Yp) ((Φ∗X)(f))
= (Φ∗X)q((Φ∗Y )(f))− (Φ∗Y )q((Φ∗X)(f))
= [Φ∗X,Φ∗Y ]qf.

An unpleasant calculation. Note that we used both characterisations (10) and (11) at different
stages in the proof. I

2.10 Definition
Let X ∈ X (M) and p ∈ M . A smooth curve c : (a, b) → M (with a < 0 and b > 0) is called an
integral curve of X at p if

c(0) = p, X(c(t)) = ċ(t) for all t ∈ (a, b).

2.11 Theorem (existence and uniqueness of integral curves)
Let M be a smooth manifold, p ∈ M and X ∈ X (M). Then there exists an open interval Ip
containing 0 and an integral curve cp : Ip →M of X such that cp(0) = p. Moreover, if γ : J →M
is another integral curve of X such that γ(0) = p, with J an open interval containing 0 then J ⊆ Ip
and cp|J ≡ γ.

J If c : (a, b)→ M is a smooth curve, and (x1, . . . , xn) local coordinates about c(t0) then for
t close to t0, recall by (7)we have

ċ(t) =
dci

dr
(t)∂i|c(t),
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where ci = xi ◦ c. Suppose in this chart X(q) = Xi(q)∂i|q. Then the assertion that c is an integral
curve becomes

dci

dr
(t)∂i|c(t) = Xi(c(t))∂i|c(t),

and thus the assertion comes down to solving the system of ODE’s

dci

dr
(t) = Xi(c(t)), ci(0) = Xi(p). (12)

So choose a chart (U, φ) about p. Let Ip denote the union of all the open intervals containing the
origin which are the domains of integral curves of X satisfying the initial condition that the origin
maps to p. Applying the standard theorem on existence to solutions of ODE’s to the system of
equations (12) we see that Ip 6= ∅. Suppose now c and γ are integral curves of X defined on open
intervals A,B respectively with A∩B 6= ∅ . Then if there exists t0 ∈ A∩B such that c(t0) = γ(t0),
then by the standard theorem on uniqueness to solutions of ODE’s, the subset of A ∩B on which
c and γ is open and non-empty. By continuity it is also closed, and hence by connectedness it
is equal to A ∩ B. It follows there exists an integral curve cp of X defined on all of Ip, which
completes the proof. I

2.12 Definitions
Let M be a smooth manifold, and X ∈ X (M). In the notation of the proof above, for t ∈ R define
Ut := {p ∈M | t ∈ Ip} and define φt : M →M by φt(p) = cp(t).

2.13 Theorem (flow theorem)
For each t it holds that:

1. Ut is open, and M =
⋃
t>0 Ut.

2. If t ∈ Ip then Iφt(p) = {s− t|s ∈ Ip}.

3. φt : Ut → U−t is a diffeomorphism with inverse φ−t.

4. If s, t ∈ R then the domain of φs ◦φt is contained in (but not generally equal to) Us+t. If s, t
have the same sign however then we have equality. In any case, on the domain of φs ◦ φt we
have φs ◦ φt = φs+t.

5. Given p ∈M there exists a maximal open neighborhood V of p and maximal ε > 0 such that
the map

φ : (−ε, ε)× V, (t, q) 7→ φt(q) = γq(t)

is a well defined smooth map. Note by (3) we have for s, t ∈ R such that all of |s|, |t| and
|s+ t| < ε this implies φ(s+ t, p) = φ(s, φt(p)). We say that φ is the local flow of X at p.

We won’t prove the Flow Theorem; it essentially follows from the ODE theorem on smooth the
dependance on initial conditions.

2.14 Definitions
A smooth vector field X is called complete if Ut = M for all t ∈ R, in other words, for all
p ∈ M ,the domain of cp is all of R. In this case the transformations {φt}t∈R form a group of
transformations of M parametrized by the real numbers. It is called the one-parameter group
of X. The associated map φ is then a (global) flow. Note that if X is not complete, {φt}t∈R do
not form a group, since their domains depend on t. In this case we refer to {φt}t ∈ R as the local
one-parameter group of X.
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2.15 Proposition
Let X be a smooth vector field on a smooth manifold M . If c is an integral curve of M whose
maximal domain is not all of R, then the image of c cannot lie in any compact subset of M .

J Let (a, b) denote the maximal domain of c, and p := c(0). Suppose b < ∞ but that the
image of c lies in a compact set K of M (the case a > −∞ is similar). If {ti} is any sequence of
times approaching b from below, then {c(ti)} is a sequence of points in K, and thus passing to
a subsequence if necessary we may assume c(ti) → q ∈ K. Choose a neighborhood U of q and
ε > 0 such that that the local flow φ of X is defined on (−ε, ε) × U (so for t ∈ (a, b) ∩ (−ε, ε),
φ(t, p) = c(t)). Pick i large enough such that c(ti) ∈ U and ti+ε > b, and define γ : (a, ti+ε)→M
by

γ(t) =

{
c(t) a < t < b

φ(t− ti, c(ti)) ti − ε < t < ti + ε.

By assumption these definitions agree on the overlap, since

φ(t− ti, c(ti)) = ϕ(t− ti, φti(p)) = ϕ(t− ti + ti, p) = c(t).

and hence γ is an integral curve of X satisfying γ(0) = p and defined on a larger interval then
(a, b). Contradiction. I

2.16 Corollary
If M is a compact smooth manifold then every smooth vector field on M is complete.

3 Submanifolds

3.1 Definition
Let Φ : M → N be a smooth map between manifolds. We say that Φ is an immersion if dΦ(p)
is injective for each p ∈M .

3.2 Definitions
Let Φ : M → N an injective immersion. Then the pair (M,Φ) is an immersed submanifold
of N . If in addition Φ is a topological embedding, that is, Φ is a homeomorphism onto its image
(with the subspace topology) then the pair (M,Φ) is an embedded submanifold. In this case
we often suppress Φ and identify M with its image Φ(M) ⊆ N and thus regard Φ as the inclusion
M ↪→ N .

Let Φ : M → N be an embedding. Then for p ∈ M , the map dΦ(p) : Tp (M) → TΦ(p) (N)
identifies the tangent space Tp (M) with a subspace of TΦ(p)(N). Then dΦ : T (M) → T (N) is a
smooth embedding, so T (M) is an embedded submanifold of T (N).

3.3 Definitions
Let Φ : Mm → Nn be smooth. A point p ∈M is called a regular point of Φ if dΦ(p) is surjective.
If p ∈ M is not a regular point then it is a critical point. A point q ∈ N is a regular value
of Φ if for any p ∈ Φ−1(q), p is a regular point. Note that if Φ−1(q) = ∅ then this condition is
vacuously true. If q ∈ N is not a regular value then it is a critical value. Note that if m < n
then any point q ∈ N such that f−1(q) is non-empty is a critical value.

3.4 Theorem (implicit function theorem)
Let U be a neighborhood of 0 in Rm and Φ : U → Rn a smooth map such that Φ(0) = 0. Then:

1. If m ≤ n, let i : Rm → Rn denote the canonical inclusion. If Φ has maximal rank m at 0
then there exists a chart h on Rn and a neighborhood W of 0 ∈ Rm such that h◦Φ|W = i|W .
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2. If m ≥ n, let π : Rm → Rn denote projection onto the first n coordinates. If Φ has maximal
rank n at 0 then there exists a chart k on Rm and a neighborhood V of 0 ∈ Rm such that
Φ ◦ k|V = π|V .

J First we prove (1). The hypotheses imply that the m× n matrix
[
∂Φi

∂xj (0)
]
has rank m. Hence

by rearranging the component functions Φi of Φ if necessary (which amounts to composing Φ with
an invertible transformation of Rm, which is a diffeomorphism) we may assume that the m ×m
minor

[
∂Φi

∂xj (0)
]

1≤i,j≤m
is invertible. Define F : U × Rn−m → Rn by

F (x1, . . . , xm, xm+1, . . . , xn) := Φ(x1, . . . , xm) + (0, . . . , 0, xm+1, . . . , xn).

Then F ◦ i = Φ, and the Jacobian matrix of F at 0 is
[
∂Φi

∂xj (0)
]

1≤i≤m
0[

∂Φi

∂xj (0)
]
m+1≤i≤n

In−m


Thus by the inverse function theorem F has a local inverse h, and h◦Φ = h◦F ◦ i = i. This proves
(1).

Similarly in (2), we may assume that the n× n minor
[
∂Φi

∂xj (0)
]

1≤i,j≤n
is invertible, and hence

defining G : U × Rm−n → Rm by

G(x1, . . . , xm) :=
(
Φ(x1, . . . , xm), xn+1, . . . , xm

)
.

Then Φ = π ◦G, and the Jacobian matrix of G at 0 is[ [
∂Φi

∂xj (0)
]

1≤j≤n

[
∂Φi

∂xj (0)
]
n+1≤j≤m

0 Im−n

]

Thus by the inverse function theorem G has a local inverse k, and Φ ◦ k = π ◦G ◦ k = π. I

3.5 Definition
Let Mm be a submanifold of Nn. A chart (U, h) on N with local coordinates (x1, . . . , xn) is called
a slice chart for M in N if

M ∩ U = {p ∈ U | xm+1(p) = · · · = xn(p) = 0}.

3.6 Proposition (submanifold criterion)
Let Φ : Mm → Nn be an immersion. Then for any p ∈ M , there exists a neighborhood U of
p and a coordinate map (V, k) defined on some neighborhood V of Φ(p), with local coordinates
(y1, . . . , yn) such that:

1. A point q belongs to Φ(U) ∩ V if and only if ym+1(q) = · · · = yn(q) = 0, so

k (Φ(U) ∩ V ) = (Rm × {0}) ∩ k(V ).

2. Φ|U is an embedding.

If Φ was an embedding, then we may take U = M , and hence

Φ(M) ∩ V = {q ∈ V | ym+1(q) = · · · = yn(q) = 0}.

In other words, an immersed submanifold Mm ⊆ Nn is one such that every point p ∈ M has
a chart (V, k) about Φ(p) and a neighborhood U such that k is a slice chart for U in N , and an
embedded submanifold is one such that every point p ∈M has a chart (V, k) about Φ(p) such that
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k is a slice chart for M in N .

J Let i : Rm ↪→ Rn denote the inclusion. Let h be a chart centred about p, and ` a chart
centred about Φ(p). Since ` ◦ Φ ◦ h−1 has maximal rank m at 0, by the implicit function theorem
there exists a chart `′ of Rn and a neighborhood W of 0 ∈ Rm such that

`′ ◦ ` ◦ Φ ◦ h−1|W = i|W .

Then set U = h−1(W ) and k = `′ ◦ `. Then by restricting the domain of `′ if necessary, (1) clearly
holds. Furthermore, since Φ|U = k−1 ◦ i ◦ h is the composition of embeddings, so is Φ|U .

Finally, if Φ was an embedding then Φ(U) = Φ(M) ∩ V ′ for some open set V ′ ⊆ N , and hence
Φ(U) ∩ V = Φ(M) ∩ (V ∩ V ′), and so replacing V by V ∩ V ′, the last statement follows. I

3.7 Proposition
Every regular level set of a smooth map is an embedded submanifold.

J Suppose Φ : Mm → Nn is smooth. Suppose initially that Φ is a submersion. If q ∈ N , and
p ∈ P := Φ−1(q), then by the Theorem 3.4 there are charts (U, h) of M about centred about p and
(V, k) on N centered about q such that Φ has local expression (y1, . . . , ym) 7→ (y1, . . . , yn, 0, . . . , 0)
in these two charts. Thus P ∩ U is the slice {(x1, . . . , xm) ∈ U | xn+1 = · · · = xm = 0}, and so P
is an embedded submanifold of M .

Now we consider the general case, and drop the assumption that Φ is a submersion. If q is any
regular value of of Φ such that P := Φ−1(q) 6= ∅, then for each p ∈ P , dΦ(p) has rank n. Let
U := {p ∈ M | dΦ(p) has rank n}. Then P ⊆ U , and we will show that U is open. Given this,
Φ|U : U → N is a submersion, and we can apply the above to conclude that P is an embedded
submanifold of U , and hence also an embedded submanifold of M .

If p ∈ U , then the determinant of some n × n minor of the n ×m matrix representing dΦ(p)
in some smooth local coordinates is non-zero. Since the determinant is continuous, there is a
neighborhood V of p such that this minor has non-zero determinant, and thus V ⊆ U and U is
open. I

3.8 Theorem (Sard)
If Φ : M → N is smooth then the set of critical values of Φ has measure zero in N .

We will not prove this theorem in this course.

3.9 Theorem
Let Φ : Mm → Nn be a smooth map, with m ≥ nis smooth. If q ∈ N is a regular value of Φ
such that P := Φ−1(q) 6= ∅, then P is a topological manifold of dimension m− n. Moreover there
exists a unique smooth for which (P, i) (where i : P ↪→ M is inclusion) becomes an embedded
submanifold of M .

J Let k : V → Rn be a chart on N centred about q; given p ∈ P , let h : U → Rm be a chart on
M centred about p. Decompose Rm = Rn × Rm−n, and let π1 : Rm → Rn and π2 : Rm → Rn−m
denote the projections onto the two factors. Let i2 : Rm−n ↪→ Rn denote the inclusion(

a1, . . . , am−n
)
7→
(
0, . . . , 0, a1, . . . , am−n

)
.

Since k ◦Φ ◦ h−1 has maximum rank at 0 ∈ Rm by Theorem 3.4 there exists a chart (W, `) around
0 ∈ Rm such that k ◦ Φ ◦ h−1 ◦ ` = π1|W . Let W ′ := π2(W ), so W ′ is open in Rm−n and
k ◦ Φ ◦ h−1 ◦ ` ◦ i2|W ′ = π1 ◦ i2|W ′ = 0. Thus if j := h−1 ◦ ` ◦ i2|W ′then j(W ′) ⊆ P . In fact, we
claim that

j(W ′) = P ∩
(
h−1 ◦ `

)
(W ),
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so that j maps W ′ homeomorphically onto a neighborhood of p ∈ P in the subspace topology.
Indeed, clearly j(W ′) ⊆ P ∩

(
h−1 ◦ `

)
(W ), since

j(W ′) =
(
h−1 ◦ ` ◦ i2

)
(W ) = h−1 ◦ `

(
W ∩

(
0× Rm−n

))
.

Conversely, if p′ ∈ P ∩
(
h−1 ◦ `

)
(W ), then p′ = h−1 ◦ `(u) for some unique u ∈W , and since

0 = k ◦ Φ(p′) =
(
k ◦ Φ ◦ h−1 ◦ `

)
(u) = π1(u),

we have
u = (0, a) ∈ 0×W ′

for some a ∈ W ′, and thus p′ = j(a) ∈ j(W ′). It follows that the inclusion i : P ↪→ M is a
topological embedding.

Finally, we endow P with the smooth structure induced by the charts
{(
j(W ′), j−1

)}
as p

ranges over P . Then i : P ↪→M is smooth, since h ◦ i ◦
(
j−1
)−1 = ` ◦ i2. I

3.10 Corollary
Let Φ : Mm → Nn be smooth, q ∈ N a regular value and P = Φ−1(q) 6= ∅. Then for p ∈ P , we
have

di (Tp (P )) = ker dΦ(p).

J Since both subspaces have common dimension m− n, it suffices to check that di(Tp (P )) ⊆
ker dΦ(p). Let v ∈ Tp (P ). Then for f ∈ C∞N,q we have

dΦ(di(v))(f) = d(Φ ◦ i)(v)(f) = v(f ◦ Φ ◦ i).

But Φ ◦ i ≡ q, and hence f ◦ Φ ◦ i is a constant function, and thus v(f ◦ Φ ◦ i) = 0. I

3.11 Example

GL(n,R) is an open subset of Mat(n,R) = Rn2
. The set Sym(n,R) of symmetric matrices may

be identified with R
n(n+1)

2 . Now define Φ : GL(n,R) → Sym(n,R) by Φ(A) = AAt. Observe that
Φ−1(I) = O(n), the real orthogonal n× n matrices. We claim that I is a regular value of Φ.

First for A ∈ GL(n,R) we can define a diffeomorphism RA : GL(n,R) → GL(n,R) by right
multiplication: RA(X) = XA. Now observe that if A ∈ O(n) then Φ ◦ RA = Φ. Thus by the
chain rule, we have dΦ(A) ◦ dRA(I) = dΦ(I). Since RA is a diffeomorphism this shows that
rank(dΦ(A)) = rank(dΦ(I)). It is therefore enough to check that dΦ(I) is surjective.

Now observe that TI (GL(n,R)) ∼= TI (Mat(n,R)) ∼= Mat(n,R). Specifically, if we take global
coordinates (xij) on GL(n,R), where

xij(A) = aij , A =
[
aij
]
,

we send
aij

∂

∂xij

∣∣
I
↔
[
aij
]
∈ Mat(n,R).

We can represent an arbitary element A ∈ TI (GL(n,R)) by the curve cA : t 7→ I + tA (note that
c(t) ∈ GL(n,R) for small enough t). Now since

Φ(I + tA) = I + t(A+At) + t2AAt

we have
dΦ(I)(A) =

d

dt

∣∣
t=0

(Φ(I + tA)) = A+At.

Now finally let S by an arbitrary symmetric matrix, then if A = S/2 we have A + At = S. Thus
dΦ(I) is surjective, and thus O(n) is an embedded submanifold of GL(n,R) of dimension n(n−1)

2 .
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3.12 Distributions
LetM be a smooth manifold. A r-dimensional distribution D onM is a choice of an r-dimensional
subspace D(p) ⊆ Tp (M) for each p ∈M . A distribution D is smooth if D (M) :=

∐
p∈M D(p) is a

smooth subbundle of T (M) (see Chapter 6 for the precise definition of subbundles). Equivalently,
D is smooth if every p ∈ M has a neighborhood U and smooth vector fields X1, . . . , Xr ∈ X (U)
such that {X1(q), . . . , Xr(q)} is a basis for D(q) for each q ∈ U .

We say a smooth vector field X ∈ X (U) (where U ⊆ M is an open subset) belongs to D if
Xp ∈ D(p) for all p ∈ U . A distribution D is called involutive if given X,Y ∈ X (U) belonging to
D we also have [X,Y ] ∈ Θ(U) belonging to D. Note that a one-dimensional distribution is just a
vector field.

If (M,f) is an immersed submanifold of N and D is a distribution on N , we call (M,f) an
integral submanifold of D if dΦ(Tp (M)) = D(Φ(p)) for all p ∈ M . A distribution D on N
is called completely integrable if each point is contained in an integral submanifold of N . A
locally integrable distribution is one such that every point p ∈ N is contained in an integral
submanifold of an open subset U ⊆ N . Note that an integral manifold of a one-dimensional
distribution is just (the image of) a curve.

3.13 Theorem (Frobenius)
A distribution is involutive if and only if it is completely integrable.

3.14 Theorem (Whitney)
Any smooth manifold Mn may be embedded in R2n.

We will not prove either of these theorems in this course. The version of Theorem 3.14 stated
is a truly difficult result. An earlier (and much easier) result also due to Whitney states that we
can embed Mn in R2n+1.

4 Lie groups

4.1 Definitions
A Lie group G is a smooth manifold endowed with a group structure such that the multiplication
map m : G×G→ G, (p, q) 7→ pq and the inversion map i : G→ G, p 7→ p−1 are smooth maps.

A Lie subgroup H of G is the image of an immersed submanifold (H ′,Φ) of G such that H ′
is a Lie group, and Φ : H ′ → G is a homomorphism of the (abstract) groups H ′ and G. Thus if
H ≤ G is a Lie subgroup then the inclusion i : H ↪→ G is an immersion. It is a non-trivial fact
that a closed subgroup H ≤ G is a Lie group with respect to the subspace topology.

4.2 Examples
1. From the previous lecture, GL(n,R), O(n) and SO(n) are all Lie groups.

2. The n-torus Tn = Rn/Z is an abelian Lie group (the group structure is induced by addition
on Rn). In fact, any compact abelian Lie group is a torus.

3. A given manifold can carry multiple Lie group structures. In addition to the standard one,
we can make R3 into a Lie group by defining m(a, b) = (a1 + b1, a2 + b2 + a1b3, a3b3) (where
a = (a1, a2, a3), b = (b1, b2, b3)). This corresponds to identifying R3 with the subgroup H of
GL(3,R) consisting of matrices of the form 1 a1 a2

0 1 a3

0 0 1

 .

The fact that this is a subgroup confirms thatm does indeed endow R3 with a group structure.
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4.3 Definition
Let G be a Lie group. Set g := Te (G) (where e is the identity element of G). g is called the Lie
algebra of G. Our initial aim is to show that g is indeed a Lie algebra (and thus the definition is
not completely inane).

4.4 Computing the Lie algebra on of O(n).

Recall from Example 3.11 that O(n) is an embedded submanifold of GL(n,R) of dimension n(n−1)
2 .

Thus on := TI (O(n)) is naturally a subspace of gln := TI (GL(n,R)) = Mat(n,R). We can no
longer represent a element of on by a curve of the form c(t) = I + tA for some A ∈ Mat(n,R), as
even for small t, I+ tA has no reason to lie in O(n). However by elementary calculus, we can write

c(t) = I + tA+O(t2).

Then if we require c(t) ∈ O(n) then we need

(I + tA+O(t2))(I + tA+O(t2))t = I,

or equivalently A + At = 0. This gives on ⊆ {A ∈ gln | A + At = 0} and then counting di-
mensions gives equality. Alternatively one could proceed as in Example 3.11, with the map
dΦ : TI (GL(n,R)) → TI (Sym(n,R)), and then use Corollary 3.10 to conclude that TI (O(n))
was the kernel of dΦ(I). Since dΦ(I)(A) = A+At, we recover the same result.

4.5 Definition
Let G be a Lie group. Let `p : G→ G denote the diffeomorphism q 7→ pq. Let X ∈ X (G). We say
that X is a left-invariant vector field if `p∗X = X for all p ∈ G. We let X`(G) denote the set
of left-invariant vector fields on G. In more detail, this means that for any q ∈ G we require for
f ∈ C∞pq ,

Xpqf = (`p∗X)pq f = d`p(Xq)(f) = Xq(f ◦ `p).

Suppose X ∈ X`(G), and let ξ = Xe. Let f ∈ C∞p . Then

Xpf = Xe(f ◦ `p) = d`p(Xe)(f) = d`p(ξ)(f).

It follows that if we define a section Xξ : G→ T (G) by, for p ∈ G and f ∈ C∞p ,

Xξ(p)f = d`p(ξ)(f),

then Xξ = X and thus Xξ is a left-invariant vector field. Hence a left-invariant vector field X is
determined by ξ = Xe. In fact, if ξ is an arbitrary element of g, then defining Xξ as above yields
a left-invariant vector field.

4.6 Proposition
Let G be a Lie group, and ξ ∈ g = TeG. Define a section Xξ : G→ T (G) by

Xξ(p) = d`p(ξ) ∈ Tp (G) . (13)

Then Xξ is a vector field on G; moreover Xξ is left-invariant.

J We need only verify that Xξ is a smooth section of π : T (G) → G and left-invariant. Let
he : U ′e → O′ be a chart centred about e, with coordinates (x1, . . . , xn) (n = dimG). Fix a point
p ∈ G. Observe that if U ′p := `p(U ′e) and hp := he ◦ `p−1 then hp : U ′p → O′ is a chart centered
about p. Let (y1, . . . , yn) denote the coordinates of this chart. Now choose Ue ⊆ U ′e such that if
Up = `p(Ue) then m(Up × Ue) ⊆ U ′p. We then have the following commutative diagram

Up × Ue
m→ U ′p

↓ ↓
O ×O F→ O′
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where F is defined to be the smooth composite at the bottom. Given q ∈ Up, wee can restrict this
to

{q} × Ue
`q→ U ′p

↓ ↓
{hp(q)} × O

F (hp(q),·)→ O′

Then the map d`q : Te (G) → Tq (G) is given, with respect to the bases
{

∂
∂xi

∣∣
e

}
of Te (G) and{

∂
∂yj

∣∣
q

}
of Tq (G) by

d`q

(
∂

∂xi
∣∣
e

)
= JF (hp(q), 0)ji

∂

∂yj
∣∣
q
,

where JF (hp(q), 0) is the Jacobian matrix of F at the point (hp(q), 0) ⊆ O × O (cf. (6)). Since
the entries of JF (hp(q), 0) are smooth functions of q ∈ Ug, we have shown that for any fixed
ξ ∈ Te (G), the images d`q(ξ) depend smoothly on q. Thus Xξ is smooth.

Finally, we check Xξ is left-invariant. Indeed,

(`p∗Xξ) (pq) = d`p (Xξ(q)) = d`p ◦ d`q(ξ) = d`pq(ξ) = Xξ(pq).

This completes the proof. I

4.7 Corollary
We have a linear isomorphism between g and X`(G) given by ξ 7→ Xξ.

4.8 Corollary
Let Gn be a Lie group, and g its Lie algebra. Then g is a n-dimensional Lie algebra (!) under the
bracket induced g from the bracket on X`(G) inherited from X (G) .

J We need only show that if Xξ and Xη are left invariant then so is [Xξ, Xη]. But by Lemma
2.9, for any p ∈ G, since `p is a diffeomorphism we have

`p∗ [Xξ, Xη] = [`p∗Xξ, `p∗Xη] = [Xξ, Xη] ,

so [Xξ, Xη] is left-invariant. Thus we can define a Lie bracket on g by setting [ξ, η] = ζ where
[Xξ, Xη] = Xζ . I

4.9 The commutator bracket
Suppose now that G is a matrix Lie group, that is, G is a Lie group and a closed subgroup
of GL(n,R). Then as we have seen, Te(G) can be identified with a subspace of Mat(n,R). We
already have a bracket on Mat(n,R), namely the commutator [A,B] := AB−BA. In fact, these
two brackets coincide.

J In this section we’ll prove the case when G = GL(n,R). Using the matrix entries
(
xij
)
as

global coordinates on GL(n,R), the natural isomorphism TI (GL(n,R))↔ gln takes the form

aij
∂

∂xij

∣∣
I
↔
(
aij
)
.

Any matrix A =
(
aij
)
defines a left-invariant vector field XA, defined by (for P ∈ GL(n,R))

XA(P ) = d`P

(
aij

∂

∂xij

∣∣
I

)
.

Under the above identification the map d`P (I) is just left multiplication by P =
(
pij
)
, and thus in

coordinates
XA(P ) = pija

j
k

∂

∂xik

∣∣
P
. (14)
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Given two matrices A,B, using (9), the Lie bracket of the corresponding left-invariant vector fields
is given by

[XA, XB ] (P ) =
{
pija

j
k

∂

∂xik

(
p`mb

m
h

)
− pijb

j
k

∂

∂xik

(
p`ma

m
h

)} ∂

∂x`h

∣∣
P{

pija
j
kδ
`
i δ
k
mb

m
h − pijb

j
kδ
`
i δ
k
ma

m
h

} ∂

∂x`h

∣∣
P{

pija
j
kb
k
h − pijb

j
ka
k
h

} ∂

∂xih

∣∣
P
.

In particular, if P = I then we obtain

[XA, XB ] (I) =
{
aikb

k
h − bikakh

} ∂

∂xih

∣∣
P

= [A,B]ih
∂

∂xih

∣∣
I
= X[A,B](I).

Since a left-invariant vector field is determined by its value at the identity, this shows that
[XA, XB ] = X[A,B], which is precisely what we wanted to show. I

To deal with the case when G is merely a subgroup of GL(n,R) we consider the following more
general situation.

4.10 Restriction to subgroups
Let H ≤ G be a Lie subgroup and let i : H ↪→ G denote inclusion. Then i is an immersion, and so
di (Te(H)) = di(h) is a subspace of g. If ξ ∈ h then letting ξ̄ = di(ξ) ∈ di(h) we have left-invariant
vector fields Xξ ∈ X`(H) and Xξ̄ ∈ X`(G). If `G,p and `H,p denote the respective left multiplication
diffeomorphisms for p ∈ H then `G,p ◦ i = i ◦ `H,p and thus

di (Xξ(p)) = di ◦ d`H,p(ξ) = d`G,p ◦ di(ξ) = d`G,p
(
ξ̄
)

= Xξ̄(p).

We have previously only defined Φ∗X for Φ a diffeomorphism: if Φ : M → N is smooth and
X ∈ X (M) then it may still be the case that there exists a well defined vector field Y ∈ X (N)
satisfying Yq = dΦ

(
XΦ−1(q)

)
- in this case we write Y = Φ∗X and sayX and Y are Φ∗-related.The

difference is that if Φ is not a diffeomorphism there is no guarantee that such a vector field exists.
However if it does, the proofs of our previous results (eg. Lemma 2.9) still go through.

Thus the computation above shows that i∗Xξ = Xξ̄, and hence by Lemma 2.9 we conclude that
di (h) is a Lie subalgebra of g, and di : h→ g is a Lie algebra homomorphism, that is

[Xξ, Xη]H =
[
Xξ̄, Xη̄

]
G
.

In particular the bracket on H is induced from that of G. Applying to this to H ≤ GL(n,R) we
conclude that the bracket is again given by matrix commutation, as required.

4.11 Lemma
Let G be a Lie group, and Xξ ∈ X`(G) be a left-invariant vector field associated to some ξ ∈ g.
Let θ : (−ε, ε)→ G be the integral curve for Xξ such that θ(0) = e. Then for |s|, |t| < ε/2 we have
θ(s+ t) = θ(s) · θ(t), where ‘·’ denotes group multiplication in G, that is θ(s+ t) = `θ(s) ◦ θ(t).

J For fixed s, we show that the curves t 7→ θ(s+ t) and t 7→ θ(s) · θ(t) are both integral curves
of Xξ defined on (−ε/2, ε/2) though e. Uniqueness of integral curves then forces equality.

Define c(t) : (−ε/2, ε/2)→ G by c(t) = θ(s+ t). Then certainly c(0) = θ(s). Moreover

ċ(t) = dc

(
d

dr

∣∣
t

)
= dθ

(
d

dr

∣∣
s+t

)
.

= θ̇(s+ t)
= Xξ (θ(s+ t))
= Xξ(c(t)).
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Suppose now p = θ(s) ∈ G. Define γ(t) = `p ◦ θ(t). Then γ(0) = p · e = p = θ(s) and

γ̇(t) = d (`p ◦ θ)
(
d

dr

∣∣
t

)
= d`p ◦ dθ

(
d

dr

∣∣
t

)
= d`p

(
θ̇(t)

)
= d`p (Xξ(θ(t)))
= Xξ (`p ◦ θ(t))
= Xξ (γ(t)) ,

where for the last but one equality we used left-invariance of Xξ. Thus both c and γ are indeed
integral curves of Xξ through e defined on the same interval as claimed. I

4.12 Corollary
Any left-invariant vector field on a Lie group G is complete.

J Let Xξ be an arbitrary left-invariant vector field on G, corresponding to ξ ∈ g.Let θ :
(−ε, ε) → G be the integral curve through e for Xξ. Define c : R → G as follows. Given t ∈ R,
choose N ∈ N such that t/N ∈ (−ε/2, ε/2). Define c(t) = θ(t/N)N . First, let use check θ is well
defined. Suppose N ′ was another such integer. Then since θ(t/NN ′)NN

′
= θ(t/NN ′) by Corollary

4.11, we have θ(t/N)N = θ(t/NN ′)NN
′

= θ(t/N ′)N
′
. Certainly c(0) = e, and given t ∈ R, letting

p = θ(t/N)N−1 as before we have

ċ(t) = d (`p ◦ θ)
(
d

dr

∣∣
t

)
= d`p ◦ dθ

(
d

dr

∣∣
t

)
= d`p

(
θ̇(t)

)
= d`p (Xξ(θ(t)))
= Xξ (`p ◦ θ(t))
= Xξ (c(t)) .

Thus c is an integral curve of Xξ at e defined on all of R. By maximality, θ must also be defined
on all of R.

To complete the proof, we must show that for any p ∈ G, if cp(t) is the integral curve for
Xξ with cp(0) = p, then cp is also defined on all of R. But given p ∈ G, define γ : R → G by
t 7→ p · θ(t) = `p ◦ θ(t). Then certainly γ(0) = p, and an identical calculation to the above shows
that γ is an integral curve of Xξ. Maximality then implies that cp is defined on all of R. I

4.13 Definition
A one-parameter subgroup of a Lie group G is a homomorphism of Lie groups θ : R → G
(where R is given the additive group structure). If ξ ∈ g, the one-parameter subgroup generated
by ξ is the one-parameter subgroup θ(t) that is the integral curve through e of Xξ.

4.14 Proposition
There is a one-to-one correspondence between one-parameter subgroups of G and left-invariant
vector fields (and hence also with g).

J We already know that a left-invariant vector field gives rise to a one-parameter subgroup.
Conversely, suppose θ : R→ G is a one-parameter subgroup. Define ξ = dθ

(
d
dr

∣∣
0

)
∈ Te (G). Then
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we have a left-invariant vector field Xξ, and to complete the proof it is enough to show that θ is
an integral curve for X. We compute:

Xξ (θ(t)) = d`θ(t)(ξ)

= d`θ(t) ◦ dθ
(
d

dr

∣∣
0

)
= d(`θ(t) ◦ θ)

(
d

dr

∣∣
0

)
= dθ

(
d

dr

∣∣
t

)
= θ̇(t).

This completes the proof. I

4.15 Definition
For any A ∈ Mat(n,R), define

exp(A) =
∞∑
k=0

1
k!
Ak.

4.16 Proposition
For any A ∈ Mat(n,R), exp(A) ∈ GL(n,R). Moreover, the one-parameter subgroup of GLn(R)
generated by A ∈ gln is θ(t) = exp(tA).

J First let us check that exp(A) converges. We have |AB| ≤ |A||B|, where | · | is the norm
induced from Rn2

, and hence by induction |Ak| ≤ |A|k. The Weierstrass M-test shows then shows
that exp(A) converges uniformly on any bounded subset of Mn(R) (by comparison with the series
expansion for e|A|).

Fix A ∈ gln. The one-parameter subgroup generated by A is the integral curve θ(t) satisfying
θ(0) = I and θ′(t) = X

(A)
θ(t). Using (14), the condition for θ(t) =

[
θij(t)

]
to be an integral curve is

θ̇ik(t) = θij(t)a
j
k, (15)

where A = [aij ]. We claim that θ(t) := exp(tA) satisfies this equation. Since θ(0) = I, by
uniqueness this proves that θ is the desired one-parameter subgroup.

First however we should check that θ(t) is a smooth GL(n,R)-valued curve. To check smooth-
ness, we note that differentiating the series formally term by term gives

θ̇(t) =
∞∑
k=1

k

k!
tk−1Ak−1 =

( ∞∑
k=1

1
(k − 1)!

(tA)k−1A

)
= θ(t)A. (16)

Since the differentiated series converges uniformly on bounded sets (because apart from the addi-
tional factor of A, it is the same series), this term by term differentiation is justified. A similar
computation shows θ̇(t) = Aθ(t). By smooth dependence of solutions of ODE’s, θ is a smooth
curve.

Finally we show that θ(t) is invertible for all t, so that θ actually takes its values in GLn(R). If
c(t) := θ(t)θ(−t), then c is a smooth curve, and using the previous computation and the product
rule,

c′(t) = (θ(t)A)θ(−t)− θ(t)(Aθ(−t)) = 0,

and thus σ is constant. Since σ(0) = I, we obtain θ(t)θ(−t) = I. Similarly, θ(−t)θ(t) = I.
Finally, (16) shows that θ(t) satisfies (15), and this completes the proof. I
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5 Vector bundles and sheaves

5.1 Definition
Let M be a smooth manifold. A smooth manifold E together with a surjective smooth map
π : E →M is called a vector bundle of rank m over M if:

1. For each p ∈M , π−1(p) =: Ep admits the structure of an m-dimensional (real) vector space.

2. Any p ∈ M has an open neighborhood U and a diffeomorphism t : π−1(U) → U × Rm such
that π|U = proj1 ◦ t and such that for each q ∈ U , tq := proj1 ◦ t|Eq : Eq → Rm is a vector
space isomorphism. The pair (U, t) is called a local trivialisation of E.

E is called the total space, and M is called the base space. We often refer to E as ‘the’ vector
bundle. Ifm = 1, we call E a line bundle. What we have actually defined are real vector bundles;
there is a similar concept of complex vector bundles. In this course however we shall mainly be
interested in real vector bundles. We say that a vector bundle π : E → M of rank m is trivial if
we can find a local trivialisation defined on all of M , that is, a trivialisation t : E →M × Rm.

5.2 Proposition
Let π : E →M be a smooth vector bundle of rank m, and (U, t) and (V, τ) two local trivialisations
of E, such that U ∩ V 6= ∅. Then there exists a smooth map ψ : U ∩ V → GL(m,R) such that
τ ◦ t−1 : (U ∩ V )×Rm → (U ∩ V )×Rm has the form (p, v) 7→ (p, ψ(p)(v)), where ψ(p)(v) denotes
the usual action of the r × r matrix ψ(p) on the vector v ∈ Rm.

J It is clear that τ ◦ t−1(p, v) = (p, σ(p.v)) for some smooth map σ : (U ∩ V ) × F → F .
Moreover, for each fixed p ∈ U ∩ V , the map v 7→ σ(p, v) is a linear isomorphism of F , so there
is exists a map ψ(p) ∈ GL(m,R) such that σ(p, v) = ψ(p)(v). It remains to show that the map
ψ : U ∩ V → GL(m,R) is smooth.

To see this, pick a basis {ei} of F , so that we may identify F with Rm and write v = vjej ,

ψ(p)(v) = ψ(p)ijv
jei.

Then ψ(p)ij = ri(σ(p, ej)) where ri : Rm → R is projection onto the ith coordinate. This is
smooth by composition. Since the matrix entries are smooth (global) coordinates on GL(m,R),
this shows that ψ is smooth. I

5.3 Definitions
We call the smooth map ψ the transition function between the local trivialisations t and τ . More
generally, if π : E →M is an m-dimensional vector bundle then we say E has cocycle {Uα, ψαβ}
if {Uα} is an open cover of M , such that there exists local trivialisations tα : π−1(Uα)→ U × Rm
with transition functions ψαβ : Uα ∩ Uβ → GL(m,R) for α, β such that Uα ∩ Uβ 6= ∅.

Observe that if E has cocycle {Uα, ψαβ} then the ψαβ satisify:
ψαα(p) = id for all α and all p ∈ Uα,
ψαβ(p)ψβα(p) = id for all α, β with Uα ∩ Uβ 6= ∅ and all p ∈ Uα ∩ Uβ ,
ψαβ(p)ψβγ(p)ψγα(p) = id for all α, β with Uα ∩ Uβ ∩ Uα 6= ∅ and all p ∈ Uα ∩ Uβ ∩ Uγ .

(17)

These are called the cocycle conditions. More generally, ifM is a smooth manifold and {Uα, ψαβ}
a collection such that {Uα} is an open cover of M and for α, β such that Uα ∩ Uβ 6= ∅ the
ψαβ : Uα ∩ Uβ → GL(m,R) are smooth matrix-valued functions satisfying the cocycle conditions
(17) then we will still call {Uα, ψαβ} a cocycle.
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5.4 Examples
1. We have so far met one example of a vector bundle in this course; namely the tangent bundle
π : T (M) → M . Examining the proof of Theorem 1.25 it is immediate that the tangent
bundle T (M) of an n-dimensional smooth manifold M is indeed a vector bundle of rank
n over M . It is clear from the proof of Theorem 1.25 that if {Uα, hα} is an atlas for M
then T (M) has cocycle

{
Uα, J(hα ◦ h−1

β ) ◦ hβ
}
where J(hα ◦ h−1

β ) is the Jacobian matrix of

hα ◦ h−1
β .

2. Here is an explicit example of a vector bundle: the Hopf line bundle (sometimes called
the tautological bundle) over CPn. First, CPn is an n-dimensional complex manifold:
that is, the charts are maps from open sets in CPnto open sets of Cn, and the transition
functions are holomorphic. Indeed, CPn has an open cover {Ui}ni=0 where

Ui :=
{(
z0 : · · · : zn

)
∈ CPn | zi 6= 0

}
,

and the chart hi : Ui → Cn carries

hi :
(
z0 : · · · : zn

)
7→

(
z0

zi
, . . . ,

ẑi

zi
, . . . ,

zn

zi

)
∈ Cn.

Moreover the transition function

hi ◦ h−1
j : hj (Ui ∩ Uj)→ hi (Ui ∩ Uj)

for i < j is the map(
w1, . . . , wn

)
7→
(
w1

wi
, . . . ,

wi−1

wi
,
wi+1

wi
, . . . ,

wj−1

wi
,

1
wi
,
wj

wi
, . . . ,

wn

wi

)
,

which is evidentally holomorphic on hj(Ui ∩ Uj). Thus CPn is an n-dimensional complex
manifold as claimed (contrast this with Example 4 in Section 1.6).
We define the Hopf bundle E to be

E =
∐

p∈CPn
Ep,

where Ep is the line in Cn+1 that represents the point p ∈ CPn, and we let π be the map
carrying Ep onto p. For notational simplicity, in what follows we shall assume that n = 1
(the general case is similar, the only difference is essentially harder notation).
We have the following obvious trivialisation. On U0, we may write any point as (1 : z) for
some z ∈ C, and

E(1:z) = {(w,wz)|w ∈ C}.
Define t0 : π−1(U0)→ U0 × C by

(w,wz) 7→ ((1 : z), w).

Similarly, a point in U1 may be written as (ζ : 1) for some ζ ∈ C, and

E(ζ:1) = {(vζ, v)|v ∈ C},

and we define t1 : π−1(U1)→ U1 × C by

(vζ, v) 7→ ((ζ; 1), v).

On U0 ∩ U1 we have (1 : z) = (ζ : 1) if and only if ζ = 1/z, and if this is the case then
(w,wz) ∈ E(1:z) = (vζ, v) ∈ E(ζ:1) if and only if v = wz. Thus ψ01 : U0 ∩U1 → GL1(C) = C∗
is the map defined by

ψ10(z)(w) = wz.

Similarly ψ01(ζ)(v) = vζ. This the Hopf bundle E is a complex line bundle over CPn.
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5.5 Definitions
Given two bundles π : E → M and π′ : E′ → M ′, a bundle morphism from E to E′ is a pair
of smooth maps F : E → E′,Φ : M → M ′ such that Φ ◦ π = π′ ◦ F and such that the restriction
to each fibre, F |Ep : Ep → E′F (p) is a linear map. If both maps are a diffeomorphism and the
restrictions to fibre are all linear isomorphisms, then F is called a bundle isomorphism. We say
that F covers Φ.

Given two vector bundles E,E′ over the same base space M , we generally use a slightly more
restrictive definition of a bundle morphism. Namely, a bundle morphism F : E → E′ is a smooth
map such that π = π′ ◦F and such that the restriction to each fibre, F |Ep : Ep → E′F (p) is a linear
map (in other words we require F to cover the identity map on M). If F is a diffeomorphism and
the restrictions to fibre are all linear isomorphisms, then F is again called a bundle isomorphism.
In this language, a vector bundle of rank m is trivial if and only if it is isomorphic to the vector
bundle M × Rm.

5.6 Lemma
Let E and E′ be vector bundles over M with the same cocycle {Uα, ψαβ}. Then E and E′ are
isomorphic as vector bundles.

J Suppose E and E′ have (necessarily common) rank m. Let {tα : π−1(Uα)→ Uα×Rm} and
{t′α : π′−1(Uα) → Uα × Rm} be the local trivialisations of E and E′ respectively. Given α, define
a map Fα : π−1(Uα)→ π′−1(Uα) by

Fα(z) = t′−1
α ◦ tα(z).

Clearly Fα is a linear isomorphism on each fibre, and τi is a diffeomorphism. We show that on
π−1(Uα∩Uβ), the maps Fα and Fβ are equal. Indeed, if z ∈ Ep so tα(z) = (p, v) and tβ(z) = (p, w)
for some v, w ∈ Rm, then ψαβ(p)(w) = v and we compute:

Fα(z) = t′−1
α ◦ tα(z)

= t′−1
α (p, v)

= t′−1
α (p, ψαβ(p)(w))

= t′−1
β ◦

(
t′β ◦ t′−1

α

)
(p, ψαβ(p)(w))

= t′−1
β (p, ψβα(p)ψαβ(p)(w))

= t′−1
β (p, w)

= t′−1
β ◦ tβ(z)

= Fβ(z).

Hence the maps Fα patch together to give us a well defined diffeomorphism F : E → E′ that is a
linear isomorphism on the fibres. I

Thus we have shown that a cocycle of a vector bundle determines the vector bundle up to
isomorphism. In fact more is true - given a smooth manifold M and a cocycle on M , we can
always find a vector bundle E with this cocycle. Thus giving a cocycle on M is equivalent to
specifying an isomorphism class of vector bundles over M . This is the content of the following
theorem.

5.7 Theorem (the vector bundle construction theorem)
LetMn be a smooth manifold, and {Uα|α ∈ A} an open cover ofM such that for all α, β such that
Uα ∩ Uβ 6= ∅ we have smooth maps ψαβ : Uα ∩ Uβ → GL(m,R) satisifying the cocycle conditions
(17). Then there exists a vector bundle π : E → M of rank m with cocycle {Uα, ψαβ}, where E
has dimension n+m. Moreover, E is unique up to vector bundle isomorphism.
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J Define
E = {(p, α, v) ∈M ×A× Rm | p ∈ Uα} / ∼,

where (p, α, v) ∼ (q, β, w) if and only if p = q ∈ Uα ∩Uβ and w = ψβα(p)(v) (this is an equivalence
relation due to the cocycle conditions). For p ∈M , define

Ep = π−1(p) = {[p, α, v] | p ∈ Uα, v ∈ Rm}

where [p, α, v] denotes the equivalence class of (p, α, v) in E. Observe that π : E →M is surjective.
Introduce a real vector space structure on Ep by defining

[p, α, v] + [p, β, w] = [p, α, v + ψαβ(p)(w)],

λ[p, α, v] = [p, α, λv].

This structure does note depend on the specific α ∈ A chosen, as each ψαβ is a vector space
isomorphism.

Now define tα : π−1(Uα) → Uα × Rm by tα([p, β, v]) = (p, v). Then tα is a bijection onto an
open subset of M × Rm: it is bijective as any [p, β, v] ∈ π−1(U) can be expressed uniquely as
[p, α, ψαβ(p)(w)] by non-singularity of ψαβ(p). Now

tα ◦ t−1
β : (Uα ∩ Uβ)× Rm → (Uα ∩ Uβ)× Rm

is the map (p, v) 7→ (p, ψαβ(p)(v)), which is smooth with smooth inverse (p, w) 7→ (p, ψβα(p)(w)).
Thus tα ◦ t−1

β is a diffeomorphism.
Now let {(Vγ , hγ)|γ ∈ G} be any atlas for M . Then{

(π−1 (Vγ ∩ Uα) , (hγ × id)) ◦ tα | α ∈ A, γ ∈ G
}

is an atlas for E, making E into a n+m dimensional manifold. With this smooth structure, {Uα}
becomes a trivialising cover for M , and the transition functions are clearly the {ψαβ}. π : E → B
is smooth, as it is the composition proj1 ◦ tα : [p, α, v] 7→ (p, v) 7→ p. Thus E is a rank m vector
bundle over M .

Uniqueness up to vector bundle isomorphism is immediate from Lemma 5.6. I

5.8 An alternative version of the vector bundle construction theorem
It is often more convenient to apply the following version of the vector bundle construction theo-
rem, whose proof is just one stage of the proof of the full vector bundle construction theorem.

Let M be a smooth manifold, and suppose for each p ∈ M we have an m-dimensional real-
vector space Ep. Let E =

∐
p∈B Ep and π the map E →M such that π−1(p) = Ep. Suppose {Uα}

is an open cover of M such that for each α, there exists a map

tα : π−1(Ui)→ Ui × Rm

which is a bijection, and such that for each α, β such that Uα ∩ Uβ 6= ∅, the map

tα ◦ t−1
β : (Uα ∩ Uβ)× Rm → (Uα ∩ Uβ)× Rm

is a map of the form
(p, v) 7→ (p, ψαβ(p)(v)) ,

where {ψαβ} are a collection of smooth functions Uα ∩ Uβ → GL(m,R) satisfying the cocycle
conditions.

Then there exists a unique topological and smooth structure on E making E into a smooth
manifold and π : E →M into a smooth vector bundle of rank m with cocycle {Uα, ψαβ}.

The advantage of using this version rather than the one stated in Theorem 5.7 is that it allows
us to explicitly construct the desired vector bundle, rather than just assert the existence of such
a vector bundle up to isomorphism. In fact, as we shall see later, we often want to distinguish
between isomorphic vector bundles (for instance, the tangent bundle and the cotangent bundle -
see Chapter 6), and then Theorem 5.7 is not much use.
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5.9 Definition
If π : E → M is a vector bundle, a subbundle of E is a subset E′ ⊆ E such that E′ is an
embedded submanifold of E, and for each p ∈M , the fibre E′p := E′ ∩ π−1(p) is a linear subspace
of Ep, and that with the vector space structure on E′p inherited from Ep, π|E′ : E′ →M is a vector
bundle. In other words, we require the inclusion map i : E′ → E to be a bundle morphism.

5.10 Definitions
Let π : E → M be a vector bundle. A smooth map s : M → E such that π ◦ s = idM is called
a section of π. The set of sections of π is written Γ(E), although it often has other notations
depending on the bundle, eg. Γ(T (M)) = X (M). Sections need not be defined on all of M ; if
U is an open subset of M we write Γ(U,E) for the smooth local sections s : U → E such that
π ◦ s = idU .

A local frame of a vector bundle π : E →M of rank m is a family e = {e1, . . . , ek} of smooth
sections in Γ(U,E) (where U ⊆M is open) such that for all p ∈ U , {e1(p), . . . , ek(p)} is a basis of
Ep. A global frame e is a frame defined on all of M . We say a manifold is parallelisable if it
admits a global frame.

5.11 Lemma
There is a bijective correspondence between local trivialisations of E and local frames of E.

J If t : π−1(U)→ U × Rm is a local trivialisation, define a local frame e = {e1, . . . , em} over
U by

ei(p) = t−1 (p, ei) ,

where the {ei} on the right hand side of the above equation denote the standard basis of Rm. It
is clear the e is a local frame.

Conversely if e = {e1, . . . , em} is a local frame over U , define a map τ : U × Rm → π−1(U) by

τ
(
p, a1, . . . , an

)
= aiei(p).

Since e is a local frame τ is bijective, and to complete the proof we need only show that τ is a
diffeomorphism (it is clear that these two operations are mutually inverse). Since τ is bijective is
suffices to check τ is a local diffeomorphism, and hence it is enough to show that if p ∈ U , and
t : π−1(V ) → V × Rm is a local trivialisation over V , where V ⊆ U is a neighborhood of p then
t ◦ τ : V ×Rm → V ×Rm is a diffeomorphism. For each i, the map t ◦ ei : V → V ×Rmis smooth,
and hence there are smooth functions f ji such that

t ◦ ei(p) =
(
p, f1

i (p), . . . , fmi (p)
)
.

Thus
t ◦ τ

(
p, a1, . . . , am

)
=
(
p, aif1

i (p), . . . , aifmi (p)
)

is smooth, Finally (t ◦ τ)−1 is smooth since matrix inversion is smooth - if
[
dji (p)

]
denotes the

matrix inverse to
[
f ij(p)

]
then p 7→

[
dji (p)

]
is smooth and

t ◦ τ
(
p, b1, . . . , bm

)
=
(
p, bid1

i (p), . . . , b
idmi (p)

)
which is also smooth. I

5.12 Corollary
A vector bundle π : E →M is trivial if and only if it admits a global frame.

J Apply the previous result with U = M . I
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5.13 Definitions
Let π : E → M be a rank m vector bundle. If all the transition functions {ψαβ} of E take their
values in some subgroup G ⊆ GL(m,R) then we say that the structure group of E can be
reduced to G. We say that a vector bundle is orientable if its structure group may be reduced
to GL+(m,R) := {A ∈ GL(m,R) | det(A) > 0}. We say E admits an orthogonal structure if
we can reduce the structure group of E to O(m). Similarly a complex vector bundle of rank m
admits a unitary structure if we can reduce its structure group to U(m).

5.14 The Hopf bundle admits a unitary structure.
By choosing a different trivialisation, we give the Hopf bundle E (Example 2 of Section 5.4) a
unitary structure. Define

t0 : (w,wz) ∈ E(1:z) 7→
(

(1 : z), w
√

1 + |z|2
)
∈ U0 × C,

t1 : (vζ, v) ∈ E(ζ:1) 7→
(

(ζ : 1), v
√

1 + |ζ|2
)
∈ U1 × C.

Writing x = w
√

1 + |z|2 and y = v
√

1 + |ζ|2, we see that

t1 ◦ t−1
0 ((1 : z), x) = t1

(
x√

1 + |z|2
,

xz√
1 + |z|2

)

= t1

(
x|ζ|√

1 + |ζ|2
,

x|ζ|
ζ
√

1 + |ζ|2

)
=
(

(ζ : 1),
|ζ|x
ζ

)
,

and thus the transition maps ψ10 is defined by ψ10(z)(x) = zx
|z| , and similarly ψ01(ζ)(y) = ζy

|ζ| .
Thus both ψ10 and ψ01 are maps from U0 ∩ U1 → U(1) ⊆ GL1(C).

5.15 Metrics
A metric on a vector bundle π : E →M of rank m is an assignment p 7→ 〈·, ·〉p where 〈·, ·〉p is an
inner product on Ep varying smoothly with p. Slightly more precisely, and using terminology that
will become clearer shortly, a metric is a smooth section of the bundle E∗ ⊗ E∗.

If we can reduce the structure group G of E to O(m) then we can obtain a metric on E as
follows: define 〈v, w〉p for v, w ∈ Ep to be 〈tp(v), tp(w)〉Rm , where t is some local trivialization
tp := proj1 ◦ t|Ep : Ep → Rm, and 〈·, ·〉Rm denotes the Eucliden dot product on Rm. This is well
defined as if τ is another local trivialization, with transition function ψ, so

τp(v) = ψ(p) (tp(v)) ,

then
〈τp(v), τp(w)〉Rm = 〈ψ(p) (tp(v)) , ψ(p) (tp(w))〉Rm = 〈tp(v), tp(w)〉Rm ,

since ψ(p) is an orthogonal matrix. By construction, this inner product varies smoothly over the
fibres. We shall see below in Lemma 5.19 below that every (real) vector bundle of rank m admits
an orthogonal structure, and thus we can in fact always define a metric on a vector bundle.

Similarly we can define a Hermitian metric on a complex vector bundle π : E →M of rank
m is an assignment p 7→ 〈·, ·〉p where 〈·, ·〉p is a Hermitian inner product on Ep varying smoothly
with p. In exactly the same way, if E admits a unitary structure then we can define a Hermitian
metric on E. We have just shown in Section 5.14 that the Hopf bundle admits such a unitary
structure; we define a Hermitian inner product on it by

〈(w1, w1z), (w2, w2z〉(1:z) =
〈
w1

√
1 + |z|2, w2

√
1 + |z|2

〉
= w1w̄2(1 + |z|)2.

In particular, the associated norm gives

‖(w,wz)‖2p = 〈(w,wz), (w,wz)〉p = |w|2(1 + |z|)2 = |w|2 + |wz|2,
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which therefore corresponds to the standard length of a vector (w,wz) ∈ C2. Note again that to
say a bundle can have its structure group reduced to G is to say that in some trivialisation we can
force all the transition functions to take their values in G, and not that in every trivialisation the
transition functions take their values in G; indeed the original trivialisation of the Hopf bundle in
Example 2 of Section 5.4 did not have its transition functions taking their values in U(1).

5.16 The Gram-Schmidt process
Conversely, given a metric 〈·, ·〉 on E, we may reduce the structure group to O(m) as follows: let
{(Uα, tα)|α ∈ A} denote an open covering ofM by trivialising neighborhoods for E. Let {e1, . . . ek}
denote the canonical basis of Rm, and for each α, let eα1 , . . . , eαk denote the smooth sections of π
on Uα defined by eαi (p) = t−1

α (p, ei). Then define new sections sαi inductively by

sαi (p) =
eαi (p)−

∑i−1
j=1

〈
eαj (p), sαj (p)

〉
sαj (p)∥∥∥eαi (p)−

∑i−1
j=1

〈
eαj (p), sαj (p)

〉
sαj (p)

∥∥∥ ;

(this is just the Gram-Schmidt orthogonalization process); then the sαi then form a smooth
frame that are orthonormal with respect to 〈 , 〉.

Next, define new local trivializations τα by

τα
(
aisαi (p)

)
=
(
p, a1, . . . , am

)
;

note that the τα are local trivializations as {sαi } is a smooth frame. Claim now that the transition
functions ψαβ with respect to {Uα, τα} take their values in O(m). Indeed, the matrix ψαβ(p) is
just the change of basis matrix from the orthonormal basis {sβi (p)} of Ep to the orthonormal basis
{sαi (p)}, and thus ψαβ(p) is an orthogonal matrix.

The next result is a key result used throughout differential geometry, and is the reason second
countability was included in the definition of a topological manifold (Section 1.1). We shall use it
several times throughout this course - we have already used the existence of bump functions in the
proof of Proposition 2.4. Below in Lemma 5.19 we shall use the existence of a partition of unity
to show that every real vector bundle admits an orthogonal structure.

5.17 Theorem (existence of partition of unity)
Let M be a smooth manifold and {Uα | α ∈ A} an open cover of M . Then there exists a countable
collection {λi | i ∈ N} of smooth functions λi ∈ C∞(M) such that:

• for any i, there exists α(i) such that supp(λi) := {p ∈M | λi(p) 6= 0} is contained in Uα(i)

and is compact,

• for all p ∈M , there exists a neighborhood V of p such that only finitely many of the λi are
not identically zero in V (in other words, the collection {λi} is locally finite),

• each λi is non-negative, and for all p ∈ M , we have
∑∞
i=1 λi(p) = 1 (note this sum only has

finitely many non-zero terms).

The collection {λi} is called a partition of unity subordinate to the open cover {Uα}.

We will not prove this theorem; its proof is essentially general (point-set) topology and thus
falls out of the remit for this course.

5.18 Lemma (bump functions)
Let M be a smooth manifold, p ∈ M and U ⊂ V any open neighborhoods of p (with U strictly
contained in V ). Then there exists a smooth bump function ψ : M → R such that 0 ≤ ψ ≤ 1 on
M , ψ|Ū ≡ 1 and ψ|M\V ≡ 0.

J Let {ψ,ψ′} be a partition of unity subordinate to the open cover {V,M\Ū} of M , so
supp(ψ) ⊆ V and supp(ψ′) ⊆M\Ū . Then ψ is the desired function. I
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5.19 Lemma
Any vector bundle admits a metric.

J Let E be a vector bundle of rank m over Mn. Let {Uα, tα} be a trivialising cover of M for
E, and let {λi} be a partition of unity subordinate to {Uα}. The Euclidean dot product on Rm
induces an inner product on Uα × Rm, and hence, via t−1

α , an inner product on π−1(Uα). We will
write this inner product as 〈 , 〉α.

Now define 〈·, ·〉 on E by

〈v, w〉 =
∞∑
i=1

λi(π(v)) 〈v, w〉α(i) ,

where supp(λi) ⊆ Uα(i), and λi(·) 〈·, ·〉α(i) is defined to be zero if π(v) /∈ Uα(i). Since {λi} is locally
finite, for any p and any, 〈·, ·〉p := 〈·, ·〉 |Ep×Ep is a finite sum of inner products varying smoothly
with p, and hence p 7→ 〈·, ·〉p is smooth. Finally, since the properties of being symmetric and
positive definite are convex, that is, if A and B are symmetric and positive definite then so is
tA+ (1− t)B for all t ∈ [0, 1], and at least one λi is strictly positive at each point p, it follows 〈·, ·〉
is indeed a metric on E. I

We conclude our discussion of vector bundles by constructing a few more standard bundles.

5.20 The Whitney sum
Let π : E →M and π′ : E′ →M be two vector bundles overM of rank m and m′ respectively. We
first claim we can find a common trivialising cover U of M for E and E′. Indeed, if {Uα|α ∈ A}
and {U ′β |β ∈ B} are trivialising covers for E and E′ respectively, then we simply consider U =
{Uα ∩U ′β |α ∈ A, β ∈ B}. Now define the Whitney sum E⊕E′ to be the bundle with total space

E ⊕ E′ := {(v, w) ∈ E × E′|π(v) = π′(w)}

and projection map π̃ : E ⊕ E′ → M defined by π̃(v, w) = π(v) = π′(w). Note that (E ⊕ E′)p =
Ep ⊕ E′p. We define local trivialisations τ for U ∈ U by τ : π̃−1(U)→ U × Rm ⊕ Rm′ fibrewise by

τp(v, w) = (tp(v), t′p(w)) .

If E and E′ have transition functions {ψαβ} and {ψ′αβ} with respect to U , then E⊕E′ has transition
functions

ψαβ ⊕ ψ′αβ : Uα ∩ Uβ → GL(m+m′,R),

which have matrix representation [
[ψαβ ] 0

0
[
ψ′αβ

] ]
,

where [ψαβ ] and
[
ψ′αβ

]
denote the matrices of ψαβ and ψ′αβ respectively.

Thus E ⊕E′ is given by the cocycle {Uα, ψαβ ⊕ ψ′αβ}. It is clear that this satisfies the cocycle
condition, and thus Theorem 5.8 guarantees that this is indeed a well defined vector bundle of rank
m+m′.

This illustrates the merits of Theorem 5.7 versus Theorem 5.8. Given two bundles E,E′ with
cocycles {Uα, ψαβ} and {Uα, ψ′αβ}, it is clear that {Uα, ψαβ ⊕ ψ′αβ} defines a cocycle and thus
gives us a bundle E ⊕ E′. However we have no way of telling a priori that the fibres of E ⊕ E′
can be given by (E ⊕ E′)p = Ep ⊕ E′p (although in this case it is rather obvious). By applying
the alternative version, Theorem 5.8 we were not only able to obtain the existence of the bundle
E ⊕ E′ but also to obtain explicit information about how it is constructed.
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5.21 The Dual Bundle
Let π : E → M be a vector bundle of rank m. Let E∗p := Hom(Ep,Rm) and E∗ =

∐
p∈M E∗p .

Define π∗ : E∗ → B mapping E∗p → p. Let {Uα, tα} be a trivializing cover of M for E. Then if
p ∈ Uα, we have tpα : Ep → Rm an isomorphism, and so if we define

τpα := (tpα)∗ ,

then
τpα : E∗p → (Rm)∗ ∼= Rm,

and then τα : (π∗)−1 (Uα)→ Uα × Rm is a bijective map such that its restriction to each fibre E∗p
is a linear isomorphism. If Uα ∩ Uβ 6= ∅, then

τβ ◦ τα(p, v) =
(
p,
(
ψβα(p)−1

)t
(v)
)
,

and thus the associated transition functions ψ∗αβ are transposed inverses of the original ones,

ψ∗βα(p) := (ψαβ(p))t .

The {ψ∗αβ} satisfy the cocycle conditions as the {ψαβ} do. Thus by Theorem 5.8, this does indeed
define a vector bundle of rank m overM , which we call the dual bundle. Again, we could proceed
using Theorem 5.7 and simply define E∗ to be the bundle with cocycle{

Uα,
(
ψ−1
αβ

)t}
,

where E has cocycle {Uα, ψαβ}, but then as before we would not a priori know that a concrete
representation of this has fibres equal to the dual space of the original fibres.

5.22 The tensor bundle
Now let π : E → M and π : E′ → M be two vector bundles of rank m and m′ respectively. Let
(E ⊗ E′)p := Ep ⊗ E′p, and E ⊗ E′ =

∐
p∈M (E ⊗ E′)p, with π̄ : E ⊗ E′ → M the map such

that π̄−1(p) = (E ⊗ E′)p. If {Uα} is a common trivialising cover for E and E′, with associated
trivialisations tα and t′α, then define

τα : (E ⊗ E′)p → Rm ⊗ Rm
′ ∼= Rmm

′

to be the map defined on decomposable element v ⊗ w of Ep ⊗ E′p by

v ⊗ w 7→ tpα(v)⊗ t′pα (w),

and then extending by linearity. Then τα : π̄−1(Uα)→ Uα ×Rmm′ is a bijective map such that its
restriction to each fibre (E ⊗ E′)p is a linear isomorphism. If Uα ∩ Uβ 6= ∅, then

τα ◦ τ−1
β (p, v ⊗ w) =

(
p, ψαβ(p)(v)⊗ ψ′αβ(p)(w))

)
,

and thus E ⊗E′ has cocycle {Uα, ψαβ ⊗ψ′αβ}. We call E ⊗E′ the tensor product bundle of E
and E′.

5.23 The Hom bundle
Let π : E → M and π′ : E′ → M be vector bundles over M of ranks m and m′, with cocycles
{Uα, ψαβ} and {Uα, ψ′αβ} respectively. Let Hom

(
Ep, E

′
p

)
denote the set of linear maps Ep → E′p,

so Hom
(
Ep, E

′
p

) ∼= Hom
(
Rm,Rm′

)
. Define the homomorphism bundle of E and E′ to be

the bundle Hom (E,E′)→M with have fibre

Hom (E,E′)p = Hom
(
Ep, E

′
p

)
.
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In order to check that this is indeed a vector bundle of rank mm′ over M , we use the natural
isomorphism

Hom(V,W ) ∼= V ∗ ⊗W

given by (v∗, w) 7→ [v 7→ v∗(v)w], to regard this construction as a special case of Sections 5.22 and
5.23; namely, Hom(E,E′) ∼= E∗ ⊗ E′.

In the special case E′ = E we write End(E) for Hom(E,E).

5.24 The pullback bundle
Let π : E → N be a vector bundle of rank m over a smooth manifold N , and suppose Φ : M → N
is smooth. We define the pullback bundle Φ∗E over M to be the bundle with total space

Φ∗E := {(p, v) ∈M × E | Φ(p) = π(v)} ,

and projection πΦ : Φ∗E → M defined by πΦ(p, v) = p. We also define F : Φ∗E → E by
F (p, v) = v, so that Φ ◦ πΦ = π ◦ F . We define a vector space structure on (Φ∗E)p by

λ(p, v) + µ(p, w) := (p, λv + µw),

and so F maps (Φ∗E)p onto Ep isomorphically. To see the local triviality of Φ∗E if (U, t) is local
trivialisation of E then we define

τ : π−1
Φ

(
Φ−1(U)

)
→ Φ−1(U)× Rm

by
τ (p, v) = (p, t(F (v))) .

Thus Φ∗E →M is a bundle of rank m over M . If E has cocycle {Uα, ψαβ} then Φ∗E has cocycle
{Φ−1(Uα}, ψαβ ◦ Φ}.

5.25 Sheaves
In this course we will introduce sheaves very superficially. Our use of them will solely be as an
aid in notation and as a way of expressing the definition of a connection (see Chapter 8) more
concisely.

A sheaf E over a topological space T is an assignment to each nonempty open set U ⊆ T
a group E(U), called the sections of E over U , and to each pair U ⊆ V of open sets a map
rVU : E(V )→ E(U) called the restriction map satisfying:

1. For any triple U ⊆ V ⊆W of open sets

rWU = rVU ◦ rWV .

Because of this relation for s ∈ E(V ) we may write s|U for rVU (s) without losing any infor-
mation.

2. For any pair of open sets U, V ⊆ T and sections s ∈ E(U) and σ ∈ E(V ) such that

s|U∩V = σ|U∩V

there exists a section ε ∈ E(U ∩ V ) such that

ε|U = s, ε|V = σ.

3. If s ∈ E(U ∩ V ) and
s|U = s|V = 0

then s = 0.
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5.26 Examples of sheaves
1. Here is the simplest example relevant to us. Let M be a smooth manifold, and define a sheaf
C∞on M by letting

C∞(U) = C∞(U).

The restriction maps are just the standard restrictions of smooth functions.

2. A slight modification gives the sheaf C∗ on M given by

C∗(U) = {multiplicative group of nonzero C∞ functions on U} .

3. The main example we consider is the following. Suppose E →M is a smooth vector bundle.
Define the sheaf of sections of E to be

E(U) := Γ(U,E),

the smooth sections of E over U ⊆M . Again the restriction maps are the obvious ones.

4. A particular example of this is the sheaf X overM consisting of the smooth sections of T (M),
that is, the vector fields.

5. In the next chapter we will meet the sheaf Ωr on M of differential r-forms, given by

Ωr(U) = Γ (U,Λr (T ∗(M)))

(this notation will make more sense later).

6. In Chapter 8 we will meet the sheaf Ar of E-valued differential r-forms given by

Ar(U) = Γ (U,Λr (T ∗(M))⊗ E) ,

as well as variations on this theme:

ArEnd(E)(U) = Γ (U,Λr (T ∗(M))⊗ End (E)) .

7. If E is any sheaf over a topological space T , and U ⊆ T is any open subset we can define the
restriction sheaf E|U in the obvious way; namely for V ⊆ U open we set

E|U (V ) = E(V ).

5.27 Definition
A sheaf morphism α : E → F of sheaves over a topological space T is given by a collection of
homomorphisms αU : E(U)→ F(U) such that given U ⊆ V , the maps αU and αV commute with
the restriction maps, that is

αV ◦ rVU = ρVU ◦ αU ,

where rVU is the restriction map of E and ρVU is the restriction map of F .

The following is essentially the only sheaf-theoretic result we will prove in the entire course. It
will be important in Chapter 8, when we come to define the curvature of a connection.

5.28 Proposition
Let π : E →M and π′ : E′ →M be two vector bundles over M with sheaves of sections E and E ′
respectively. Then there is a natural bijective correspondence between vector bundle morphisms
F : E → E′ and sheaf morphisms α : E → E ′ that are linear over the sheaf C∞on M . By this
we mean that if s ∈ E(U) and f ∈ C∞(U) then αU (fs) = fαU (s).
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J Given a vector bundle morphism F : E → E′ and U ⊆ M open, define αU : E(U)→ E ′(U)
by

αU (s) = F |π−1(U) ◦ s.
It is clear that this is compatible with the restrictions and so defines a sheaf morphism α : E → E ′.
Moreover it is clear that α is linear over C∞.

Conversely suppose that α : E → E ′ is a sheaf morphism that is linear over C∞. Given p ∈M ,
select a local frame e = {e1, . . . , em} (m = rank(E)) over a neighborhood U of p. Then given
v ∈ Ep we can uniquely write

v = aiei(p).

Consider now the ai : U → R as smooth (constant) functions on U . Then

αU
(
aiei

)
= aiαU (ei) ,

where the {αU (ei)} are smooth sections of E′ over U , and we define

Fp(v) = aiαU (ei) (p).

Then we define F : E → E′ by F |Ep = Fp. F is well defined as α is compatible with restrictions,
and it is clear that F is a vector bundle morphism. Moreover these operations are obviously
mutually inverse. I

6 Differential forms and cohomology

6.1 Differentials
Given a smooth manifold Mn, and U ⊆ M open, a function f ∈ C∞(U) gives a map df(p) :
Tp (M) → Tf(p) (R) for p ∈ U . Under the identification Tf(p)(R) ∼= R, given by v 7→ v(r) (where
r : R→ R is the coordinate on R), we map think of df(p) as a map Tp (M) → R, in other words,
df(p) ∈ (Tp (M))∗ =: T ∗p (U). In this case we will normally write dfp instead and call dfp the
differential of f . We call T ∗p (M) the cotangent space to M at p. If (U, h) is a chart, with
coordinates (x1, . . . , xn), then observe

df(p) (∂j |p) (r) =
∂

∂xj
(r ◦ f)(p) =

∂f

∂xj
(p).

In particular, consider dxi|p ∈ T ∗p (M) . Then dxi|p (∂j |p) = δij . Thus

dfp =
∂f

∂xi
(p)dxi|p,

and {dxi|p | i = 1, . . . , d} is the basis of T ∗p (M) dual to the basis {∂i|p | i = 1, . . . , d} of Tp (M).

6.2 Change of coordinates
Let α ∈ T ∗p (M) and (U, h) and (V, k) be charts about p, with coordinates

(
x1, . . . , xn

)
and(

y1, . . . , yn
)
respectively. Then we can write

α = aidx
i|p = α = bjdy

j |p

for some ai, bj ∈ R. Then

bj = α

(
∂

∂yj
∣∣
p

)
= α

(
∂xi

∂yj
(p)

∂

∂xi
∣∣
p

)
= ai

∂xi

∂yj
(p). (18)

Since
∂xi

∂yj
∂yj

∂xk
= δik,

using equation the transition matrix is the transposed inverse to the one occuring for the tangent
bundle.
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6.3 Definition
LetMn be a smooth manifold. The cotangent bundle ofM is the disjoint union of the cotangent
spaces;

T ∗ (M) :=
∐
p∈M

T ∗p (M) .

We have a natural projection π∗ : T ∗ (M) → M sending α ∈ T ∗p (M) 7→ p. When referring to
an element α of T ∗ (M), we will often write α = (p, α) to indicate that α ∈ T ∗p (M). T ∗(M) is the
dual bundle to T (M) and hence T ∗(M) is a 2n-dimensional manifold; the above section shows if
M has atlas {Uα, hα} then T ∗(M) has cocycle{

Uα

((
J
(
hα ◦ h

−1

β

)
◦ hβ

)−1
)t}

,

which agrees with the computations in Section 5.21.

6.4 Definitions
A differential 1-form is a smooth section of π∗ : T ∗ (M)→M ; that is, a map ω : M → T ∗ (M)
such that ω(p) =: ωp ∈ T ∗p (M), and if (U, h) is a chart about p with coordinates (x1, . . . , xn) then
on U we can write

ωq = fi(q)dxi|q,

for q ∈ U , where fi ∈ C∞(U). We let Ω1 denote the sheaf of differential 1-forms;

Ω1(U) = Γ (U, T ∗(M)) .

Note that the differential df of a smooth function f ∈ C∞(U) as defined in Section 6.1 is a
differential 1-form, df ∈ Ω1(U).

6.5 Definition
Now let Mn be a smooth manifold and consider the tensor bundle

T (k,`) (M) :=

k︷ ︸︸ ︷
T (M)⊗ · · · ⊗ T (M)⊗

`︷ ︸︸ ︷
T ∗ (M)⊗ · · · ⊗ T ∗ (M) .

We let T (k,`) denote the sheaf of smooth sections of T (k,`)(M) and call its sections (mixed)
tensors of type (k, `). We define the tensor algebra of M to be

T (M) =
⊕
k,`≥0

T (k,`)(M).

If we have a chart (U, h) with local coordinates (x1, . . . , xn) then a tensor T can be written
locally on U as

T (p) = T i1...irj1...js
(p)∂i1 |p ⊗ · · · ⊗ ∂ik |p ⊗ dxj1 |p ⊗ · · · ⊗ dxjk |p,

where the functions T i1,...,irj1,...,js
: U → R are smooth.

A contraction C of T (M) is a map Cij : T (k,`)(M)→ T (k−1,`−1)(M) given on decomposable
elements X1 ⊗ · · · ⊗Xk ⊗ ω1 ⊗ · · · ⊗ ω` of T (k,`)(M) by

Cij
(
X1 ⊗ · · · ⊗Xk ⊗ ω1 ⊗ · · · ⊗ ω`

)
= ωi (Xj) ·X1 ⊗ · · · ⊗ X̂j ⊗ · · · ⊗Xk ⊗ ω1 ⊗ · · · ⊗ ω̂i ⊗ · · · ⊗ ω`

and then extended by linearity.



6 Differential forms and cohomology 37

6.6 Multilinear algebra
To progress further we need to study some multilinear algebra. Recall that given vector space
V1, . . . , Vr, the tensor product is the universal multilinear object. Thus any multilinear form
α : V1 × · · · × Vr → R induces a unique linear map β : V1 ⊗ · · · ⊗ Vr → R, and in this way we can
naturally identify the vector space of multilinear forms V1 × · · · × Vr → R with Hom(V1 ⊗ · · · ⊗
Vr,R) = (V1 ⊗ · · · ⊗ Vr)∗.

A perfect pairing between finite dimensional vector spaces V and W is a bilinear map (·, ·) :
V ×W → R such that if v 6= 0 ∈ V then there exists some w ∈ W such that (v, w) 6= 0, and
similarly if w 6= 0 ∈ W then there exists some v ∈ V such that (v, w) 6= 0. Such a perfect pairing
induces isomorphisms

V ∼= W ∗,W ∼= V ∗

given by v 7→ (w 7→ (v, w)) and w 7→ (v 7→ (v, w)), and similarly an isomorphism ϕ : V → W ∗

gives a perfect pairing (v, w) := ϕ(v)(w), or an isomorphism ψ : W → V ∗ gives a perfect pairing
(v, w) := ψ(w)(v).

We have a natural perfect pairing

(·, ·) : (V ∗1 ⊗ · · · ⊗ V ∗r )× (V1 ⊗ · · · ⊗ Vr)→ R

given by
((v∗1 , . . . , v

∗
r ) , (v1, . . . , vr)) = v∗1 (v1) . . . v∗r (vr) .

This gives us a natural isomorphism V ∗1 ⊗ · · · ⊗ V ∗r ∼= (V1 ⊗ · · · ⊗ Vr)∗ and thus allows us to make
the identification with the space of multilinear maps V1 × · · · × Vr → R with V ∗1 ⊗ · · · ⊗ V ∗r .

Thus for a fixed vector space V , we may identify Multr(V ), the vector space of multilinear
maps V r → R with (V ∗)⊗r.

6.7 The exterior algebra
Let V be a fixed vector space. The rth exterior algebra Λr(V ) is the universal object for
alternating multilinear map, that is, maps

α : V r → R

such that for any v1, . . . , vr ∈ V and any permutation π ∈ Sr , we have α
(
vπ(1), . . . , vπ(r)

)
=

sgn(π)α(v1, . . . , vr). In other words, given any alternating multilinear map α : V r → R, α factors
uniquely to give a linear map β : Λr(V )→ R .

To constuct Λr(V ), we let Sr(V ) be the ideal of V ⊗r generated by the elements v ⊗ · · · ⊗ v,
and then we let Λr(V ) := T r(V )/Sr(V ). Let v1 ∧ · · · ∧ vr be the image of v1 ⊗ · · · ⊗ vr.

6.8 The ‘natural’ convention
We can identify the space of altenating multilinear maps on V r → R, written Altr(V ) with
(Λr(V ))∗. Now we a natural map

ϕ : Altr(V ) ↪→ Multr(V ) ∼= (V ∗)⊗r
q→ Λr (V ∗) ,

where q is the quotient map, which is an isomorphism, as its inverse is given by

ψ : f1 ∧ · · · ∧ fr 7→
1
r!

∑
π∈Sr

sgn(π)fπ(1) ⊗ · · · ⊗ fπ(r).

6.9 The ‘usual’ convention
Unfortunately most books on differential geometry do not use this convention (there are actually
compelling reasons not to use this convention, but we will not go into them) and instead define an
isomorphism ψ′ : Λr (V ∗)→ Altr(V ) given by

f1 ∧ · · · ∧ fr 7→
∑
π∈Sr

ε(π)fπ(1) ⊗ · · · ⊗ fπ(r).
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This makes the formulas prettier, but has the unfortunate side effect that its composition with the
natural map ϕ of in the previous section is not the identity, and is fact multiplication by r!.

From now on, we will identify the alternating tensor
∑
π∈Sr ε(π)fπ(1) ⊗ · · · ⊗ fπ(r) with the

wedge f1 ∧ · · · ∧ fr without further comment. Under this convention, we have for decomposable
elements f1 ∧ · · · ∧ fr of Λr (V ∗),

(f1 ∧ · · · ∧ fr) (v1, . . . , vr) =
∑
π∈Sr

fπ(1) (v1) . . . fπ(r) (vr) = det [fi (vj)] ;

in fact this association also gives a perfect pairing, which proves that we are in fact defining
an isomorphism (under the more natural convention we would have f1 ∧ · · · ∧ fr)(v1, . . . , vr) =
1
r!det [fi(vj)]).

6.10 The wedge product
Under the identification we have Altr(V ) with Λr (V ∗), the natural map

Λp(V )× Λq(V ) ∧→ Λp+q(V )

induces a wedge product on ∧ : Altp(V )×Altq(V )→ Altp+q(V ), defined by (f, g) 7→ f ∧ g, with

(f ∧ g) (v1, . . . , vp+q) =
1
p!q!

∑
π∈Sp+q

sgn(π)f
(
vπ(1), . . . , vπ(p)

)
g
(
vπ(p+1), . . . , vπ(p+q)

)
.

6.11 The algebra of alternating forms
In this way we form the algebra of alternating forms on an n-dimensional vector space V ,

Alt(V ) =
n⊕
r=1

Altr(V ).

Note that dim (Altr(V )) =
(
n
r

)
(where dim(V ) = n), since if {v1, . . . , vr} is a basis of V then

{vi1 ∧ · · · ∧ vir | 1 ≤ i1 < · · · < ir ≤ n}

is a basis of Λr (V ∗).

6.12 The exterior bundle
We construct one more bundle. If π : E → M is a vector bundle of rank m, we can construct
in the same way as the rth exterior bundle Λr(E) → M , whose fibres Λr(E)p are defined to
be Λr (Ep). This gives a bundle of rank

(
m
r

)
. In particular, the line bundle Λm(E) is called the

determinant line bundle of E and is written det(E). Note that if E has cocycle {Uα, ψαβ}
then det(E) has cocycle {Uα,detψαβ} (hence the name).

6.13 Definition
A differential r-form on a smooth manifoldMn is a smooth section of the bundle Λr (T ∗ (M))→
M , where 0 ≤ r ≤ n, and by convention Λ0 (T ∗ (M)) is the trivial bundle T ∗ (M) × R. Under
the identification Λr

(
T ∗p (M)

)
with the space of alternating forms on Tp (M), we may identify a

differential r-form ω with a map such for each p ∈M , ω(p) =: ωp is an alternating multilinear map
Tp(M)r → R. We let Ωr denote the sheaf of differential r-forms.

If (U, h) is a chart on M with local coordinates
(
x1, . . . , xn

)
, we can locally write ωp for p ∈ U

as
ωp =

∑
1≤i1<···<ir≤d

fi1...ir (p)dx
i1 |p ∧ · · · ∧ dxir |p,

where we are using the fact that{
dxi1 |p ∧ · · · ∧ dxir |p | 1 ≤ i1 < · · · < ir ≤ d

}
.

is a basis of Λr
(
T ∗p (M)

)
.The assertion that ω is smooth is equivalent to the functions fi1...,ir :

U → R being smooth.
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6.14 Theorem (orientations)
Let Mn be a smooth manifold. The following are equivalent:

1. There exists a nowhere vanishing smooth n-form ω on M (such a form is called a volume
form).

2. The vector bundle det (T ∗(M)) is trivial.

3. There exists an atlas A = (Uα, hα) such that the Jacobian matrices of all the transition
functions have strictly positive determinant.

J The equivalenve of (1) and (2) is clear from Corollary 5.12.
To progress further we first need observe the following: given charts (U, h) and (V, k) with local

coordinates (x1, . . . , xn) and (y1, . . . , yn) respectively, and U ∩ V 6= ∅, the n-forms dx1 ∧ · · · ∧ dxn
and dy1 ∧ · · · ∧ dyn in Ωn(U ∩ V ) are related by

dx1 ∧ · · · ∧ dxn = det
[
∂xi

∂yj

]
dy1 ∧ · · · ∧ dyn. (19)

This can either we deduced from the cocycle of det (T ∗(M)) or directly, as follows: since Λn (T ∗(M))
is one dimensional, we know that dx1 ∧ · · · ∧ dxn = fdy1 ∧ · · · ∧ dyn for some smooth function f ,
and to determine f we simply evaluate

dx1|p ∧ · · · ∧ dxn|p
(

∂

∂y1

∣∣
p
, . . . ,

∂

∂yn
∣∣
p

)
= det

[
dxi|p

(
∂

∂yj
∣∣
p

)]
= det

[
dxi|p

(
∂xk

∂yk
(p)

∂

∂xk
∣∣
p

)]
= det

[
∂xi

∂yj
(p)
]
.

But on the other hand,

f(p)dy1|p ∧ · · · ∧ dyn|p
(

∂

∂y1

∣∣
p
, . . . ,

∂

∂yn
∣∣
p

)
= f(p),

and thus f = det
[
∂xi

∂yj

]
as claimed.

Suppose ω is a non-vanishing n-form. Let A denote the collection of all the charts (U, h) such
if (x1, . . . , xn) are the associated local coordinates, we have

ω

(
∂

∂x1
, . . . ,

∂

∂xn

)
> 0 on U.

A is an atlas, since we can always reorder the local coordinates of a given chart. Moreover if (U, h)
and (V, k) are in A with coordinates (x1, . . . , xn) and (y1, . . . , yn) respectively, and U ∩V 6= ∅, then
we can write ω|U = gdx1∧ · · ·∧dxn and ω|U = hdy1∧ · · ·∧dyn for some positive smooth functions
g and h. Then on U ∩ V , we have dx1 ∧ · · · ∧ dxn = fdy1 ∧ · · · ∧ dyd where f = g/h > 0. But
by the previous computation, f = det

[
∂xi

∂yj

]
, and thus the atlas A satisifies condition (3). Thus

(1)⇒ (3).
Finally we prove that (3) ⇒ (1). Given such an atlas A, let {λi} be a partition of unity

subordinate to the open cover {Uα} of M . For each i, define the n-form ωi on M to by

ωi(p) = λi(p)dx1
α(i)|p ∧ · · · ∧ dx

n
α(i)|p for p ∈ Uα(i), ωi(p) = 0 for p 6= Uα(i).

Then if

ω :=
∞∑
i=1

ωi,
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we see that ω is a nowhere vanishing n-form, since for any p ∈M , if I denotes the finite non-empty
set of i ∈ N such that λi(p) 6= 0, then if i0 ∈ I and β = α(i0) we have

ω(p)

(
∂

∂x1
β

∣∣
p
, . . . ,

∂

∂xnβ

∣∣
p

)
= ωi0(p)

(
∂

∂x1
β

∣∣
p
, . . . ,

∂

∂xnβ

∣∣
p

)

+
∑

j 6=i0∈I

ωj(p)

(
∂

∂x1
β

∣∣
p
, . . . ,

∂

∂xnβ

∣∣
p

)
,

and the first term is equal to λi0(p) > 0, and all the others are non-negative by equation (19) above
and assumption on the atlas A. The theorem is proved. I

6.15 Definitions
A smooth n-manifold is called orientable if it satisfies any the three equivalent conditions of
Theorem 6.14. IfM is orientable, there exist precisely two orientations, by which we mean choices
of equivalence classes of nowhere vanishing n-forms, under the relation ω ∼ ω′ if ω(p)/ω′(p) > 0 for
some (and hence every) p ∈ M . By an orientated manifold we mean an orientable manifold
equipped with a choice of orientation.

6.16 Theorem (exterior differentiation)
Let M be a smooth manifold. There exists a unique linear sheaf morphism d : Ωr → Ωr+1 such
that

1. If f ∈ Ω0(M) then df is the differential df .

2. If ω ∈ Ωr(M) and η is any smooth form we have d(ω ∧ η) = dω ∧ η + (−1)rω ∧ dη.

3. d2 = 0, that is, d(dω) = 0 for all forms ω.

d is called the exterior differentiation operator.

We will first define d locally in terms of charts, and then show that the definition is independent
of the choice of chart. Given p ∈ M and a chart (U, h) around p, any r form ω defined on a
neighborhood of p may be locally written as

ω(p) =
∑

1≤i1<···<ir≤d

fi1...ir (p)dx
i1 |p ∧ · · · ∧ dxir |p.

We shall use the shorthand
ω(p) =

∑
I

fI(p)dxI |p,

where I = (i1, . . . , ir) is a strictly increasing multiindex, and dxI |p := dxi1 |p ∧ · · · ∧ dxir |p. Define

dω(p) :=
∑
I

(dfI)p dx
I |p.

We will show that d enjoys the following properties.

• dω(p) ∈ Λr+1
(
T ∗p (M)

)
for any local r-form ω.

• If two r-forms ω, η agree on a neighborhood of p then dω(p) = dη(p).

• d(aω + bη)(p) = adω(p) + bdη(p) for a, b ∈ R.

• d(ω ∧ η)(p) = (dω ∧ η)(p) + (−1)r(ω ∧ dη)(p) for any form η.

• d(df)(p) = 0 for f a smooth function on a neighborhood of p.
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The first three are immediate. To check the fourth, by linearity we reduce to the case ω = fdxI

and η = gdxJ . The left-hand side is

d(ω ∧ η)(p) = d(fgdxI ∧ dxJ)(p)
= (dfp · g(p) + f(p) · dgp) ∧ dxI |p ∧ (dxJ |p
=

(
dfp ∧ dxI |p

)
∧
(
g(p) · dxJ |p

)
+ (−1)r

(
f(p) · dxI |p

)
∧
(
dgp ∧ dxJ |p

)
= dω(p) ∧ η(p) + (−1)pω(p) ∧ dη(p),

which is the right-hand side. Now we check that for a local smooth function f , d(df)(p) = 0. Write
dfp locally as ∂f

∂xi (p)dx
i|p - note that by definition d(f)(p) = dfp. Then

d(df)(p) = d

(
∂f

∂xi
(p)dxi|p

)
(p)

=
∂2f

∂xi∂xj
(p) · dxj |p ∧ dxi|p∑

i<j

(
∂2f

∂xi∂xj
(p)− ∂2f

∂xj∂xi
(p)
)
dxi|p ∧ dxj |p,

which is zero by equality of mixed partial deriviatives.
Now we will show that d is well defined, that is, independent of the choice of chart. Suppose

d′ is defined in the same way relative to some other chart around p. Then d′f(p) = dfp = df(p).
Furthermore, the five properties we have just shown that d has also apply to d′ and hence,

d′ω(p) =
∑
I

d′(fIdxI)(p)

=
∑
I

(
(dfI)p ∧ dxI |p + fI(p)d′

(
dxI |p

))
,

and thus it is enough to show that d′
(
dxI |p

)
= 0. But this follows immediately by applying the

third property to d′
(
dxi1 |p ∧ · · · ∧ dxir |p

)
, together with the fact that d′

(
dxi|p

)
= 0, since d′

(
xi
)

=
dxi = d

(
xi
)
(thinking of xi as a local smooth function), and thus d′

(
dxi|p

)
= d′(d′

(
xi
)
)(p) = 0.

Thus d = d′ and so d is well defined. Hence we have a well defined operator d : Ωr(M) →
Ωr+1(M) that satisfies all the required conditions which is trivially a sheaf morphism. It remains to
show that d is unique. Suppose d′′ is any sheaf morphism satisfying the conditions of the theorem.
By the previous reasoning, it is enough to show that d′′ satisfies the five properties above. This
time, all but the second are immediate. To show this, it is enough to show that if ω is a form
that is zero on a neighborhood of V of p then d′′ω(p) = 0. To see this, let U ⊆ V be a smaller
neighborhood of p and let ψbe a smooth function that is identically 0 on U and identically 1 on
M\V (i.e. ψ = 1− ψ′ for some bump function ψ′). Then ψω = ω on all of M , so

d′′ω(p) = d′′(ψω)(p) = dψp ∧ ω(p) + ψ(p)d′′ω(p) = 0.

This establishes uniqueness, and completes the proof. I

6.17 Lemma
Let ωbe any 1-form and X,Y any two vector fields. Then

dω(X,Y ) = Xω(Y )− Y ω(X)− ω ([X,Y ]) . (20)

J We may reduce to the case ω = fdg, as the given equation is clearly additive in ω, and any
1-form can be expressed locally as a sum of terms of this form. Then dω = df ∧ dg and we have

dω(X,Y ) = df(X)dg(Y )− dg(X)df(Y ) = Xf · Y g −Xg · Y f.

The right hand side is

X(fdg(Y ))− Y (fdg(X))− fdg([X,Y ]) = X(f · Y g)− Y (f ·Xg)− f [X,Y ]g
= Xf · Y g + fXY g − Y f ·Xg − fY Xg − f(XY g − Y Xg),

and everything then cancels to give the desired equality. I
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6.18 Definitions
A form ω is closed if it is in the kernel of d. It is exact if it is in the image of d. Since d2 = 0, it
follows that Ω∗(M) forms a cochain complex under d; we define de Rham cohomology H∗dR(M)
to be the associated cohomology of this chain complex. Note that unlike most other cohomology
theories, the groups H∗dR(M) are in fact vector spaces.

6.19 Definition
Let Φ : M → N be a smooth map between smooth manifolds. Let Φ∗ denote the map dual to dΦ,
that is, Φ∗ : T ∗ (N)→ T ∗ (M) maps the fibre T ∗Φ(p) (N) to the fibre T ∗p (M); if α ∈ T ∗Φ(p)N ,

Φ∗(α)(v) := α(dΦ(v)).

More generally, if f is a local smooth function on N , define Φ∗f to be the local smooth function
f ◦ Φ on M , and if ω is a local r-form on N , define Φ∗ω to be the map defined by

(Φ∗ω)p (v1, . . . , vr) := ωΦ(p) (dΦ (v1) , . . . , dΦ (vr)) .

We shall see below that Φ∗ω is smooth and hence a local r-form on M . The map Φ∗ is called the
pullback map of Φ. If Φ is a diffeomorphism, ω a local 1-form on N and X a local vector field
on M then the pushforward Φ∗ and the pullback Φ∗are related by

(Φ∗ω) (X) = ω (Φ∗X) ◦ Φ. (21)

6.20 Lemma (properties of Φ∗)
Let Φ : M → N be smooth. Then:

1. If ω is a local r-form on N then Φ∗ω is a smooth and hence a local r-form on M .

2. Φ∗ : Ωr(N)→ Ωr(N) is an algebra homomorphism.

3. Φ∗ is a cochain map between chain complexes, that is, dΦ∗ = Φ∗d.

4. Φ∗ induces a linear map H∗dR(N)→ H∗dR(M).

J We will not prove this in the order listed. First we will prove that if ω1, . . . , ωr are 1-forms then

Φ∗(ω1 ∧ · · · ∧ ωr) = Φ∗ω1 ∧ · · · ∧ Φ∗ωr.

Indeed, if v1, . . . , vr ∈ Tp (M),

Φ∗ (ω1 ∧ · · · ∧ ωr)p (v1, . . . , vr) = (ω1 ∧ · · · ∧ ωr)Φ(p) (dΦ(v1), . . . , dΦ(vr))

= det
[
(ωj)Φ(p) (dΦ(vi))

]
= det

[
(Φ∗ωj)p (vi)

]
= (Φ∗ω1 ∧ · · · ∧ Φ∗ωr)p (v1, . . . , vr).

Now we check (3) on functions; if f is a local smooth function then we show Φ∗(df) = d(Φ∗f).
Let v ∈ Tp (M). Then

Φ∗(df)(v) = dfp(dΦ(v))
= dΦ(v)(f)
= v(f ◦ Φ)
= v (Φ∗f)
= d (Φ∗f)p (v).
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Now we prove (1) and (2). Let (U, h) be a chart on N , with local coordinates (x1, . . . , xn).
Since Φ∗ is clearly additively linear, it is enough to show that Φ∗

(
fdxi1 ∧ · · · ∧ dxir

)
is smooth to

prove (1), and note as soon as we have done this we have also proved (2), from the first calculation.
Indeed, from what we have already shown,

Φ∗
(
fdxi1 ∧ · · · ∧ dxir

)
= (Φ∗f) Φ∗

(
dxi1

)
∧ · · · ∧ Φ∗(dxir )

= (f ◦ Φ)d
(
xi1 ◦ Φ

)
∧ · · · ∧ d

(
xir ◦ Φ

)
,

and the latter is smooth, since xi ◦Φ and f ◦Φ are smooth local functions on M . This proves (1)
and (2), and since

d
{

Φ∗
(
fdxi1 ∧ · · · ∧ dxir

)}
= d

{
(f ◦ Φ)d

(
xi1 ◦ Φ

)
∧ · · · ∧ d

(
xir ◦ Φ

)}
d(f ◦ Φ) ∧ d

(
xi1 ◦ Φ

)
∧ · · · ∧ d

(
xir ◦ Φ

)
Φ∗(df) ∧ d

(
xi1 ◦ Φ

)
∧ · · · ∧ d

(
xir ◦ Φ

)
Φ∗
{
d
(
fdxi1 ∧ · · · ∧ dxir

)}
,

by linearity we have also proved (3). Finally, (4) is an immediate consequence of (2) and (3). I

6.21 Corollary
The assignment Φ 7→ Φ∗ defines a contravariant functor from the category of smooth manifolds to
the category of Z-graded abelian groups.

6.22 Extending Φ∗

In the case when Φ : M → M is a diffeomorphism it is convenient to extend the definition of Φ∗

to an operator on the tensor algebra T (M) as follows.
If X ∈ X (M) define Φ∗X :=

(
Φ−1

)
∗X. Then extend Φ∗ : T (k,`)(M)→ T (k,`)(M) by setting

Φ∗
(
X1 ⊗ · · · ⊗Xk ⊗ ω1 ⊗ · · · ⊗ ω`

)
= Φ∗X1 ⊗ · · · ⊗ Φ∗Xk ⊗ Φ∗ω1 ⊗ · · · ⊗ Φ∗ω`.

6.23 Lemma
H0

dR(M) = Rk, where k is the number of components (equivalently, path components) of M .

J A closed 0-from is a smooth real-valued function such that df = 0, and this happens if and
only if f is constant on each component of M . Since there are no (−1)-forms, this proves the
result. I

We conclude our brief discussion of de Rham cohomology by stating the following two important
theorems.

6.24 Theorem (homotopy invariance)
H∗dR(M) is a homotopy invariant of the smooth manifold M . In particular, it is independent of
the smooth structure on M .

6.25 Theorem (Poincaré lemma)
1. Let U be a star-shaped open subset of Rn. Then Hn

dR(U) = 0 for all r ≥ 1.

2. Let M be a smooth manifold. Then H∗(M × R) ∼= H∗(M).
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7 Integration on manifolds and Lie derivatives

7.1 Integration on manifolds - the simple case
Let Mn be a smooth orientated manifold, and ω a compactly supported n-form on M . Suppose
there exists a positively orientated chart (U, h) on M such that supp(ω) ⊆ U and h(U) ⊆ Rn
is bounded and measurable. Write ω = fdx1 ∧ · · · ∧ dxn on U , where (x1, . . . , xn) are the local
coordinates of h and f ∈ C∞(U) is smooth. Define the integral of ω over M to be

ˆ
M

ω =
ˆ
U

ω :=
ˆ
h(U)

(
h−1

) ∗ω =
ˆ
h(u)

f ◦ h−1dr1 . . . drn.

7.2 Lemma
The integral

´
M
ω is well defined; it does not depend on the choice of chart (U, h).

J Suppose (V, k) is another positively orientated chart such that supp(ω) ⊆ V , with k(V )
bounded and measurable, and let (y1, . . . , yn) be the local coordinates associated to k. Let F =
h ◦ k−1 : k(V )→ h(U) be the coordinate transformation. Then by (3)

∂xi

∂yj
(p) = JF (k(p))ij .

Thus by equation (19) we have

dx1 ∧ · · · ∧ dxn = det (JF ◦ k) dy1 ∧ · · · ∧ dyn.

Thus with respect to coordinates (y1, . . . , yn),

ωp = f(p)det (JF ◦ k) dy1 ∧ · · · ∧ dyn.

Set W = k(V ) . Then by the change of variable formula for multiple integrals, and using the fact
that det(JF ◦ k) > 0 as both (U, h) and (V, k) are positively orientated (this is why we required
the manifold to be orientable) we have

ˆ
h(U)

(
h−1

)∗
ω =

ˆ
F (W )

f ◦ h−1dr1 . . . drn

ˆ
W

f ◦ h−1 ◦ F |det (JF ◦ k) |ds1 . . . dsn

ˆ
F (W )

f ◦ k−1 det (JF ◦ k) ds1 . . . dsn

ˆ
k(V )

(
k−1

)∗
ω.

This completes the proof of the lemma. I

7.3 Integration on manifolds - the general case
Let Mn be a smooth orientated manifold, and ω a compactly supported n-form on M . Let A
be a positively orientated atlas on M , such that for each chart (U, φh ∈ A, h(U) is a bounded
measurable subset of Rn. There exist finitely many charts (U1, h1), . . . , (Ur, hr) ∈ A such that
supp(ω) ⊆

⋃r
i=1 Ui.

Set
Ai1...i` :=

ˆ
Ui1∩···∩Ui`

ω,

where we may integrate with any of the charts (Uim , him) (m ≤ `) to determine Ai1...i` by the
previous lemma.
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Then set
ˆ
M

ω :=
r∑
i=1

Ai −
∑
i<j

Aij +
∑
i<j<k

Aijk − · · ·+ (−1)r+1A12...r =
r∑
`=1

(−1)`+1
∑

i1<···<i`

Ai1...i`

(i.e. we are using the inclusion-exclusion prinicple). To justify this, we need.

7.4 Lemma
This is well defined: if {(Vj , kj) | j = 1, . . . , s} is another choice of charts from A such that
supp(ω) ⊆

⋃s
j=1 Vj and

Bj1...jk :=
ˆ
Vj1∩···∩Vjk

ω,

then
r∑
`=1

(−1)`+1
∑

i1<···<i`

Ai1...i` =
s∑

k=1

(−1)k+1
∑

j1<···<jk

Bj1...jk . (22)

We could consider the cover {(Ui, hi), (Vj , kj) | i = 1, . . . , r, j = 1, . . . , s} and set

Cj1...jki1...i`
:=
ˆ
Ui1∩···∩Ui`∩Vj1∩···∩Vjk

ω,

and by the previous lemma it does not matter on which of the maps hip or kjq we use to compute
Cj1...jki1...i`

.
It follows from the definition that for any m ≤ r

Ai1...im =
s∑

k=1

(−1)k+1
∑

j1<···<jk

Cj1...jki1...im
,

and similarly for

Bj1...jm =
r∑
`=1

(−1)`+1
∑

i1<···<i`

Cj1...jmi1...i`
.

Thus by rearranging the order of summation, both sides of (22) are equal to

=
r∑
i=1

(−1)`+1
s∑

k=1

(−1)k+1
∑

i1<···<i`

∑
j1<···<jk

Cj1...jki1...i`
.

This completes the proof. I

7.5 Theorem (Stoke’s theorem - without boundary)
Let Mn be a smooth orientated manifold and ω ∈ Ωn−1(M). Then

ˆ
M

dω = 0.

We will not prove Stoke’s theorem in this course.

7.6 Corollary (integration by parts)
Let Mn be a smooth orientated manifold and α ∈ Ωp(M), β ∈ Ωq(M) where p+ q = n− 1. Then

ˆ
M

α ∧ dβ = (−1)p+1

ˆ
M

dα ∧ β.

J Apply Stoke’s theorem to ω = α ∧ β. I
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7.7 Corollary
If Mn is a smooth compact orientable manifold then Hn

dR(M) 6= 0.

J Choose a volume form ω. Then
´
M
ω is a positive real number. ω is clearly closed, but not

exact by Stoke’s theorem, as if ω = dη then
´
M
ω =

´
M
dη = 0. Thus Hn

dR(M) 6= 0, as it contains
the non-zero class [ω]. I

7.8 Lie Derivatives
LetM be a smooth manifold and X ∈ X (M) and φt the local flow of X. Define the Lie derivative
of X, written LX to be the operator on tensors defined by

LXT (p) = lim
t→0

(φ∗tT ) (p)− T (p)
t

=
d

dt

∣∣
t=0

(φ∗tT ) (p).

We will investigate what this definition means on successively more complicated objects, start-
ing with functions. Recall (see Section 2.12) the notation φt(p) = cp(t) with cp the unique maximal
integral curve of X through p.

We will need the following result to prove the key result on the Lie derivative, Theorem 7.10.

7.9 Lemma
Let Φ : M → M be a diffeomorphism. Then there exists a unique operator α : T (M) → T (M)
such that

1. α preserves the type of tensors.

2. For f ∈ C∞(M), α (f) = f ◦ Φ.

3. For X ∈ X (M), Φ∗X =
(
Φ−1

)
∗X.

J Suppose that α satisfies the conditions of the Lemma. We will show that if ω ∈ Ω∗(M) then
α(ω) = Φ∗ω, which thus uniquely determines α. For this it is enough to check this for ω ∈ Ω1(M).
Let C be the contraction X ⊗ ω 7→ ω(X). Then α ◦ C = C ◦ α implies that

ω(X) ◦ Φ = α (ω(X))
= α (C {X ⊗ ω})
= C {α (X ⊗ ω)}
= C

{(
Φ−1

)
∗X ⊗ α (ω)

}
= α(ω)

((
Φ−1

)
∗X
)
,

and hence α (ω) is the 1-form such that

α(ω)
((

Φ−1
)
∗X
)

= ω(X) ◦ Φ,

and then comparing to (21) completes the proof. I

7.10 Theorem (properties of the Lie derivative)
Let Mn be a smooth manifold and X ∈ X (M). Then the Lie derivative is the unique operator
T (M)→ T (M) which maps X (M) to itself and satisfies:

1. LXf = Xf for f ∈ C∞(M).

2. LXY = [X,Y ] for Y ∈ X (M).

3. LX : T (M)→ T (M) is a derivation of T (M) which preserves the type of tensors.
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4. LX commutes with all contractions.

J First we verify that LX as defined satisfies properties (1) to (4). Let f ∈ C∞(M). Then

Xf(p) = Xp(f)
= c′p(0)(f)

= dcp

(
d

dr

∣∣
0

)
(f)

=
d

dr
(f ◦ cp)(0)

=
d

dt

∣∣
t=0

(φ∗t f) (p)

= LXf(p).

Now take Y ∈ X (M).

LXY (p) = lim
t→0

(φ∗tY ) (p)− Y (p)
t

= lim
t→0

(φ−t)∗ (Y )(φt(p))− Y (p)
t

.

Take a smooth function f defined on a neighborhood of p. Then for t small,

(φ−t)∗ (Y )(φt(p))(f)−Y (p)(f) == (Y (φt(p))(f ◦ φ−t)− Y (ϕt(p))(f)) + (Y (φt(p))(f)− Y (p)(f)) ,

and since

lim
t→0

Y (φt(p))(f ◦ φ−t)− Y (φt(p))(f)
t

= lim
t→0

Y (φt(p))
(
f ◦ φ−t − f

t

)
= Y (φ0(p)) (−LXf)
= −Yp(Xf)

and
lim
t→0

Y (φt(p))(f)− Y (p)(f)
t

= LX(Y f)(p) = Xp(Y f),

we have
(LXY ) (p)(f) = Xp(Y f)− Yp(Xf) = [X,Y ]p(f).

Now leet T and S be two smooth tensors on M . Then

LX(T ⊗ S) = LXT ⊗ S + T ⊗ LXS.

Indeed,

LX(T ⊗ S)(p) = lim
t→0

(φ∗t (T ⊗ S)) (φt(p))− (T ⊗ S)(p)
t

= lim
t→0

(φ∗tT ) (φt(p))⊗ (φ∗tS) (φt(p))− (T ⊗ S)(p)
t

= lim
t→0

(φ∗tT ) (φt(p))⊗ (φ∗tS) (φt(p))− (φ∗tT ) (φt(p))⊗ S(p)
t

+ lim
t→0

(φ∗tT ) (φt(p))⊗ S(p)− T (p)⊗ S(p)
t

= lim
t→0

(
(φ∗tT ) (φt(p))⊗

(φ∗tS) (φt(p))− S(p)
t

)
+ lim
t→0

(
(φ∗tT ) (φt(p))− T (p)

t
⊗ S(p)

)
= T (p)⊗ LXS(p) + LXS(p)⊗ T (p).

Thus LX satisfies property (3) and Lemma 7.9 shows that LX satisfies property (4).
Finally we show uniqueness. Suppose such an operator αX : T (M) → T (M) exists. Let

C : T (1,1)(M)→ C∞(M) be the contraction operator. Then

(αXω) (Y ) = X (ω(Y ))− ω ([X,Y ]) .
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Thus we define αX on Ω1(M) by this relation and observe that

(αXω) (fY ) = f (αXω) (Y ),

and so αX
(
Ω1(M)

)
⊆ Ω1(M). If U is a coordinate neighborhood with local coordinates (x1, . . . , xn)

then αX induces endomorphisms of C∞(U), T (0,1)(M) and X (U) = T (1,0)(U). Any T ∈ T (k,`)(U)
can be written as

T = T i1...ikj1...j`
∂i1 ⊗ · · · ⊗ ∂ik ⊗ dxj1 ⊗ · · · ⊗ dxj` ,

and we can uniquely extend αX |U to T (U) satisfying properties (1), (2) and (4). Property (3) is
verified by induction on k and `. Finally, αX is defined on T (M) by the requirement

(αXT ) |U = (αX |U ) (T |U ) ,

which is enforced by the requirement that αX should be a derivation, as in the proof of Theorem
6.16. I

7.11 Lemma (properties of the Lie derivative of a smooth form)
Let M be a smooth manifold, ω, η smooth forms on M and f ∈ C∞(M). Then:

1. If ω ∈ Ωr(M) then

LXω (Y1, . . . , Yr) = X (ω (Y1, . . . , Yr))−
∑
i

ω (Y1, . . . , [X,Yi], . . . , Yr) .

2. LX(ω ∧ η) = LXω ∧ η + ω ∧ LXη.

3. LX(dω) = d(LXω).

(1) is immediate from the previous result, and (2) follows from (1). To see (3), observe that
LX ◦d−d◦LX is a skew-derivation of T (M) and vanishes on f and df for f ∈ C∞(M), and hence
an argument similar to the previous result shows it vanishes identically. I

We should note here that LXY (p) does not just depend on the value of Xp, it also depends
on a X on a neighborhood of p. In the next chapter we will define a connection, DXY (p) which
will depend only on Xp, and thus give us a way to ‘differentiate’ vector fields.

7.12 The interior product
Let X be a vector field on a smooth manifold M . Let ω be a smooth form of positive degree
r. Define the interior product of ω with X, the contraction of ω with X to be iXw, an
(r − 1)-form defined by

iX(ω) (Y1, . . . , Yr−1) := ω (X,Y1, . . . , Yr−1) .

Define iXf = 0 for a form of degree 0.

7.13 Theorem (properties of iX)
iX is unique linear mapping Ω∗(M)→ Ω∗(M) satisfying

1. iXf = 0 for f ∈ C∞(M).

2. iXω = ω(X) for ω ∈ Ω1(M).

3. iX(ω ∧ ω′) = iXω ∧ η + (−1)deg(ω)ω ∧ iXω′.
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Moreover iX ◦ iX = 0 and we have Cartan’s formula

LXω = iX(dω) + d(iXω).

J Uniqueness follows by a similar argument to Theorem 7.10. To prove (3) we first show that

iX
(
ω1 ∧ · · · ∧ ωk

)
=

k∑
i=1

(−1)i=1ωi(X)ω1 ∧ · · · ∧ ω̂i ∧ · · · ∧ ωk.

To check this, write X1 = X and we evaluate both sides on vector fields X2, . . . , Xk. We need to
show

(
ω1 ∧ · · · ∧ ωk

)
(X1, . . . , Xk) =

k∑
i=1

(−1)i=1ωi (X1)
(
ω1 ∧ · · · ∧ ω̂i ∧ · · · ∧ ωk

)
(X2, . . . , Xk) . (23)

Let X denote the matrix X =
[
ωi(Xj)

]
. Then the left-hand side of (23) is det X. If X(i,j) denotes

the (k− 1)× (k− 1) minor of X obtained by deleting row i and column j then the right-hand side
of (23) is

k∑
i=1

(−1)i−1ωi (X1) det X(i,j).

Equality follows as the above is the cofactor expansion of det X in the first column.
It then follows that (3) holds for ω = fdxi1 ∧ · · · ∧ dxip and η = gdxj1 ∧ · · · ∧ dxjq , and the

general case follows from this by linearity.
The fact the iX ◦ iX = 0 is clear since by (3), iX ◦ iX is a derivation that vanishes on C∞(M)

and T (0,1)(M), and thus vanishes identically. Finally Cartan’s formula follows as both sides are
derivations that coincide on C∞(M) and Ω1(M). I

8 Connections on vector bundles

8.1 Vector bundle valued forms
Suppose π : E → M is a smooth vector bundle of rank m over a smooth manifold M . Consider
the bundle Λr (T ∗(M))⊗ E. We write Ar for the sheaf of sections

Ar(U) = Γ (U,Λr (T ∗(M))) .

We call elements of Ar E-valued r-forms. By definition we set A0 = E , that is,

A0(U) = E(U) = Γ(U,E).

Under the standard identification Λr (T ∗(M)) ∼= (Λr(T (M))∗ that we have been making, we
have

Λr (T ∗(M))⊗ E ∼= (Λr(T (M))∗ ⊗ E ∼= Hom (Λr(T (M)), E) .

In other words, we can think of the fibre (Λr (T ∗(M))⊗ E)p to be the set of alternating r-
multilinear maps Tp (M)× · · · × Tp (M)→ Ep.

8.2 Trivialising Λr (T ∗(M))⊗ E

Suppose first that U ⊆ M is a trivialising neighborhood for E, and e = {e1, . . . , em} is a local
frame. Given p ∈ U , let {ω1, . . . , ω`} be a local frame for Λr (T ∗(M)). Then given s ∈ Ar(U) as

s = f ijω
j ⊗ ei,

where the f ij are uniquely determined C∞ functions near p. Let ξi := f ijω
j . One easily checks

that the differential r-form ξi is independent of the choice of local frame {ω1, . . . , ω`}. Since p was
arbitrary we conclude that ξi ∈ Ωr(U), and hence we can write

ξ = ξi ⊗ ei
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on U . We will write ξ for the column vector

ξ =



ξ1

ξ2

...

...
ξm


,

and thus with e denoting the row vector (e1, . . . , em) we can write in matrix notation

ξ = e · ξ

where the ‘·’ denotes matrix multiplication.

8.3 The Λr (T ∗(M))⊗ End(E) bundle
The next bundle we need to work with is Λr (T ∗(M)) ⊗ End(E); its sheaf of sections is denoted
ArEnd(E). If U ⊆ M trivialises E with local frame e then similarly to the above we can write a
section a ∈ ArEnd(E)(U) as

A = aij ⊗ εj ⊗ ei,

and we will let A denote the matrix
[
aij
]
, aij ∈ Ωr(U), where {ε1, . . . , εm} is the dual coframe to e.

An element a ∈ ApEnd(E)(U) can act on an element ξ ∈ Aq(U) in the obvious way(
aij ⊗ εj ⊗ ei

)
∧
(
ξk ⊗ ek

)
:= aik ∧ ξk ⊗ ek,

which we write in matrix notation as

a ∧ ξ = e ·
(
A · ξ

)
.

8.4 Definition
A (linear) connection of a vector bundle E over M is R-linear sheaf morphism D : A0 → A1

satisfying the Leibniz property
D (fs) = df ⊗ s+ fDs (24)

for a local section s of E and a local smooth function f .
If U ⊆ M is a trivialising neighborhood for E with local frame e then we may associate a

connection matrix θ of D to e, given as follows. Since Dei ∈ A1(U) we can write

Dei = θij ⊗ ej

for θij ∈ Ω1(U), and we let θ =
[
θij
]
. An element s ∈ A0(U) can be written as s = siei for

si ∈ C∞(U), or in matrix notation, s = e · s, where as above s denotes the column vector. Then
we have

Ds = D
(
siei

)
= dsi ⊗ ei + siDei

=
(
dsj + siθji

)
⊗ ej ,

or in matrix notation,
D (e · s) = e · (ds+ θ · s) ,
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where ds denotes the column vector

ds =



ds1

ds2

...

...
dsm


.

We will write
Ds = ds+ θ · s (25)

as a shorthand for the previous equation, and say that D acts locally as D = d+ θ.
We say a section s is parallel with respect to D if Ds = 0.

8.5 Changing the frame
We now investigate how the connection matrix changes when we change the frame. Suppose
e′ = {e′1, . . . , e′m} is another local frame. Then there exists a map ψ : U → GL(m,R) such that

e′j = ψji ei,

where ψ =
[
ψji

]
. In matrix notation,

e′ = e · ψ.
The corresponding column vector s changes to s′ where

s′ = ψ · s,

since s′je′j = siei implies si = ψijs
′j . Then if θ′ is the matrix with respect to e′ then

De′ = D (e · ψ)
= e · dψ + e · θ
= e′ · ψ−1 · dψ + e′ · ψ−1 · θ · ψ,

where dψ =
[
dψji

]
and so

θ′ = ψ−1 · dψ + ψ−1 · θ · ψ. (26)

8.6 Example
This is the ‘standard’ connection on T (Rn). Define D by D

(
∂
∂ri

)
= 0. This clearly satisfies the

required properties of a connection. Thus if X = Xi ∂
∂ri is a smooth vector field, we have

DX = D

(
Xi ∂

∂ri

)
=

n∑
i=1

dXi ∂

∂ri
,

and thus X is parallel with respect to D if and only if dXi = 0 for all i, that is, each of the Xi are
constant.

8.7 Lemma
Let E be a rank m vector bundle over Mn. Then there exists a connection on E.

J Let {Uα} be a open covering ofM by trivialising neighborhoods of E. Let eα = {eα1 , . . . , eαm}
be a local frame associated to the local trivialisation π−1 (Uα) ∼= Uα × Rm. Define a connection
Dα on π−1 (Uα) by Dα (eαk ) = 0 for k = 1, . . . ,m. Now let {λi} be a partition of unity subordinate
to {Uα}, and define

D =
∞∑
i=1

λiDα(i),

where supp(λi) ⊆ Uα(i). This is again clearly a connection. I
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8.8 Lemma
Suppose E is a smooth vector bundle over M , and D1 and D2 are two connections on E. Then
D1−D2 determines an element of A1

End(E)(M), that is, a global section of Λ1 (T ∗(M))⊗End(E).

J If s is a local section of E and f a local smooth function then

(D1 −D2) (fs) = (df ⊗ s+ fD1s)− (df ⊗ s+ fD2s)
= f (D1 −D2) s.

Thus D1−D2 corresponds to a vector bundle morphism E → Λ1 (T ∗(M))⊗E by Proposition 5.28
and thus also a global section of Λ1(T ∗(M))⊗ End(E). I

8.9 Corollary
The space of connections on a bundle are an (infinite dimensional) affine space over the vector
space A1

End(E)(M).

8.10 Covariant derivatives
Let E be a vector bundle of rank m over a smooth manifold Mn. Let D be a connection on E.
Then D has a natural extension to an R-linear sheaf morphism dE : Ar → Ar+1 defines as follows:
if ω is a local r-form on M and s is a local section of E then we set

dE (ω ⊗ s) = dω ⊗ s+ (−1)rω ∧Ds.

Observe that for r = 0 this is just the Leibniz rule (24), which is also ensures that dE is well
defined, that is,

dE (ω ⊗ fs) = dE (fω ⊗ s) .

Moreover a generalised Leibniz rule also holds; namely if ξ ∈ Ap and ω ∈ Ωq then

dE (ω ∧ ξ) = dω ∧ ξ + (−1)qω ∧ dEξ.

Indeed, it is enough to verify this for ξ = η ⊗ s where η is a local p-form and s a local section of
E. Then

dE (ω ∧ ξ) = dE ((ω ∧ η)⊗ s)
= d (ω ∧ η)⊗ s+ (−1)p+q (ω ∧ η)⊗Ds
= dω ∧ ξ + (−1)q {(ω ∧ dη)⊗ s+ (−1)p (ω ∧ η)⊗Ds}
= dω ∧ ξ + (−1)qω ∧ dEξ.

8.11 Definition
Let π : E → M be a vector bundle and D a connection on E. Let dE denote the corresponding
covariant derivative, and consider

R := dE ◦ dE : A0 → A2.

We call R the curvature of D; it is the obstruction to {A∗, dE} being a complex. Unlike D, R is
linear over the smooth functions, as one easily checks:

R(fs) = dE (df ⊗ s+ fDs)
= −df ∧Ds+ df ∧Ds+ fRs
= fRs.

Thus by Proposition 5.28, R corresponds to a vector bundle morphism E → Λ2 (T ∗(M))⊗E and
hence a global section R of the bundle Λ2 (T ∗(M))⊗End(E). We will also call R the curvature of
D. Observe we can also think of R as an element of T (1,3)(M).
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8.12 Relating R and R

R and R are related by
Rs = R ∧ s.

In fact the following is true: for all r ≥ 0 we have

dE ◦ dE : ξ 7→ R ∧ ξ.

Indeed, it is enough to verify this for ξ = ω ⊗ s where ω is a local r-form and s a local section of
E. Then

dE
(
dEξ

)
= dE (dω ⊗ s+ (−1)rω ∧Ds)
= (−1)r+1dω ∧Ds+ (−1)rdω ∧Ds+ (−1)2rω ∧Rs
= ω ∧Rs
= ω ∧ (R ∧ s)
= R ∧ (ω ⊗ s)
= R ∧ ξ.

8.13 The curvature with respect to a local frame
Let E be a smooth rank m vector bundle over Mn, D a connection on E and R the curvature of
D. Suppose U ⊆ M is a trivialising neighborhood for E, and e = {e1, . . . , em} a local frame. Let
{ε1, . . . , εm} denote the corresponding coframe. There exist 2-forms Θj

i ∈ Ω2(U) such that

Rei = Θj
i ⊗ ej ,

we let Θ =
[
Θj
i

]
denote the matrix, called the curvature matrix of R with respect to e. Thus

R = Θj
k ⊗ ε

k ⊗ ej .

Observe that

Rei = dE (Dei)

= dE
(
θji ⊗ ej

)
= dθji ⊗ ej − θ

j
i ∧ θ

k
j ek

=
(
dθki + θkj ∧ θ

j
i

)
⊗ ek,

and thus
Θk
i = dθki + θkj ∧ θ

j
i , (27)

or in matrix notation
Θ = dθ + θ ∧ θ. (28)

This time changing the frame is relatively painless. If e′ = e · ψ is another frame then since R is
linear over smooth functions,

Re′ = R (e · ψ)
= Re · ψ
= e ·Θ · ψ
= e′ · ψ−1 ·Θ · ψ,

and hence the curvature matrix Θ′ of R with respect to e′ is related to Θ by

Θ′ = ψ−1 ·Θ · ψ. (29)
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8.14 Proposition (the general Bianchi identity)
Let π : E →M be a vector bundle and D a connection on E. Then in any local trivialisation the
following relationship holds between the connection and curvature matrices:

dΘ = Θ ∧ θ − θ ∧Θ. (30)

J We simply apply the exterior derivative to both sides of (28) to obtain:

dΘ = dθ ∧ θ − θ ∧ dθ
= (Θ− θ ∧ θ) ∧ θ − θ ∧ (Θ− θ ∧ θ)
= Θ ∧ θ − θ ∧Θ. I

8.15 The dual connection
Let π : E → M be a vector bundle of rank m, and D a connection on E. We wish to define a
connection D∗ on the dual bundle E∗. We do so by the recipe

d (σ(s)) = (D∗σ) (s)− σ(Ds) (31)

for σ a local section of E∗ and s a local section of E. It is easily checked that (31) does indeed
define a connection. Suppose e = {e1, . . . , em} is a local frame for E over U ⊆ M , so the dual
coframe e∗ = {e∗1, . . . , e∗m} is a local frame for E∗ (here we are using e∗i for the element normally
denoted εi, i.e. e∗i (ej) = δij - this is order to make the indices work). Thus (31) yields

0 = d (e∗i (ej)) = (D∗e∗i ) (ej)− e∗i (Dej) ,

and hence if θ∗ denotes the connection matrix of D∗ with respect to e∗, that is,

D∗e∗i = θ∗ji e
∗
j

then we have

0 = θ∗ki e
∗
k (ej)− e∗i

(
θkj ej

)
= θ∗ji − θ

i
j ,

and hence
θ∗ = −θt.

8.16 Further new connections
Suppose π : E → M and π′ : E′ → M are vector bundles over M with connections D and D′

respectively. We define a connection D ⊗D′ on the bundle E ⊗ E′ by

(D ⊗D′) (s⊗ s′) = Ds⊗ s′ + s⊗D′s′,

and then extending by linearity to all local sections of E ⊗ E′. It is clear that this defines a
connection. In particular we are interested in using this formula to define a connection on E∗⊗E =
End(E). Write D̃ for the connection D∗ ⊗D on E∗ ⊗ E. Then if D has connection matrix θ and
D∗ has connection matrix θ∗ with respect to local frames e, e∗ over U ⊆ M respectively then if
a = aije

∗
i ⊗ ej is an arbitrary element of A0

End(E)(U) then

D̃a = daije
∗
i ⊗ ej + aijθ

∗k
i e
∗
k ⊗ ej + aije

∗
i ⊗ θkj ej ,

and so
D̃a =

(
dakj + θki a

i
j − aijθ

j
k

)
e∗k ⊗ ej ,

and so if A denotes the matrix
[
aij
]
then (with a similar shorthand notation to (25))

D̃A = dA+ θA−Aθ,



8 Connections on vector bundles 55

that is, D̃ acts locally by
D̃ = d+ [θ, ·].

If we write dEnd(E) for the corresponding covariant derivative then dEnd(E) acts locally in the
same way as D̃, that is, if now a ∈ ArEnd(E)(U), so aij ∈ Ωr(U) then we still have

dEnd(E)A = dA+A ∧ θ −A ∧ θ. (32)

8.17 The coordinate-free version of the general Bianchi identity
In particular, we can apply this to Θ ∈ A2

End(E)(U) to obtain

dEnd(E)Θ = dΘ + Θ ∧ θ − θ ∧Θ = 0,

by (30). In fact it is clear that the statement

dEnd(E)Θ = 0

is equivalent to (30), and thus is a coordinate-free way of stating the general Bianchi identity.

8.18 Definition
Let π : E → M be a vector bundle and D a connection on E. Let X ∈ X (U) for some open set
U ⊆M . Then we define an R-linear sheaf morphism DX : A0|U → A0|U (recall the notation A0|U
denotes the sheaf A0 restricted to U ; see Example 7 of Section 5.26) by

DXs = Ds(X).

Thus for s a local section and f a local smooth function we have

DX(fs) = df(X) +DXs = Xf +DXs.

Similarly given X,Y local vector fields defined on some open set U ⊆M we can define an R-linear
sheaf morphism R(X,Y ) : A0|U → A0|U by

R(X,Y )s = (Rs) (X,Y ).

Thus for s a local section and f a local smooth function we have

R(X,Y )(fs) = fR(X,Y )s.

This notation will become more helpful in the following chapter, where we will be investigating
connections on the tangent bundle of a smooth manifold, M and will primarily view them as
operators X (M)→ X (M) (recall that for E = T (M), X (M) = A0(M)). For now however we will
use it to prove a very useful formula for the curvature R.

8.19 Lemma
Let E be a smooth rank m bundle over M and D a connection on M . Let X,Y be local vector
fields defined on U ⊆M . Then

R(X,Y )s = DXDY s−DYDXs−D[X,Y ]s. (33)

J The result will follow almost immediately from the following more general statement. Let
V be open in U . Let µ ∈ A1(V ). Then we claim

dE(µ)(X,Y ) = DX(µ(Y ))−DY (µ(X))− µ([X,Y ]). (34)

Without loss of generality, we may assume µ = ω ⊗ s where ω ∈ Ω1(V ) and s ∈ A0(V ). Then

dE(µ) = dω ⊗ s− ω ∧Ds,
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and hence

dE(µ)(X,Y ) = dω ⊗ s(X,Y )− (ω ∧Ds)(X,Y )
= dω(X,Y )⊗ s− ω(X)DY s+ ω(Y )DXs.

Now by (23)
dω(X,Y ) = Xω(Y )− Y ω(X)− ω([X,Y ]),

and thus

dE(µ)(X,Y ) = {Xω(Y )⊗ s+ ω(Y )DXs} − {Y ω(X)⊗ s+ ω(X)DY s} − {ω([X,Y ])⊗ s} .

Then since µ([X,Y ]) = ω([X,Y ])⊗ s and

DX(µ(Y )) = D(ω(Y )s)(X)
= (d(ω(Y ))⊗ s) (X) + ω(Y )D(s)(X)
= Xω(Y )⊗ s+ ω(Y )DX(s),

and similarly
DY (µ(X)) = Y ω(X)⊗ s+ ω(X)DY s,

(34) follows. Then to complete the proof we have

Rs(X,Y ) = dE(Ds)(X,Y )
= DX(Ds (Y ))−DY (Ds (X))−Ds([X,Y ])
DXDY s−DYDXs−D[X,Y ]s,

and thus R(X,Y )s = DXDY s−DYDXs−D[X,Y ]s as claimed. I

8.20 Definition
Let E be a smooth vector bundle of rank r over Mn, 〈·, ·〉 a metric on E and D a connection on
E. We say that D is orthogonal if

d 〈s1, s2〉 = 〈Ds1, s2〉+ 〈s1, Ds2〉

for any sections local sections s1, s2 of E. Equivalently, for any smooth vector field X we require

X 〈s1, s2〉 = 〈DXs1, s2〉+ 〈s1, DXs2〉 . (35)

8.21 Proposition
An orthogonal connection D with respect to a metric 〈·, ·〉 has skew-symmetric connection and
curvature matrices with respect to any orthonormal local frame e = {e1, . . . , em}.

J Let D be orthogonal connection and e = {e1, . . . , em} an orthonormal frame and θ the
curvature matrix of D with respect to e. Then

0 = d 〈ei, ej〉 = 〈Dei, ej〉+ 〈ei, Dej〉
=

〈
θki ek, ej

〉
+
〈
ei, θ

`
je`
〉

= θji + θij ,

which shows that θ is skew-symmetric. Then by (27),

Θk
i = dθki + θkj ∧ θ

j
i

= −dθik − θ
j
i ∧ θ

k
j

= −dθik − (−1)2θij ∧ θ
j
k

= −Θi
k,

we see that Θ is also skew-symmetric. I
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9 Koszul connections

9.1 Koszul connections
We now specialise to the case E = T (M), and thus consider connections on the tangent bundle.
These are called Koszul connections. We often abuse language and refer to such a connection as
a connection on M . Notationally we will use the symbol ‘∇’ instead of ‘D’ to distinguish between
Koszul connections and arbitary connections.

Let ∇ be a Koszul connection on Mn. Suppose (x1, . . . , xn) are local coordinates on U . Then
U trivialises T (M) and Ω1(M), so if θ is the connection matrix for ∇ over U then we can write

θkj = Γkijdx
i

for some smooth functions Γkij : U → R.We call the n3 functions Γkij the Christoffel symbols of
the connection with respect to the local frame {∂1, . . . , ∂n}.

Thus
∇∂j = Γkijdx

i ⊗ ∂k,

and hence
∇∂i∂j = Γkij∂k.

Similarly we can decompose the curvature matrix Θ of ∇ over U . We define

Rijk` := Θi
j (∂k, ∂`) ,

so that
Θi
j =

1
2
Rijk`dx

k ∧ dx`. (36)

Thus
R (∂k, ∂`) (∂j) = Rijk`∂i,

and thus
R = Rijk`dx

k ⊗ dx` ⊗ dxj ⊗ ∂i
Since Θi

j is alternating, we have

Rijk` = −Rij`k for all 1 ≤ i, j, k, ` ≤ n. (37)

More generally, for local vector fieldsX,Y and Z the local vector fields R(X,Y )Z and R(Y,X)Z
satisfy

R(X,Y )Z = −R(Y,X)Z.

9.2 Definition
Let c : [a, b] → Mn be a smooth curve in M . A vector field along c (note that this is not
normally an actual vector field) is a smooth function V : [a, b]→ T (M) such that

V (t) ∈ Tc(t) (M) for all t ∈ [a, b].

If (x1, . . . , xn) are local coordinates on M , we may write a vector field V along γ as

V (t) =
n∑
i=1

V i(t)∂i|c(t),

and the assertion that V is smooth is that is equivalent to the V i(t) being smooth functions
c−1(U)→M .

Let Vect(c) denote the set of all vector fields along c. Note that in particular, ċ(t) is a vector
field along c, and more generally if t0 ∈ (a, b) and (x1, . . . , xn) are local coordinates about t0 then
∂i ◦ c is a vector field along c for t sufficiently small, where

(∂i ◦ c) (t) := ∂i|c(t).
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9.3 Definition
Let M be a smooth manifold, and ∇ a Koszul connection on M , and c : [a, b] → M a smooth
curve. Suppose X is a vector field defined in a neighborhood of c([a, b]). Then we can define a
vector field along c, written DX

dr by

DX

dr
(t) = ∇ċ(t)X = ∇X(ċ(t)) ∈ Tc(t) (M) .

We call DXdr the covariant derivative of X along c with respect to ∇. We wish to generalise this,
so that if V is any vector field along c we can define another covariant derivative DV

dr along c. The
notation D

dr is somewhat confusing - it depends on c and ∇as well.

9.4 Proposition
Let Mn be a smooth manifold, ∇ a Koszul connection on M and c : [a, b] → M a smooth curve
on M . Then there exists a unique operation

D

dr
: Vect(c)→ Vect(c)

such that:

1. Given V,W ∈ Vect(c), we have

D(V +W )
dr

=
DV

dr
+
DW

dr
.

2. Given a smooth function f : [a, b]→ R and V ∈ Vect(c),

D(fV )
dr

(t) =
df

dr
(t)V (t) + f(t)

DV

dr
(t).

3. If X is a smooth vector field defined in a neighborhood of c(t0) then DX
dr is equal to the

construction given above, that is, for t sufficiently close to t0,

DX

dr
(t) = ∇ċ(t)X.

J Let t0 ∈ (a, b) and set p := c(t0). Let (x1, . . . , xn) be local coordinates on U ⊆ M , where U is
some neighborhood of p, and select ε > 0 such that I := (t0− ε, t0 + ε) ⊆ [a, b] and c(I) ⊆ U . Then
if V is a vector field along c we can write for t ∈ I

V (t) = V j(t)∂j |c(t),

that is,
V = V j · ∂j ◦ c,

with the V i : I → R smooth functions. We show that if we have a function D
dr : Vect(c)→ Vect(c)

satisfying (1), (2) and (3) then D
dr is uniquely determined in U .

Then by (1) and (2),
DV

dt
=
dV j

dr
· ∂j ◦ c+ V j

D

dr
(∂j ◦ c) .

But since ∂i ◦ c is a smooth vector field defined in a neighborhood of t0, by (3)

D

dr
(∂i ◦ c) = ∇ċ(t) (∂i ◦ c) ,

and since by (7) we gave

ċ(t) =
dci

dr
(t)∂i|c(t),
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it follows that

∇ċ(t) (∂j ◦ c) =
dci

dr
· Γkij ◦ c · ∂k ◦ c,

and hence putting this all together we obtain

DV

dr
(t) =

(
dV k

dr
(t) + V j(t)

dci

dr
(t)Γkij(c(t))

)
∂k|c(t). (38)

Thus DV
dt is uniquely determined by conditions (1), (2) and (3). Moreover, the argument above

reverses to show that defining DV
dr locally as above does indeed satisfy (1), (2) and (3). Since we

already know that quantities in the formula are well defined when we change coordinates, it follows
that defining D

dr locally as this does indeed yield a well defined map Vect(c) → Vect(c), and this
completes the proof. I

9.5 Definition
We say that a vector field V along c is parallel along c if DV

dr ≡ 0. A parallel frame along c
is a set {V1, . . . , Vn} of vector fields along V such that each Vi is parallel along c, and that for all
t ∈ [a, b], {V1(t), . . . , Vn(t)} is a basis of Tc(t)(M).

9.6 Lemma
Given a smooth curve c : [a, b] → M and a tangent vector va ∈ Tc(a) (M), there exists a unique
vector field V along c such that V is parallel along c and V (a) = va.

J Choose local coordinates (x1, . . . , xn) on a coordinate neighborhood U containing c(a).
Write va = vka∂k|c(a) in this coordinate system.

By (38) finding such a V on U is equivalent to solving the system of ODE’s

dV k

dr
+ V j .

dci

dr
· Γkij ◦ c = 0 for k = 1, . . . , n, (39)

subject to to the inital conditions
V k(a) = vka .

By standard ODE theory, we obtain unique smooth solutions V k(t) defined on c−1(U ∩ c([a, b])).
Then in exactly the same way we can repeatedly solve the (finitely many) initial value problems
to define the V k(t) on all of [a, b] (the solutions must agree on overlaps, due to the uniqueness
clause of the ODE theory). Thus glueing the solutions together we obtain the desired vector field
V ∈ Vect(c). I

9.7 Definition
Let Mn be a smooth manifold, and p, q in the same path component of M . Let c : [a, b]→ M be
a smooth curve with c(a) = p, c(b) = q. We define a map

τ cp,q : Tp(M)→ Tq(M)

sending v ∈ Tp(M) to the vector V (b) ∈ Tq(M), where V is the unique parallel vector field along c
with V (a) = v. From the properties of D

dr it is clear that τ cp,q is linear. Moreover, if c̄ denotes the
path from q to p obtained by traversing c backwards, it is clear that

τ c̄q,p =
(
τ cp,q
)−1

,

and hence τ cp,q is a linear isomorphism between Tp(M) and Tq(M); this gives a way of ‘connecting’
two different tangent spaces together, and is the origin of the word ‘connection’. We call τ cp,q(v) ∈
Tq(M) the vector obtained from v ∈ Tp(M) by parallel translation along c.

We have thus shown that if M carries a Koszul connection ∇ then we can obtain a system of
parallel transport on M ; namely isomorphisms τ cp,q : Tp(M) → Tq(M) for any points p, q ∈ M
that are in the same path component. In fact, as we shall now show, we can recover the connection
for the system of parallel transport.
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9.8 Proposition
Let c : (−ε, ε)→M be a curve in M with c(0) = p and ċ(0) = v ∈ Tp (M). Write

τt := τ cp,c(t) : Tp(M)→ Tc(t)(M).

Then for any local vector field Y , it holds that

∇vY = lim
t→0

τ−1
t (Y (c(t)))− Y (p)

t
.

J Fix a basis {v1, . . . , vn} of Tp(M), and let {V1, . . . , Vn} be the correponding parallel vector
fields along c. Then {V1, . . . , Vn} is a parallel frame along c, since if aiVi(t) = 0 for some t ∈ (−ε, ε)
and ai ∈ R then applying τ−t to both sides we obtain aivi = 0, whence ai = 0 for all 1 ≤ i ≤ n.

Set
Y (c(t)) = Y i(t)Vi(t),

where the Y i : (−ε, ε)→ R are smooth. Then

lim
t→0

τ−1
t (Y (c(t))− Y (p)

t
= lim

t→0

n∑
i=1

Y i(t)τ−1
t (Vi(t))− Y i(0)Vi(0)

t

=
n∑
i=1

lim
t→0

Y i(t)− Y i(0)
t

Vi(0)

=
dY i

dr
(0)Vi(0) (40)

=
D

dr

(
Y iVi

)
(0)

= ∇vY. I

In particular, this shows that if X is a smooth vector field, we can compute (∇XY ) (p) = ∇XpY
with knowledge only ofXp and of the values Y takes on a c curve inM with c(0) = p and ċ(0) = Xp.
This should be contrasted with the Lie derivative (see the remark after the proof of Lemma 7.11),
where we needed to know X in a neighborhood of p in order to compute LXY (p).

9.9 Definition
Suppose now T ∈ T (k,`)(M) with k + ` > 0. We want to define τt (T ). We do this as follows: for
ω ∈ Ω1(M) we define τ∗t (ω) by

τ∗t (ω) (Y ) := ω (τt(Y )) ,

and then for T ∈ T (k,`)(M) we define τt(T ) by

τt(T )
(
Y1, . . . , Yk, ω

1, . . . , ω`
)

:= T
(
τt (Y1) , . . . , τt (Yk) , τ∗t

(
ω1
)
, . . . , τ∗t

(
ω`
))
.

9.10 Theorem (extension of ∇ to T (M))
Let Mn be a smooth manifold and ∇ a Koszul connection on M . Given p ∈M and T ∈ T (k,`)(M)
with k + ` > 0, define

∇XT (p) :=

{
limt→0

τ−1
t (T (c(p)))−T (p)

t Xp 6= 0
0 Xp = 0,

where c is any curve such that c(0) = p and ċ(0) = Xp. Similarly given f ∈ C∞(M), define

∇Xf(p) = Xf(p).

Then ∇X is an R-linear derivation of the full tensor algebra T (M) which preserves the type of
tensors and commutes with all contractions.
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Moreover∇X is the unqiue R-linear derivation α of the full tensor algebra T (M) which preserves
the type of tensors and commutes with all contractions such that

α(Y ) = ∇XY, α(f) = Xf.

Finally X 7→ ∇X is linear over the smooth functions and ∇X+Y = ∇X +∇Y .

J Uniqueness (which we will prove last) will ensure that ∇X is well defined (i.e. independent
of the choice of curve c). It is clear that ∇XT is R-linear in the T -variable, and since

∇X (S ⊗ T ) (p) = lim
t→0

τ−1
t (S ⊗ T ) (c(t))− (S ⊗ T ) (p)

t

= lim
t→0

τ−1
t (S (c(t)))⊗ τ−1

t (T (c(t)))− S(p)⊗ T (p)
t

= lim
t→0

τ−1
t (S (c(t)))− S(p)

t
⊗ T (p)

+ lim
t→0

τ−1
t (S (c(t)))⊗ τ−1

t (T (c(t)))− T (p)
t

= ∇XS(p)⊗ T (p) + S(p)⊗∇XT (p)

(this calculation is formally identical if either S, T or both are functions) we see that ∇X is indeed
a derivation of T (M). It is clear that ∇X preserves the type of T , and to show ∇X commutes
with all the contractions, we will start with the special case T = ω ⊗ Y with ω ∈ T (0,1)(M) so
CT = ω(Y ). Then

∇XCT = Xω(Y ),

and

C (∇XT ) = C (∇Xω ⊗ Y + ω ⊗∇XY )
= (∇Xω) (Y ) + ω (∇XY ) .

Thus we need to show
(∇Xω) (Y ) = Xω(Y )− ω (∇XY ) . (41)

To prove (41), let p ∈ M and {v1, . . . , vn} a basis of Tp(M) and {`1, . . . , `n} the corresponding
dual basis of T ∗p (M). Let Vj(t) := τt(vj) so {V1, . . . , Vn} is a parallel frame along c, and define

Li(t) := τ∗−t
(
`i
)
.

Then
Li(t) (Vj(t)) = τ∗−t

(
`i
)

(τt (vj)) = `i (vj) = δij ,

and thus {L1, . . . , Ln} is the dual coframe to {V1, . . . , Vn}. If ω is a 1-form defined on a neighbor-
hood of p then we can write

ω(c(t)) = ωi(t)Li(t)

for some smooth functions ωi. If Y is a vector field defined on a neighborhood of p we can write

Y (c(t)) = Y j(t)Vj(t),

and so

ω(Y )(c(t)) = ωi(t)Li(t)
{
Y j(t)Vj(t)

}
= ωi(t)Y i(t),

and so

∇X (ω(Y )) (p) = Xω(Y )(p)

= lim
t→0

ωi(t)Y i(t)− ωi(0)Y i(0)
t

=
dωi
dr

(0)Y i(0) + ωi(0)
dY i

dr
(0). (42)



9 Koszul connections 62

Next,

∇Xω(p) = lim
t→0

τ−1
t

(
ωi(t)Li(t)

)
− ωi(0)Li(0)

t

= lim
t→0

ωi(t)τ−1
t

(
Li(t)

)
− ωi(0)Li(0)

t

= lim
t→0

ωi(t)− ωi(0)
t

Li(0)

=
dωi
dr

(0)Li(0). (43)

We laread know that

∇XY (p) =
dY i

dr
(0)Vj(0),

by (40), and hence

ω (∇XY ) (p) = ωi(0)
dY i

dr
(0). (44)

Putting (42),(43) and (44) together proves (41).
Now we can prove the general case that ∇X commutes with all contractions. Without loss of

generality, suppose
T = ω1 ⊗ · · · ⊗ ωk ⊗ Y1 ⊗ · · · ⊗ Y`

and C = Cij . Thus

CT = ωi (Yj)ω1 ⊗ · · · ⊗ ω̂i ⊗ · · · ⊗ ωk ⊗ Y1 ⊗ · · · ⊗ Ŷj ⊗ · · · ⊗ Y` =: ωi (Yj) · T ′.

Thus

∇XCT (p) = ∇X
(
ωi (Yj)

)
(p)⊗ T ′(p) + ωi (Yj) (p)⊗∇XT ′(p)

= Xωi (Yj) (p)T ′(p) + ωi (Yj) (p)∇XT ′(p).

Next,

C (∇XT ) (p) = C
(∑

ω1 ⊗ · · · ⊗ ∇X (·)⊗ · · · ⊗ Y`
)

(p)

= ωi (Yj) (p)∇XT ′(p) + ωi (∇XYj) (p)T ′(p) +
(
∇Xωi

)
(Yj) (p)T ′(p),

and then (41) shows that
∇XCT (p) = C (∇XT ) (p)

as required.
Now suppose α : T (M)→ T (M) satisfies all of these properties. Then

α (ω ⊗ Y ) = α (ω)⊗ Y + ω ⊗∇XY,

and hence we must have
α(ω)(Y ) = Xω(Y )−∇XY,

since

α (ω(Y )) = α (contraction of ω ⊗ Y )
= contraction of α (ω ⊗ Y )
= α(ω)(Y ) + ω (∇XY ) .

Then the derivation property uniquely determines α on tensors of the form fω1 ⊗ · · · ⊗ ωk ⊗ Y1 ⊗
· · · ⊗ Y`. Since any tensor is a finite sum of terms of this form, this shows that α is uniquely
determined by these conditions.

Finally, if reamins to see that X 7→ ∇X is linear over the smooth functions. Since we already
know X 7→ ∇XY and X 7→ Xf are C∞(M)-linear, we see that (41) shows that X 7→ ∇Xω is
also C∞(M)-linear, and hence X 7→ ∇XT is C∞(M)-linear for any tensor T . A similar argument
shows that ∇X+Y = ∇X +∇Y . This completes the proof. I
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9.11 Definition
Given a Koszul connection ∇ on M, define for vector fields X,Y ∈ X (M) a vector field T (X,Y ) ∈
X (M) by

T (X,Y ) := ∇XY −∇YX − [X,Y ].

Observe that T is clearly bilinear, and for f ∈ C∞(M),

T (fX, Y ) = ∇fXY −∇Y fX − [fX, Y ]
= f∇XY − Y f ·X − f∇YX − f [X,Y ] + Y f ·X
= fT (X,Y ),

and similarly T (X, fY ) = fT (X,Y ). Thus by Proposition 5.28, T determines a global section
(also called) T of the bundle T (1,2)(M), that is, T ∈ T (1,2)(M). Thus T is a tensor of type (1, 2)
which is known as the torsion tensor of ∇.

We write the components of T in local coordinates (x1, . . . , xn) as T kij , that is,

T (∂i, ∂j) =: T kij∂k,

i.e.
T = T kijdx

i ⊗ dxj ⊗ ∂k.

If ∇ has Christoffel symbols {Γkij} with respect to the coordinates (xi) then as [∂i, ∂j ] = 0 by
Proposition 2.6.4 we have

T (∂i, ∂j) =
(
Γkij − Γkji

)
∂k

and hence
T kij = Γkij − Γkji. (45)

We say that a Koszul connection ∇ on M is symmetric or torsion-free if its torsion tensor
T is identically zero, that is, T kij ≡ 0 for every coordinate system, or Γkij = Γkji in every coordinate
system (hence the name ‘symmetric’). Conversely if Γkij = Γkji in a set of coordinate systems that
cover M then ∇ is symmetric, as the following result shows.

9.12 Proposition
Let Mn be a smooth manifold and ∇a Koszul connection on M . Let p ∈ M . The torsion tensor
T of a connection ∇ satisfies T (p) = 0 if and only if there exists a coordinate system (x1, . . . , xn)
centred at p such that Γkij(p) = 0 for all 1 ≤ i, j, k ≤ n .

J For this proof we will suspend our use of the summation convention - this is because this is
unfortunately one of those rare occasions where it is not possible to make the indices sum correctly.

Clearly if we have a coordinate system on which all the Γkij vanish at p in that system then
certainly T (p) = 0. The converse is where the work lies.

Suppose that (x1, . . . , xn) are local coordinates defined on a neighborhood U of p, such that
the

(
xi
)
are centred at p, and such that

Γkij(p) = Γkji(p) for all 1 ≤ i, j, k ≤ n (46)

(so T (p) = 0). Set

yk := xk +
1
2

∑
i,j

Γkij(p)x
ixj .

Then due to (46) we have for q ∈ U ,

∂yk

∂x`
(q) = δk` +

∑
i

Γki`(p)x
i(q), (47)

and so in particular
∂yk

∂x`
= δk` .
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Thus by the inverse function theorem there exists a neighborhood V ⊆ U of p such that (y1, . . . , yn)
forms a coordinate system on V , which is clearly centered at p. Let Γ̄kij denote the Christoffel
symbols of ∇ with respect to the (yi). Then∑

k

Γ̄kij
∂

∂yk
= ∇ ∂

∂yi

∂

∂yj

= ∇ ∂

∂yi

(∑
`

∂x`

∂yj
∂

∂x`

)

=
∑
`

∂2x`

∂yi∂yj
∂

∂x`
+
∂x`

∂yj
∇ ∂

∂yi

∂

∂x`

=
∑
`

∂2x`

∂yi∂yj
∂

∂x`
+
∂x`

∂yj

{∑
m

∂xm

∂yi
∇ ∂

∂xm

∂

∂x`

}

=
∑
`

∂2x`

∂yi∂yj
∂

∂x`
+
∂x`

∂yj

∑
m,h

∂xm

∂yi
Γhm`

∂

∂xh


=

∑
k,`,m,h

{
∂2xh

∂yi∂yj
+
∂x`

∂yj
∂xm

∂yi
Γhm`

}
∂yk

∂xh
∂

∂yk
,

and thus for q ∈ V ,

Γ̄kij(q) =
∑
`,m,h

{
∂2xh

∂yi∂yj
(q) +

∂x`

∂yj
(q)

∂xm

∂yi
(q)Γhm`(q)

}
∂yk

∂xh
(q).

In particular evaluating at p gives

Γ̄kij(p) =
∂2xk

∂yi∂yj
(p) + Γkij(p). (48)

Next, starting from ∑
k

∂y`

∂xk
∂yk

∂yj
= δ`j

and differentiating with respect to yi gives

∂y`

∂xk
∂2xk

∂yi∂yj
= − ∂

∂yi

(
∂y`

∂xk

)
∂xk

∂yj

= −
∑
m

∂xm

∂yi
∂2y`

∂xm∂xk
∂xk

∂yj
,

and thus evaluating at p gives
∂2xk

∂yi∂yj
(p) = − ∂2yk

∂xi∂xj
(p).

Now from (47),
∂2yk

∂xi∂xj
(p) = Γkij(p),

and so substituting this into (48) we obtain

Γ̄kij(p) = −Γkij(p) + Γkij(p) = 0,

and thus (y1, . . . , yn) is the a coordinate system centred at p satisfying the requirements of the
proposition. I
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9.13 Extending ∇ to T (0,2)(M)⊗ End(T (M))

We have already shown in Theorem 9.10 how to extend a Koszul connection ∇ to an R-linear
derivation of the full tensor algebra T (M). In particular we defined a connection ∇ on T (0,2)(M)
as follows: if A ∈ T (0,2)(M) and X,Y, Z ∈ X (M) we set

(∇XA) (Y,Z) = ∇X (A(Y, Z))−A (∇XY,Z)−A (Y,∇XZ) . (49)

Suppose now A ∈ Γ
(
T (0,2)(M)⊗ End(T (M))

)
, so A(Y,Z) ∈ End(T (M)). Then we extend we can

still use (49) to define a connection on T (0,2)(M) ⊗ End(T (M)), only now both sides are to read
as endomorphisms of T (M). In particular, we can consider ∇XR, where R is the curvature of ∇.

9.14 Proposition (Bianchi’s identities for symmetric connections)
Let ∇ be a torsion-free connection on T (M), and R its curvature tensor. Then for all X,Y, Z ∈
X (M):

1. (Bianchi’s first identity)

R(X,Y )Z +R(Y, Z)X +R(Z,X)Y = 0.

In particular, in any coordinate system we have

Rijk` +Rik`j +Ri`jk = 0 for all 1 ≤ i, j, k, ` ≤ n.

2. (Bianchi’s second identity)

(∇XR) (Y,Z) + (∇YR) (Z,X) + (∇ZR) (Y,X) = 0.

J To prove (1), we first note it is sufficient to verify this for the coordinate vector fields, as both
sides are C∞(M) linear, and since [∂k, ∂`] = 0 by Proposition 2.6.4 we use Lemma 8.19 to obtain

R (∂k, ∂`) (∂j) = (∇∂k∇∂` −∇∂`∇∂k) (∂j) ,

and since ∇ is symmetric we have ∇∂k∂j = ∇∂j∂k at thus when we take the cyclic sum of the
above equation it vanishes.

To prove (2), since both sides are again C∞(M)-linear it is enough to verify this pointwise for
the coordinate vector fields. So let p ∈M , and take coordinates (x1, . . . , xn) centred about p such
that the Christoffel symbols all vanish at p (possible by Proposition 9.12).

Then since the Christoffel symbols vanish at p, we have

{(∇∂iR) (∂j , ∂k)} ∂`
∣∣
p

= (∇∂iR (∂j , ∂k)) ∂`
∣∣
p
−R (∇∂i∂j , ∂k) ∂`

∣∣
p
−R (∂j ,∇∂i∂k) ∂`

∣∣
p

= (∇∂iR (∂j , ∂k)) ∂`
∣∣
p
+0

= ∇∂i (R (∂j , ∂k) ∂`)
∣∣
p
−R (∂j , ∂k)∇∂i∂`

∣∣
p

= ∇∂i (R (∂j , ∂k) ∂`)
∣∣
p
+0

= ∇∂i
(
Rm`jk∂m

) ∣∣
p

=
{

∂

∂xi
(
Rm`jk

)
(p)∂m +Rm`jk (∇∂i∂m)

} ∣∣
p

=
∂

∂xi
(
Rm`jk

)
(p)∂m|p.

Thus we have reduced the proof to showing that in these coordinates we have

∂

∂xi
(
Rm`jk

)
(p) +

∂

∂xj
(Rm`ki) (p) +

∂

∂xk
(
Rm`ij

)
(p) = 0. (50)

To see this last statement, we use the general Bianchi identity (30) proved in Proposition 8.14,
that is

dΘm
` = Θm

j ∧ θ
j
` − θ

m
j ∧Θj

` ,
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where θ is the connection matrix of ∇ and Θ is the curvature matrix of ∇. By assumption
θji = Γjkidx

k is zero at p, and hence this identity implies that dΘm
` (p) = 0 for all 1 ≤ m, ` ≤ n.

Now by (36),

Θm
` =

1
2
Rm`jkdx

j ∧ dxk,

and hence
dΘm

` =
1
2
∂

∂xi

(
Rm`jk

)
dxi ∧ dxj ∧ dxk.

Equating the coefficients of dxi ∧ dxj ∧ dxk in dΘm
` (p) (6 terms in total) we obtain precisely the

left-hand side of (50), which thus completes the proof. I

10 Elementary Riemannian geometry

10.1 Definition
A Riemannian manifold (M, g) is a smooth manifold M together with a Riemannian metric
g on M , where by definition a Riemannian metric on M is just a metric on the vector bundle
T (M). Thus g ∈ T (0,2)(M) is symmetric, and if (x1, . . . , xn) are local coordinates on M we can
write g as

g = gijdx
i ⊗ dxj ,

where the gij : U → R are smooth, and for any p ∈ U the matrix [gij(p)] is positive definite.
We will denote the metric both by g and 〈·, ·〉 . Note by Lemma 5.19 any smooth manifold

admits a Riemannian metric.

10.2 Definition
Let (M, g) be a Riemannian manifold. Given a Koszul connection ∇ on M , we have an induced
connection ∇ on T (0,2)(M) . We say that ∇ is a metric connection or ∇ is compatible with g
if ∇Xg ≡ 0 for all X ∈ X (M), that is, if

(∇Xg) (Y, Z) = ∇X(g(X,Y ))− g (∇XY,Z)− g (Y,∇XZ) = 0

for all X,Y, Z ∈ X (M). Equivalently ∇ is a metric connection if and only if for all X,Y, Z ∈ X (M)
we have

X 〈Y,Z〉 = 〈∇XY,Z〉+ 〈Y,∇XZ〉 .

10.3 Lemma
Let (M, g) be a Riemannian manifold and ∇ a Koszul connection on M . Let c : [a, b] → M be a
smooth curve. Then the following are equivalent:

1. For any two vector fields V,W ∈ Vect(c)

d

dr
〈V,W 〉 =

〈
DV

dr
,W

〉
+
〈
V,
DW

dr

〉
.

2. For any t ∈ [a, b] the parallel transport map τt : Tc(a)(M) → Tc(t)(M) is an isometry with
respect to g.

J Suppose (1) holds. Then if V is parallel along c we have

d

dr
〈V, V 〉 = 2

〈
DV

dr
, V

〉
= 0,

and thus 〈V, V 〉 is constant along c. Thus each τt is norm preserving, and hence an isometry.
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Conversely suppose τt is always an isometry. Choose parallel vector fields U1, . . . , Un ∈ Vect(c)
that are orthonormal with respect to g at one point of c, and hence at every point of c. Then given
V,W ∈ Vect(c) we can write

V (t) = V i(t)Ui(t), W (t) = W j(t)Uj(t)

for some smooth functions V i,W j : [a.b]→ R. Then

〈V,W 〉 =
∑
i

V iW j ,

and so
d

dr
〈V,W 〉 =

∑
i

dV i

dr
W i + V i

DW i

dr
.

Next,
DV

dr
=
dV i

dr
Ui,

DW

dr
=
dW j

dr
Uj ,

by (38), since DUi
dr ≡ 0 as the Ui are parallel, and thus also〈

dV

dr
,W

〉
+
〈
V,
DW

dr

〉
=
∑
i

dV i

dr
W i + V i

DW i

dr
. I

10.4 Corollary
Let (M, g) be a Riemannian manifold and ∇ a connection on M . Then ∇ is a metric con-
nection if and only for any smooth curve c : [a, b] → M the parallel transport isomorphisms
τt : Tc(a)M → Tc(t)M are isometries with respect to g.

J By definition, ∇ is a metric connection if and only if for all vector fields X,Y, Z ∈ X (M)
and p ∈M we have

Xp 〈Y, Z〉 =
〈
∇XpY,Z

〉
+
〈
Y,∇XpZ

〉
.

Now simply apply the previous lemma to a curve c with ċ(0) = Xp. I

10.5 Definition
Given a connection Koszul ∇ on a Riemannian manifold (M, g) we can form an element R ∈
T (0,4)(M) defined by

R(W,Z,X, Y ) := 〈R(X,Y )Z,W 〉

for X,Y, Z,W ∈ X (M). It will hopefully not prove confusing that we now use the symbol ‘R’ to
refer to two different tensors; the curvature tensor R ∈ T (1,3)(M) and now a different R residing
in T (0,4)(M). It should be clear from the context to which we are referring to.

In local coordinates (x1, . . . , xn) on M , we can write

R = Rijk`dx
k ⊗ dx` ⊗ dxj ⊗ dxi,

where
Rijk` := 〈R (∂k, ∂`) (∂j) , ∂i〉 =

〈
Rmjk`∂m, ∂i

〉
= gmiR

m
jk`.

10.6 Theorem (symmetries of R)
Let (M, g) be a Riemannian manifold, ∇ a Koszul connection on M and R the (0, 4)-curvature
tensor. Then for any X,Y, Z,W ∈ X (M):

1. R(W,Z, Y,X) = −R(W,Z,X, Y ).

2. If ∇ is metric then R(Z,W,X, Y ) = −R(W,Z,X, Y ).
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3. If ∇ is symmetric then R(W,Z,X, Y ) +R(W,X, Y, Z) +R(W,Y,Z,X) = 0.

4. If ∇ is both metric and symmetric then R(W,Z,X, Y ) = R(X,Y,W,Z).

J (1) is clear since Θ is alternating and so R(X,Y ) = −R(Y,X).
To prove (2) it suffices to show that

R(Z,Z,X, Y ) = 0

for all X,Y, Z ∈ X (M).
It suffices to check this for the coordinate vector fields in arbitrary local coordinates; then since

R (∂i, ∂i, ∂j , ∂k) = 〈R (∂j , ∂k) ∂i, ∂i〉
=

〈(
∇∂j∇∂k −∇∂k∇∂j

)
∂i, ∂i

〉
by Lemma 8.19 and the fact that [∂j , ∂k] = 0 by Proposition 2.6.4. But now

∂j∂k 〈∂i, ∂i〉 = 2∂j 〈∇∂k∂i, ∂i〉
= 2

〈
∇∂j∇∂k∂i, ∂i

〉
+ 2

〈
∇∂k∂i,∇∂j∂i

〉
,

and hence
0 = [∂j , ∂k] = 2

〈(
∇∂j∇∂k −∇∂k∇∂j

)
∂i, ∂i

〉
.

This proves (2). (3) is immediate from Bianchi’s first identity for symmetric connections (Propo-
sition 9.14.1).

Property (4) is an algebraic consequence of properties (1), (2) and (3). Indeed,

R(W,Z,X, Y ) = −R(W,Z, Y,X)
= R(W,Y,X,Z) +R(W,X,Z, Y )

and also

R(W,Z,X, Y ) = −R(Z,W,X, Y )
= R(Z,X, Y,W ) +R(Z, Y,W,X)

and so

2R(W,Z,X, Y ) = R(W,Y,X,Z) +R(W,X,Z, Y ) +R(Z,X, Y,W ) +R(Z, Y,W,X).

Similarly

2R(X,Y,W,Z) = R(X,Z,W, Y ) +R(X,W, Y, Z) +R(Y,W,Z,X) +R(Y,Z,X,W ).

But then
R(X,Z,W, Y ) = (−1)2R(Z,X, Y,W ),

R(X,W, Y, Z) = (−1)2R(W,X,Z, Y ),

R(Y,W,Z,X) = (−1)2R(W,Y,X,Z),

R(Y, Z,X,W ) = (−1)2R(Z, Y,W,X).

Thus
2R(X,Y,W,Z) = 2R(W,Z,X, Y ),

and this completes the proof. I

We have shown that in some sense, metric symmetric Koszul connections are the ‘best’ type
of Koszul connection, in the sense that then the Riemannian curvature tensor posseses the most
symmetries. But do such metric symmetric connections exist?
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10.7 Theorem (the fundamental lemma of Riemannian geometry)
Let (M, g) be a Riemannian manifold. Then there exists a unique metric symmetric Koszul con-
nection ∇ on M , called the Levi-Civita connection.

J First deal with uniqueness. Suppose that ∇ is a symmetric metric connection. Let X,Y, Z
be arbitrary smooth vector fields. Compatibility with the metric implies that

X 〈Y,Z〉 = 〈∇XY,Z〉+ 〈Y,∇XZ〉 .

That the connection is symmetric implies

〈∇XY, Z〉 − 〈∇YX,Z〉 = 〈[X,Y ], Z〉 ,

and hence we have

X 〈Y, Z〉+ Y 〈Z,X〉 − Z 〈X,Y 〉 = 〈∇XY, Z〉+ 〈Y,∇XZ〉+ 〈∇Y Z,X〉+ 〈Z,∇YX〉 − 〈∇ZX,Y 〉 − 〈X,∇ZY 〉
= 2 〈∇XY,Z〉 − 〈[X,Y ], Z〉+ 〈[X,Z], Y 〉+ 〈[Y, Z], X〉 ,

and hence

〈∇XY,Z〉 =
1
2
{X 〈Y,Z〉+ Y 〈Z,X〉 − Z 〈X,Y 〉 − 〈[Y, Z], X〉+ 〈[Z,X], Y 〉+ 〈[X,Y ], Z〉} . (51)

This establishes uniqueness.
For existence, we need to show that defining ∇X by equation (51) does indeed define a sym-

metric metric connection. We must verify:

• ∇fXY = f∇XY,

• ∇X (fY ) = Xf · Y + f∇XY,

• ∇XY −∇YX = [X,Y ],

• 〈∇XY,Z〉+ 〈Y,∇XZ〉 = X 〈Y, Z〉 ,
the remaining conditions being trivial.

For the first point, observe that

2 〈∇fXY,Z〉 = fX 〈Y,Z〉+ Y 〈Z, fX〉 − Z 〈fX, Y 〉 − 〈[Y,Z], fX〉+ 〈[Z, fX], Y 〉+ 〈[fX, Y ], Z〉
= f {X 〈Y,Z〉 − Y 〈Z,X〉 − Z 〈X,Y 〉 − 〈[Y, Z], X〉+ 〈[Z,X], Y 〉+ 〈[X,Y ], Z〉}

+Y f · 〈Z,X〉 − Zf · 〈X,Y 〉+ Zf · 〈X,Y 〉 − Y f · 〈X,Z〉
= 2f 〈∇XY,Z〉 .

To prove the second point, we see that

2 〈∇X(fY ), Z〉 = X 〈fY, Z〉+ fY 〈Z,X〉 − Z 〈X, fY 〉 − 〈[fY, Z], X〉+ 〈[Z,X], fY 〉+ 〈[X, fY ], Z〉
= f {X 〈Y,Z〉 − Y 〈Z,X〉 − Z 〈X,Y 〉 − 〈[Y,Z], X〉+ 〈[Z,X], Y 〉+ 〈[X,Y ], Z〉}

+Xf · 〈Y,Z〉 − Zf · 〈X,Y 〉+ Zf · 〈Y,X〉+Xf · 〈Y, Z〉
= 2f 〈∇XY,Z〉+ 2Xf · 〈Y,Z〉 .

To prove that ∇ is symmetric we compute

2 〈∇XY,Z〉 − 2 〈∇YX,Z〉 = X 〈Y,Z〉 − Y 〈Z,X〉 − Z 〈X,Y 〉 − 〈[Y,Z], X〉+ 〈[Z,X], Y 〉+ 〈[X,Y ], Z〉
−Y 〈X,Z〉+X 〈Z, Y 〉+ Z 〈Y,X〉+ 〈[X,Z], Y 〉 − 〈[Z, Y ], X〉 − 〈[Y,X], Z〉

= −〈[Y, Z], X〉 − 〈[X,Z], Y 〉+ 〈[X,Y ], Z〉+ 〈[X,Z], Y 〉+ 〈[Y, Z], X〉+ 〈[X,Y ], Z〉
= 2 〈[X,Y ], Z〉 ,

and hence ∇X(Y )−∇Y (X) = [X,Y ].
Finally, to prove that ∇ is compatible with the metric we compute

2 〈∇XY,Z〉+ 2 〈Y,∇XZ〉 = X 〈Y,Z〉 − Y 〈Z,X〉 − Z 〈X,Y 〉 − 〈[Y, Z], X〉+ 〈[Z,X], Y 〉+ 〈[X,Y ], Z〉
+X 〈Z, Y 〉 − Z 〈Y,X〉 − Y 〈X,Z〉 − 〈[Z, Y ], X〉+ 〈[Y,X], Z〉+ 〈[X,Z], Y 〉

= 2X 〈Y,Z〉 .

This completes the proof of existence. I
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10.8 The Levi-Civita connection in terms of the Christoffel symbols
Let (x1, . . . , xn) be local coordinates on a Riemannian manifold (M, g), and ∇ the Levi-Civita
connection on M . Firstly we compute:

2 〈∇∂i∂j , ∂`〉 = 2
〈
Γkij∂k, ∂`

〉
= 2Γkijgk`.

But then we also have by equation (51) that

2 〈∇∂i∂j , ∂`〉 = ∂i 〈∂j , ∂`〉+ ∂j 〈∂`, ∂i〉 − ∂` 〈∂i, ∂j〉

=
∂gj`
∂xi

+
∂g`i
∂xj
− ∂gij
∂x`

,

and thus we see that the Christoffel symbols for the Levi-Civita connection satisfy

Γkij =
1
2
gk`
(
∂gj`
∂xi

+
∂g`i
∂xj
− ∂gij
∂x`

)
, (52)

where
[
gij
]

:= [gij ]
−1 is the inverse matrix, so

gi`g`j = δij .

10.9 Definition
If (M, g) is a Riemannian manifold, the Riemannian curvature tensor on M is the (0, 4)-
curvature tensor R with respect to the Levi-Civita connection on M .

10.10 Definitions
Let (M, g) be a Riemannian manifold and p ∈ M . Given 2 linearly independent tangent vectors
v1, v2 ∈ TpM we define the sectional curvature of the 2-plane Π = span{v1, v2} ⊆ Tp (M) to be

Kp(Π) :=
R(v1, v2, v1, v2)

〈v1, v1〉 〈v2, v2〉 − 〈v1, v2〉2
.

Note that this depends only on the 2-plane Π and not the choice of basis {v1, v2}, since both R
and g are linear and the top and bottom are homogeneous of degree 2. In particular, if {e1, e2} is
are orthonormal, and Π = span{e1, e2} then Kp (Π) = R (e1, e2, e1, e2). If there exists K ∈ R such
that Kp(Π) ≡ K for all p ∈M and Π ⊆ Tp(M) then we say M has constant curvature.

If M is two-dimensional, then we only have one sectional curvature at a point p, and in this
case it is written K(p) and called the Gaussian curvature of M at p.

In fact, the sectional curvature determines the full Riemannian curvature tensor. In order to
prove this, we need the following algebraic lemma.

10.11 Lemma
Let V be a vector space and R1, R2 : V × V × V × V → R two quadrilinear maps such that for all
w, x, y, z ∈ V and i = 1, 2:

1. Ri(w, z, y, x) = −Ri(w, z, x, y),

2. Ri(z, w, x, y) = −Ri(w, z, x, y),

3. Ri(w, z, x, y) +Ri(w, x, y, z) +Ri(w, y, z, x) = 0.

4. Ri(w, z, x, y) = Ri(x, y, w, z).
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Then if for all x, y ∈ V we also have R1(x, y, x, y) = R2(x, y, x, y), then in fact R1 ≡ R2.

J It is clearly sufficient to show that if a multilinear map R satisfying the (1), (2), (3) and (4)
also satisfies R(x, y, x, y) = 0 for all x, y ∈ V then R ≡ 0. So suppose this is the case. Then

0 = R(x, y + z, x, y + z)
= R(x, y, x, y) +R(x, z, x, y) +R(x, z, x, z) +R(x, y, x, z)
= R(x, z, x, y) +R(x, y, x, z) + 0
= 2R(x, y, x, z),

and hence R is alternating with respect to the first and third variables. Similarly R is alternating
with respect to the second and fourth variables. Then

0 = R(w, z, x, y) +R(w, x, y, z) +R(w, y, z, x)
= R(w, z, x, y)−R(w, z, y, x)−R(w, y, x, z)
= 3R(w, z, x, y). I

10.12 Corollary
The sectional curvatures determine the full Riemannian curvature tensor.

10.13 Corollary
Suppose that (M, g) is a Riemannian manifold and ∇ the Levi-Civita connection on M . Suppose
there exists p ∈M such that

Kp (Π) ≡ K(p)

is independent of the choice of 2-plance Π ⊆ Tp(M) (this is necessarily the case for all p ∈ M if
dimM = 2). Then if R is the Riemannian curvature tensor we have for all W,X, Y, Z ∈ X (M)
that

R (Wp, Zp, Xp, Yp) = K(p) {〈Wp, Xp〉 〈Zp, Yp〉 − 〈Wp, Zp〉 〈Xp, Yp〉} . (53)

J Let R1(W,X, Y, Z) := K {〈W,X〉 〈Z, Y 〉 − 〈W,Z〉 〈X,Y 〉}. Then it easily seen that R1 is
quadrilinear and satisfies properties (1), (2), (3) and (4) of Lemma 10.11. Moreover at p we have
R (Xp, Yp, Xp, Yp) = R1 (Xp, Yp, Xp, Yp) for all X,Y ∈ X (M). Hence by Lemma 10.11, R|p = R1|p,
as required. I

In fact, a stronger result holds: if dimM ≥ 3 and Kp (Π) ≡ K(p) for all p ∈M then actually
K(p) ≡ K is constant, that is, M has constant curvature. This is Schur’s Theorem and we
will prove this shortly; firstly however we will need to deduce the existence of a special coordinate
system about any point in M .

10.14 Definition
Given a metric g on M , we say that a local coordinate system (x1, . . . , xn) centred about p ∈ M
is normal at p if

gij(p) = δij and
∂gjk
∂xi

(p) = 0 for all 1 ≤ i, j, k ≤ n.

Note that by (52) in normal coordinates at p we also have

Γkij(p) = 0 for all 1 ≤ i, j, k ≤ n,

and thus (this will be useful later) (50) holds.
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10.15 Proposition (normal coordinates)
Let (M, g) be a Riemannian manifold and p ∈ M . Then there exists a neighborhood U of p and
coordinates

(
x1, . . . , xn

)
that are normal at p.

J This is the second time in the course where we will be unable to make the summation
convention work, and thus as in the proof of Proposition 9.12 we will explicitly write in the
summation signs in this proof. By the Gram-Schmidt process (see Section 5.16) we may assume
we have local coordinates (x1, . . . , xn) centred at p that satisfy

gij(p) = δij for all 1 ≤ i, j ≤ n.

Now define
aijk :=

∂gij
∂xk

(p),

so
aijk = ajik.

Then set
bijk :=

1
2

(aijk + akij − ajki) ,

so
bijk = bikj (54)

and
bijk + bjik = aijk. (55)

Define functions y1, . . . , yn by

yk := xk +
1
2

∑
h,m

bkhmx
hxm.

Then observe that by (54),
∂yk

∂x`
= δk` +

∑
m

bk`mrx
m,

and in particular
∂yk

∂x`
(p) = δk` ,

and hence by the inverse function theorem there exists a neighborhood V ⊆ U of p such that
(y1, . . . , yn) form local coordinates on V . Set

ḡij :=
〈
∂

∂yi
,
∂

∂yj

〉
.

Now we perform some messy calculations. First, note that

∂

∂x`
=
∑
k

∂yk

∂x`
∂

∂yk
=
∑
k,m

(
δk` + bk`mx

m
) ∂

∂yk
.

Thus

g`m =
〈

∂

∂x`
,
∂

∂xm

〉
=

〈∑
i,k

(
δi` + bi`kx

k
) ∂

∂yi
,
∑
j,h

(
δjm + bjmhx

h
) ∂

∂yj

〉
=

∑
i,j,h,k

ḡij
(
δi` + bi`kx

k
) (
δjm + bjmhx

h
)
,
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and hence evaluating at p gives

δ`m = g`m(p) =
∑
i,j

ḡij(p)δi`δ
j
m,

and hence
ḡij(p) = δij .

Next,

∂g`m
∂xr

=
∑
s

∂ys

∂xr
∂

∂ys

 ∑
i,j,h,k

ḡij
(
δi` + bi`kx

k
) (
δjm + bjmhx

h
) .

Now note that
∂

∂ys
(
δi` + bi`kx

k
)

= bi`k
∂xk

∂ys
,

and thus evaluating at p gives
∂

∂ys
(
δi` + bi`kx

k
)

(p) = bi`s.

Hence when we evaluate ∂g`m
∂xr at p we obtain

a`mr =
∑
i,j,s

δsr

(
∂ḡij
∂ys

(p)δi`δ
j
m + δijbi`sδ

j
m + δijδ

i
`bjms

)
=

∂ḡ`m
∂yr

+ bm`r + b`mr,

and thus
∂ḡ`m
∂yr

= a`mr − bm`r − b`mr = 0,

by (55). This completes the proof. I

10.16 The second Bianchi identity for the Riemannian curvature tensor R

Observe that if (x1, . . . , xn) are normal coordinates at p ∈M then

∂

∂xi
(Rm`jk) (p) =

∂

∂xi
(
gmhR

h
`jk

)
(p)

=
∂gmh
∂xi

(p)Rh`jk(p) + gmh(p)
∂

∂xi
(
Rh`jk

)
(p)

=
∂

∂xi

(
Rm`jk

)
(p).

Thus by (50) we deduce that in normal coordinates at p we have

∂

∂xi
(
Rm`jk

)
(p) +

∂

∂xj
(Rm`ki) (p) +

∂

∂xk
(Rm`ij) (p) = 0. (56)

10.17 Theorem (Schur)
Let (M, g) be a connected Riemannian manifold of dimension n ≥ 3. Then if the sectional cur-
vatures of M are pointwise constant, that is, Kp(Π) = f(p) for all 2-planes Π ⊆ Tp (M), where
f : M → R, then f is constant.

J Let p ∈ M , and (x1, . . . , xn) be normal coordinates on a neighborhood U of p. Then by
(53) we can write

R (Wp, Zp, Xp, Yp) = K(p) {〈Wp, Xp〉 〈Zp, Yp〉 − 〈Wp, Zp〉 〈Xp, Yp〉}
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for any smooth vector fields W,X, Y, Z on U , and hence on U we have

Rijk`(p) = f(p) (gikgj` − gi`gjk) .

But by (56),

∂

∂xh
(Rijk`)(p) +

∂

∂xk
(Rij`h)(p) +

∂

∂x`
(Rijhk)(p) = 0,

and hence
∂f

∂xh
(p) (δikδj` − δi`δjk) +

∂f

∂xk
(p) (δi`δjh − δihδj`) +

∂f

∂x`
(p) (δihδjk − δikδjh) = 0.

Since n ≥ 3, given h we can find i, j such that i, j, h are all distinct. Setting k = i, ` = j it then
follows from the above that ∂f

∂xh
(p) = 0. Since h was arbitrary, it follows dfp = 0. Thus f is locally

constant. Since M is connected, f is constant. I

10.18 Example
We claim that Sn has constant sectional curvature, when equipped with the metric induced from
the ambient space Rn+1 (that is, for given p ∈ Sn, the metric on Tp (Sn) ⊆ Tp

(
Rn+1

) ∼= Rn+1 is
just the restriction of the dot product on Rn+1).

First, claim that the group of orientation preserving isometries of Sn, SO(n + 1) operates
transitively on the set of 2-planes in T (Sn). To see this, it is enough to show that given p ∈ Sn, if
H is the stabiliser of p in SO(n+1) then we can take any 2-plane in Tp (Sn) to any other. To check
this, since SO(n+ 1) is certainly transitive on Sn, we may take p = (1, 0, . . . , 0). The stabiliser of
p is then

H =
{(

1 0
0 A

) ∣∣∣A ∈ SO(n)
}
.

With respect to the Euclidean metric, Tp (Sn) is orthogonal to p, and H operates on Tp (Sn) by
v 7→ Av. This action is certainly transitive on the 2-planes in Tp (Sn) .

It is easy to see that sectional curvatures are preserved by isometries, whence it follows Sn has
constant sectional curvature as claimed.

We conclude the our discussion on sectional curvature with a theorem we won’t prove.

10.19 Theorem
Any simply connected complete Riemannian manifold (M, g) with constant sectional curvature κ
is diffeomorphic to one of the following three manifolds, where |κ| = 1

r2 :

1. if κ = 0, M ∼= Rn,

2. if κ > 0, M ∼= Sn(r) =
{
x ∈ Rn+1| ‖x‖ = r

}
,

3. if κ < 0, M ∼= Hn(r), where Hn(r) denotes the hyperbolic space.

10.20 Definition
Let (M, g) be a Riemannian manifold. Define a (0, 2)-tensor Ric(X,Y ) defined by

Ric(X,Y ) := tr(v 7→ R(v,X)(Y )).

We call Ric the Ricci tensor of g.
Take an orthonormal basis {e1, . . . , en} of Tp (M). Then

Ric (Xp, Yp) = tr (v 7→ R (v,Xp)Yp)

=
n∑
i=1

〈R (ei, Yp) ei, Xp〉 =
n∑
i=1

R(ei, Yp, ei, Xp)

=
n∑
i=1

R(ei, Xp, ei, Yp).
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In particular if (x1, . . . , xn) are local normal coordinates about p ∈ M then if we work with the
orthonormal basis {∂i|p} of Tp(M) and

rkl := Ric (∂k, ∂`)

then
Ric (X,Y ) =

∑
i

{∂i-coefficient of (∂i 7→ Ric (∂i, X)Y )} ,

and so
rk` = Ri`ik = gijRj`ik.

Ric is symmetric since
rk` = gijRj`ik = gijRikj` = gjiRjki` = r`k.

Both g and Ric are elements of T (0,2)(M). A metric g is called Einstein if r = λg for some
constant λ.

10.21 Definition
For any non-zero v ∈ Tp (M) the Ricci curvature in the direction v is defined by

Ric(v) :=
Ric(v, v)
‖v‖2

.

If ‖v‖ = 1 then r(v) = r(v, v). Moreover if ‖v‖ = 1 we may extend {v} to an orthonormal basis
{e1 = v, e2, . . . , en} of Tp (M). Then

r(v) =
n∑
i=1

R(ei, v, ei, v) =
n∑
i=2

R(ei, v, ei, v),

since R(e1, e1, e1, e1) = 0, and thus Ric(v)
n−1 is an average of sectional curvatures Kp (Πi) where

Πi = span {v, ei} , i ≥ 2.

10.22 Lemma
The Ricci curvatures at p are all equal to a constant (say λ) if and only if Ric = λg at p (g is
Einstein ‘at p’).

J One way is clear. For the converse, we simply note that the Ricci curvatures all being
equal to λ imply that for any non-zero v ∈ Tp (M) we have Ric(v, v) = λ 〈v, v〉. Since Ric(·, ·) is a
symmetric bilinear form the polarization identity gives

2Ric(v, w) = r(v + w, v + w)− r(v, v)− r(w,w)
= λ 〈v + w, v + w〉 − λ 〈v, w〉 − λ 〈w,w〉
= λ 〈v, w〉 ,

since the polarisation identity also applies to the symmetric bilinear form 〈·, ·〉. I

10.23 Definition
The Ricci tensor r and the metric together determine another endomorphism θ : Tp (M)→ Tp (M)
defined

Ric(v, ·) = 〈θ(v), ·〉 .

The scalar curvature scal(p) at p is the trace of θ. If {e1, . . . , en} is an orthonormal basis of
Tp (M) then we have

Ric(ei) = Ric(ei, ei) = 〈θ(ei), ei〉 = θii,
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and so

tr(θ) =
n∑
i=1

θii

=
n∑
i=1

〈θ(ei), ei〉

=
n∑
i=1

Ric(ei).

Thus scal(p)
n is an average of Ricci curvatures.

If (x1, . . . , xn) are normal coordinates about p then writing

θ (∂i) = θji ∂j ,

we have
gj`θ

j
i = 〈θ (∂i) , ∂`〉 = Ric (∂i, ∂`) = ri`,

and hence
θji = gj`ri`

and so

scal(p) =
∑
i

θii(p)

= gi`(p)ri`(p)
= gi`(p)gjk(p)Rk`ji(p).

The following theorem is in a similar vein to Schur’s Theorem 10.17.

10.24 Theorem
Let (M, g) be a connected Riemannian manifold of dimension n ≥ 3. Then if the Ricci curvatures
of M are pointwise constant, that is, Ric(v) = λ(p) for all v 6= 0 ∈ Tp (M), where λ : M → R, then
λ is constant, and so M is Einstein.

J By Lemma 10.22 and the assumption if (x1, . . . , xn) are normal coordinates about p then

rij(p) = λ(p)gij(p).

In what follows, everything is to be evaluated at p; for notational simplicity however we will omit
this from the notation. We will also once again suspend our use of the summation convention, as
it will prove confusing in this proof. Fix some m ∈ {1, . . . , n}. Then by (56),

∂

∂xm
(Rhjhi) +

∂

∂xi
(Rhjmh) +

∂

∂xh
(Rhjim) = 0. (57)

Using rij = λgij we obtain

δij
∂λ

∂xm
=

∂rij
∂xm

=
∂

∂xm

∑
k,`

gk`Rkj`i


=

∑
k,`

δk`
∂

∂xm
(Rkj`i) ,
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and hence for any 1 ≤ i ≤ n,
∂λ

∂xm
=
∑
h

∂

∂xm
(Rhihi) . (58)

Thus setting i = j in (57)and substituting we have

∂λ

∂xm
+

∂

∂xi
(Rhimh) +

∂

∂xh
(Rhiim) = 0,

and so summing both sides over i,

n
∂λ

∂xm
=
∑
h

∑
i 6=m

∂

∂xi
(Rhihn)+

∑
h

∂

∂xm
(Rhmhm)+

∑
h 6=m

∑
i

∂

∂xh
(Rihmi)+

∑
i

∂

∂xm
(Rimim) . (59)

Now ∑
h

∑
i 6=m

∂

∂xi
(Rhihn) = −

∑
h6=m

∑
i

∂

∂xh
(Rihmi) ,

and since (58) holds for any i, (59) becomes

n
∂λ

∂xm
= 2

∂λ

∂xm
,

and hence
(n− 2)

∂λ

∂xm
= 0.

Since m was arbitrary we conclude dλp = 0; thus λ is locally constant. Since M is connected, λ is
constant. I

We will conclude the course with a short discussion of how to define a metric on a Riemannian
manifold.

10.25 Definitions
Let (M, g) be a connected Riemannian manifold. Given a piecewise smooth curve c : [a, b] → M ,
we define the length of c to be

`(c) :=
ˆ b

a

〈ċ(t), ċ(t)〉 dt.

If the image of c is contained in a single chart (U, h) with coordinates (x1, . . . , xn), and gij are
the coefficients of g with respect to this chart then we can write

`(c) :=
ˆ b

a

〈ċ(t), ċ(t)〉 dt =
ˆ b

a

√
gij(h(c(t))

d

dt
{xi(c(t) · xj(c(t)}dt.

Given p, q ∈M , we define the distance between p and q to be

d(p, q) := inf {`(c) | c : [a, b]→M piecewise smooth, c(a) = p, c(b) = q} . (60)

We shall shortly prove that this defines a metric on M . First however we check that d(p, q) is
always finite.

10.26 Lemma
Let (M, g) be a connected Riemannian manifold. Then given any two p, q ∈ M , there exists a
piecewise smooth curve from c from p to q.

J Fix p ∈M . Set

Up := {q ∈M | there exists a piecewise smooth curve c from p to q} .

Using local coordinates, it is easy to see that Up is open. SimilarlyM\Up is open. Since Up 6= ∅
as p ∈M and M is connected, it follows Up = M as claimed. I
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10.27 Proposition
Let (M, g) be a connected Riemannian manifold. Then the function d : M ×M → R defined in
(60) is a metric on M .

J The only property of a metric that it is not immediate d satisfies is d(p, q) > 0 for p 6= q.
To check this, let p 6= q ∈M and (U, h) a chart about p. Then there exists ε > 0 such that

q /∈ V := h−1
(
Bε(h(p))

)
.

Let (x1, . . . , xn) be the local coordinates of h, and gij the coordinates of g with respect to the xi.
Since [gij ◦ h(x)] is a positive definite smooth (in x) matrix and Bε(h(p)) ⊆ Rn is compact, there
exists λ > 0 such that for any ξ ∈ Rn and any x ∈ V we have

gij(h(x))ξiξj ≥ λ|ξ|2.

Thus for any curve piecewise smooth curve c : [a, b]→M with c(a) = p, c(b) = q, we have

`(c) ≥ `
(
c|c−1(V ∩c([a,b])

)
≥ λε,

since as q /∈ V , there exists y ∈ ∂Bε(h(p)) such that h−1(y) = c(d) for some d ∈ (a, b], and then

`(c) =
ˆ b

a

〈ċ(t), ċ(t)〉 dt ≥
ˆ d

a

√
gij(h(c(t))

d

dt
{xi(c(t) · xj(c(t)}dt. ≥ λε.

This completes the proof. I

10.28 Definition
Let (M, g) be a connected Riemannian manifold. We say that M is complete if M is complete
as a metric space under the metric d of Proposition 10.27.


