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1 Smooth manifolds

1.1 Definitions

A topological manifold M of dimension n is a second countable Hausdorff topological space that
is locally homeomorphic to R™; that is, for any p € M there exists an open neighborhood U of p
and a homeomorphism h : U — O C R", where O is open in R". We call the homeomorphism
h:U — O a chart, and we call U a coordinate neighborhood of p. We write M™ to signify
that the dimension of M is n.

1.2 Charts

Let r* : R®™ — R denote projection onto the ith coordinate, and given a chart h : U — O, let
' =rioh: U — R. The functions z* are the coordinates of h on U. Given two charts h: U — O
and k : V — Q on a topological manifold M such that U NV # @, the function

koh ™ :h(UNV)— k(UNV)
is a homeomorphism between open sets of R”. We call k o h~! the transition function between

the charts h and k.

1.3 Definitions

An atlas A on a topological manifold M™ is a collection {(U,, ho) | @ € A} of charts on M such
that:

1. {U, | @ € A} is an open cover of M,

2. For any «, 3 € A such that U, N Ug # 0, the transition function hyg := hy © h[;l is smooth
(posesses continuous partial deriviatives of all orders).
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In general, we say two charts satisfying the conditions of (2) above are compatible. Note that
this implies that the transition function between the two charts is a diffeomorphism.
A smooth structure on M is an atlas A that is maximal with respect to property (2) above.

1.4 Lemma

Any atlas determines a unique smooth structure.

< Let A={(Uy,hs)la € A} be an atlas on M, and consider the collection of charts A*
consisting of all charts on M that are compatible with all the charts in A. Clearly A C A*.
We now check A* is an atlas. Indeed, property (1) is immediate, and to check property (2), let
h:U— Oand k:V — Q be two charts in .A* such that U NV # (). We must show that ko h™!
is smooth, and it is enough to check this locally. Given p € U NV, choose a chart hy, : U, — O,
in A such that p € U,. Then W =U NV NU, is an open neighborhood of p and

koh™ =koh™ =(kohyY)o(haoh™): h(W) — k(W)

1|h(W) 1‘¢(W)

is smooth by assumption. Thus A* is an atlas, and clearly A* is maximal amongst atlases con-
taining A. »

Therefore it is enough to specify an atlas when defining a smooth structure on a topological
manifold, and we will do this without further comment.

1.5 Definition

A smooth manifold of dimension n is an n-dimensional topological manifold M equipped with
a smooth structure.

1.6 Examples

1. Any open subset V of a smooth manifold M" is itself a smooth manifold; second countability,
the Hausdorff condition and the locally Euclidean property are inherited by subsets, and if
{(Uqa, ho)|a € A} is an atlas on M, then {(Uy NV, holu,nv)|a € A} forms an atlas on V.

2. R™ is Hausdorff and second countable (for a countable base, take all balls of rational radii
with rational centres), and certainly locally Euclidean. The identity map determines an atlas
on R™ (there are no transition functions to worry about) and smooth structure determined by
this atlas makes R™ into a smooth n-manifold. We call this the standard smooth structure
on R™.

3. The n-dimensional sphere S™ C R"*! is a n-dimensional smooth manifold. Indeed, for
i=1...n+1,let U' = {y € S" | y* > 0} and similarly let U;” denote the set of points
in S whose ith coordinate is negative. Note that {U:'} is an open cover of S™. Now
define h; : UX — R™ to be the map that forgets the ith coordinate; h;(y',...,y"*") =

(yl"”’yi"”’ynJrl)

hij (ul,...,u") — (ul,...,ui,...,:l:\/l— u||2,...,u"),

which is smooth (note |ju|| < 1). A similar formula holds for ¢ > j, and for ¢ = j the transition
function is just the identity map. Thus all the transition functions are diffeomorphisms (in
particular homeomorphisms), and we have a smooth structure on S™.

4. RP™ := S"/{£1} is a smooth manifold of dimension n. Let U;” := {z € S"|z* > 0} and
similarly define U;"; note that {UF | i = 1,...,n 4 1} define an open cover of S™. Let
718" — S"/{£1} =: RP" denote the canonical projection. Observe that =(U;") = w(U;"),
and that 7 restricted to Uii is a homeomorphism (RP™ is given the quotient topology induced
by 7). Hence the composition

. Suppose ¢ < j; then the transition function

n(UF) = UF SR
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is a well defined homeomorphism, call it k;. Moreover we have
kjoki'=(hjor )o(hor )™ =hjoh!
which is smooth. It follows that (7 (U;"), k;) defines an atlas on RP™.

5. The two-dimensional torus T. Define an equivalence relation on R? by z ~ y if and only
if 20 —y' € Z for i = 1,2. Let T denote R?/ ~. Any unit square Q@ C R? with vertices
(a,b),(a+1,b),(a,b+1) and (a+1,b+1) determines a homeomorphism int(Q) — U(Q) C T,
where U(Q) is an open subset of T' (in fact, U(Q) is all of T apart from two circles). The
inverse map hg : U(Q) — int(Q) then is a homeomorphism from an open set of T' into
an open set of R%. Clearly the {U(Q)} cover T, and if Q; and Q2 are two squares with a
non-empty intersection then one easily sees that the coordinate transformation hg, o ha is
given locally by translations; that is, each component of hg, (@1 N Q2) (of which in general
there will be seven - draw a picture!) is mapped by a translation onto a corresponding
component of hg,(Q1 N Q2) by hg, © ha Thus we have a smooth structure, and 7T is a
smooth 2-manifold.

1.7 Definition

Let M™ and N™ be smooth manifolds. A continuous map ® : M — N is called smooth if for
each p € M for some (and hence all) charts h : U - O CR™ and k : V — Q@ C R" on M and
N respectively with p € U and ®(p) € V such that the map the composite map (called the local
expression of ®)

Eo®oh ™ : R(UN® (V) = k(®U)NV)

is smooth.

If ® is a homeomorphism and its inverse ®~! : N — M is also smooth then we say ® is a
diffeomorphism. We say that ® is a local diffeomorphism if given any p € M we can find a
neighborhood U of p such that ®|y : U — ®(U) is a diffeomorphism.

A smooth function on an open subset U C M is a smooth map f: U — R where R is given
the standard smooth structure (cf. Example 1.6.2).

Observe that when we give R™ the standard smooth structure, the charts on manifolds become
diffeomorphisms (their local expression is the identity).

1.8 Germs

Let M be a manifold and p € M. Functions f,g defined on open subsets U,V respectively
containing p are said to have the same germ at p if there exists a neighborhood W of p contained
in U NV such that flw = g|lw. More precisely, define an equivalence relation on the space of
smooth functions defined in a neighborhood of p, by (U, f) ~ (V,g) if and only if there exists
a neighborhood W of p contained in U NV such that flw = glw. A germ is an equivalence
class under this relation. Notationally, we will not differentiate between a germ f at p and a
representative (U, f) of f. This will hopefully not be confusing.

Let Cp° denote the set of germs of smooth functions at p (occasionally we write CRip when
there is more than one manifold under consideration). Observe that C5° is a ring; given germs
f and g with representatives (U, f) and (V, g) respectively we define f + g to be germ containing
(UNV,f+g) and f - g to be the germ containing (U NV, f - g) (where f - g(p) := f(p) - 9(p)).
Moreover we have a natural inclusion of the constant germs into C°, which induces a natural map
R — Cp° making Cp° into an R-algebra.

A germ f has a well defined value at p (although nowhere else though), and this defines a
surjective ring homomorphism eval : C;° — R sending f + f(p). If we let 7, denote the kernel
of eval, then F), is an ideal of Cp°. In fact, since eval is surjective, F, is a maximal ideal, and in
fact is the unique maximal ideal, since if f(p) # 0 then if (U, f) is any representative there exists
a neighborhood V' C U of p such that f is never zero on V. Then the germ containing (V,1/r) is
an inverse for f. Hence any germ in C}° \F, is invertible; equivalently F, is the unique maximal
ideal and C}° is thus a local ring.
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1.9 Definitions

A tangent vector v at p € M is a linear derivation of the R-algebra C°, that is, a linear map
Cp° — R such that v(f - g) = f(p)v(g) +v(f)g(p). The tangent vectors form a real vector space in
the obvious way; this space is denoted T),(M) and is called the tangent space to M at p. Note
that if ¢ is the constant germ ¢(p) = ¢ € R then if v is any tangent vector we have v(c) = 0. Indeed,
v(c) = cv(1) and v(1) =v(1-1) = v(1) + v(1) implies v(1) = 0.

1.10 Charts and tangent vectors

Let C§° denote Cﬁ%o and let M be a smooth n-manifold, p € M and h: U — O C R™ a chart
on M about p such that h(p) = 0 (in general we say such a chart is centred about p). Then h
defines an isomorphism h* of R-algebras h* defined by, for f € C§°,

B(f) = foh.
h* is an isomorphism precisely because ¢ is a diffeomorphism.
Then given v € T}, (M) we can associate a tangent vector h,(v) € Ty (R™) where h,(v) is the
derivation of C§° defined by
ha(0)(f) = v(h*(R)).
As h* is an isomorphism, so is h, and thus we have defined an isomorphism h, : T, (M) —
To (R™).

1.11 A basis for the tangent space

Let (r!,...,r™) denote the standard coordinates on R"™. Consider the operator %

o defined by
% olf) = gﬁ- (0). Then % , is an linear derviation of C§® and hence an element of Ty (R").
Observe that % O(r-j) = ¢7. In fact, we claim that {aii oli=1,... ,n} forms a basis for Ty (R™).
To prove this we need the following result from calculus.

1.12 Calculus lemma

Let f:U — R be smooth, where U C R" is open and convex. Then there exist smooth functions
gij : U —R(i,j =1,...,n) such that for any y € U we have
of i i( Nl
Fly) = f(0) + 55 (0" (y) +r* (W) ()95 (y), (1)
where as in the rest of these notes we use the summation convention that we sum over indices in
an expression that appear in the top and the bottom - we note that the index in % , is considered
to be on the bottom (it’s on the bottom of a fraction).

1.13 Proposition
{% oli=1,... ,n} is a basis of Tp (R™).

< Suppose v = a'd;|p is the zero derivation (here and elsewhere, where possible we will
abbreviate an expression of the form % o to Oilo - this of course won’t work if we are working

with several different coordinate systems at once). Then v(r!) = a’ = 0, and so v = 0. Now let

v € Tp (R™), and set o’ := v(r*). Consider vy := a'0;|o € Tp (R™). Given a germ f € C§°, pick a
representative (U, f), where we may assume U is convex. Write f as in (1) and compute:

of

v =v(f(0 -

() = o(F(0) + 5

Now the first term disappears, as v is zero on constants, and since r*(0) = 0, the derivation property

kills the last term. Thus

0)v(r") +v(r" - 17 - g;j).

o) = 22 Op) = @Dl ) = vl )

Thus v = vy and the we have a basis. »
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1.14 Observation

Observe we can canonically identify Ty (R™) with R™ via a'd;|o < a’e;, where {e;} is the standard
basis of R" (so ri(e;) = (5;) In fact, given any p € R™, the same proof shows {9;|,} forms a basis
of T, (R™) and thus the identification a’d;|, < a'e; allows us to identify T}, (R") with R™ for any
p e R".

1.15 A basis for 7, (M)

Now let M™ be a smooth manifold and p € M. Pick a chart h: U — O C R"” centered about p.
Let (z!,...,2™) be the coordinates of h. Recall we have a map (h™1), : Ty (R") — T}, (M) that is

an isomorphism. Define the tangent vector % » by,

0 _ 0 0 -
5l (D)= (7, (W‘O) (f) =57 (foh™) (0).
Since (h™1), is an isomorphism, we have the following immediate corollary.

1.16 Corollary
Let M™ be a smooth manifold and p in M. If (U k) is a chart centred at p with coordinates

\z’:l,...,n}.
r

(x!,...,2™) then T, (M) is a n-dimensional real vector space with basis {%

Moreover if v € T}, (M) then v = at 621‘

, Where a’ = v(z?).

1.17 Jacobians

Suppose now (U, h) and (V, k) are both charts centred at p. Write (x!,...,2") for the coordinates
of h and (y!,...,y") for the coordinates of k. Let (r!,...7r") denote the coordinates on h(U) and
(st,...,s") the coordinates on k(V).

Observe by the previous Corollary we have

0 ort 0
@ p @(p) Oz |p- (2)
Let F be the coordinate transformation h o k=!. We can write F = (F',...,F") where
Fi =r'o F. Now note
ox’ 0 ;
ayj(p) = @p(x)
o .
= @(l’ o k™1)(0)
9 i -1
= @(T ohok™)(0)
9
= @(T o I)(0)
OF!
= o
and hence g
xl
o) = IF ) 0

where JF(0) is the Jacobian of F at 0. Thus we have

) ;0
By, JF(0)5 Ry \p.
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1.18 General charts

More generally, given any chart (U,h) on M"™ with coordinates (z!,...,2"), we can define % .

for any p € U by the formula

0 0 _
10 = 2 (o) (),
where (r!,...,7™) are the coordinates on h(U). If, h(p) = ¢ = (c!,...,c"), say if we consider the
linear coordinate transformation k = (y!,...,y") where y* := 2° — ¢, then if (s!,...,s") denote
the coordinates on k(U) we have
5} d _
gyl = gafek )
0 _
= Doy
0
- 2.

Hence for any p € U, {% p} is a basis of T, (M).

1.19 Changing coordinates

If v € T, (M) and (U, h) and (V, k) are charts about p with coordinates (z,...,z") and (y*,...,y")
respectively then writing

0

.0
a@a:i|p_ =V

— gl

and using (2)we see that

0 , Ozt

@' = o) =V 5 5] o) =V 55 ) (4)

1.20 Definition

Let ® : M — N be a smooth map between smooth manifolds. Let p € M. We have a map
O* Clo\ﬁq)(p) — Cft, defined by ®*(f) = f o ®. Now define the derivative of ® at p to be the
map

d®(p) : Ty (M) — Tgp (N)

defined by
d®(p)(v)(f) = v(®*(f)).

Thus d®(p) is a linear map between the tangent spaces. Where possible we will omit the ‘p’ from
the notation and just write d®.
The chain rule is tautologous: if ¥ : N — P is a smooth map of smooth manifolds such that
Vod: M — P is defined then
d(V o ®) =d¥ o dd.

Indeed, if v € T, (M) and f € Apga(p) then

d(Wo®)()(f) = v((¥o®) (f))

I
<
LS
o
A
o
=
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9
If{awi )

} is a basis of T}, (M) and {%Lb(p)} is a basis of Tg(p) (V) then

0 N 0 ,; _8f1>i
dd <(“):cﬂ p> (y ) = %(Z/ o®) = O (p),

where ® = ¢’ o ® and thus

0 0P* 0
a® (ax ) = 907 P gy e
Hence if 9 9
— )= —
v=a'gs |p, d®(v) =b By ‘Cp(p)
then p . 5
) . 0P
— - — -
d®(v) = a’dP (aacj p) =5 (p) oy |q>(p)’
and thus .
) . 0P
b = a? —(p). 5
o) )
1.21 Example
As a special case, if ® : R™ — R™ is smooth and p € R™, with (r!,...,r™) the standard coordinates
on R™ and (s!,...,s") the standard coordinates of R" we have
0 ; 0
“° (ari ’p) = I 55 oy ©)

In particular, under the identification of 7}, (R™) with R? as in Section 1.14, the derivative d®(p)
is just the linear map determined by the Jacobian J®(p). Given this, one might ask why the chain
rule was so easy to prove (as it is not so simple to prove in standard multivariate calculus). The
answer is in our use of Lemma 1.12, which in turn used the standard chain rule in multivariate
calculus.

1.22 Definition

A smooth curve on a manifold M is a smooth map ¢ : (a,b) — M, where (a,b) C R is an interval
and R is given the standard smooth structure. For ¢ € (a,b) the tangent vector to ¢ at ¢ is

d
dC <d’r‘t) S T(:(t) (M) 5
(we write d/dr instead of 9/0r when n = 1), and is denoted ¢&(¢).

If ¢ : (a,b) — M is a smooth curve, and (x!,...,2") local coordinates about c(ty) then for t
close to to we set c'(t) := a% o ¢(t). Then

&(t) () = de <d|t) @) = Latoe) = L,

dr dr T odr
and hence )
o4t = 0 @
= dr ile(t)s
that is, ‘
d '3
c= dfi‘ . 6'2 o cC.
In particular if M = R™ and we use the identification of T,y (R™) with R™ given in Section

1.12 we have ¢(t) = ‘fi—f(t)ei, which recovers the standard definition from multivariate calculus for

the derivative of a smooth curve ¢ : (a,b) — R™.
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1.23 An alternative definition of tangent vectors

We now focus our attention on smooth curves in M defined on a neighborhood of 0. A smooth
curve ¢ : (—e,€) — M with ¢(0) = p defines a tangent vector ¢(0) € T, (M). Note that smooth
curves ¢ and v define the same tangent vector if and only if, for some (and hence every) chart h
centred at p we have h o ¢ and h o defining the same tangent vector in Ty (R™). By the previous
section, this is if and only if

d d

— (h 0)=—(h 0). 8

= (ho) (0) = 2 (ho) (0) (®)
Conversely suppose v € T, (M) is any tangent vector. By making a linear change of coordinates
in the vector space T, (M) we may assume that we have local coordinates h = (z!,...,2™) about

p such that v = 81,. Define ¢(t) = h~'(t,0,...,0). Then for f € Cp° we have

o) = de(41) )

d
= (fo0)0)

0

= o (foR)(0)

0
= |0
= ().

Thus any tangent vector v € T), (M) can be written as ¢(0) for some smooth curve ¢ : (—¢,€) —
M. Thus we can make the following alternative definition of T, (M): a tangent vector at p € M is
an equivalence class of smooth curves ¢ : (—e¢,¢) — M such that ¢(0) = p, where ¢ ~ v if and only
if for some chart h centred at p, (8) holds.

1.24 Definition

Let M be a smooth manifold. The tangent bundle of M is the disjoint union of the tangent
spaces;

T(M):= [] T, (M).
peEM

We have a natural projection m : T (M) — M sending v € T, (M) — p. When referring to an
element of T' (M), we will often write (p,v) to indicate that v € T, (M).

1.25 Theorem

Let M be a smooth n-manifold. Then T (M) is naturally a smooth 2n-manifold such that 7 is
smooth.

<« Let {(Ua, ha)} be an atlas on M, where h,, : U, — O, has coordinates (x.,...,27). Define
a local trivialisation t, : T'(Ua) = [{ ¢y, Tp (M) — Ua x R™ by

to(p,v) = (p,v (33111) Y (a:’;)) .

If Uy, NUg # 0 then the map ¢, o tgl :(UaNUB) x R" — (U, NUg) x R™ sends

Oz Oz
1 n i B i 7B
(p7a7"')a )’_><p7a axg(p)7"'7a ax/&(p)>
(cf. (4)). In particular, the map ¥ns(p) = (tg ot 1)(p,-) : R* — R" is a linear isomorphism, and
moreover the map

Yag : Ua NUg — GL(n,R), p > tag(p)
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is smooth. ~ ~
Now define hy : T (Us) — O x R™ by hy = (hg X id) o t,. Then observe for a, 3 such that
Uy NUg # 0 the transition function kg, o hgl thg (Ua NUg) X R™ — hy (Uy x Ug) x R™ sends

(q,al, .. .,a") — (h(yg(q),wag (hgl (q)) (al,...,a”)) ,

which is smooth. Moreover the collection {(T (Ua) }_La)} is a collection of bijections such that
T(M)=U,T (Us). Now define a topology on T' (M) by declaring the h, to be homeomorphisms.
This will make T'(M) into a smooth 2n-dimensional manifold with atlas {(7 (Ua),hq)} as soon
as we know that is Hausdorff and second countable under this topology. If (p,v) # (¢, w) then
either p # ¢ and we can use the Hausdorff property of M or p = ¢ and v # w and we can use the
Hausdorff property of R™ to separate (p,v) and (g, w). To see second countability, we may assume
that {U,} is a countable cover of M; then each U, x R™ is second countable, and hence so are the
T (Uy) and since{T (U,)} is a countable cover of T'(M) it follows T'(M) is second countable.

It is immediate that 7 is smooth, as its local expression with respect to charts (U,, h,) and
(T (Ua) ,Ba) is the map proj; : U, x R™ — U,. This completes the proof. »

In fact this proof actually shows that T' (M) is a smooth vector bundle of rank n over M
(vector bundles will be defined in Chapter 5).

1.26 Bundle maps between tangent bundles
Let ® : M™ — N™ be smooth. Then ® induces a bundle morphism d® : T (M) — T (N) defined
by

d®(p,v) = d®(p)(v).
Moreover, d® is smooth. Indeed, if (p,v) € T'(M) and (U, h) is a chart about p, and (V, k) a chart
on N about ®(p) then the local expression ko d® o h~! is the map

(e (Ko @0 ). 52 )0l G 0))

(cf. (5)) which is smooth.

2 Vector fields

2.1 Definition

A vector field on M is a smooth section of 7 : T (M) — M, that is, a smooth map X : M —
T (M) such that 7 o X =idps. Thus if X is a vector field, X (p), which we will often write as X,
lies in T}, (M) for all p € M. The assertion that X is smooth is equivalent to the following. Let
(U, h) be a chart on M with coordinates (z!,...,2™). Then for p € U we can write X, = X*(p)d;|,
for some functions X*: U — R, and to say X : M — T (M) is smooth is equivalent to saying that
the X* are smooth functions on U. Indeed, with respect to the chart (T'(U),h) on T (M), X has
local expression
b= (Il(p)a s "rn(p)’Xl(p)v s 7Xn(p))

and thus X is smooth if and only if all the X? are smooth.

Let X (M) denote the set of all smooth vector fields on M. For f € C*°(M) and X € X (M),
we can define a new vector field fX : M — T (M) by (fX) (p) = f(p)X, € T, (M). Similarly
we can also define for f,g € C*°(M) and X,Y € X(M) a vector field in the obvious way, and so
X (M) becomes a module over the ring C*°(M).

We can also define local vector fields to be smooth sections of 7 defined only on some open
set U C M. We denote the local vector fields over U C M by X(U). In particular if (z!,...,2")
are local coordinates on U C M then 9; € X (U).
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2.2 Proposition

Let M™ be a smooth manifold on which there exist n independent vector fields X1, ..., X,,, that
is, for all p € M, {X1(p),..., Xn(p)} is a basis of T,, (M). Then T (M) is isomorphic as a vector
bundle to M x R™. By this we mean (this will be explained in more detail in Chapter 5 - see
Section 5.4 in particular) that there exists a diffeomorphism F : T (M) — M x R™ such that
F(T,(M)) € {p} x R™ and the restriction of F to T,(M), F), : To(M) — {p} x R" is a linear
isomorphism.

<« Define F : T(M) — M x R™ by F(p,v) = (p,ct,...,c") where v = ¢'X;(p) in the basis
{Xi(p)} of T, (M). Then F is a bijection by assumption, and restricts as required. We thus need
only show F and F~1 are smooth. Given a chart (U, h) with local coordinates (z!,...,2") on M,

the local expression of F' in the charts (T'(U),h) and (U x R™, h x id) is

(p,a*,...,a") — (p,c*,...,c")
where a'd;], = v = ' X;(p).
Now we can write X;(p) = b (p)d;|, for some smooth functions b} : U — R. Then

a?dj|, = v = X;(p) = bl (p)dy1,,

and thus o/ = cibg (p). This shows that F~! is smooth, as the bg are smooth. Moreover, since
matrix inversion is smooth, and p — [bZ (p)} is smooth, if [d; (p)] denotes the inverse matrix to
[b7(p)] then p — [di(p)] is also smooth. Then as ¢/ = di(p)a’, we see that F is also smooth. »

2.3 Definition

Given a smooth vector field X and f € C*°(M), we can define a function Xf : M — R by
Xf(p) = X,(f). If (U k) is a chart about p with coordinates (z,...,z™), then we can locally
write X, = X%(p)d;|,, and thus

of

Xf(p) = Xi(p)axi ().

In particular, X f is smooth. Hence we may also view X as a derivation of C*°(M); since X, is
a derivation of C)° we immediately have

X(f9)p) = Xf(p)-gp) + f(p)- Xg(p)

In fact, more is true.

2.4 Proposition

A map X : C®°(M) — C>®°(M) is a deriviation if and only if there exists X € X' (M) such that for
all feC®(M), X(f)=Xf.

<« We have just shown given X € X(M), defining X : C*°(M) — C>*°(M) by X(f) = X f does
indeed define a derivation. Conversely, suppose X is a derivation of C*°(M), p € M and define a
tangent vector X, € T,,(M) by, for f € C;°,

X,(f) =% (F) ),

where f is any smooth function defined on all of M such that the image of f in Cp° is f.

There are three things to check in order to conclude this is well defined. Firstly we need to
know that there exists a smooth extension f of f to a function defined on all of M (a priori, we
only know that f defines a function on a neighborhood of p). Secondly we need to know that if

f and f’ are two such extensions then X(f)(p) = X£(f')(p). Then we need to check X, is indeed a
derivation of C7°, and thus does indeed define an element of T},(M).
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The key fact we need is the following: given any p € M and any neighborhoods U C V of p
there exists a smooth function ¢ : M — R such that [y = 1 and 1|5y = 0. Such a function is
called a bump function. That such functions exist is not obvious, and depends on the existence
of partitions of unity. We will define these in Chapter 5, Theorem 5.17, and prove the existence
of bump functions in Corollary 5.18. For now however we will just accept such functions v exist.

It is then immediate that such an extension f exists. In order to check X, (f) is independent of
the choice of extension, it is enough to observe that if f € C° (M) vanishes in a neighborhood of p
then X(f)(p) = 0. If f|y- = 0 for some neighborhood of p, then choose a neighborhood U C V of p,
pick a bump function 1 such that 9|y = 1 and ¥|yp\ v = 0, and then consider the smooth function
Y M — R, ¢ :=1—1. Then ¢'|y =0 and ¢'|ppv = 1, and so as functions on M, f=fu.
The derivation property of X ensures X(f1')(p) = 0, and so also X(f)(p) = 0 as required.

It is clear now that X, is a derivation of C°, since X acts as a derivation on the chosen
extensions. To complete the proof, we show that p — X, is smooth, and thus this construction
defines us a vector field X on M. For this it is enough to check that if (xl, e ,x") are any local
coordinates on a neighborhood U of p then Xa* € C*°(U), regarding z* : U — R as smooth
functions on U. But this is clear, since if f € C°°(U) is any function then using a bump function
we extend f to f € C°°(M), and then observe that X(f) € C*°(M). »

2.5 XY is not a derivation

Given X,Y € X(M) and f € C°(M), we can define (XY) f = X(Y f). However this does not
define a vector field, as this is not a derivation of C*°(M). Indeed,

(XY)(fg) = X{(Y g+ fYg} = (XY) fg+Y [-Xg+ X [Yg+[f(XY)g# (XY) f-g+f(XY)g.

However, this shows that [X,Y] := XY — Y X is a derivation of C*°(M). It thus follows that
[X,Y]:= XY — YX defines a vector field on M. We call [X,Y] the Lie bracket of X and Y.

2.6 Properties of the Lie bracket
1. The map [, -] : X(M) x X(M) — X(M) is bilinear over R and skew-symmetric.
2. If f,g € C®°(M) and X,Y € X(M) then [fX,gY] = fg[X, Y]+ f(Xg)Y —g(Y [)X.

3. If (U, h) is a chart on M with coordinates (z',...,2") and in this chart X (p) = X*(p)d;|,
and Y (p) = Y*(p)dil, then

XY10) = (X0 G 0) - V) 5 0)) 0 0

4. The coordinate local vector fields 0;,0; always satisfy [0;,0;] = 0.
5. The Jacobi identity: for X,Y,Z € X(M),
(X, [V, Z]| + [V, [Z, X]] + [Z, [X, Y]] = 0.
< (1) is clear. To prove (2), we first compute X (gY"). Let £ € C°(M). Then
(X(gY)) € = X(g-Y8) = Xg- Yl +g- (XYL,
and hence X (¢Y) = (Xg)-Y +g- XY. Then
[fX,9Y] = [fX(gY)—gY(fX)
FX9)Y + fgXY —g(Y ) X +gfYX
X, YT+ f(Xg)Y —g(Y ) X.

Next, to prove (3) we compute

OxJ Oxt OxJ Oxt0xI

Symmetry of the mixed partial derivatives then proves (3). Finally both (4) and (5) follow from
(3). »

X(Yf) =X (Yjaf) _ x| iy OF
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2.7 Corollary

X (M) is an infinite dimensional Lie algebra under [-, -].

2.8 Definition

Let ® : M — N be a diffeomorphism and X € X (M). We can define the pushforward of X to
N under ¢ to be ¢, X defined by

(2.X) (q) = d® (Xo-1(¢)) € Ty(N). (10)

Thus if f € C*°(N) we have
(. X)f=X(fod)od ! (11)

SO
dPo X =P, X o P.

2.9 Lemma
Let ® : M — N be a diffeomorphism and X,Y € X(M). Then

?,[X,Y] =[9.X,0.Y].
In other words, ® defines a Lie algebra isomorphism @, : X(M) — X(N).
< Let ¢ € N and set p = ®*(q). Suppose f € C°(NN). Then we compute:

(@ X, Y])of = d®([X,Y]p)f
(X, Y]p(f o ®)
Xp(Y(f 0 @) =Yp(X(fo®))

= Xp((d®oY)(f)) = Yp((d® o X)(f))

= Xp((2.Y)(f) o @) - Y(( X)(f)o®)
= d®(X,) ((2.Y)(f)) — d® (Yp) (2. X)(f))
= (2.X)((2.Y)(f)) = (2.Y)4((2.X)())
= [®.X,P.Y],[.

An unpleasant calculation. Note that we used both characterisations (10) and (11) at different
stages in the proof. »

2.10 Definition

Let X € X(M) and p € M. A smooth curve ¢ : (a,b) — M (with a < 0 and b > 0) is called an
integral curve of X at p if

c(0) =p, X(c(t)) =¢(t) for all t € (a,b).

2.11 Theorem (existence and uniqueness of integral curves)

Let M be a smooth manifold, p € M and X € X(M). Then there exists an open interval I,
containing 0 and an integral curve ¢, : I, — M of X such that ¢,(0) = p. Moreover, if y: J — M
is another integral curve of X such that v(0) = p, with J an open interval containing 0 then J C I,
and ¢pl; = 7.

< Ifc: (a,b) — M is a smooth curve, and (z?,...,2") local coordinates about c(t¢) then for
t close to tg, recall by (7)we have
. dc’
é(t) = %(t)ﬁdc(m
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where ¢! = z% o c. Suppose in this chart X (¢) = X%(q);|,- Then the assertion that c is an integral

curve becomes iy
c* ;
o (1)0ilery = X" (e(t))0il et

and thus the assertion comes down to solving the system of ODE’s

dc

—- () = X'(c(t)),  ¢(0) = X"(p). (12)

So choose a chart (U, ¢) about p. Let I, denote the union of all the open intervals containing the
origin which are the domains of integral curves of X satisfying the initial condition that the origin
maps to p. Applying the standard theorem on existence to solutions of ODE’s to the system of
equations (12) we see that I, # (. Suppose now ¢ and v are integral curves of X defined on open
intervals A, B respectively with ANB # () . Then if there exists to € AN B such that ¢(to) = v(to),
then by the standard theorem on uniqueness to solutions of ODE’s, the subset of AN B on which
c and ~ is open and non-empty. By continuity it is also closed, and hence by connectedness it
is equal to AN B. It follows there exists an integral curve ¢, of X defined on all of I, which
completes the proof. »

2.12 Definitions

Let M be a smooth manifold, and X € X(M). In the notation of the proof above, for ¢t € R define
U :={peM|tel,} and define ¢, : M — M by ¢:(p) = cp(t).

2.13 Theorem (flow theorem)
For each t it holds that:

1. Uy is open, and M = |, U;.
2. If t € I, then Iy, () = {s — t|s € I,,}.
3. ¢ : Uy — U_, is a diffeomorphism with inverse ¢_;.

4. If s,t € R then the domain of ¢, o ¢, is contained in (but not generally equal to) Ugqs. If s,¢
have the same sign however then we have equality. In any case, on the domain of ¢4 o ¢; we

have Gs 0 Pt = ¢s+t~

5. Given p € M there exists a maximal open neighborhood V of p and maximal € > 0 such that
the map

¢: (=€) XV, (t,q) = bi(g) = 74(t)

is a well defined smooth map. Note by (3) we have for s,¢ € R such that all of |s|, |{| and
|s + t| < e this implies ¢(s + ¢, p) = (s, P+(p)). We say that ¢ is the local flow of X at p.

We won’t prove the Flow Theorem; it essentially follows from the ODE theorem on smooth the
dependance on initial conditions.

2.14 Definitions

A smooth vector field X is called complete if U, = M for all ¢t € R, in other words, for all
p € M, the domain of ¢, is all of R. In this case the transformations {¢;}cr form a group of
transformations of M parametrized by the real numbers. It is called the one-parameter group
of X. The associated map ¢ is then a (global) flow. Note that if X is not complete, {¢;}ier do
not form a group, since their domains depend on ¢. In this case we refer to {¢:}: € R as the local
one-parameter group of X.
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2.15 Proposition

Let X be a smooth vector field on a smooth manifold M. If ¢ is an integral curve of M whose
maximal domain is not all of R, then the image of ¢ cannot lie in any compact subset of M.

<« Let (a,b) denote the maximal domain of ¢, and p := ¢(0). Suppose b < oo but that the
image of ¢ lies in a compact set K of M (the case a > —oo is similar). If {¢;} is any sequence of
times approaching b from below, then {c(¢;)} is a sequence of points in K, and thus passing to
a subsequence if necessary we may assume c(¢;) — ¢ € K. Choose a neighborhood U of ¢ and
€ > 0 such that that the local flow ¢ of X is defined on (—¢,€) x U (so for t € (a,b) N (—¢,€),
o(t,p) = c(t)). Pick i large enough such that ¢(¢;) € U and t; +€ > b, and define v : (a,t;+¢€) — M
by

d)(t—ti,c(t,')) t, —e<t<t;+e

(t):{c(t) a<t<b

By assumption these definitions agree on the overlap, since

¢t —ti,c(ti)) = @(t — ti; br.(p) = p(t = ti + 15, p) = ().

and hence v is an integral curve of X satisfying v(0) = p and defined on a larger interval then
(a,b). Contradiction. »

2.16 Corollary

If M is a compact smooth manifold then every smooth vector field on M is complete.

3 Submanifolds

3.1 Definition

Let ® : M — N be a smooth map between manifolds. We say that ® is an immersion if d®(p)
is injective for each p € M.

3.2 Definitions

Let ® : M — N an injective immersion. Then the pair (M, ®) is an immersed submanifold
of N. If in addition ® is a topological embedding, that is, ® is a homeomorphism onto its image
(with the subspace topology) then the pair (M, ®) is an embedded submanifold. In this case
we often suppress @ and identify M with its image ®(M) C N and thus regard ® as the inclusion
M — N.

Let @ : M — N be an embedding. Then for p € M, the map d®(p) : T, (M) — Ty, (N)
identifies the tangent space T), (M) with a subspace of T, (N). Then d® : T'(M) — T (N) is a
smooth embedding, so T' (M) is an embedded submanifold of T'(N).

3.3 Definitions

Let ® : M™ — N™ be smooth. A point p € M is called a regular point of ® if d®(p) is surjective.
If p € M is not a regular point then it is a critical point. A point ¢ € N is a regular value
of @ if for any p € ®71(q), p is a regular point. Note that if ®~1(q) = () then this condition is
vacuously true. If ¢ € N is not a regular value then it is a critical value. Note that if m < n
then any point ¢ € N such that f~!(g) is non-empty is a critical value.

3.4 Theorem (implicit function theorem)
Let U be a neighborhood of 0 in R™ and ® : U — R™ a smooth map such that ®(0) = 0. Then:

1. Iif m < mn, let i : R™ — R™ denote the canonical inclusion. If ® has maximal rank m at 0
then there exists a chart h on R™ and a neighborhood W of 0 € R™ such that ho ®|y = i|w.
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2. If m > n, let 7 : R™ — R™ denote projection onto the first n coordinates. If ® has maximal
rank n at 0 then there exists a chart £ on R™ and a neighborhood V of 0 € R™ such that
do k|v = 7Tlv.

<« First we prove (1). The hypotheses imply that the m x n matrix {‘gf] (O)} has rank m. Hence

by rearranging the component functions ®* of ® if necessary (which amounts to composing ® with
an invertible transformation of R™, which is a diffeomorphism) we may assume that the m x m
minor [‘2%(0)] is invertible. Define F': U x R"™™ — R™ by
* 1<i,j<m
F(z', ..,z ™t 2™ = &2t .., 2™) +(0,...,0,z™ 2.

Then F o¢ = @, and the Jacobian matrix of F at 0 is

[gg (0)} 1<i<m 0

[520) I

m+1<i<n

Thus by the inverse function theorem F has a local inverse h, and ho® = ho F oi = . This proves
(1).

Similarly in (2), we may assume that the n x n minor {‘gfj (0)} is invertible, and hence

1<i,j<n
defining G : U x R™™" — R™ by

G(zt,...,2™) = (@(xl,...,zm),x"Jrl,...,xm).

Then ® = 7o G, and the Jacobian matrix of G at 0 is

[ [gf; (0)]1§j3n [gfj (O)LHSJSm

0 Imfn

Thus by the inverse function theorem G has a local inverse k, and Pok =m0 Gok =7m. »

3.5 Definition

Let M™ be a submanifold of N. A chart (U, k) on N with local coordinates (z',...,z™) is called
a slice chart for M in N if

MNU={peU|a™(p)="--=2a"(p) =0}

3.6 Proposition (submanifold criterion)

Let ® : M™ — N" be an immersion. Then for any p € M, there exists a neighborhood U of
p and a coordinate map (V) k) defined on some neighborhood V' of ®(p), with local coordinates
(y!,...,y™) such that:

1. A point g belongs to ®(U) NV if and only if y™ ™ (q) = --- = y"™(q) = 0, so

k(@(U)NV) = (R™ x {0}) Nk(V).

2. ®|y is an embedding.
If ® was an embedding, then we may take U = M, and hence
SM)NV ={qgeV |y™(q) = =y"(¢q) =0}.

In other words, an immersed submanifold M™ C N™ is one such that every point p € M has
a chart (V, k) about ®(p) and a neighborhood U such that k is a slice chart for U in N, and an
embedded submanifold is one such that every point p € M has a chart (V, k) about ®(p) such that
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k is a slice chart for M in N.

<« Let i : R™ — R" denote the inclusion. Let h be a chart centred about p, and ¢ a chart
centred about ®(p). Since £ o ® o h~! has maximal rank m at 0, by the implicit function theorem
there exists a chart £/ of R™ and a neighborhood W of 0 € R™ such that

Z’OKO(POh_”W :Z|W

Then set U = h~Y(W) and k = ¢’ o £. Then by restricting the domain of ¢ if necessary, (1) clearly
holds. Furthermore, since ®|; = k~! 04 o h is the composition of embeddings, so is ®|¢.

Finally, if ® was an embedding then ®(U) = ®(M) NV’ for some open set V' C N, and hence
SU)NV =d(M)N(VNV'), and so replacing V by V NV’ the last statement follows. »

3.7 Proposition

Every regular level set of a smooth map is an embedded submanifold.

<« Suppose ¢ : M™ — N" is smooth. Suppose initially that ® is a submersion. If ¢ € N, and
p € P:= & 1(q), then by the Theorem 3.4 there are charts (U, h) of M about centred about p and
(V,k) on N centered about g such that ® has local expression (y!,...,y™) — (y',...,y™,0,...,0)
in these two charts. Thus P N U is the slice {(z!,...,2™) € U | 2"t = ... = 2™ = 0}, and so P
is an embedded submanifold of M.

Now we consider the general case, and drop the assumption that ® is a submersion. If ¢ is any
regular value of of ® such that P := ®~!(q) # 0, then for each p € P, d®(p) has rank n. Let
U:={p e M| d®(p) has rank n}. Then P C U, and we will show that U is open. Given this,
®|y : U — N is a submersion, and we can apply the above to conclude that P is an embedded
submanifold of U, and hence also an embedded submanifold of M.

If p € U, then the determinant of some n x n minor of the n x m matrix representing d®(p)
in some smooth local coordinates is non-zero. Since the determinant is continuous, there is a
neighborhood V' of p such that this minor has non-zero determinant, and thus V' C U and U is
open. »

3.8 Theorem (Sard)

If ® : M — N is smooth then the set of critical values of ® has measure zero in N.

We will not prove this theorem in this course.

3.9 Theorem

Let & : M™ — N™ be a smooth map, with m > nis smooth. If ¢ € N is a regular value of ®
such that P := ®1(q) # (), then P is a topological manifold of dimension m — n. Moreover there
exists a unique smooth for which (P,7) (where ¢ : P — M is inclusion) becomes an embedded
submanifold of M.

« Let k:V — R” be a chart on IV centred about ¢; given p € P, let h : U — R™ be a chart on
M centred about p. Decompose R™ = R” x R™~" and let m; : R™ — R" and mp : R™ — R*™™
denote the projections onto the two factors. Let i : R™™" < R”™ denote the inclusion

(a17...,am_") — (0,...,0,a1,...,am_”).

Since ko ® o h~! has maximum rank at 0 € R™ by Theorem 3.4 there exists a chart (W, £) around
0 € R™ such that ko ®oh ™l ol = m|w. Let W := my(W), so W' is open in R™~" and
ko®oh loloisgly = m oidg|ws = 0. Thus if j := h™! o £ 0|y then j(W’') C P. In fact, we
claim that

JW'y=Pn (hol) (W),
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so that 7 maps W’ homeomorphically onto a neighborhood of p € P in the subspace topology.
Indeed, clearly j(W') C PN (h~! o) (W), since

JW') = (k' oloiy) (W)=h""ol (WnN(0xR™™)).
Conversely, if p’ € PN (k™! o £) (W), then p’ = h=! 0 £(u) for some unique u € W, and since
0=ko®(p/)=(ko®oh " ol)(u)=m(u),

we have

u=(0,a) €0 x W

for some a € W', and thus p’ = j(a) € j(W’). It follows that the inclusion i : P — M is a
topological embedding.
Finally, we endow P with the smooth structure induced by the charts {(] (W), j’l)} as p

ranges over P. Then i : P < M is smooth, since hoio (]"1)_1 =/loiy. B

3.10 Corollary

Let ® : M™ — N™ be smooth, ¢ € N a regular value and P = ®~1(q) # 0. Then for p € P, we
have
di (T, (P)) = ker d®(p).

<« Since both subspaces have common dimension m — n, it suffices to check that di(T), (P)) C
ker d®(p). Let v € T}, (P). Then for f € CF, we have

d®(di(v))(f) = d(® 0 i)(v)(f) = v(f o D o).

But ® o = ¢, and hence f o ® o1 is a constant function, and thus v(f o ® o) =0. »

3.11 Example

GL(n,R) is an open subset of Mat(n,R) = R"*. The set Sym(n,R) of symmetric matrices may

n(n+1)

be identified with R™ 2 . Now define ® : GL(n,R) — Sym(n,R) by ®(A) = AA’. Observe that
®~1(I) = O(n), the real orthogonal n x n matrices. We claim that I is a regular value of ®.

First for A € GL(n,R) we can define a diffeomorphism R4 : GL(n,R) — GL(n,R) by right
multiplication: R4(X) = XA. Now observe that if A € O(n) then ® o R4 = ®. Thus by the
chain rule, we have d®(A) o dRs(I) = d®(I). Since R, is a diffeomorphism this shows that
rank(d®(A)) = rank(d®(I)). It is therefore enough to check that d®(I) is surjective.

Now observe that Tt (GL(n,R)) = T; (Mat(n,R)) = Mat(n,R). Specifically, if we take global
coordinates (%) on GL(n,R), where

x;(A) = aé, A= [aﬂ ,
we send 9
aj o |I<—> [a}] € Mat(n, R).

We can represent an arbitary element A € T7 (GL(n,R)) by the curve c4 : t — I +tA (note that
c(t) € GL(n,R) for small enough ¢). Now since

O +tA) =1+t(A+ A +12AA

we have

dB(I)(A) = %|t:0(q>(1 +tA)) = A+ A,

Now finally let S by an arbitrary symmetric matrix, then if A = /2 we have A + A* = S. Thus
d®(I) is surjective, and thus O(n) is an embedded submanifold of GL(n,R) of dimension w
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3.12 Distributions

Let M be a smooth manifold. A r-dimensional distribution D on M is a choice of an r-dimensional
subspace D(p) C T}, (M) for each p € M. A distribution D is smooth if D (M) := [[ ., D(p) is a
smooth subbundle of T' (M) (see Chapter 6 for the precise definition of subbundles). Equivalently,
D is smooth if every p € M has a neighborhood U and smooth vector fields Xi,..., X, € X(U)
such that {X1(q),..., X,(q)} is a basis for D(q) for each ¢ € U.

We say a smooth vector field X € X(U) (where U C M is an open subset) belongs to D if
X, € D(p) for all p € U. A distribution D is called involutive if given X,Y € X (U) belonging to
D we also have [X,Y] € ©(U) belonging to D. Note that a one-dimensional distribution is just a
vector field.

If (M, f) is an immersed submanifold of N and D is a distribution on N, we call (M, f) an
integral submanifold of D if d®(T, (M)) = D(®(p)) for all p € M. A distribution D on N
is called completely integrable if each point is contained in an integral submanifold of N. A
locally integrable distribution is one such that every point p € N is contained in an integral
submanifold of an open subset U C N. Note that an integral manifold of a one-dimensional
distribution is just (the image of) a curve.

3.13 Theorem (Frobenius)

A distribution is involutive if and only if it is completely integrable.

3.14 Theorem (Whitney)
Any smooth manifold M™ may be embedded in R?".

We will not prove either of these theorems in this course. The version of Theorem 3.14 stated
is a truly difficult result. An earlier (and much easier) result also due to Whitney states that we
can embed M™ in R?"+1,

4 Lie groups

4.1 Definitions

A Lie group G is a smooth manifold endowed with a group structure such that the multiplication
map m : G x G — G, (p,q) — pq and the inversion map i : G — G,p — p~! are smooth maps.

A Lie subgroup H of G is the image of an immersed submanifold (H’, ®) of G such that H’
is a Lie group, and ® : H' — G is a homomorphism of the (abstract) groups H' and G. Thus if
H < G is a Lie subgroup then the inclusion ¢ : H — G is an immersion. It is a non-trivial fact
that a closed subgroup H < (G is a Lie group with respect to the subspace topology.

4.2 Examples

1. From the previous lecture, GL(n,R), O(n) and SO(n) are all Lie groups.

2. The n-torus T" = R™/Z is an abelian Lie group (the group structure is induced by addition
on R™). In fact, any compact abelian Lie group is a torus.

3. A given manifold can carry multiple Lie group structures. In addition to the standard one,
we can make R? into a Lie group by defining m(a,b) = (ay + b1, as + by + a1bs, azbz) (where
a = (a1,az,a3),b = (by,ba,b3)). This corresponds to identifying R® with the subgroup H of
GL(3,R) consisting of matrices of the form

1 ayp az
0 1 as
0 0 1

The fact that this is a subgroup confirms that m does indeed endow R? with a group structure.
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4.3 Definition

Let G be a Lie group. Set g := T, (G) (where e is the identity element of G). g is called the Lie
algebra of G. Our initial aim is to show that g is indeed a Lie algebra (and thus the definition is
not completely inane).

4.4 Computing the Lie algebra o,, of O(n).

Recall from Example 3.11 that O(n) is an embedded submanifold of GL(n, R) of dimension "(”271) :

Thus o, := T7 (O(n)) is naturally a subspace of gl,, := T7 (GL(n,R)) = Mat(n,R). We can no
longer represent a element of 0,, by a curve of the form ¢(t) = I +tA for some A € Mat(n,R), as
even for small ¢, I +¢A has no reason to lie in O(n). However by elementary calculus, we can write

c(t) =T +tA+O(?).
Then if we require ¢(t) € O(n) then we need
(I+tA+O0F)(I+tA+O0() =1,

or equivalently A + A* = 0. This gives 0, C {4 € gl, | A+ A® = 0} and then counting di-
mensions gives equality. Alternatively one could proceed as in Example 3.11, with the map
d® : Tr (GL(n,R)) — T7 (Sym(n,R)), and then use Corollary 3.10 to conclude that T7 (O(n))
was the kernel of d®(I). Since d®(I)(A) = A+ A', we recover the same result.

4.5 Definition

Let G be a Lie group. Let £, : G — G denote the diffeomorphism ¢ — pq. Let X € X(G). We say
that X is a left-invariant vector field if ¢,,.X = X for all p € G. We let Xy(G) denote the set

of left-invariant vector fields on G. In more detail, this means that for any ¢ € G we require for
fecCcx

pq’

Xpof = (ep*X)pq f=dby(Xe)(f) = Xq(f 0 bp).
Suppose X € Xy(G), and let { = X.. Let f € Cp°. Then

Xpf = Xe(foly) = dtp(Xe)(f) = dbp(§)(f)-
It follows that if we define a section X¢ : G — T'(G) by, for p € G and f € C}°,

Xe(p)f = dtp(E)(f),

then X¢ = X and thus X¢ is a left-invariant vector field. Hence a left-invariant vector field X is
determined by £ = X.. In fact, if £ is an arbitrary element of g, then defining X, as above yields
a left-invariant vector field.

4.6 Proposition
Let G be a Lie group, and § € g = T.G. Define a section X¢ : G — T (G) by

Xe(p) = dby(€) € T, (G).- (13)

Then X is a vector field on G; moreover X¢ is left-invariant.

<« We need only verify that X, is a smooth section of 7 : T(G) — G and left-invariant. Let
he : U! — O' be a chart centred about e, with coordinates (z?,...,2") (n = dim G). Fix a point
p € G. Observe that if U} := {,(U[) and h;, := h. o £,-1 then h, : U, — O’ is a chart centered
about p. Let (y',...,y") denote the coordinates of this chart. Now choose U, C U/ such that if

Up = €,(U.) then m(U, x U.) C U,,. We then have the following commutative diagram

UyxU. = U}
l |
oxo L o
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where F' is defined to be the smooth composite at the bottom. Given ¢ € U, wee can restrict this

to
Ly

{a} x Ue = 0
! !
{hy(@)y x 0 "o

Then the map d¢, : T, (G) — T, (G) is given, with respect to the bases {%
{551, } of T, (G) by

} of T, (G) and

€

0 ;0
ity (. ) = IF (.0 551,

where JF' (h,(q),0) is the Jacobian matrix of F' at the point (hy(g),0) € O x O (cf. (6)). Since
the entries of JF (hy(g),0) are smooth functions of ¢ € Uy, we have shown that for any fixed

¢ € T, (G), the images dly(§) depend smoothly on ¢. Thus X¢ is smooth.
Finally, we check X¢ is left-invariant. Indeed,

(pXe) (pq) = dly (Xe(q)) = dly 0 dly(§) = dlpy(§) = Xe(pg)-

This completes the proof. »

4.7 Corollary
We have a linear isomorphism between g and Xy(G) given by & — X¢.

4.8 Corollary

Let G™ be a Lie group, and g its Lie algebra. Then g is a n-dimensional Lie algebra (!) under the
bracket induced g from the bracket on Xp(G) inherited from X (G) .

<« We need only show that if X and X, are left invariant then so is [X¢, X,]. But by Lemma
2.9, for any p € G, since /, is a diffeomorphism we have

Cps [X§vXn] = [ep*XEagp*Xn] = [X§7X77]a
so [X¢, X)) is left-invariant. Thus we can define a Lie bracket on g by setting [, 7] = ¢ where
[Xe, Xp] = X¢. >
4.9 The commutator bracket

Suppose now that G is a matrix Lie group, that is, G is a Lie group and a closed subgroup
of GL(n,R). Then as we have seen, T.(G) can be identified with a subspace of Mat(n,R). We
already have a bracket on Mat(n, R), namely the commutator [A, B] := AB — BA. In fact, these
two brackets coincide.

< In this section we’ll prove the case when G = GL(n,R). Using the matrix entries (x;) as
global coordinates on GL(n,R), the natural isomorphism 77 (GL(n,R)) < gl,, takes the form

7
aj

Ozt = (a5) -
j

Any matrix A = (aé) defines a left-invariant vector field X 4, defined by (for P € GL(n,R))

.y

Under the above identification the map d¢p(I) is just left multiplication by P = (pz»), and thus in
coordinates 9

aT;’JP' (14)

Xa(P)= Péai
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Given two matrices A, B, using (9), the Lie bracket of the corresponding left-invariant vector fields
is given by

i J 0 m 077 0 m 9
XanXel () = {ad o (4050) 50 (o) } o
{pja?céférknbh —pjbfcéféf;ah } T%’P

o o )
k i17 kK
{pzﬂaibh —p-bkah} . ’ .
J J 81‘% P
In particular, if P = I then we obtain

0

O o 9
oxi 1P

W5 |
"ot 1
Since a left-invariant vector field is determined by its value at the identity, this shows that
[Xa, XB] = X{a,B), which is precisely what we wanted to show. »

(XA, X5 (I) = {a},b} — bl.a}} A, B = X(a,5(I)-

To deal with the case when G is merely a subgroup of GL(n,R) we consider the following more
general situation.

4.10 Restriction to subgroups

Let H < G be a Lie subgroup and let i : H — G denote inclusion. Then 4 is an immersion, and so
di (T.(H)) = di(h) is a subspace of g. If £ € b then letting & = di(¢) € di(h) we have left-invariant
vector fields X¢ € Xp(H) and Xg € Xy (G). If £, and €5, denote the respective left multiplication
diffeomorphisms for p € H then {g 0% =140y, and thus

di (X¢(p)) = dio dly,(€) = dl,p 0 di(§) = dlg,, (§) = Xe(p).

We have previously only defined ®,X for ® a diffeomorphism: if ® : M — N is smooth and
X € X(M) then it may still be the case that there exists a well defined vector field Y € X(N)
satisfying Y, = d® (X@—l(q)) - in this case we write Y = &, X and say X and Y are ®,-related.The
difference is that if ® is not a diffeomorphism there is no guarantee that such a vector field exists.
However if it does, the proofs of our previous results (eg. Lemma 2.9) still go through.

Thus the computation above shows that i, X¢ = X¢g, and hence by Lemma 2.9 we conclude that
di () is a Lie subalgebra of g, and di : h — g is a Lie algebra homomorphism, that is

[Xe, Xl = [Xe, X -

In particular the bracket on H is induced from that of G. Applying to this to H < GL(n,R) we
conclude that the bracket is again given by matrix commutation, as required.

411 Lemma

Let G be a Lie group, and X¢ € Xp(G) be a left-invariant vector field associated to some & € g.
Let 0 : (—¢,€) — G be the integral curve for X, such that #(0) = e. Then for |s|, |t| < €/2 we have
O(s +t) = 0(s) - 0(t), where ‘-’ denotes group multiplication in G, that is 6(s +t) = £y(s) 0 0(t).

<« For fixed s, we show that the curves t — 0(s+t) and t — 0(s) - 0(¢) are both integral curves
of X¢ defined on (—¢/2,¢/2) though e. Uniqueness of integral curves then forces equality.
Define c(t) : (—€/2,€¢/2) — G by ¢(t) = 0(s + t). Then certainly ¢(0) = 0(s). Moreover

ét) = dc(c;lr|t)

d
= df (mﬂ’sﬂ) :

= O(s+1)
= Xe(0(s+1))
= Xe(et))-
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Suppose now p = 0(s) € G. Define v(t) = £, 0 §(t). Then v(0) =p-e=p=106(s) and

0 = dto0) (41,)

= 0
= Xg(époe
= Xe(v(1)

where for the last but one equality we used left-invariance of X,. Thus both ¢ and «y are indeed
integral curves of X¢ through e defined on the same interval as claimed. »

4.12 Corollary

Any left-invariant vector field on a Lie group G is complete.

<« Let X¢ be an arbitrary left-invariant vector field on G, corresponding to £ € g.Let 0 :
(—€,€) — G be the integral curve through e for X¢. Define ¢ : R — G as follows. Given ¢t € R,
choose N € N such that t/N € (—¢/2,¢/2). Define c(t) = 6(t/N)". First, let use check 0 is well
defined. Suppose N’ was another such integer. Then since 6(t/Nn')NN" = (t/Nn") by Corollary
4.11, we have 9(t/N)N = 0(t/NN)NN" = 9(t/n)N". Certainly ¢(0) = e, and given ¢ € R, letting
p = 0(t/N)N~1 as before we have

{0 = aityo0) (411,)

I
ke

Thus c is an integral curve of X at e defined on all of R. By maximality, # must also be defined
on all of R.

To complete the proof, we must show that for any p € G, if ¢,(¢) is the integral curve for
X¢ with ¢,(0) = p, then ¢, is also defined on all of R. But given p € G, define v : R — G by
t—p-0(t) =€, 00(t). Then certainly v(0) = p, and an identical calculation to the above shows
that v is an integral curve of X¢. Maximality then implies that c, is defined on all of R. »

4.13 Definition

A one-parameter subgroup of a Lie group G is a homomorphism of Lie groups § : R — G
(where R is given the additive group structure). If £ € g, the one-parameter subgroup generated
by ¢ is the one-parameter subgroup 6(t) that is the integral curve through e of X¢.

4.14 Proposition

There is a one-to-one correspondence between one-parameter subgroups of G and left-invariant
vector fields (and hence also with g).

<« We already know that a left-invariant vector field gives rise to a one-parameter subgroup.
Conversely, suppose 0 : R — G is a one-parameter subgroup. Define £ = df (d% 0) € T. (G). Then
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we have a left-invariant vector field X¢, and to complete the proof it is enough to show that 0 is
an integral curve for X. We compute:

Xe(0(t)) = dlo)(§)

d
= dﬁg(t) o df ((jl’l"’0>
d
= d(¢ 0) | —
(Lot © )<dr|o>
d
= df | —

= 6(t).

This completes the proof. »

4.15 Definition
For any A € Mat(n,R), define

| —

exp(4) = Z AF.
k=0

o

4.16 Proposition

For any A € Mat(n,R), exp(4) € GL(n,R). Moreover, the one-parameter subgroup of GL,(R)
generated by A € gl,, is 6(t) = exp(tA).

<« First let us check that exp(A) converges. We have |AB| < |A||B|, where | - | is the norm
induced from R, and hence by induction |A*| < |A[F. The Weierstrass M-test shows then shows
that exp(A) converges uniformly on any bounded subset of M,,(R) (by comparison with the series
expansion for el4l).

Fix A € gl,,. The one-parameter subgroup generated by A is the integral curve 6(t) satisfying
0(0) =TI and 6'(t) = X(gég. Using (14), the condition for 0(t) = [0; (t)] to be an integral curve is

0}.(t) = 0;(t)ay, (15)

where A = [a;;]. We claim that 6(¢) := exp(tA) satisfies this equation. Since 6(0) = I, by
uniqueness this proves that 6 is the desired one-parameter subgroup.

First however we should check that 6(t) is a smooth GL(n,R)-valued curve. To check smooth-
ness, we note that differentiating the series formally term by term gives

o(t) = %tHAH = <Z (k_ll)'(tA)klA> =0(t)A. (16)
k=1 k=1 ’

Since the differentiated series converges uniformly on bounded sets (because apart from the addi-
tional factor of A, it is the same series), this term by term differentiation is justified. A similar
computation shows 6(t) = A#(t). By smooth dependence of solutions of ODE’s, 6 is a smooth
curve.

Finally we show that 6(t) is invertible for all ¢, so that 6 actually takes its values in GL, (R). If
c(t) := 0(t)8(—t), then ¢ is a smooth curve, and using the previous computation and the product
rule,

c(t) = (0(t) A)0(—t) — 6()(Ab(—1)) =0,

and thus o is constant. Since o(0) = I, we obtain (¢t)0(—t) = I. Similarly, 6(—t)0(¢) = I.
Finally, (16) shows that 0(t) satisfies (15), and this completes the proof. »
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5 Vector bundles and sheaves

5.1 Definition

Let M be a smooth manifold. A smooth manifold E together with a surjective smooth map
m: E — M is called a vector bundle of rank m over M if:

1. For each p € M, 7~ !(p) =: E, admits the structure of an m-dimensional (real) vector space.

2. Any p € M has an open neighborhood U and a diffeomorphism ¢ : 7=1(U) — U x R™ such
that 7|y = proj; ot and such that for each ¢ € U, t? := proj, ot|pg, : £, — R™ is a vector
space isomorphism. The pair (U, t) is called a local trivialisation of F.

F is called the total space, and M is called the base space. We often refer to E as ‘the’ vector
bundle. If m = 1, we call F a line bundle. What we have actually defined are real vector bundles;
there is a similar concept of complex vector bundles. In this course however we shall mainly be
interested in real vector bundles. We say that a vector bundle 7w : E — M of rank m is trivial if
we can find a local trivialisation defined on all of M, that is, a trivialisation ¢ : E — M x R™.

5.2 Proposition

Let 7w : E — M be a smooth vector bundle of rank m, and (U, t) and (V, 7) two local trivialisations
of E, such that U NV # (. Then there exists a smooth map ¥ : U NV — GL(m,R) such that
Tot™ L (UNV)xR™ — (UNV) x R™ has the form (p,v) — (p,¥(p)(v)), where 1(p)(v) denotes
the usual action of the r x r matrix 1 (p) on the vector v € R™.

<« It is clear that 7 o t=!(p,v) = (p,o(p.v)) for some smooth map ¢ : (UNV) x F — F.
Moreover, for each fixed p € U NV, the map v — o(p,v) is a linear isomorphism of F, so there
is exists a map ¢ (p) € GL(m,R) such that o(p,v) = ¥(p)(v). It remains to show that the map
Y:UNV — GL(m,R) is smooth.

To see this, pick a basis {e;} of F, so that we may identify F' with R™ and write v = vjej,

U(p)(v) = P(p)jv’es.

Then t(p)% = r*(c(p,e;)) where r* : R™ — R is projection onto the ith coordinate. This is
smooth by composition. Since the matrix entries are smooth (global) coordinates on GL(m,R),
this shows that v is smooth. »

5.3 Definitions

We call the smooth map 1) the transition function between the local trivialisations t and 7. More
generally, if 7 : E— M is an m-dimensional vector bundle then we say E has cocycle {U,, Y3}
if {U,} is an open cover of M, such that there exists local trivialisations t, : 71 (U,) — U x R™
with transition functions ¢¥ng : Uy N Uz — GL(m,R) for a, 8 such that U, NUg # 0.

Observe that if E has cocycle {Uy, ¥ag} then the ¢,z satisify:

Yaa(p) =id for all @ and all p € U,,,
Yap(P)Vpa(p) = id for all o, 3 with U, NUp # 0 and all p € U, N Ug, (17)
Yas(P) sy (P)Yya(p) =id  for all o, 8 with U, NUg N U, # 0 and all p € Uy, NUg N U,,.

These are called the cocycle conditions. More generally, if M is a smooth manifold and {Us, a3}
a collection such that {U,} is an open cover of M and for «,( such that U, N Uz # 0 the
Yap : Uy NUg — GL(m,R) are smooth matrix-valued functions satisfying the cocycle conditions
(17) then we will still call {U,, 1.3} a cocycle.
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5.4 Examples

1. We have so far met one example of a vector bundle in this course; namely the tangent bundle
m: T(M) — M. Examining the proof of Theorem 1.25 it is immediate that the tangent
bundle T(M) of an n-dimensional smooth manifold M is indeed a vector bundle of rank
n over M. It is clear from the proof of Theorem 1.25 that if {U,,hy} is an atlas for M

then T'(M) has cocycle {Ua, J(he o hgl) o hg} where J(hg o hgl) is the Jacobian matrix of
hoohgt.

2. Here is an explicit example of a vector bundle: the Hopf line bundle (sometimes called
the tautological bundle) over CP™. First, CP" is an n-dimensional complex manifold:
that is, the charts are maps from open sets in CP"to open sets of C", and the transition
functions are holomorphic. Indeed, CP™ has an open cover {U;}?" , where

U, = (ZOS'“:Zn)G(CPn|Zi7£O},

and the chart h; : U; — C™ carries

Moreover the transition function
hi ] h;l : hj (Ul N UJ) — hl (Ul N Uj)

for ¢ < j is the map

Ty e e ey ey

N N wl wz—l wl+1 wj—l 1 wl w™
(w,...7’UJ)|—> SRR - T T T ; 5
w w w" w w

which is evidentally holomorphic on h;(U; NU;). Thus CP™ is an n-dimensional complex
manifold as claimed (contrast this with Example 4 in Section 1.6).
We define the Hopf bundle E to be

E= ][] E.

peCP™

where E, is the line in C"*+! that represents the point p € CP", and we let 7 be the map
carrying F, onto p. For notational simplicity, in what follows we shall assume that n = 1
(the general case is similar, the only difference is essentially harder notation).
We have the following obvious trivialisation. On Uy, we may write any point as (1 : z) for
some z € C, and

Eq.zy = {(w,wz)|w € C}.

Define to : 71 (Uy) — Uy x C by
(w,wz) = (1 : 2),w).
Similarly, a point in U; may be written as (¢ : 1) for some ¢ € C, and

E(Cil) = {(’UC,’UNU S C},
and we define ¢; : 771(U;) — Uy x C by

(v¢,v) = ((¢;1),v).
On Uy NU; we have (1 : 2) = (¢ : 1) if and only if ( = 1/z, and if this is the case then
(w,wz) € E(1..) = (v¢,v) € E¢.y) if and only if v = wz. Thus ¢, : UsNU; — GLi(C) = C*
is the map defined by
Y10(2)(w) = wz.
Similarly 101 (¢)(v) = v¢. This the Hopf bundle E is a complex line bundle over CP".
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5.5 Definitions

Given two bundles 7 : E — M and 7’ : '/ — M’, a bundle morphism from E to E’ is a pair
of smooth maps F': E — E',® : M — M’ such that ® om = 7’ o I’ and such that the restriction
to each fibre, F|g, : E, — E%(p) is a linear map. If both maps are a diffeomorphism and the
restrictions to fibre are all linear isomorphisms, then F' is called a bundle isomorphism. We say
that F' covers .

Given two vector bundles E, E’ over the same base space M, we generally use a slightly more
restrictive definition of a bundle morphism. Namely, a bundle morphism F : E — E’ is a smooth
map such that m = 7’ o " and such that the restriction to each fibre, F|g, : E, — E}(p) is a linear
map (in other words we require F' to cover the identity map on M). If F is a diffeomorphism and
the restrictions to fibre are all linear isomorphisms, then F' is again called a bundle isomorphism.
In this language, a vector bundle of rank m is trivial if and only if it is isomorphic to the vector
bundle M x R™.

5.6 Lemma

Let E and E’ be vector bundles over M with the same cocycle {Uy, %q3}. Then E and E’ are
isomorphic as vector bundles.

<« Suppose E and E’ have (necessarily common) rank m. Let {t, : 7~ }(U,) — U, x R™} and
{t!, . 7' (U,) — U,y x R™} be the local trivialisations of E and E’ respectively. Given «, define
amap F, : 7~ }(U,) — 7'~ 1(U,) by

Fo(2) =t oty(2).

Clearly F, is a linear isomorphism on each fibre, and 7; is a diffeomorphism. We show that on
71 (U, NUp), the maps F, and Fp are equal. Indeed, if z € E, so t,(2) = (p,v) and tz(2) = (p,w)
for some v, w € R™, then ¥,s(p)(w) = v and we compute:

Fo(z) = tltoty(2)
= 15 (p,v)
=t (p,Yap(p)(w))
= 15 o (thoth ) (0 dap(p)(w))
= 15" (0, Y5 (P)Yas(p)(w))
= 15 ' (p,w)
= 5 ots(2)
= Fg(z).

Hence the maps F,, patch together to give us a well defined diffeomorphism F': E — E’ that is a
linear isomorphism on the fibres. »

Thus we have shown that a cocycle of a vector bundle determines the vector bundle up to
isomorphism. In fact more is true - given a smooth manifold M and a cocycle on M, we can
always find a vector bundle E with this cocycle. Thus giving a cocycle on M is equivalent to
specifying an isomorphism class of vector bundles over M. This is the content of the following
theorem.

5.7 Theorem (the vector bundle construction theorem)

Let M™ be a smooth manifold, and {U,|a € A} an open cover of M such that for all a, 8 such that
Uy NUs # 0 we have smooth maps 9,5 : Uy N Uz — GL(m,R) satisifying the cocycle conditions
(17). Then there exists a vector bundle 7 : E — M of rank m with cocycle {Uy, ¥ag}, where E
has dimension n + m. Moreover, F is unique up to vector bundle isomorphism.
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<« Define
E={(p,a,v) e M x AxR™ | peUy}/~,

where (p, o, v) ~ (¢, 5, w) if and only if p = g € Uy NUg and w = 13, (p)(v) (this is an equivalence
relation due to the cocycle conditions). For p € M, define

E,= 7r_1(p) ={[p,a,v] | p€ Uy,v € R™}

where [p, o, v] denotes the equivalence class of (p, @, v) in E. Observe that 7 : E — M is surjective.
Introduce a real vector space structure on E, by defining

[p, o, v] + [p, B, w] = [p, o, v + Yap(p)(w)],
AMp, o, v] = [p, a, Av].

This structure does note depend on the specific @ € A chosen, as each 1,3 is a vector space
isomorphism.

Now define t, : 7= 1(U,) — Uy X R™ by to([p, 3,v]) =
open subset of M x R™: it is bijective as any [p,3,v] €
[p, &, Yap(p)(w)] by non-singularity of ¥,s(p). Now

taoty': (UsNUg) x R™ — (Uy NUg) x R™

(p,v). Then t, is a bijection onto an
7~ Y(U) can be expressed uniquely as

is the map (p,v) — (p, Yaps(p)(v)), which is smooth with smooth inverse (p,w) — (p, Vg (p)(w)).
Thus t4 o tgl is a diffeomorphism.
Now let {(V,,hy)|y € G} be any atlas for M. Then

{1 (V4 NUa), (hy xid)) ot | @ € A,y € G}

is an atlas for F, making F into a n +m dimensional manifold. With this smooth structure, {U,}
becomes a trivialising cover for M, and the transition functions are clearly the {¢o3}. 7: E — B
is smooth, as it is the composition proj; oty : [p, @, v] — (p,v) — p. Thus E is a rank m vector
bundle over M.

Uniqueness up to vector bundle isomorphism is immediate from Lemma 5.6. »

5.8 An alternative version of the vector bundle construction theorem

It is often more convenient to apply the following version of the vector bundle construction theo-
rem, whose proof is just one stage of the proof of the full vector bundle construction theorem.

Let M be a smooth manifold, and suppose for each p € M we have an m-dimensional real-
vector space E,. Let E = ][ .p E), and 7 the map £ — M such that n~1(p) = E,. Suppose {U,}
is an open cover of M such that for each «, there exists a map

to i N (U;) — Uy x R™
which is a bijection, and such that for each «, 3 such that U, N Ug # (), the map
taoty' i (UaNUs) X R™ — (Uy NUg) x R™

is a map of the form
(p,v) = (s ap(p)(v)),

where {13} are a collection of smooth functions U, N Uz — GL(m,R) satisfying the cocycle
conditions.

Then there exists a unique topological and smooth structure on F making F into a smooth
manifold and 7 : E — M into a smooth vector bundle of rank m with cocycle {Uy, ¥ag}-

The advantage of using this version rather than the one stated in Theorem 5.7 is that it allows
us to explicitly construct the desired vector bundle, rather than just assert the existence of such
a vector bundle up to isomorphism. In fact, as we shall see later, we often want to distinguish
between isomorphic vector bundles (for instance, the tangent bundle and the cotangent bundle -
see Chapter 6), and then Theorem 5.7 is not much use.
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5.9 Definition

If 7 : E — M is a vector bundle, a subbundle of F is a subset £/ C E such that E’ is an
embedded submanifold of F, and for each p € M, the fibre Ezl) = E'N7n~Y(p) is a linear subspace
of E,, and that with the vector space structure on £}, inherited from E,, 7|g/ : B’ — M is a vector
bundle. In other words, we require the inclusion map i : £/ — E to be a bundle morphism.

5.10 Definitions

Let m : E — M be a vector bundle. A smooth map s : M — E such that 7 o s = idj; is called
a section of 7. The set of sections of 7 is written I'(F), although it often has other notations
depending on the bundle, eg. T'(T(M)) = X(M). Sections need not be defined on all of M; if
U is an open subset of M we write T'(U, E) for the smooth local sections s : U — E such that
mos =idgy.

A local frame of a vector bundle 7 : E — M of rank m is a family e = {ey, ..., e} of smooth
sections in I'(U, E) (where U C M is open) such that for all p € U, {e1(p),...,er(p)} is a basis of
E,. A global frame e is a frame defined on all of M. We say a manifold is parallelisable if it
admits a global frame.

5.11 Lemma

There is a bijective correspondence between local trivialisations of E and local frames of E.

<« Ift: 77 1(U) - U x R™ is a local trivialisation, define a local frame e = {ey, ..., e, } over
U by
ez(p) = t_l (pa ei) )

where the {e;} on the right hand side of the above equation denote the standard basis of R™. It
is clear the e is a local frame.
Conversely if e = {e1, ..., ey} is a local frame over U, define a map 7: U x R™ — 7~ 1(U) by

T (p,al, .. .,a") =a'e;(p).

Since e is a local frame 7 is bijective, and to complete the proof we need only show that 7 is a
diffeomorphism (it is clear that these two operations are mutually inverse). Since 7 is bijective is
suffices to check 7 is a local diffeomorphism, and hence it is enough to show that if p € U, and
t:7m 1(V) — V x R™ is a local trivialisation over V, where V' C U is a neighborhood of p then
tor:V xR™— V xR™is a diffetomorphism. For each ¢, the map toe; : V. — V x R™is smooth,
and hence there are smooth functions f/ such that

toep) = (p, fl () 17" ()) -

Thus ‘ ‘
toT (p,al, .. .,am) = (p,a’fil(p), .. .,alffl(p))

is smooth, Finally (t o 7)~! is smooth since matrix inversion is smooth - if [d{ (p)] denotes the
matrix inverse to [fi(p)] then p — [d] (p)] is smooth and

tor (p,b',....b™) = (p,0'd} (p),...,b'd}" (p))

which is also smooth. »

5.12 Corollary

A vector bundle 7 : F — M is trivial if and only if it admits a global frame.

<« Apply the previous result with U = M. »



5 Vector bundles and sheaves 29

5.13 Definitions

Let 7 : E — M be a rank m vector bundle. If all the transition functions {¢,3} of E take their
values in some subgroup G C GL(m,R) then we say that the structure group of E can be
reduced to G. We say that a vector bundle is orientable if its structure group may be reduced
to GLT(m,R) := {4 € GL(m,R) | det(A) > 0}. We say F admits an orthogonal structure if
we can reduce the structure group of E to O(m). Similarly a complex vector bundle of rank m
admits a unitary structure if we can reduce its structure group to U(m).

5.14 The Hopf bundle admits a unitary structure.

By choosing a different trivialisation, we give the Hopf bundle F (Example 2 of Section 5.4) a
unitary structure. Define

to : (w,wz) € E(y.;) — ((1 pz), w1+ \z|2> e Uy xC,

15 (0,0) € Bieay = (€ 1),00/TF CP) € Uy x €.
Writing z = w/1 4 |z|? and y = vy/1 + |(|?, we see that

1 B x xz
tioty ((L:2),z)=t (\/1+|Z|2’\/1+|22)

(sl wd N (o K
- 1<¢1+|<|2’<¢1+|<2> (“'”’ ¢ )

and thus the transition maps 11 is defined by 110(2)(z) f;”l and similarly 191 (¢)(y) = %

Thus both v1¢ and g1 are maps from Uy NU; — U(1) € GL;(C).

5.15 Metrics

A metric on a vector bundle 7 : E — M of rank m is an assignment p — (-, ~>p where (-, ->p is an
inner product on F, varying smoothly with p. Slightly more precisely, and using terminology that
will become clearer shortly, a metric is a smooth section of the bundle E* ® E*.

If we can reduce the structure group G of E to O(m) then we can obtain a metric on E as
follows: define (v,w), for v,w € E, to be (t?(v),t’(w))gm , where ¢ is some local trivialization
tP := proj, ot|g, : £y — R™, and (-, -)p» denotes the Eucliden dot product on R™. This is well
defined as if 7 is another local trivialization, with transition function v, so

™ () = ¥(p) (t*(v)) ,

then
(TP(0), 7P (w))gm = (Y(p) (" (v)), Y(p) (¥ (W)))gm = (¢ (0), " (W))gm ,

since 9 (p) is an orthogonal matrix. By construction, this inner product varies smoothly over the
fibres. We shall see below in Lemma 5.19 below that every (real) vector bundle of rank m admits
an orthogonal structure, and thus we can in fact always define a metric on a vector bundle.

Similarly we can define a Hermitian metric on a complex vector bundle 7 : E — M of rank
m is an assignment p — (-, ~>p where (-, ->p is a Hermitian inner product on E, varying smoothly
with p. In exactly the same way, if £ admits a unitary structure then we can define a Hermitian
metric on E. We have just shown in Section 5.14 that the Hopf bundle admits such a unitary
structure; we define a Hermitian inner product on it by

(w1, w12), (w2, w2z) ;) = <w1\/1 + |2[2, wa /1 + \z|2> = wiwa (1 + |2])%
In particular, the associated norm gives

l(w, w2)ll; = {(w, w2), (w,w2)), = [w]* (1 +[2])* = Jw]* + |wz]?,
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which therefore corresponds to the standard length of a vector (w,wz) € C2. Note again that to
say a bundle can have its structure group reduced to G is to say that in some trivialisation we can
force all the transition functions to take their values in G, and not that in every trivialisation the
transition functions take their values in G; indeed the original trivialisation of the Hopf bundle in
Example 2 of Section 5.4 did not have its transition functions taking their values in U(1).

5.16 The Gram-Schmidt process

Conversely, given a metric (-,-) on F, we may reduce the structure group to O(m) as follows: let
{(Uq,ta)|a € A} denote an open covering of M by trivialising neighborhoods for E. Let {eq,...ex}
denote the canonical basis of R™, and for each «, let ef, ..., ef denote the smooth sections of 7
on U, defined by e%(p) = t;*(p,e;). Then define new sections s& inductively by

es(p) = 3521 (5 (0), 55 (p)) s5(p)
[es @) = ST (e 0) 55 @) 53 0|

(this is just the Gram-Schmidt orthogonalization process); then the s then form a smooth
frame that are orthonormal with respect to (, ).
Next, define new local trivializations 7, by

(&)

Ta (aisf‘(p)) = (p,al, ce am) ;
note that the 7, are local trivializations as {s?} is a smooth frame. Claim now that the transition
functions 1,3 with respect to {U,, 7.} take their values in O(m). Indeed, the matrix 1,a(p) is
just the change of basis matrix from the orthonormal basis {s? (p)} of E, to the orthonormal basis
{s#(p)}, and thus 9,3(p) is an orthogonal matrix.

The next result is a key result used throughout differential geometry, and is the reason second
countability was included in the definition of a topological manifold (Section 1.1). We shall use it
several times throughout this course - we have already used the existence of bump functions in the
proof of Proposition 2.4. Below in Lemma 5.19 we shall use the existence of a partition of unity
to show that every real vector bundle admits an orthogonal structure.

5.17 Theorem (existence of partition of unity)

Let M be a smooth manifold and {U, | « € A} an open cover of M. Then there exists a countable
collection {); | i € N} of smooth functions \; € C°°(M) such that:

e for any i, there exists a(i) such that supp()\;) := {p € M | A\i(p) # 0} is contained in Uy
and is compact,

e for all p € M, there exists a neighborhood V of p such that only finitely many of the \; are
not identically zero in V' (in other words, the collection {)\;} is locally finite),

e cach )\; is non-negative, and for all p € M, we have Y .- A\;(p) = 1 (note this sum only has
finitely many non-zero terms).

The collection {\;} is called a partition of unity subordinate to the open cover {U,}.

We will not prove this theorem; its proof is essentially general (point-set) topology and thus
falls out of the remit for this course.

5.18 Lemma (bump functions)

Let M be a smooth manifold, p € M and U C V any open neighborhoods of p (with U strictly
contained in V). Then there exists a smooth bump function ¥ : M — R such that 0 < <1 on
M, |y =1 and P[pny = 0.

< Let {1,9'} be a partition of unity subordinate to the open cover {V, M\U} of M, so
supp(®) C V and supp(y)’) € M\U. Then ¢ is the desired function. »
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5.19 Lemma

Any vector bundle admits a metric.

< Let E be a vector bundle of rank m over M™. Let {U,,t,} be a trivialising cover of M for
E, and let {\;} be a partition of unity subordinate to {U,}. The Euclidean dot product on R™
induces an inner product on U, x R™, and hence, via ¢, !, an inner product on 7=1(U,). We will
write this inner product as ( , )

Now define (-,-) on E by

o

(v.0) = 3 Ai(w(0) {0, 0) 0

where supp(A;) € Ua(i), and Ai(+) (-, ) ;) 18 defined to be zero if m(v) ¢ Uq;). Since {A;} is locally
finite, for any p and any, (-, ~>p = (-,) |E,xE, is a finite sum of inner products varying smoothly
with p, and hence p — (-, ->p is smooth. Finally, since the properties of being symmetric and
positive definite are convex, that is, if A and B are symmetric and positive definite then so is
tA+(1—t)B for all t € [0,1], and at least one J; is strictly positive at each point p, it follows (-, -)
is indeed a metric on E. »

We conclude our discussion of vector bundles by constructing a few more standard bundles.

5.20 The Whitney sum

Let 7 : E— M and 7’ : E' — M be two vector bundles over M of rank m and m’ respectively. We
first claim we can find a common trivialising cover U of M for E and E’. Indeed, if {U,|a € A}
and {Uj|B € B} are trivialising covers for E' and E’ respectively, then we simply consider U =
{UaNUgla € A, 3 € B}. Now define the Whitney sum E® E’ to be the bundle with total space

Ea® E :={(v,w) € E x F'|r(v) =7'(w)}

and projection map 7 : E @ E’ — M defined by 7(v,w) = 7(v) = n’(w). Note that (E® E'), =
E, ® E,. We define local trivialisations 7 for U € U by 7: 7' (U) - U x R™ @ R™ fibrewise by

7P (v, w) = (tP(v), P (w)) .

If E and E’ have transition functions {¢ag} and {¢;, 5} with respect to U, then E®E’ has transition
functions
Yas ® 77/1;5 :UaNUg — GL(m +m/,R),

)

where [1ag] and [ gﬁ} denote the matrices of ¢o5 and ¢y, 5 respectively.

Thus E @ E” is given by the cocycle {Uq,1ap @ 5,5} It is clear that this satisfies the cocycle
condition, and thus Theorem 5.8 guarantees that this is indeed a well defined vector bundle of rank
m+m'.

This illustrates the merits of Theorem 5.7 versus Theorem 5.8. Given two bundles E, E’ with
cocycles {Uq,Yap} and {Ua, 9,5}, it is clear that {Ua,vaps © 9,4} defines a cocycle and thus
gives us a bundle E @ E’. However we have no way of telling a priori that the fibres of £ @ E’
can be given by (E® £'), = E, © E,, (although in this case it is rather obvious). By applying
the alternative version, Theorem 5.8 we were not only able to obtain the existence of the bundle
E @& E’ but also to obtain explicit information about how it is constructed.

which have matrix representation
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5.21 The Dual Bundle

Let 7 : ' — M be a vector bundle of rank m. Let E; := Hom(E,,R™) and E* = [] ¢, E,.
Define 7* : E* — B mapping E; — p. Let {Uq,ta} be a trivializing cover of M for E. Then if
p € Uy, we have t? : ), — R an isomorphism, and so if we define

T = (tg>* )

then
Th By — (R™)* =2 R™,

and then 7, : (7r*)71 (Ua) — Us x R™ is a bijective map such that its restriction to each fibre £
is a linear isomorphism. If U, N Ug # 0, then

70 7a(p,0) = (P, (Vaa(p) ™) ()

and thus the associated transition functions ¢, ; are transposed inverses of the original ones,

Vha(p) = ($as(p))"-

The {95} satisfy the cocycle conditions as the {¢)a5} do. Thus by Theorem 5.8, this does indeed
define a vector bundle of rank m over M, which we call the dual bundle. Again, we could proceed
using Theorem 5.7 and simply define E* to be the bundle with cocycle

t
{Um(mﬁ)},
where E has cocycle {U,,¥as}, but then as before we would not a priori know that a concrete
representation of this has fibres equal to the dual space of the original fibres.

5.22 The tensor bundle

Now let 7 : E — M and 7 : £/ — M be two vector bundles of rank m and m’ respectively. Let
(E®E)y = E,®E,, and E® E" = [[ ), (E® E')y, with 7 : E® E' — M the map such
that 7=1(p) = (E ® E'),. If {U,} is a common trivialising cover for E and E’, with associated
trivialisations t, and t/ , then define

T (E®E'), - R™ @R™ =~ R™
to be the map defined on decomposable element v ® w of E, ® E]’D by
v W th(v) @t (w),

and then extending by linearity. Then 7o : 7= 1(Uy) — Ua x R™™' is a bijective map such that its
restriction to each fibre (E ® E’), is a linear isomorphism. If U, N Upg # 0, then

Ta 075 (P v @ w) = (p, Pap(P)(v) ® Pg(p)(w))) |

and thus £ ® E’ has cocycle {Uy, Yap ®@ ¥, 5}. We call E® E’ the tensor product bundle of £
and E’.

5.23 The Hom bundle

Let 7 : E — M and n’ : E/ — M be vector bundles over M of ranks m and m/, with cocycles
{Uas%ap} and {Ua, ¥, 5} respectively. Let Hom (Ep, E;,) denote the set of linear maps Ej, — E,,

so Hom (EP,E;)) >~ Hom (Rm,Rm/). Define the homomorphism bundle of £ and E’ to be
the bundle Hom (E, E’) — M with have fibre

Hom (E, E),, = Hom (E,, E,,) .
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In order to check that this is indeed a vector bundle of rank mm’ over M, we use the natural
isomorphism
Hom(V,W) 2 V*@W

given by (v*,w) — [v — v*(v)w], to regard this construction as a special case of Sections 5.22 and
5.23; namely, Hom(FE,E') ¥ E* @ E'.
In the special case E' = E we write End(E) for Hom(E, E).

5.24 The pullback bundle

Let m : E— N be a vector bundle of rank m over a smooth manifold NV, and suppose ® : M — N
is smooth. We define the pullback bundle ®*F over M to be the bundle with total space

O*E:={(p,v) € M x E| ®(p) = 7(v)},

and projection wg : ®*E — M defined by 7 (p,v) = p. We also define F' : ®*F — E by
F(p,v) = v, so that ® o mg = w o F. We define a vector space structure on (<I>*E)p by

A(p;v) + plp, w) := (p, Av + pw),

and so F' maps (@*E)p onto E, isomorphically. To see the local triviality of ®*E if (U, t) is local
trivialisation of E then we define

Timy (TN (U)) —» @ H(U) x R™
by
7 (p,v) = (p,t(F(v))).

Thus ®*E — M is a bundle of rank m over M. If E has cocycle {Ug, a3} then ®*E has cocycle
{271 (Ua}, Yap o @}

5.25 Sheaves

In this course we will introduce sheaves very superficially. Our use of them will solely be as an
aid in notation and as a way of expressing the definition of a connection (see Chapter 8) more
concisely.

A sheaf £ over a topological space T is an assignment to each nonempty open set U C T

a group E(U), called the sections of £ over U, and to each pair U C V of open sets a map

ry  E(V) — E(U) called the restriction map satisfying:

1. For any triple U C V C W of open sets

w _ .,V w
Ty =Tyory .

Because of this relation for s € £(V) we may write s|y for r};(s) without losing any infor-
mation.

2. For any pair of open sets U,V C T and sections s € £(U) and o € £(V) such that
slunv = alunv
there exists a section € € £(U NV) such that

elu =s, ely=o.

3. If se£(UNV) and
S|U :S|V =0

then s = 0.
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5.26 Examples of sheaves

1. Here is the simplest example relevant to us. Let M be a smooth manifold, and define a sheaf
C*on M by letting
C>*U)=C>*(U).

The restriction maps are just the standard restrictions of smooth functions.

2. A slight modification gives the sheaf C* on M given by

C*(U) = {multiplicative group of nonzero C* functions on U} .

3. The main example we consider is the following. Suppose E — M is a smooth vector bundle.
Define the sheaf of sections of E to be

E(U) =T (U, B),
the smooth sections of E over U C M. Again the restriction maps are the obvious ones.

4. A particular example of this is the sheaf X over M consisting of the smooth sections of T'(M),
that is, the vector fields.

5. In the next chapter we will meet the sheaf Q" on M of differential r-forms, given by
Q'(U) =T (U,A"(T*(M)))
(this notation will make more sense later).

6. In Chapter 8 we will meet the sheaf A" of E-valued differential r-forms given by
ANU) =T (U, A" (T*(M)) © E),
as well as variations on this theme:

Apnae)(U) =T (U, A" (T7(M)) © End (E)) .

7. If € is any sheaf over a topological space T', and U C T is any open subset we can define the
restriction sheaf £|y in the obvious way; namely for V' C U open we set

Elu(V) = £V).

5.27 Definition

A sheaf morphism « : £ — F of sheaves over a topological space T is given by a collection of
homomorphisms oy : E(U) — F(U) such that given U C V, the maps ay and ay commute with
the restriction maps, that is

av orl = ol o ay,

where 1y} is the restriction map of € and p; is the restriction map of F.

The following is essentially the only sheaf-theoretic result we will prove in the entire course. It
will be important in Chapter 8, when we come to define the curvature of a connection.

5.28 Proposition

Let m: E— M and 7’ : E' — M be two vector bundles over M with sheaves of sections £ and &’
respectively. Then there is a natural bijective correspondence between vector bundle morphisms
F : E — E’ and sheaf morphisms « : £ — £’ that are linear over the sheaf C*°on M. By this
we mean that if s € E(U) and f € C*°(U) then ay(fs) = favu(s).
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< Given a vector bundle morphism F : E — E’ and U C M open, define ay : E(U) — E'(U)

by

OzU(S) = F‘Tr—l(U) O S.
It is clear that this is compatible with the restrictions and so defines a sheaf morphism a : € — &’.
Moreover it is clear that « is linear over C*°.

Conversely suppose that a : £ — £’ is a sheaf morphism that is linear over C*. Given p € M,
select a local frame e = {e1,...,en} (m = rank(F)) over a neighborhood U of p. Then given
v € IJ, we can uniquely write

v =a'e;(p).

Consider now the a’ : U — R as smooth (constant) functions on U. Then
oy (aiei) =a'ay (&),

where the {ap(e;)} are smooth sections of E’ over U, and we define
Fy(v) = d'av (&) (p)-

Then we define F': E — E' by F|g, = F,. I is well defined as « is compatible with restrictions,
and it is clear that F' is a vector bundle morphism. Moreover these operations are obviously
mutually inverse. »

6 Differential forms and cohomology

6.1 Differentials

Given a smooth manifold M™, and U C M open, a function f € C*°(U) gives a map df(p) :
Ty, (M) — Tty (R) for p € U. Under the identification T, (R) = R, given by v +— v(r) (where
r: R — R is the coordinate on R), we map think of df (p) as a map T}, (M) — R, in other words,
df(p) € (T, (M))" =: T (U). In this case we will normally write df,, instead and call df, the
differential of f. We call T;(M) the cotangent space to M at p. If (U, h) is a chart, with

coordinates (z?,...,2"), then observe

_9r

W) @31 (1) = 552 1) = 520)

In particular, consider dz*|, € T, (M) . Then da'|, (9;,) = d%. Thus
of

" oal

and {dz’|, | i = 1,...,d} is the basis of T (M) dual to the basis {8;], | i = 1,...,d} of T, (M).

dfy (p)dz'[,

6.2 Change of coordinates

Let a € T; (M) and (U,h) and (V,k) be charts about p, with coordinates (z',...,2") and
(y',...,y") respectively. Then we can write

a = a;dz'|, = a = bidy’|,

for some a;,b; € R. Then

0 ox’ 0 oz’
= (ah) = (Gr0ah) o5 "
Since L
0 o _ s
3yj Ok = Uik,

using equation the transition matrix is the transposed inverse to the one occuring for the tangent
bundle.
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6.3 Definition

Let M™ be a smooth manifold. The cotangent bundle of M is the disjoint union of the cotangent
spaces;

T (M) = [] 7 (M).
peEM

We have a natural projection 7* : T* (M) — M sending a € T, (M) — p. When referring to
an element o of T* (M), we will often write a = (p, ) to indicate that o € T,y (M). T*(M) is the
dual bundle to T(M) and hence T*(M) is a 2n-dimensional manifold; the above section shows if
M has atlas {Ug, ho} then T*(M) has cocycle

_ -1\*
{o (s (remsyom) ) )
which agrees with the computations in Section 5.21.

6.4 Definitions

A differential 1-form is a smooth section of 7* : T* (M) — M; that is, a map w: M — T (M)
such that w(p) =: w, € T, (M), and if (U, h) is a chart about p with coordinates (x',...,2") then
on U we can write

wq = fi(g)dz’|q,

for ¢ € U, where f; € C*°(U). We let Q! denote the sheaf of differential 1-forms;
QYU) =T (U, T*(M)).

Note that the differential df of a smooth function f € C°°(U) as defined in Section 6.1 is a
differential 1-form, df € QY(U).

6.5 Definition
Now let M™ be a smooth manifold and consider the tensor bundle

k 4
THO (M) =T (M)® T (M) T (M)® - & T" (M).

We let 79 denote the sheaf of smooth sections of T (M) and call its sections (mixed)
tensors of type (k,¢). We define the tensor algebra of M to be

T(M) = TH(M).

k,6>0

If we have a chart (U, h) with local coordinates (x!,...,2") then a tensor T can be written
locally on U as o ‘ ‘
T(p) =T5 5. (P)isp © - @ iy [p © da? |, @ - -~ @ da?*,

J1---Js

yeenrdp

where the functions T;ll ____ i+ U — R are smooth.
A contraction C of T (M) is a map C} : TEOD (M) — THELED (M) given on decomposable
elements X; ® - ®@ X @ w' @ --- @ w’ of T®O (M) by

C;(X1®-~-®Xk®w1®---®wé):wi(Xj)-X1®-~-®)/(\j®~-~®Xk®w1®-~-®¢:i®---®we

and then extended by linearity.



6 Differential forms and cohomology 37

6.6 Multilinear algebra

To progress further we need to study some multilinear algebra. Recall that given vector space
Vi,...,V,, the tensor product is the universal multilinear object. Thus any multilinear form
a: Vi x -+ x V. — Rinduces a unique linear map f: V; ® --- ® V. — R, and in this way we can
naturally identify the vector space of multilinear forms V3 x -+ x V;. — R with Hom(V; ® --- ®
ViR =(Vi®- - ®V)"

A perfect pairing between finite dimensional vector spaces V and W is a bilinear map (-,-) :
V x W — R such that if v # 0 € V then there exists some w € W such that (v,w) # 0, and
similarly if w # 0 € W then there exists some v € V such that (v,w) # 0. Such a perfect pairing
induces isomorphisms

Vewswxy*

given by v — (w — (v,w)) and w — (v — (v,w)), and similarly an isomorphism ¢ : V' — W*

gives a perfect pairing (v, w) := ¢(v)(w), or an isomorphism v : W — V* gives a perfect pairing

(v, w) = p(w)(v).

We have a natural perfect pairing
) (We---eV)x(Ve---@V,) =R
given by
(.. 00) (V1. .y 0p)) = 0F (V1) ... ) (vy)
This gives us a natural isomorphism V;* ® --- @ V* 2 (V; ® --- ® V,.)" and thus allows us to make
the identification with the space of multilinear maps V; x --- x V, = R with V}* ® --- @ V'

Thus for a fixed vector space V, we may identify Mult"(V'), the vector space of multilinear
maps V" — R with (V*)®".

6.7 The exterior algebra

Let V be a fixed vector space. The rth exterior algebra A"(V) is the universal object for
alternating multilinear map, that is, maps

a: VT =R
such that for any v1,...,v, € V and any permutation = € S, , we have « (vﬂ(l), . ,v,r(r)) =
sgn(m)a(vy,...,v,.). In other words, given any alternating multilinear map « : V" — R, « factors

uniquely to give a linear map g: A"(V) - R .

To constuct A7 (V), we let S™(V) be the ideal of V" generated by the elements v ® -+ ® v,
and then we let A"(V) :=T7(V)/S"(V). Let v1 A --- A v, be the image of v; ® - - - ® v,..
6.8 The ‘natural’ convention

We can identify the space of altenating multilinear maps on V" — R, written Alt"(V) with
(A"(V))". Now we a natural map

s Alt"(V) = Mult”(V) = (V)" 4 A" (V")
where ¢ is the quotient map, which is an isomorphism, as its inverse is given by
1
7/)3f1/\"'/\fr'_>ﬁ sen(7) fr(1) ® -+ @ fr(r)-
" nes,
6.9 The ‘usual’ convention

Unfortunately most books on differential geometry do not use this convention (there are actually
compelling reasons not to use this convention, but we will not go into them) and instead define an
isomorphism ¢’ : A" (V*) — Alt" (V) given by

FA N D oM fr) @ @ frir).

TES,
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This makes the formulas prettier, but has the unfortunate side effect that its composition with the
natural map ¢ of in the previous section is not the identity, and is fact multiplication by r!.

From now on, we will identify the alternating tensor ) g &(7)fr(1) ® -+ ® fr(r) with the
wedge fi1 A -+ A f, without further comment. Under this convention, we have for decomposable
elements fi A--- A f,. of A" (V*),

(fl/\"'/\fr)(vlv"'7 Z fﬂ' f7T(’I‘) (UT)*det[fl(vj)]

TeS,

in fact this association also gives a perfect pairing, which proves that we are in fact defining
an isomorphism (under the more natural convention we would have fi A -+ A f)(v1,...,0.) =

srdet [fi(v;)]).
6.10 The wedge product
Under the identification we have Alt" (V) with A" (V*), the natural map
AP(V) x AU(V) 5 APH(V)
induces a wedge product on A : Alt? (V) x Alt?(V) — AltPT9(V), defined by (f, g) — f A g, with

Y () (Vn)s-sUn() 9 (Va1 Un(pra)) -

TESpiq

(ng)(vl,...,vp+q)=m

6.11 The algebra of alternating forms

In this way we form the algebra of alternating forms on an n-dimensional vector space V,

Alt(V @ Alt"(

Note that dim (Alt"(V)) = (7) (where dim(V') = n), since if {v1,...,v,} is a basis of V then
{%’1 A Ny, | 1<4y <0 <y Sn}
is a basis of A" (V*).

6.12 The exterior bundle

We construct one more bundle. If 7 : £ — M is a vector bundle of rank m, we can construct
in the same way as the rth exterior bundle A"(E) — M, whose fibres A"(E), are defined to
be A" (E,). This gives a bundle of rank (”'). In particular, the line bundle A™(E) is called the
determinant line bundle of E and is written det(E). Note that if E has cocycle {Uy, a3}
then det(E) has cocycle {Uy,,det 9,3} (hence the name).

6.13 Definition

A differential r-form on a smooth manifold M™ is a smooth section of the bundle A" (T* (M)) —
M, where 0 < r < n, and by convention A® (T* (M)) is the trivial bundle T* (M) x R. Under
the identification A" (T;j (M)) with the space of alternating forms on T, (M), we may identify a
differential r-form w with a map such for each p € M, w(p) =: w, is an alternating multilinear map
T,(M)" — R. We let Q" denote the sheaf of differential r-forms.

If (U, h) is a chart on M with local coordinates (xl, . ,x”), we can locally write w, for p € U
as

Wp= Y faap)dat |y A Adat ]y,
1<iy <+ <in<d

where we are using the fact that

{da" |, Ao Ada' |, [ 1< iy < - <dp < d

is a basis of A" (T; (M )).The assertion that w is smooth is equivalent to the functions f;, . ;.
U — R being smooth.
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6.14 Theorem (orientations)

Let M™ be a smooth manifold. The following are equivalent:

1. There exists a nowhere vanishing smooth n-form w on M (such a form is called a volume
form).

2. The vector bundle det (T*(M)) is trivial.

3. There exists an atlas A = (U,, hy) such that the Jacobian matrices of all the transition
functions have strictly positive determinant.

< The equivalenve of (1) and (2) is clear from Corollary 5.12.

To progress further we first need observe the following: given charts (U, k) and (V, k) with local
coordinates (z',...,2") and (y',...,y") respectively, and U NV # ), the n-forms dz' A --- A dz"
and dy! A --- Ady™ in Q"(U NV) are related by
ort

oyl

dxl/\~~/\das”=det[ }dyl/\--ﬁ\dy". (19)

This can either we deduced from the cocycle of det (T*(M)) or directly, as follows: since A™ (T™*(M))
is one dimensional, we know that dz' A --- Adz™ = fdy' A--- A dy™ for some smooth function f,
and to determine f we simply evaluate

0 0 [ 0
1 n U
daz'|, A -+ Ada”], <8y1 ]p,..., By ]p) = det _dw lp (8yj |p>}

[ . [ OxF d

[Ox
= det 9y (p)} .

But on the other hand,

I 9
F)dy'[p A+ Ady™]p (ay1|p,---,w|p> = f(p),

and thus f = det [ai} as claimed.

Oy
Suppose w is a non-vanishing n-form. Let A denote the collection of all the charts (U, h) such
if (x!,...,2") are the associated local coordinates, we have
0 0
— e, 0 on U.
w(@ml’ ’8x">> on

A is an atlas, since we can always reorder the local coordinates of a given chart. Moreover if (U, h)
and (V, k) are in A with coordinates (x!,...,2") and (y!,...,y") respectively, and UNV # (), then
we can write w|y = gdzt A-- - Ada™ and w|y = hdy* A - - - Ady™ for some positive smooth functions
g and h. Then on U NV, we have doz! A --- Ada™ = fdy, A --- A dyq where f = 9/n > 0. But

by the previous computation, f = det {g—;j}, and thus the atlas A satisifies condition (3). Thus
(1) = (3).

Finally we prove that (3) = (1). Given such an atlas A, let {\;} be a partition of unity
subordinate to the open cover {U,} of M. For each i, define the n-form w; on M to by

wi(p) = )\i(p)dxi(iﬂp A Ndag g lp for p € Ussy,  wip) = 0 for p # Uaiy.-
Then if

5}
w = E Wi,
i=1
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we see that w is a nowhere vanishing n-form, since for any p € M, if I denotes the finite non-empty
set of 4 € N such that A\;(p) # 0, then if iy € I and 8 = «a(ip) we have

o (2120 2w (g2
w(p 8x}3 p,...,amgp = wi,(p 3xép7“.’8xgp

Y wm ((;; 0

pa"'7azn’p> )
J#io€l 8

and the first term is equal to A;,(p) > 0, and all the others are non-negative by equation (19) above
and assumption on the atlas A. The theorem is proved. »

6.15 Definitions

A smooth m-manifold is called orientable if it satisfies any the three equivalent conditions of
Theorem 6.14. If M is orientable, there exist precisely two orientations, by which we mean choices
of equivalence classes of nowhere vanishing n-forms, under the relation w ~ w’ if w(p)/w’(p) > 0 for
some (and hence every) p € M. By an orientated manifold we mean an orientable manifold
equipped with a choice of orientation.

6.16 Theorem (exterior differentiation)

Let M be a smooth manifold. There exists a unique linear sheaf morphism d : Q" — Q7! such
that

1. If f € Q°(M) then df is the differential df.
2. If w e Q"(M) and n is any smooth form we have d(w An) = dw An+ (=1)"w A dn.
3. d? =0, that is, d(dw) = 0 for all forms w.

d is called the exterior differentiation operator.

We will first define d locally in terms of charts, and then show that the definition is independent
of the choice of chart. Given p € M and a chart (U,h) around p, any r form w defined on a
neighborhood of p may be locally written as

wp) = Y fas, @)y A A d,.

1<i1 << <d

We shall use the shorthand
wip) =Y _ fi(p)da"|,,

1

where I = (iy,...,4,) is a strictly increasing multiindex, and dz’|, := dz® |, A - -+ A dz'"|,. Define

dw(p) = > (dfr), dz'],.

I
We will show that d enjoys the following properties.
e dw(p) € A" (T(M)) for any local r-form w.
e If two r-forms w,n agree on a neighborhood of p then dw(p) = dn(p).
o d(aw + bn)(p) = adw(p) + bdn(p) for a,b € R.
o d(w An)(p) = (dw An)(p) + (=1)"(w A di) (p) for any form n.

e d(df)(p) =0 for f a smooth function on a neighborhood of p.
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The first three are immediate. To check the fourth, by linearity we reduce to the case w = fdz!
and 1 = gdz’. The left-hand side is

dwAn)(p) = d(fgdz’ Adaz”)(p)

= (dfp-9(p) + f(p) - dgp) A dwqp A (delp

= (dfy Ada'[p) A (9(p) - da”[p) + (=1)" (f(p) - dz" ) A (dgp A da”]))
dw(p) An(p) + (=1)Pw(p) A dn(p),

which is the right-hand side. Now we check that for a local smooth function f, d(df)(p) = 0. Write

df, locally as 2L (p)da?|, - note that by definition d(f)(p) = df,. Then

aane = i Ewars,) o
_
 Oxi0xd

82f 82]0 . ;
Z <8xi6xj (p) = Ori Oz (p)) dz'|p A da?|p,

i<J

(p) - dxj|p A d:ci|p

which is zero by equality of mixed partial deriviatives.

Now we will show that d is well defined, that is, independent of the choice of chart. Suppose
d' is defined in the same way relative to some other chart around p. Then d'f(p) = df, = df (p).
Furthermore, the five properties we have just shown that d has also apply to d’ and hence,

dolp) = S d(frdx")(p)
I

> ((dfr)p Ada |, + fr(p)d (da'],))

I

and thus it is enough to show that d’ (dacI |p) = 0. But this follows immediately by applying the
third property to d’ (da’ |, A - A dx'r|,), together with the fact that d’ (dz’|,) = 0, since d’ (z") =
dz’ = d (z') (thinking of z* as a local smooth function), and thus d’ (dz’|,) = d'(d’ (z*))(p) = 0.

Thus d = d’ and so d is well defined. Hence we have a well defined operator d : Q"(M) —
QM) that satisfies all the required conditions which is trivially a sheaf morphism. It remains to
show that d is unique. Suppose d”’ is any sheaf morphism satisfying the conditions of the theorem.
By the previous reasoning, it is enough to show that d” satisfies the five properties above. This
time, all but the second are immediate. To show this, it is enough to show that if w is a form
that is zero on a neighborhood of V' of p then d”w(p) = 0. To see this, let U C V be a smaller
neighborhood of p and let ¥ybe a smooth function that is identically 0 on U and identically 1 on
M\V (i.e. ¥ =1 —1' for some bump function ?’). Then )w = w on all of M, so

d"w(p) = d"(Yw)(p) = dbp Aw(p) +(p)d w(p) = 0.

This establishes uniqueness, and completes the proof. »

6.17 Lemma
Let wbe any 1-form and X,Y any two vector fields. Then
dw(X,)Y)=XwY) -YwX) -w([X,Y]). (20)

<4 We may reduce to the case w = fdg, as the given equation is clearly additive in w, and any
1-form can be expressed locally as a sum of terms of this form. Then dw = df A dg and we have

dw(X,Y) = df (X)dg(Y) — dg(X)df(Y) = Xf-Yg—Xg-Y /.
The right hand side is

X(fdg(Y)) =Y(fdg(X)) — fdg([X,Y]) = X(f-Yg)-Y(f Xg)— f[X,Y]g
Xf-Yg+fXYg-Yf -Xg— fYXg— f(XYg—-YXg),

and everything then cancels to give the desired equality. »
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6.18 Definitions

A form w is closed if it is in the kernel of d. It is exact if it is in the image of d. Since d? = 0, it
follows that Q*(M) forms a cochain complex under d; we define de Rham cohomology Hi (M)
to be the associated cohomology of this chain complex. Note that unlike most other cohomology
theories, the groups Hjy (M) are in fact vector spaces.

6.19 Definition

Let ® : M — N be a smooth map between smooth manifolds. Let ®* denote the map dual to d®,
that is, ®* : T* (N) — T* (M) maps the fibre Ty (N) to the fibre T (M); if o € T\ N,

O (a)(v) := a(dP(v)).

More generally, if f is a local smooth function on N, define ®*f to be the local smooth function
fo®on M, and if w is a local r-form on N, define ®*w to be the map defined by

(®*w), (v1,...,0r) 1= wa(p) (AP (v1),...,dP (v)).

We shall see below that ®*w is smooth and hence a local r-form on M. The map ®* is called the
pullback map of ®. If ® is a diffeomorphism, w a local 1-form on N and X a local vector field
on M then the pushforward ®, and the pullback ®*are related by

(@*w) (X) = w (2, X) 0 D. (21)

6.20 Lemma (properties of ®*)
Let @ : M — N be smooth. Then:

1. If w is a local r-form on NN then ®*w is a smooth and hence a local r-form on M.
2. &*: Q"(N) — Q"(N) is an algebra homomorphism.
3. ®* is a cochain map between chain complexes, that is, d®* = ®*d.
4. ®* induces a linear map Hjp (N) — HiR(M).
<« We will not prove this in the order listed. First we will prove that if wy,...,w, are 1-forms then
D (w1 A Awy) =P wy A+ - A D w;..
Indeed, if v1,...,v, € T, (M),
P (Wi A Awp), (v1,-50p) = (WA Awp) gy, (dP(v1), ..., dD(vy))
= det [(wj)q,(p) (d@(vi))]
— det [(@*wj)p (vi)]
= (Q'wi A APy, (V1,005 0p).

Now we check (3) on functions; if f is a local smooth function then we show ®*(df) = d(®* f).
Let v € T,, (M). Then

O*(df)(v) = dfp(d®(v))
d®(v)(f)
v(fo®)
= v(®"f)
= d(®*f), (v).
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Now we prove (1) and (2). Let (U,h) be a chart on N, with local coordinates (z1,...,z").
Since ®* is clearly additively linear, it is enough to show that ®* ( fdz Ao A d:vi") is smooth to
prove (1), and note as soon as we have done this we have also proved (2), from the first calculation.

Indeed, from what we have already shown,

* (fda"™ A -+ Nda'm) (®*f) @* (dz™) A--- A ®*(dx'")

= (fo®)d(z" o®)A---Ad(z'" 0 D),
and the latter is smooth, since z° o ® and f o ® are smooth local functions on M. This proves (1)
and (2), and since

d{®* (fdz" A+ Nda™)} = d{(fo®)d(z" o ®)A---Ad (2" 0 D)}
d(fo@)/\d(xiloq))/\~--/\d(x“o¢>)
O*(df) Ad (z" 0 @) A--- Ad (2" 0 D)
o {d(fdacil/\---/\dx”)},

by linearity we have also proved (3). Finally, (4) is an immediate consequence of (2) and (3). »

6.21 Corollary

The assignment ¢ — ®* defines a contravariant functor from the category of smooth manifolds to
the category of Z-graded abelian groups.

6.22 Extending &*

In the case when ® : M — M is a diffeomorphism it is convenient to extend the definition of ®*
to an operator on the tensor algebra 7 (M) as follows.
If X € X(M) define ®*X := (®~!) X. Then extend ®* : 7" (M) — T* (M) by setting

(X100 X 0w @ 0w)=0"X; 0 RPX, 00w ® - @ dWh

6.23 Lemma

HSg (M) = R*, where k is the number of components (equivalently, path components) of M.

<« A closed 0O-from is a smooth real-valued function such that df = 0, and this happens if and
only if f is constant on each component of M. Since there are no (—1)-forms, this proves the
result. »

We conclude our brief discussion of de Rham cohomology by stating the following two important
theorems.

6.24 Theorem (homotopy invariance)

Hjr(M) is a homotopy invariant of the smooth manifold M. In particular, it is independent of
the smooth structure on M.

6.25 Theorem (Poincaré lemma)
1. Let U be a star-shaped open subset of R”. Then HJ(U) =0 for all r > 1.

2. Let M be a smooth manifold. Then H*(M x R) = H*(M).
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7 Integration on manifolds and Lie derivatives

7.1 Integration on manifolds - the simple case

Let M™ be a smooth orientated manifold, and w a compactly supported n-form on M. Suppose
there exists a positively orientated chart (U,h) on M such that supp(w) C U and h(U) C R"
is bounded and measurable. Write w = fda! A -+ A dz™ on U, where (z!,...,2") are the local
coordinates of h and f € C°°(U) is smooth. Define the integral of w over M to be

/ w:/w::/ (h_l)*wz foh tdrt. . . drm.
M U h(U) h(uw)

7.2 Lemma
The integral [,, w is well defined; it does not depend on the choice of chart (U, h).
<« Suppose (V,k) is another positively orientated chart such that supp(w) C V, with k(V)

bounded and measurable, and let (y!,...,y™) be the local coordinates associated to k. Let F' =
hok™:k(V) — h(U) be the coordinate transformation. Then by (3)

oxt
Oyl

(p) = JE(k(p));-
Thus by equation (19) we have
de' Ao Adz™ =det (JFok)dy* A--- Ady™.
Thus with respect to coordinates (y!,...,y"),
wy = f(p)det (JF o k)dy" A--- A dy™.

Set W = k(V) . Then by the change of variable formula for multiple integrals, and using the fact
that det(JF o k) > 0 as both (U, h) and (V, k) are positively orientated (this is why we required
the manifold to be orientable) we have

/ () 'w :/ foh tdrt. . . drm
h(U) F(W)

/ foh toF|det(JFok)|ds'...ds™
w

/ fok  det (JFok)ds ...ds"
FOw)

/W) () w.

This completes the proof of the lemma. »

7.3 Integration on manifolds - the general case

Let M™ be a smooth orientated manifold, and w a compactly supported n-form on M. Let A
be a positively orientated atlas on M, such that for each chart (U,¢h € A, h(U) is a bounded
measurable subset of R™. There exist finitely many charts (Uy,h1), ..., (Ur, h.) € A such that
supp(w) € Ui, Us-

Set

Ail...iz = / w,
Uq‘,l r‘l'“ﬁque

where we may integrate with any of the charts (U, , h;,,) (m < £) to determine A;,  ;, by the
previous lemma.
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Then set

T

/ W= ZAi — ZAij + Z Aiji, — -+ + (1) A, = z:(—l)prl Z Al i,
M

i=1 i<j i<j<k =1 i1 < <ig

(i.e. we are using the inclusion-exclusion prinicple). To justify this, we need.

7.4 Lemma

This is well defined: if {(Vj,k;) | j=1,...,s} is another choice of charts from A such that
supp(w) € Jj—, V; and
Bj1~--jk ::/ W,
Vi N0V,

T S

SDEDFNT A, =D DM ST By (22)

=1 i< <dp k=1 J1<<Jk
We could consider the cover {(U;, h;), (Vj,kj) | i =1,...,r,j=1,...,s} and set

then

J1---Jk .
Gyl -—/ Ws
Uiy, N---NU;, NV, NNV,

and by the previous lemma it does not matter on which of the maps h;, or k;, we use to compute
o,
1 k73

It follows from the definition that for any m <r
s . .
Ail...im = Z(il)k+1 Z Ozjllzj,},ia
k=1 J1<-<Jjk

and similarly for
kA

Bjy =Y (=D Y7l

(=1 i1 <<ty

Thus by rearranging the order of summation, both sides of (22) are equal to

_ Z;(_l)“_l ;(_1)k+1 Z Z 0%71123;

i1 < <ig J1<-<Jjk

This completes the proof. »

7.5 Theorem (Stoke's theorem - without boundary)
Let M™ be a smooth orientated manifold and w € Q"~1(M). Then

/ dw = 0.
M
We will not prove Stoke’s theorem in this course.

7.6 Corollary (integration by parts)
Let M™ be a smooth orientated manifold and o € QP (M), 5 € Q4(M) where p+ ¢ =n — 1. Then

/Ma/\dﬂ = (—1)Ptt /Mda/\ﬁ.

<« Apply Stoke’s theorem to w =a A 3. »
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7.7 Corollary
If M™ is a smooth compact orientable manifold then Hgy (M) # 0.
<« Choose a volume form w. Then [ W is a positive real number. w is clearly closed, but not

exact by Stoke’s theorem, as if w = dn then [, w = [, dyp=0. Thus H} (M) # 0, as it contains
the non-zero class [w]. »

7.8 Lie Derivatives

Let M be a smooth manifold and X € X (M) and ¢; the local flow of X. Define the Lie derivative
of X, written Lx to be the operator on tensors defined by

LxT(p) = lim (1) <pt) ~T(p)

d *
= %’t:()((étT) (p)

We will investigate what this definition means on successively more complicated objects, start-
ing with functions. Recall (see Section 2.12) the notation ¢.(p) = ¢, (t) with ¢, the unique maximal
integral curve of X through p.

We will need the following result to prove the key result on the Lie derivative, Theorem 7.10.

7.9 Lemma

Let ® : M — M be a diffeomorphism. Then there exists a unique operator « : 7 (M) — T (M)
such that

1. « preserves the type of tensors.
2. For fe C®(M), a(f)=fod.
3. For X € X(M), o*X = ((I)‘l)*X.

<« Suppose that « satisfies the conditions of the Lemma. We will show that if w € Q*(M) then
a(w) = ®*w, which thus uniquely determines a. For this it is enough to check this for w € Q*(M).
Let C be the contraction X ® w +— w(X). Then a o C = C o o implies that

wX)o® = aw(X))

a(C{X @w})

= C{a(X®w)}

= C{(@7), Xea)}
= a)((@7),X),

and hence « (w) is the 1-form such that
a(w) ((CIfl)* X)=w(X)o®,

and then comparing to (21) completes the proof. »

7.10 Theorem (properties of the Lie derivative)

Let M™ be a smooth manifold and X € X(M). Then the Lie derivative is the unique operator
T(M) — T (M) which maps X (M) to itself and satisfies:

1. Lxf=Xf for f € C®(M).
2. LxY =[X,Y] for Y € X(M).
3. Lx : T(M) — T(M) is a derivation of T (M) which preserves the type of tensors.
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4. Lx commutes with all contractions.

<« First we verify that Ly as defined satisfies properties (1) to (4). Let f € C*°(M). Then

Xfp) = X(f)
= 40)(f)

= ey (5:1o) )
= L(foe)0)

d *
= o@D o)
= Lxf(p)
Now take Y € X(M).

Take a smooth function f defined on a neighborhood of p. Then for ¢ small,
(0-1) V) (e())(f) =Y (R)(f) == (Y(de(p))(f © 9—1) = Y(0e(p)) () + (Y (&e(p))(f) = Y (P)(f)),

and since

o YOS 0 6-0) = V(i (p)(F)

t—0 t

f°¢—t—f>

= (ot (£

= Y(¢o(p)) (—Lxf)
= —Y(X[)

and

= Lx(Yf)(p) = Xp(Yf),
we have
(LxY) (0)(f) = X, (Yf) = Y (Xf) = [X, Y]p(f)-
Now leet T and S be two smooth tensors on M. Then

Lx(T®S)=LxT®S+T®LxS.
Indeed,
(61T 9 5) () = (T2 S)(p)

t—0

t
o (G1T) (00(9)) © (615) (61(p)) = (T2 S)(p)

t—0 t

i @) (6:0) @ (915) (61(0)) = (G5T) (6:0)) @ S®)

t—0 t

+ lim (¢:T) (¢:(p)) @ S(p) — T(p) @ S(p)
t—0 t

:}%(Wﬂﬂ@@»®wﬁﬂ@?»ﬂm>

= T(p)® LxS(p)+ LxS(p) ® T(p).

Lx(T®©S)(p) =

+ lim
t—0

(¢iT) (¢¢(p)) — T'(p)
( t 2 50))

Thus Lx satisfies property (3) and Lemma 7.9 shows that Lx satisfies property (4).
Finally we show uniqueness. Suppose such an operator ayx : 7(M) — 7 (M) exists. Let
C: TWY (M) — C®(M) be the contraction operator. Then

(axw) (V) = X (w(Y)) —w ([X,Y]).
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Thus we define ay on Q'(M) by this relation and observe that

(axw) (fY) = f(axw) (Y),

and so ax (Q'(M)) C Q' (M). If U is a coordinate neighborhood with local coordinates (z?,..., z")
then ax induces endomorphisms of C>°(U), TV (M) and X (U) = THO(U). Any T € THO(U)
can be written as

T = Thlkall ® - ® 8% ® dxI1 R ® dle,

Ji---Je
and we can uniquely extend ax|y to 7 (U) satisfying properties (1), (2) and (4). Property (3) is
verified by induction on &k and ¢. Finally, ax is defined on 7 (M) by the requirement

(axT) |v = (exv) (TNv),
which is enforced by the requirement that ax should be a derivation, as in the proof of Theorem

6.16. »

7.11 Lemma (properties of the Lie derivative of a smooth form)
Let M be a smooth manifold, w,n smooth forms on M and f € C*°(M). Then:

1. If we Q"(M) then

Lxw(Y1,....Y:) =X (w(1,....,Y;)) = > w(Vi,...,[X,Yi],...,¥}).

2. Lx(w/\n):wa/\n+w/\LXn.
3. Lx(dw) :d(LXw)

(1) is immediate from the previous result, and (2) follows from (1). To see (3), observe that
Lxod—do Ly is a skew-derivation of 7 (M) and vanishes on f and df for f € C°°(M), and hence
an argument similar to the previous result shows it vanishes identically. »

We should note here that LxY (p) does not just depend on the value of X, it also depends
on a X on a neighborhood of p. In the next chapter we will define a connection, DxY (p) which
will depend only on X, and thus give us a way to ‘differentiate’ vector fields.

7.12 The interior product

Let X be a vector field on a smooth manifold M. Let w be a smooth form of positive degree
r. Define the interior product of w with X, the contraction of w with X to be ixw, an
(r — 1)-form defined by

ix(w) (Yl7'-'7yr‘—1) Z:w(X,Yl,...7YT_1).

Define ix f = 0 for a form of degree 0.

7.13 Theorem (properties of ix)

ix is unique linear mapping Q*(M) — Q*(M) satisfying
1. ixf=0for f € C®(M).
2. ixw = w(X) for w e Q1 (M).

3. ix(wAW) =ixwAn+ (1)@ u Aiyw.
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Moreover ix oix = 0 and we have Cartan’s formula
Lxw =ix(dw)+ d(ixw).

< Uniqueness follows by a similar argument to Theorem 7.10. To prove (3) we first show that

ix (WA AWR) = S (D) (X)W A AW A AWK
i=1
To check this, write X; = X and we evaluate both sides on vector fields Xs, ..., Xx. We need to
show

k
(W' A AWR) (X, X)) = S (1) () (wl A A /\---/\wk) (Xa,...,X3). (23)
i=1
Let X denote the matrix X = [w?(X;)|. Then the left-hand side of (23) is det X. If X(; ;) denotes
the (k—1) x (k — 1) minor of X obtained by deleting row ¢ and column j then the right-hand side

of (23) is
k

D (1) Wt (X)) det X ;5.
i=1
Equality follows as the above is the cofactor expansion of det X in the first column.
It then follows that (3) holds for w = fdz® A --- Adx' and n = gda’t A --- A dzfe, and the
general case follows from this by linearity.
The fact the ix oix = 0 is clear since by (3), ix oix is a derivation that vanishes on C°°(M)
and 7V (M), and thus vanishes identically. Finally Cartan’s formula follows as both sides are
derivations that coincide on C*°(M) and Q(M). »

8 Connections on vector bundles

8.1 Vector bundle valued forms

Suppose 7 : E — M is a smooth vector bundle of rank m over a smooth manifold M. Consider
the bundle A" (T*(M)) ® E. We write A" for the sheaf of sections

A"(U) =T (U, A" (T"(M))) .
We call elements of A" E-valued r-forms. By definition we set A° = £, that is,
AY(U) =E(U) =T(U, E).

Under the standard identification A™ (T*(M)) = (A"(T(M))* that we have been making, we
have
A" (T*(M))® E = (A"(T'(M))" ® E~Hom (A"(T(M)),E).

In other words, we can think of the fibre (A" (7™(M)) ® E), to be the set of alternating r-
multilinear maps T}, (M) x --- x T, (M) — E,,.
8.2 Trivialising A" (T*(M))® E

Suppose first that U C M is a trivialising neighborhood for E, and e = {ey,...,e;,} is a local
frame. Given p € U, let {w?,...,w’} be a local frame for A" (T*(M)). Then given s € A"(U) as

s = fjw ®e;,

where the f; are uniquely determined C°° functions near p. Let &' := f;wj . One easily checks

that the differential r-form &’ is independent of the choice of local frame {w!, ..., w’}. Since p was
arbitrary we conclude that £ € Q7(U), and hence we can write

E=¢w®e;
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on U. We will write é for the column vector

51
52
£= )
E;n
and thus with e denoting the row vector (ey,...,e,;,) we can write in matrix notation
E=e¢

where the ‘-’ denotes matrix multiplication.

8.3 The A" (T*(M)) ® End(E) bundle

The next bundle we need to work with is A" (T*(M)) ® End(E); its sheaf of sections is denoted
Ap aE)- If U C M trivialises E with local frame e then similarly to the above we can write a

section a € Ap, 4 (U) as
A= a; ® 5'7 & €i,

and we will let A denote the matrix [aé], a; € Q"(U), where {e!,...,e™} is the dual coframe to e.

An element a € AL a(z)(U) can act on an element § € AY(U) in the obvious way
(a; e ® ei) A (fk ® ek) = a}; A §k ® ek,
which we write in matrix notation as
aNE=e-(A-§).

8.4 Definition

A (linear) connection of a vector bundle E over M is R-linear sheaf morphism D : A% — A!
satisfying the Leibniz property
D(fs)=df ® s+ fDs (24)

for a local section s of E' and a local smooth function f.
If U C M is a trivialising neighborhood for E with local frame e then we may associate a
connection matrix  of D to e, given as follows. Since De; € AY(U) we can write

De; = 9; R ey

for 0 € Q'(U), and we let § = [0i]. An element s € A°(U) can be written as s = s'e; for
st € C>°(U), or in matrix notation, s = e - s, where as above s denotes the column vector. Then
we have
Ds = D (siei)
= ds'®e; + s'De;
(dsj + 5793) ® e,

or in matrix notation,
D(e-s)=e-(ds+0-3),
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where ds denotes the column vector

dst
ds?
ds =
ds™
We will write
Ds=ds+0-s (25)

as a shorthand for the previous equation, and say that D acts locally as D = d + 6.
We say a section s is parallel with respect to D if Ds = 0.
8.5 Changing the frame

We now investigate how the connection matrix changes when we change the frame. Suppose
e ={ef,...,e,} is another local frame. Then there exists a map ¢ : U — GL(m,R) such that

6} =le;,

where ¢ = {wi } In matrix notation,

e =e .
The corresponding column vector s changes to s’ where
§l = ?/) )

since s'je; = s'e; implies s* = w;is’j. Then if ¢ is the matrix with respect to €’ then
De’ = D(e-v)
= e-dp+e-0
oy dp e 0,
where dy) = [dd)g ] and so
0 =y~ -dp+y7t 09 (26)

8.6 Example

This is the ‘standard’ connection on T (R™). Define D by D (%) = 0. This clearly satisfies the

required properties of a connection. Thus if X = X* a?i is a smooth vector field, we have

i O\ N~ i 0
DXD(X(w);dX 5

and thus X is parallel with respect to D if and only if dX* = 0 for all i, that is, each of the X* are
constant.

8.7 Lemma

Let E be a rank m vector bundle over M". Then there exists a connection on E.

< Let {U,} be a open covering of M by trivialising neighborhoods of E. Let e* = {ef,...,e%}
be a local frame associated to the local trivialisation 7! (U,) = U, x R™. Define a connection
D, on =t (Uy) by Dy (e2) =0for k =1,...,m. Now let {)\;} be a partition of unity subordinate
to {U,}, and define

[o.]
D= Z AiDqiys
i—1

where supp()\;) € U,(;)- This is again clearly a connection. »
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8.8 Lemma
Suppose E is a smooth vector bundle over M, and D; and D5 are two connections on E. Then

Dy — Dy determines an element of Alland(E) (M), that is, a global section of A (T*(M)) ® End(E).

<« If s is a local section of E and f a local smooth function then
(D1 —D3)(fs) = (df ® s+ fD1s) — (df @ s+ fD3s)
= f (Dl — DQ) S.

Thus Dy — D5 corresponds to a vector bundle morphism E — A (T*(M))® E by Proposition 5.28
and thus also a global section of A'(T*(M)) ® End(E). »

8.9 Corollary

The space of connections on a bundle are an (infinite dimensional) affine space over the vector
space .A]{:nd(E)(M).

8.10 Covariant derivatives

Let E be a vector bundle of rank m over a smooth manifold M™. Let D be a connection on E.
Then D has a natural extension to an R-linear sheaf morphism d” : A” — A™t! defines as follows:
if w is a local r-form on M and s is a local section of E then we set

df (w®s)=dw®s+ (—1)"wA Ds.

Observe that for 7 = 0 this is just the Leibniz rule (24), which is also ensures that d¥ is well
defined, that is,
d¥ (w® fs) =d” (fo®s).

Moreover a generalised Leibniz rule also holds; namely if £ € AP and w € Q4 then
d¥ (WA &) =donE+ (—1)wAdEe.

Indeed, it is enough to verify this for £ = n ® s where 1 is a local p-form and s a local section of
E. Then

d®Wwng) = d((wnn) ®s)
dwAn)®@s+ (=1’ (wAn)® Ds

dw NE+ (1) {(wAdn) ®s+ (—-1)P (wAn) ® Ds}
= dwA&+(—1)WwAdPe

8.11 Definition

Let 7 : E — M be a vector bundle and D a connection on E. Let d¥ denote the corresponding
covariant derivative, and consider

R:=dFodF : A° — A2
We call R the curvature of D; it is the obstruction to {A*,d”} being a complex. Unlike D, R is
linear over the smooth functions, as one easily checks:
R(fs) = d”(df ©s+ fDs)
= —df ANDs+df NDs+ fRs
fRs.
Thus by Proposition 5.28, R corresponds to a vector bundle morphism E — A% (T*(M)) ® E and

hence a global section R of the bundle A% (T*(M)) ® End(E). We will also call R the curvature of
D. Observe we can also think of R as an element of 7(1:3)(M).
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8.12 Relating R and R

R and R are related by
Rs=RAs.

In fact the following is true: for all » > 0 we have
dfod? : ¢ — RAE.

Indeed, it is enough to verify this for £ = w ® s where w is a local r-form and s a local section of
E. Then

d¥ (d¥¢) = d¥ (dw® s+ (—1)"w A Ds)
= (=1)""'dw A Ds+ (—1)"dw A Ds + (—1)*w A Rs
wARs
wA(RAS)
RA(w®s)
= RACE

8.13 The curvature with respect to a local frame

Let E be a smooth rank m vector bundle over M™, D a connection on E and R the curvature of
D. Suppose U C M is a trivialising neighborhood for £, and e = {e1,...,e,,} a local frame. Let
{e',...,e™} denote the corresponding coframe. There exist 2-forms © € Q?(U) such that

Rei = @g & 6]‘,
we let © = [@Z } denote the matrix, called the curvature matrix of R with respect to e. Thus

R=0,®c ®e;.

Observe that
Re; = d¥ (De;)
d¥ <GZ ® ej>

= db] @e; — 0] NO%ey

= (doF + 05 n6]) @e,
and thus 4

OF = dof + 0% N o7, (27)

or in matrix notation

©=do+0A0. (28)

This time changing the frame is relatively painless. If € = e - 1) is another frame then since R is
linear over smooth functions,

Re' = R(e-v)
= Re-t
e -0

= ept0y,

and hence the curvature matrix ©’ of R with respect to €’ is related to © by

0 =y1.-0-1. (29)



8 Connections on vector bundles 54

8.14 Proposition (the general Bianchi identity)

Let m: E — M be a vector bundle and D a connection on E. Then in any local trivialisation the
following relationship holds between the connection and curvature matrices:

dO=OAN0—-0AN0O. (30)
<« We simply apply the exterior derivative to both sides of (28) to obtain:

d© = dOAO—0AdD
= (O—0ANOAI—OA(O—0OND)
= OAO—0rO. »

8.15 The dual connection

Let m : E — M be a vector bundle of rank m, and D a connection on E. We wish to define a
connection D* on the dual bundle E*. We do so by the recipe

d(o(s)) = (Do) (s) — a(Ds) (31)
for o a local section of E* and s a local section of E. It is easily checked that (31) does indeed
define a connection. Suppose e = {ey,...,e,} is a local frame for E over U C M, so the dual
coframe e* = {ej,...,ex } is a local frame for E* (here we are using e for the element normally

denoted €°, i.e. ef(e;) = &;; - this is order to make the indices work). Thus (31) yields
0=d(e; (¢;)) = (D7¢;) (ej) — i (De;),
and hence if 6* denotes the connection matrix of D* with respect to e*, that is,
D*el = G*fe;
then we have
0 = 0Fe;(ej)—ef (9;“6]’)
_ *J i
= 07 -0,

and hence
S
8.16 Further new connections

Suppose w : E — M and 7’ : E' — M are vector bundles over M with connections D and D’
respectively. We define a connection D ® D’ on the bundle F ® E’ by

(Do D) (s®s)=Ds®s +s@D's,

and then extending by linearity to all local sections of E ® E’. It is clear that this defines a
connection. In particular we are interested in using this formula to define a connection on E*®@ E' =
End(FE). Write D for the connection D* ® D on E* ® E. Then if D has connection matrix 6 and
D* has connection matrix 8* with respect to local frames e,e* over U C M respectively then if
a = aje; ®e; is an arbitrary element of AOEnd(E)(U) then
Da = daéef Qe+ aé@*ike}; ®e;+ aéez‘ ® Gfej,

and so

. P o

Da = (daj + 07 aj — a;ﬂfc) er ® ey,

and so if A denotes the matrix [a?] then (with a similar shorthand notation to (25))

DA =dA+60A— A6,
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that is, D acts locally by R
D=d+19,]

If we write dPd(E) for the corresponding covariant derivative then d®*4(®) acts locally in the
same way as D, that is, if now a € Agnd(E)(U), so aj € Q"(U) then we still have

dEdE) A = dA+ ANG— AN (32)

8.17 The coordinate-free version of the general Bianchi identity
In particular, we can apply this to © € AQEnd(E)(U) to obtain
d™e =40+ 0 A0 -9AO =0,
by (30). In fact it is clear that the statement
dEnd(E)@ =0

is equivalent to (30), and thus is a coordinate-free way of stating the general Bianchi identity.

8.18 Definition

Let 7 : E — M be a vector bundle and D a connection on E. Let X € X(U) for some open set
U C M. Then we define an R-linear sheaf morphism Dy : A%y — A°|yy (recall the notation A°|y;
denotes the sheaf A° restricted to U; see Example 7 of Section 5.26) by

Dxs = Ds(X).
Thus for s a local section and f a local smooth function we have

Similarly given X, Y local vector fields defined on some open set U C M we can define an R-linear
sheaf morphism R(X,Y): A%y — A%y by

R(X,Y)s = (Rs) (X,Y).
Thus for s a local section and f a local smooth function we have
R(X,Y)(fs) = fR(X,Y)s.

This notation will become more helpful in the following chapter, where we will be investigating
connections on the tangent bundle of a smooth manifold, M and will primarily view them as
operators X (M) — X (M) (recall that for E =T(M), X(M) = A°(M)). For now however we will
use it to prove a very useful formula for the curvature R.

8.19 Lemma

Let E be a smooth rank m bundle over M and D a connection on M. Let X,Y be local vector
fields defined on U C M. Then

R(X, Y)S = DnyS — DyDXs — D[X,y]S. (33)

<« The result will follow almost immediately from the following more general statement. Let
V be open in U. Let u € A'(V). Then we claim

d®(n)(X,Y) = Dx (u(Y)) — Dy ((X)) — u([X, Y]). (34)
Without loss of generality, we may assume y = w ® s where w € Q1(V) and s € A°(V). Then

d¥(u) = dw ® s — w A Ds,
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and hence
df(p)(X,Y) = dw®s(X,Y)— (wADs)(X,Y)
= dw(X,Y)®s—w(X)Dys+w(Y)Dxs.
Now by (23)
dw(X,)Y) =Xw(Y) - Yw(X) — w([X,Y]),
and thus

d¥ (1) (X,Y) = {Xw(Y)® s+ w(Y)Dxs} — {Yw(X) ® s + w(X)Dys} — {w([X,Y]) ® s} .
Then since p([X,Y]) = w([X,Y]) ® s and

Dx(u(Y)) = D(w(Y)s)(X)
(d(w(Y)) @)
= Xw@l)®s

s) (X) +w(Y)D(s)(X)
+w(Y)Dx(s),

and similarly
Dy (i(X)) =Yw(X) ® s + w(X)Dys,

(34) follows. Then to complete the proof we have

Rs(X,Y) = d¥(Ds)(X,Y)
= Dx(Ds(Y)) — Dy(Ds (X)) — Ds([X,Y])
DnyS — DyDXS — D[ny]&

and thus R(X,Y)s = DxDys — Dy Dxs — Dix y}s as claimed. »

8.20 Definition

Let E be a smooth vector bundle of rank r over M™, (-,-) a metric on E and D a connection on
E. We say that D is orthogonal if

d(s1,82) = (Ds1,82) + (s1, Dsa)
for any sections local sections si, s of F. Equivalently, for any smooth vector field X we require

X <81,82> = <DX51,52> + <81,DX<92> . (35)

8.21 Proposition

An orthogonal connection D with respect to a metric (-,-) has skew-symmetric connection and
curvature matrices with respect to any orthonormal local frame e = {eq,...,en}.

< Let D be orthogonal connection and e = {ej,...,en} an orthonormal frame and 6 the
curvature matrix of D with respect to e. Then

0 = d<€i,€j> = <D€i,€j> + <6i,D€j>
= <9fek7ej> + <ei,9§eg>
= 0! +0],

which shows that 6 is skew-symmetric. Then by (27),

OF = dof + 605 Ab]
= —dfj, — 0 nOF
= —db}, — (—1)29} N
= — 2:7

we see that © is also skew-symmetric. »
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9 Koszul connections

9.1 Koszul connections

We now specialise to the case E = T (M), and thus consider connections on the tangent bundle.
These are called Koszul connections. We often abuse language and refer to such a connection as
a connection on M. Notationally we will use the symbol ‘V’ instead of ‘D’ to distinguish between
Koszul connections and arbitary connections.

Let V be a Koszul connection on M™. Suppose (x!,...,2") are local coordinates on U. Then
U trivialises T(M) and Q*(M), so if 0 is the connection matrix for V over U then we can write

k_pk g
07 =T;dz

for some smooth functions I‘i—“j : U — R.We call the n® functions Ffj the Christoffel symbols of
the connection with respect to the local frame {01,...,0,}.
Thus

Vo, =T}da’ @ O,

and hence
Vo,0; = };0h.

Similarly we can decompose the curvature matrix © of V over U. We define

j‘ké = 93‘ (Ok» Or) ,

so that 1
i i k ¢
Thus 4
R (O, 0r) (05) = Rjy0i,
and thus

R = R,da" ® da’* ® da’ @ 0;
Since @; is alternating, we have
e = —Rip foralll1<ijk(<n. (37)

More generally, for local vector fields X, Y and Z the local vector fields R(X,Y)Z and R(Y, X)Z
satisfy
R(X,Y)Z = —R(Y,X)Z.

9.2 Definition

Let ¢ : [a,b] — M™ be a smooth curve in M. A vector field along c (note that this is not
normally an actual vector field) is a smooth function V : [a,b] — T (M) such that

V(t) € Ty (M) for all t € [a, b].

If (z%,...,2™) are local coordinates on M, we may write a vector field V along ~ as

n

V()= Vit)dilw,

i=1

and the assertion that V is smooth is that is equivalent to the V() being smooth functions

cHU) — M.
Let Vect(c) denote the set of all vector fields along c¢. Note that in particular, ¢(t) is a vector
field along ¢, and more generally if ¢y € (a,b) and (x!,...,2") are local coordinates about tg then

0; o ¢ is a vector field along ¢ for ¢ sufficiently small, where

(Oioc) (t) = Oilc)-
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9.3 Definition

Let M be a smooth manifold, and V a Koszul connection on M, and ¢ : [a,b] — M a smooth

curve. Suppose X is a vector field defined in a neighborhood of ¢([a,b]). Then we can define a

vector field along ¢, written % by

DX )

W(t) = VX = VX(e(t)) € Tewy (M)

We call % the covariant derivative of X along ¢ with respect to V. We wish to generalise this,

so that if V' is any vector field along ¢ we can define another covariant derivative % along c. The
D

notation 7 is somewhat confusing - it depends on ¢ and Vas well.

9.4 Proposition
Let M™ be a smooth manifold, V a Koszul connection on M and ¢ : [a,b] — M a smooth curve

on M. Then there exists a unique operation

D
pk Vect(c) — Vect(c)

such that:
1. Given V,W € Vect(c), we have

DV +W) B g+ DW
dr T dr dr

2. Given a smooth function f : [a,b] — R and V' € Vect(c),

D(fV)
dr

0 =L+ 1020,

3. If X is a smooth vector field defined in a neighborhood of c(ty) then 2% is equal to the
construction given above, that is, for ¢ sufficiently close to tg,

DX
dr ®) (#)

<« Let tg € (a,b) and set p := c(tg). Let (z!,...,2™) be local coordinates on U C M, where U is

some neighborhood of p, and select € > 0 such that I := (tg —€,tg+¢€) C [a,b] and ¢(I) C U. Then

if V is a vector field along ¢ we can write for t € T

V(t) = VI(6)9j]eqr),

that is, 4
V=V’.0oc,

with the V' : I — R smooth functions. We show that if we have a function £ : Vect(c) — Vect(c)
satisfying (1), (2) and (3) then £ is uniquely determined in U.
Then by (1) and (2),
DV dvi D
W = Wﬁjoc—ﬁ—‘/]%(a]oc)
But since 9; o ¢ is a smooth vector field defined in a neighborhood of #y, by (3)

D
ar (Gioc) =Veu (0i0c),

and since by (7) we gave
dct

é(t) = %(t)aﬂc(t),
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it follows that

dct
:—-I‘Zoc-@koc,

Vé(t) (8J e} C) d?”

and hence putting this all together we obtain

DV dvk dc'

- J k

0= (G O+ VIO T OTh () ) Ol (38)
Thus Z¥ is uniquely determined by conditions (1), (2) and (3). Moreover, the argument above

reverses to show that defining Z¥ locally as above does indeed satisfy (1), (2) and (3). Since we
already know that quantities in the formula are well defined when we change coordinates, it follows
that defining £ locally as this does indeed yield a well defined map Vect(c) — Vect(c), and this
completes the proof. »

9.5 Definition

We say that a vector field V' along c is parallel along c if % = 0. A parallel frame along c
is a set {V7,...,V,} of vector fields along V such that each V; is parallel along ¢, and that for all
t € la,b], {Vi(t),..., Va(t)} is a basis of T, (M).

9.6 Lemma

Given a smooth curve c : [a,b] — M and a tangent vector v, € Tr(q) (M), there exists a unique
vector field V along ¢ such that V' is parallel along ¢ and V(a) = v,.
<« Choose local coordinates (z!,...,2") on a coordinate neighborhood U containing c(a).
Write v, = vlj@k\c(a) in this coordinate system.
By (38) finding such a V on U is equivalent to solving the system of ODE’s
dvFk dc’

J k — —
o + V. I ‘Ijjoc=0fork=1,. (39)

subject to to the inital conditions

VF(a) ="
By standard ODE theory, we obtain unique smooth solutions V*(t) defined on ¢=1(U N ¢([a, b])).
Then in exactly the same way we can repeatedly solve the (finitely many) initial value problems
to define the V*(¢) on all of [a,b] (the solutions must agree on overlaps, due to the uniqueness
clause of the ODE theory). Thus glueing the solutions together we obtain the desired vector field
V € Vect(c). »

9.7 Definition

Let M™ be a smooth manifold, and p, ¢ in the same path component of M. Let ¢ : [a,b] — M be
a smooth curve with ¢(a) = p, ¢(b) = q. We define a map
Tpq @ Tp(M) — Ty(M)

p,q

sending v € T),(M) to the vector V (b) € T w(M), where V is the unique parallel vector field along ¢
with V(a) = v. From the properties of £ 7. 1t is clear that 77  is linear. Moreover, if ¢ denotes the
path from ¢ to p obtained by traversing ¢ backwards, it is clear that

z -1
Top = (ha)
and hence 7 , is a linear isomorphism between 7},(M) and T, (M); this gives a way of * connectlng
two different tangent spaces together, and is the origin of the word ‘connection’. We call (v) €
T, (M) the vector obtained from v € T,,(M) by parallel translation along c.

We have thus shown that if M carries a Koszul connection V then we can obtain a system of
parallel transport on M; namely isomorphisms 7, : T),(M) — T, (M) for any points p,q € M
that are in the same path component. In fact, as we shall now show, we can recover the connection
for the system of parallel transport.
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9.8 Proposition

Let ¢: (—€,€) = M be a curve in M with ¢(0) = p and ¢(0) = v € T, (M). Write
Te =Ty ) ¢ Tp(M) — Tpy (M).

Then for any local vector field Y, it holds that

Oy — i (€)= V()
t—0 t

<« Fix a basis {v1,...,v,} of T,(M), and let {V1,...,V,,} be the correponding parallel vector
fields along c. Then {Vi,...,V,,} is a parallel frame along ¢, since if a’V;(t) = 0 for some t € (—¢, )
and a’ € R then applying 7_; to both sides we obtain a’v; = 0, whence a’ =0 for all 1 < i < n.
Set
Y(e(t) = Yi(0)Vi(h),

where the Y : (—¢,€) — R are smooth. Then

i T ) =Y (0) L SRV (Vi) ~ Y0)Vi(0)

t—0 t t—0 4 t
=1

n

= lim
=1 =0 t
dy’
5 (0Vi(0) (40)
D )

= = (Y'V;
2 (Y'Vi) (0)

= V,Y. »

In particular, this shows that if X is a smooth vector field, we can compute (VxY) (p) = Vx,V
with knowledge only of X, and of the values Y takes on a ¢ curve in M with ¢(0) = p and ¢(0) = X,,.
This should be contrasted with the Lie derivative (see the remark after the proof of Lemma 7.11),
where we needed to know X in a neighborhood of p in order to compute LxY (p).

9.9 Definition

Suppose now T € T®O (M) with k + ¢ > 0. We want to define 7; (T'). We do this as follows: for
w € QY (M) we define 77 (w) by
7 (W) (V) = w (n(Y)),

and then for T € T (M) we define 7(T) by

7:(T) (Yl,...,Yk,wl,...,wg) ::T(Tt W),y Vi), 74 (wl) e os Ty (wz)).

9.10 Theorem (extension of V to 7 (M))

Let M"™ be a smooth manifold and V a Koszul connection on M. Given p € M and T € T (M)
with k& + ¢ > 0, define

7 (T (e(p)=T(p)

VxT(p) = {Emt—)O 7 p 70

p» =0,

<

where ¢ is any curve such that ¢(0) = p and ¢(0) = X,. Similarly given f € C°° (M), define

Vxf(p) = Xf(p)

Then Vi is an R-linear derivation of the full tensor algebra 7 (M) which preserves the type of
tensors and commutes with all contractions.
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Moreover V x is the ungiue R-linear derivation « of the full tensor algebra 7 (M) which preserves
the type of tensors and commutes with all contractions such that

aY)=VxY, off)=X/f

Finally X +— Vx is linear over the smooth functions and Vx.y = Vx + Vy.

< Uniqueness (which we will prove last) will ensure that Vx is well defined (i.e. independent
of the choice of curve ¢). It is clear that V xT is R-linear in the T-variable, and since

T (S®T)(c(t) — (S T) (p)

Vx(S®T)(p) = lim t
g TS ) @ (T (1) - Sr) @ Tp)
t—0 t
- Jin (s (C(?)) =50) ¢ 1)

+lim 7 (8 oft)) o ) 1)

= VxS(p)@T(p)+Sp) ©VxT(p)
(this calculation is formally identical if either S, T or both are functions) we see that Vx is indeed
a derivation of 7 (M). It is clear that Vx preserves the type of T, and to show Vx commutes

with all the contractions, we will start with the special case T = w ® Y with w € 7D (M) so
CT = w(Y). Then

VxCT = Xw(Y),
and

C(VxT) = C(Vxw®Y +w®VxY)
(wa)(Y)—l—w(VXY).

Thus we need to show
(Vxw)(Y)=XwlY) —w(VxY). (41)

To prove (41), let p € M and {vy,...,v,} a basis of T,(M) and {¢',...,¢"} the corresponding
dual basis of Ty (M). Let V;(t) := 74(vj) so {Vi,...,V,} is a parallel frame along ¢, and define
L(t) =71, ().
Then
L'(t) (Vi(t) = 72, () (7 (v5)) = £ (v)) = 6,
and thus {L',..., L™} is the dual coframe to {Vi,...,V,}. If w is a 1-form defined on a neighbor-
hood of p then we can write

w(c(t)) = w;(t)Li(t)

for some smooth functions w;. If Y is a vector field defined on a neighborhood of p we can write

Y(c(t)) = Y7 (1)V;(1),

and so
w¥)(c(t)) = wi)L(t){Y(t)V;(t)}
= wi(t)Y(t),
and so
Vx @) () = Xw(¥)(p)
L OY(0) — wi(0)Y(0)
t—0 t
dw; s Ay’
= (0)Y (0)+wi(0)y(0)~ (42)



9 Koszul connections 62

Next,
Vxw(p) = lim ™ (wz(t)U(ti) — w;(0)L¥(0)
= lim wi(t)r, ' (L'(t)) — wi(0)L(0)
=0 t
— 1y 20220 i)
= “)ri) "
We laread know that |
Vx¥ () = S (0)15(0),
by (40), and hence |

Putting (42),(43) and (44) together proves (41).
Now we can prove the general case that Vx commutes with all contractions. Without loss of
generality, suppose
T=w'® e 1Y

and C' = C'jZ Thus

CT=w (V)w'® 0w 0ueyie 0,0 0¥ =uw(¥) T
Thus

VxCT (p)= Vx (&' (Y))) (p) @T'(p) + ' (Y;) (p) © VxT'(p)
= X' (V) (0T (p) + ' (V7) (0)VxT (p).
Next,

CvxT)(p) = C(Xw'o-eVx()e oY) 0)
= W' (V) (VT (p) + ' (VxY) (0)T'(p) + (Vxw') (V) ()T (p),
and then (41) shows that
VxCT(p) = C(VxT) (p)

as required.
Now suppose a : 7 (M) — T (M) satisfies all of these properties. Then

awY)=aWw)®Y +w® VxY,
and hence we must have
a(w)(Y) = Xw(Y) - VxY,

since

a(w(Y)) = «af(contraction of w®Y)
= contraction of a (w®Y)
= aw)(Y)+w(VxY).

Then the derivation property uniquely determines o on tensors of the form fw!' ® - ®@wW* @Y, ®
-++ ® Y, Since any tensor is a finite sum of terms of this form, this shows that « is uniquely
determined by these conditions.

Finally, if reamins to see that X — Vx is linear over the smooth functions. Since we already
know X — VxY and X — X f are C°°(M)-linear, we see that (41) shows that X — Vxw is
also C°°(M)-linear, and hence X — VxT is C°°(M)-linear for any tensor 7. A similar argument
shows that Vx,y = Vx 4+ Vy. This completes the proof. »
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9.11 Definition

Given a Koszul connection V on M, define for vector fields X, Y € X (M) a vector field T(X,Y) €
X (M) by
T(X,Y):=VxY -VyX - [X,Y].

Observe that T is clearly bilinear, and for f € C*(M),

T(fX,Y) = VixY —VyfX —[fX,Y]
= fUXY Y[ X —fVyX — fIX,Y]+ Y[ - X
= fT(X,)Y),

and similarly T'(X, fY) = fT(X,Y). Thus by Proposition 5.28, T' determines a global section
(also called) T of the bundle T2 (M), that is, T € 712 (M). Thus T is a tensor of type (1,2)
which is known as the torsion tensor of V.

We write the components of T in local coordinates (z?,...,2") as TF

770 that is,

T(&l,aj) = TZ;@;C,

ie.
T = Tfda' ® da’ © .

If V has Christoffel symbols {I'};} with respect to the coordinates (z) then as [9;,8;] = 0 by
Proposition 2.6.4 we have

T(8:,05) = (U5; — T};) O

and hence
k k k
Tij = Fij - Fji' (45)
We say that a Koszul connection V on M is symmetric or torsion-free if its torsion tensor
T is identically zero, that is, Ti’; = 0 for every coordinate system, or Ffj = F?i in every coordinate

system (hence the name ‘symmetric’). Conversely if I‘fj = I‘?Z- in a set of coordinate systems that
cover M then V is symmetric, as the following result shows.

9.12 Proposition

Let M™ be a smooth manifold and Va Koszul connection on M. Let p € M. The torsion tensor
T of a connection V satisfies T'(p) = 0 if and only if there exists a coordinate system (z?,...,z")
centred at p such that Ffj (p)=0forall<igjk<n.

<« For this proof we will suspend our use of the summation convention - this is because this is
unfortunately one of those rare occasions where it is not possible to make the indices sum correctly.

Clearly if we have a coordinate system on which all the I‘fj vanish at p in that system then
certainly T'(p) = 0. The converse is where the work lies.

Suppose that (z!,...,2") are local coordinates defined on a neighborhood U of p, such that
the (ml) are centred at p, and such that

k(N _ Tk o
() =15(p) forall<ijk<n (46)
(so T'(p) = 0). Set
1 .
k._ ok k i
z)]
Then due to (46) we have for ¢ € U,
oy* k k i
w(Q) =0/ + ZR‘@(P)CE (9), (47)

and so in particular
oy* _ s
ozt
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Thus by the inverse function theorem there exists a neighborhood V' C U of p such that (y!, ...

")

forms a coordinate system on V', which is clearly centered at p. Let ffj denote the Christoffel

symbols of V with respect to the (y?). Then

0
Srthgr = Vagy
dz* 9
= Ve (Zayaxe>

0%zt 3%6 13}
> 2y, 2
OytdyI (‘330‘3 Oyl 2,7 Ozt

82 4 l‘é 9™ 9
"Z@WMf@ﬁg@N&M&

82 4
- Z ay ayi al‘e Z mé al‘h
%l ozt oz™ _, | oyF 0
pi, \Oytoy? Oyl Oyt dah Dy

and thus for ¢ € V,

— 0%zl ozt  Ox™ oy*
50 = X {5 @+ @ G @Tha) } ozt

In particular evaluating at p gives

—k aZxk i
T~ = N T% (p). 48
50) = G @ + T ) (48)
Next, starting from
> g =%
Oxk dyi %
and differentiating with respect to 3° gives
of ok o (o et
oxk Oyioyl Oyt \ OzF ) Oyl
L Z ox™ aQyé 871'16
N Oyt Oxmdxk 9y’
and thus evaluating at p gives
ank 82yk
570 = =575
ytoy? 0x'0xI
Now from (47),
a2yk A
oOrioxri (p) = sz(p)v
and so substituting this into (48) we obtain
f‘fj (p) = _Ffj (p) + Ffj (p) =0,
and thus (y',...,y") is the a coordinate system centred at p satisfying the requirements of the

proposition. »
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9.13 Extending V to T2 (M) ® End(T(M))

We have already shown in Theorem 9.10 how to extend a Koszul connection V to an R-linear
derivation of the full tensor algebra 7 (M). In particular we defined a connection V on T2 (M)
as follows: if A € T2 (M) and X,Y,Z € X(M) we set

(VxA)(Y,2) = Vx (A(Y, 2)) - A(VxY, Z) - A(Y,Vx Z). (49)

Suppose now A € I' (T(®?) (M) @ End(T(M))), so A(Y, Z) € End(T(M)). Then we extend we can
still use (49) to define a connection on T2 (M) ® End(T(M)), only now both sides are to read
as endomorphisms of T'(M). In particular, we can consider Vx R, where R is the curvature of V.

9.14 Proposition (Bianchi's identities for symmetric connections)

Let V be a torsion-free connection on T (M), and R its curvature tensor. Then for all X,Y,Z €
X(M):

1. (Bianchi’s first identity)
RX,YVZ+R(Y,Z)X +R(Z,X)Y =0.
In particular, in any coordinate system we have

R;ke + Rf;zj + R}jk =0forall 1 <45,k ¢<n.

2. (Bianchi’s second identity)
(VxR) (Y, 2) + (Vy R) (Z,X) + (V2 R) (Y, X) = 0.

<« To prove (1), we first note it is sufficient to verify this for the coordinate vector fields, as both
sides are C°°(M) linear, and since [0, d¢] = 0 by Proposition 2.6.4 we use Lemma 8.19 to obtain

R (0k,00) (0;) = (Vo,Va, — V5, Va,) (95),

and since V is symmetric we have Vj, 9; = Vjy, 0y at thus when we take the cyclic sum of the
above equation it vanishes.

To prove (2), since both sides are again C'*°(M)-linear it is enough to verify this pointwise for
the coordinate vector fields. So let p € M, and take coordinates (x!,...,2") centred about p such
that the Christoffel symbols all vanish at p (possible by Proposition 9.12).

Then since the Christoffel symbols vanish at p, we have
{(VaR) (0;,00)}0c|, = (Vo,R(9;,0k)) 0| ,~R (Vo,05,0k) 0| ,—R (95, Vo,0k) 0|,
= (V&R(a_ﬂak))af}p"'o
= Vo, (R(9;,00)9)|,~R(0;,0%) Va,00],
= Vo, (R(9;,00) )|, +0

0
= {8951 (RZ}) ()0 + Rifjy, (Vaﬁm)} }p
0

Thus we have reduced the proof to showing that in these coordinates we have

% (R7jx) (p) + % (Ryki) (p) + % (R;) (p) = 0. (50)

To see this last statement, we use the general Bianchi identity (30) proved in Proposition 8.14,
that is ‘ ‘
dOy = @;-"/\9% —9;”/\91,,
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where 0 is the connection matrix of V and © is the curvature matrix of V. By assumption
6] = I‘f%dxk is zero at p, and hence this identity implies that dO}*(p) = 0 for all 1 < m, ¢ < n.
Now by (36),
@Z = ijokde A\ dxk,

and hence o

Aoy = 530 (R3).) da’ A da? A da®.
Equating the coefficients of dz’ A dz? A dz* in dO}*(p) (6 terms in total) we obtain precisely the
left-hand side of (50), which thus completes the proof. »

10 Elementary Riemannian geometry

10.1 Definition

A Riemannian manifold (M, g) is a smooth manifold M together with a Riemannian metric
g on M, where by definition a Riemannian metric on M is just a metric on the vector bundle
T (M). Thus g € T(®2)(M) is symmetric, and if (z',...,2") are local coordinates on M we can
write g as

g= gijd;vi ® dxj7

where the g;; : U — R are smooth, and for any p € U the matrix [g;;(p)] is positive definite.
We will denote the metric both by g and (-,-). Note by Lemma 5.19 any smooth manifold
admits a Riemannian metric.

10.2 Definition

Let (M, g) be a Riemannian manifold. Given a Koszul connection V on M, we have an induced
connection V on T(0’2)(M) . We say that V is a metric connection or V is compatible with g
if Vxg=0 forall X € X(M), that is, if

(Vxg) (Y, 2) =Vx(9(X,Y)) —g(VxY,Z) =g (Y, VxZ) =0

forall X|Y, Z € X(M). Equivalently V is a metric connection if and only if for all X, Y, Z € X(M)
we have

X(Y,Z2) =(VxY.Z) + (Y, VxZ).

10.3 Lemma

Let (M, g) be a Riemannian manifold and V a Koszul connection on M. Let ¢ : [a,b] — M be a
smooth curve. Then the following are equivalent:

1. For any two vector fields V, W &€ Vect(c)
d DV DW
— (VW) =(—,W V,— ).
d1"<7 ) <d1"7 >+<7dr>
2. For any t € [a,b] the parallel transport map 7; : T,(q) (M) — T, (M) is an isometry with
respect to g.

< Suppose (1) holds. Then if V is parallel along ¢ we have

d DV
—_— = 2 —_— =
dr {v.v) < dr ’V> 0,

and thus (V, V) is constant along ¢. Thus each 7; is norm preserving, and hence an isometry.
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Conversely suppose 7 is always an isometry. Choose parallel vector fields Uy, ..., U, € Vect(c)
that are orthonormal with respect to g at one point of ¢, and hence at every point of ¢. Then given
V,W € Vect(c) we can write

V() =VI(OUi(t), W(t) =W ()U;(t)
for some smooth functions V¢, W7 : [a.b] — R. Then

(VW) => VW,

and so

d A  DW?
‘1) — ‘1)1 7 .
(V. W) Z dr v dr

Next, ' _
DV dv* Dw  dW’
dr— dr " dr  dr 7
by (38), since 2Y = 0 as the U; are parallel, and thus also

dr
dv DW dvi_. .DW'
<dr’W>+<V’dr > i WV

10.4 Corollary

Let (M,g) be a Riemannian manifold and V a connection on M. Then V is a metric con-
nection if and only for any smooth curve ¢ : [a,b] — M the parallel transport isomorphisms
Tt Te(ayM — T,y M are isometries with respect to g.

< By definition, V is a metric connection if and only if for all vector fields X,Y,Z € X (M)
and p € M we have
X, (Y, 2)=(Vx,Y,Z)+(Y,Vx,Z).

Now simply apply the previous lemma to a curve ¢ with ¢(0) = X,. »

10.5 Definition

Given a connection Koszul V on a Riemannian manifold (M,g) we can form an element R €
T4 (M) defined by
R(W,Z,X,Y) = (R(X,Y)Z,W)

for X,Y, Z W € X(M). It will hopefully not prove confusing that we now use the symbol ‘R’ to
refer to two different tensors; the curvature tensor R € 73 (M) and now a different R residing

in 74 (M). Tt should be clear from the context to which we are referring to.

In local coordinates (z!,...,2") on M, we can write

R = Rijkgd;vk ®dr' @ dr’ ® dxi,
where

Rijie = (R (O, 00) (0;) , 0i) = (RUsOm, 0:) = Gmi Ry

10.6 Theorem (symmetries of R)

Let (M, g) be a Riemannian manifold, V a Koszul connection on M and R the (0, 4)-curvature
tensor. Then for any X, Y, Z, W € X(M):

1. RW,Z,Y,X) = —R(W, Z, X,Y).
2. If V is metric then R(Z, W, X,Y) = -R(W,Z,X,Y).
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3. If V is symmetric then R(W,Z, X, Y)+ R(W,X,Y,Z)+ R(W,Y,Z, X) = 0.
4. If V is both metric and symmetric then R(W, Z, X,Y) = R(X,Y,W, Z).

<« (1) is clear since O is alternating and so R(X,Y) = —R(Y, X).
To prove (2) it suffices to show that

R(Z,Z,X,Y)=0

for all X,Y,Z € X(M).
It suffices to check this for the coordinate vector fields in arbitrary local coordinates; then since
R ((%, i, 6j7 ak) = <R (61’7 6k) 0;, ai>
= ((Vo,Vo. = Va,Vo,) 0:, i)

by Lemma 8.19 and the fact that [0;, %] = 0 by Proposition 2.6.4. But now

0,0k (0;,0;) = 20, (Vo, 05, 0;)
2 <V3jV3k8i, 0Z-> +2 <Vakai7 Vaja¢> ,
and hence
0= [0;,04] = 2((Vo, Vo, — Vo, Vo) 85, ,)

This proves (2). (3) is immediate from Bianchi’s first identity for symmetric connections (Propo-
sition 9.14.1).
Property (4) is an algebraic consequence of properties (1), (2) and (3). Indeed,

R(W,Z,X,Y) = —R(W,ZY,X)
= RW)Y,X,Z)+ R(W,X,Z,Y)
and also
RW,Z,X)Y) = —R(Z,W,X,)Y)
= R(ZX,Y.W)+R(Z,Y,W,X)
and so

2R(W,Z,X,Y) = ROW,Y, X, Z) + R(W,X, Z,Y) + R(Z, X,Y,W) + R(Z,Y,W, X).
Similarly

2R(X,Y,W,Z) = R(X,Z,W,Y) + R(X,W,Y, Z) + R(Y,W, Z,X) + R(Y, Z, X,W).

But then
R(X,Z,W,Y) = (-1)’R(Z, X,Y,W),
R(X,W,Y, Z) = (-1)’R(W, X, Z,Y),
R(Y,W,Z,X) = (-1)’R(W,Y, X, Z),
R(Y,Z,X,W) = (-1)*R(Z,Y,W, X).
Thus

2R(X,Y,W,Z) =2R(W,Z,X,Y),
and this completes the proof. »
We have shown that in some sense, metric symmetric Koszul connections are the ‘best’ type

of Koszul connection, in the sense that then the Riemannian curvature tensor posseses the most
symmetries. But do such metric symmetric connections exist?
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10.7 Theorem (the fundamental lemma of Riemannian geometry)
Let (M, g) be a Riemannian manifold. Then there exists a unique metric symmetric Koszul con-
nection V on M, called the Levi-Civita connection.

<« First deal with uniqueness. Suppose that V is a symmetric metric connection. Let X,Y, Z
be arbitrary smooth vector fields. Compatibility with the metric implies that

XY, Z)=(VxY,Z)+(Y,VxZ).
That the connection is symmetric implies
(VxY.Z) —(VyX,Z) =(X,Y],Z),

and hence we have

XY, 2)+Y(Z,X) - Z(X,Y)

<VXY, Z> + <Y, VXZ> + <VyZ,X> + <Z, VyX> - <VzX, Y> — <X, V2Y>
2<VXY7 Z> - <[X7Y]7Z> + <[X7Z]’Y> + <[YvZ]7X>7

and hence

This establishes uniqueness.
For existence, we need to show that defining Vx by equation (51) does indeed define a sym-
metric metric connection. We must verify:

o VixY = fVxY,

e Vx (fY)=X[f Y+ [fVxY,

e VxY —VyX =[X,Y],

o (VxY,2)+ (Y, VxZ) = X (Y, Z),

the remaining conditions being trivial.
For the first point, observe that

2(VixY, Z) = [XY,2)+Y(Z,fX)-Z(fX,Y) [\, Z], [ X) +([Z, f X].Y) +([fX, Y], Z)
XY, 2) =Y (2 X)-Z(X)Y) - ([, 2], X) + ([, X].Y) + ([X, Y], Z)}
+Yf-(Z,X)-Zf - (X,)Y)+Zf - (X,)Y)-Yf - (X, 2)

= 2f(VxY,Z).
To prove the second point, we see that

2(Vx(fY),2) = X(fY,2)+ Y (2, X) - Z(X,[Y) = ([fY, 2], X) + (|2, X], fY) + (X, fY], Z)
= HXY2)-Y(Z2X)-2(X,Y) = (Y, Z], X) +([Z, X],Y) +([X, Y], Z)}

+Xf-V,2)—Zf - (X, V) +2f- ¥V, X)+ X[ (Y,2Z)
= 2f(VxY,Z)+2X[f-(Y,Z).

To prove that V is symmetric we compute

2(VxY,2) -2(VyX,Z) = X(Y.2)-Y(Z X)-Z(X,)Y)—([Y, 2], X) +([Z2,X].Y) + (X, Y], Z)
Y (X, Z)+ X (2,Y)+ Z(Y, X) + (X, 2],Y) = ([Z2,Y], X) = ([V, X], Z)
= —<[Y,Z],X>—<[X,Z],Y> <[X Y] > <[ 7Z] > <[ ]7X>+<[ 7Y] >
= 2<[X,Y],Z>,

and hence Vx (V) — Vy(X) = [X,Y].
Finally, to prove that V is compatible with the metric we compute

2(VxY, Z) +2(Y,VxZ) = X({,Z)-Y(Z,X)-Z(X)Y)—([V.Z], X) + (2. X].Y) +([X,Y],Z)
+X(2)Y)-Z (Y. X) =Y (X, Z) = ([Z,Y], X) +([\, X], Z) + ([X, Z],Y)
= 2X(Y,Z).

This completes the proof of existence. »
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10.8 The Levi-Civita connection in terms of the Christoffel symbols

Let (z!,...,2™) be local coordinates on a Riemannian manifold (M, g), and V the Levi-Civita
connection on M. Firstly we compute:

2(Vp,05,00) =2 <F§j8k, 5g> = 21—‘?]-9;%.
But then we also have by equation (51) that

2(Vp,0;5,00) = 0i(0j,00) + 0j (O, 0;) — ¢ (05, 0;)
agjf 0gei agij

oxt  Oxi Oz’

and thus we see that the Christoffel symbols for the Levi-Civita connection satisfy

1 dgje  Ogei  0gij
rh = gt (9 + G - ), (52)

dr*  dxd  Oat
where [g] := [g;;]" is the inverse matrix, so
,'Z a
9" gej = 5;--

10.9 Definition

If (M,g) is a Riemannian manifold, the Riemannian curvature tensor on M is the (0,4)-
curvature tensor R with respect to the Levi-Civita connection on M.

10.10 Definitions

Let (M, g) be a Riemannian manifold and p € M. Given 2 linearly independent tangent vectors
v1,v2 € T, M we define the sectional curvature of the 2-plane II = span{vi,va} C T}, (M) to be

R(vy,v9,v1,v2)

(v1,v1) (v2, v2) — (v1,v2)°

K,(II) :=

Note that this depends only on the 2-plane IT and not the choice of basis {v1,v2}, since both R
and g are linear and the top and bottom are homogeneous of degree 2. In particular, if {e1,es} is
are orthonormal, and II = span{es, ea} then K, (II) = R (e1, €2, €1, e2). If there exists K € R such
that K,(II) = K for all p € M and II C T),(M) then we say M has constant curvature.

If M is two-dimensional, then we only have one sectional curvature at a point p, and in this
case it is written K (p) and called the Gaussian curvature of M at p.

In fact, the sectional curvature determines the full Riemannian curvature tensor. In order to
prove this, we need the following algebraic lemma.

10.11 Lemma

Let V be a vector space and Ry, Ry : V XV XV x V — R two quadrilinear maps such that for all
w,x,y,z € Vandi=1,2:

1. Ri(w, z,y,2) = —R;(w, z,2,y),

2. Ri(z,w,z,y) = —R;(w, z,z,y),

3. Ri(w, z,2,y) + Ri(w, z,y, 2) + Ri(w, y, z,2) = 0.
- Ri( )

w,z,x,y) = Ri(z,y,w, 2).
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Then if for all z,y € V we also have R;(x,y,z,y) = Ro(z,y,,y), then in fact R; = Rs.

<« It is clearly sufficient to show that if a multilinear map R satisfying the (1), (2), (3) and (4)
also satisfies R(x,y,x,y) =0 for all z,y € V then R = 0. So suppose this is the case. Then

0 = R(z,y+z,z,y+2)
= R(z,y,z,y)+ R(z,z,z,y) + R(z,2,2,2) + R(x,y,z, 2)
= R(z,z,z,y)+ R(z,y,z,2) + 0
= 2R(z,y,z,2),

and hence R is alternating with respect to the first and third variables. Similarly R is alternating
with respect to the second and fourth variables. Then

0 = R(w,zzy)+ Rw,z,y,2)+ R(w,y, 2,z)
R(U}, Z,Jf,y) - R(’LU, Z7y7x) - R(wvyvxa Z)
= 3R(w,z,x,y). »

10.12 Corollary

The sectional curvatures determine the full Riemannian curvature tensor.

10.13 Corollary

Suppose that (M, g) is a Riemannian manifold and V the Levi-Civita connection on M. Suppose
there exists p € M such that
Ky () = K(p)

is independent of the choice of 2-plance II C T,,(M) (this is necessarily the case for all p € M if
dim M = 2). Then if R is the Riemannian curvature tensor we have for all W, XY, Z € X(M)
that
R(Wy, Zp, Xy, Yp) = K(p) {(Wp, Xp) (2, Yp) — (W, Zp) (Xp, Yp) - (53)
< Let RR(W, XY, Z) .= K{(W,X)(Z,Y)— (W, Z)(X,Y)}. Then it easily seen that R; is
quadrilinear and satisfies properties (1), (2), (3) and (4) of Lemma 10.11. Moreover at p we have
R(X,,Y,,X,,Y,) = R (X,,,Y,, X,,Y,) for all X, Y € X(M). Hence by Lemma 10.11, R|, = Ri|,,
as required. »

In fact, a stronger result holds: if dim M > 3 and K, (II) = K(p) for all p € M then actually
K(p) = K is constant, that is, M has constant curvature. This is Schur’s Theorem and we
will prove this shortly; firstly however we will need to deduce the existence of a special coordinate
system about any point in M.

10.14 Definition
Given a metric g on M, we say that a local coordinate system (z?,...,z") centred about p € M
is normal at p if

agjk
oz’

gij(p) = 0;; and (p)=0 foralll<i jk<n.
Note that by (52) in normal coordinates at p we also have

I¥(p)=0 foralll<ijk<n,

and thus (this will be useful later) (50) holds.
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10.15 Proposition (normal coordinates)

Let (M, g) be a Riemannian manifold and p € M. Then there exists a neighborhood U of p and
coordinates (Jcl, . ,a:") that are normal at p.

<« This is the second time in the course where we will be unable to make the summation
convention work, and thus as in the proof of Proposition 9.12 we will explicitly write in the
summation signs in this proof. By the Gram-Schmidt process (see Section 5.16) we may assume
we have local coordinates (z!,...,2™) centred at p that satisfy

gij(p) =6;; foralll<i,j<n.

Now define

QAjjk = %(1’)

SO

Qijk = jik-
Then set

bij = 5 (@ijk + akij — ajri),

S0

bijr = bik;j (54)
and

biji + bjik = Qijk- (55)

Define functions y1,...,y, by
1
yk = a:k + *2 E bkhmxh:ﬁm

Then observe that by (54),
ayk k § m
Oa:é = 5[ + bkfmrl' )

and in particular
oy*
3,7 P) = 57

and hence by the inverse function theorem there exists a neighborhood V' C U of p such that
(y!,...,y"™) form local coordinates on V. Set

o= (9 9
glj T 8@/“ ay] .

Now we perform some messy calculations. First, note that

o oy o B & my O
5t = 2 ot gy~ 2 O+ beans™) 5

k,m
0
"0z

9
Oxyp
0 , 0
= <%: (5@ + blgkal‘ ayz Z ((5Zn + bjmh.%‘h‘) ay]>

Ji:h

Thus

9em =

= Z Gij (64 + biera™) (62, + bjmnz") |

i,3,h.k
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and hence evaluating at p gives
5 = g@m Z glj

and hence
Gij(p) = 6ij.

Next,
Ogem  ~—~0y° 0
ox" . oz" Oy*

> iy (00 + biera®) (8, + bjmna”)

igihok

Now note that 5 "
(S bopa®) = b T
oy (07 + bigra®™) = bi oy

and thus evaluating at p gives

592m

Hence when we evaluate at p we obtain

P 269 (8.91] 5@5] +5”wa5 +62]6€b7m8>
i,5,s
agém
= bmr bmr7
oy + Omer + ¢

and thus o7
9eim
= mr_bmr_bmrzoa
ayr Qay 72 12

by (55). This completes the proof. »

10.16 The second Bianchi identity for the Riemannian curvature tensor R

Observe that if (z!,...,2™) are normal coordinates at p € M then

0 0
Fr (Rmejr) (p) = e (gmhjok) (p)

= 20 Bt () + 9 0) s (Rl )
= (R )

Thus by (50) we deduce that in normal coordinates at p we have

0 o o
i (Rinesi) (p) + B (Rperi) (P) + Dk (Rumeig) (p) = 0. (56)
10.17 Theorem (Schur)

Let (M, g) be a connected Riemannian manifold of dimension n > 3. Then if the sectional cur-
vatures of M are pointwise constant, that is, K,(II) = f(p) for all 2-planes IT C T, (M), where
f: M — R, then f is constant.

<« Let p € M, and (2!,...,2™) be normal coordinates on a neighborhood U of p. Then by
(53) we can write

R(Wp, Zp, Xp, Yp) = K(p) {{Wp, Xp) (Zp, Yp) — (Wp, Zp) (X, Yp)}
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for any smooth vector fields W, X,Y, Z on U, and hence on U we have
Rijre(p) = f(p) (9irgje — giegik) -

But by (56),
0 0 0
W(Riju)(p) + @(Rijeh)(p) + W(Rijhk)(p) =0,
and hence
of

0 0
@(p) (03050 — 0iedji) + ank(p) (03e05n — 0indje) + a—;;(p) (0indjk — 0ixdjn) = 0.

Since n > 3, given h we can find ¢, 5 such that i, j, h are all distinct. Setting k = ¢,/ = j it then
follows from the above that 86]; (p) = 0. Since h was arbitrary, it follows df, = 0. Thus f is locally
constant. Since M is connected, f is constant. »

10.18 Example

We claim that S™ has constant sectional curvature, when equipped with the metric induced from
the ambient space R"*! (that is, for given p € S, the metric on T}, (S™) C T, (R"™!) = R+ is
just the restriction of the dot product on R**1).

First, claim that the group of orientation preserving isometries of S™, SO(n + 1) operates
transitively on the set of 2-planes in T'(S™). To see this, it is enough to show that given p € S™, if
H is the stabiliser of p in SO(n+1) then we can take any 2-plane in T}, (S™) to any other. To check
this, since SO(n + 1) is certainly transitive on S™, we may take p = (1,0,...,0). The stabiliser of

pis then
H{(é 2)\/1650(11)}.
)

With respect to the Euclidean metric, T}, (S™) is orthogonal to p, and H operates on T), (S™) b
v — Av. This action is certainly transitive on the 2-planes in T}, (S™).

It is easy to see that sectional curvatures are preserved by isometries, whence it follows S™ has
constant sectional curvature as claimed.

We conclude the our discussion on sectional curvature with a theorem we won’t prove.

10.19 Theorem

Any simply connected complete Riemannian manifold (M, g) with constant sectional curvature s
is diffeomorphic to one of the following three manifolds, where |k| = =5

1. if Kk =0, M = R",
2. if k>0, M =5"(r) = {z e R"M||z| =1},
3.if k<0, M H”(r)7 where H"(r) denotes the hyperbolic space.

10.20 Definition
Let (M, g) be a Riemannian manifold. Define a (0, 2)-tensor Ric(X,Y") defined by
Ric(X,Y) :=tr(v — R(v, X)(Y)).

We call Ric the Ricci tensor of g.
Take an orthonormal basis {e1,...,e,} of T, (M). Then

Ric(Xp,Yp) = tr(ve R(v, Xp)Y))

n

= > (R(eiYy)en Xp) =Y R(ei, Yy, e, Xp)

=1 =1

= ZR ei, Xp, €, Yp).
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In particular if (x!,...,2™) are local normal coordinates about p € M then if we work with the
orthonormal basis {9;,} of T,,(M) and

Tkl ‘= Ric (8k, 6[)

then
Ric (X,Y) =) _ {di-coefficient of (9; — Ric (9;, X))},

and so ‘ N
Tkt = Ry = 9" Rjpik.
Ric is symmetric since N N -
rie = 9" Rjtir = 9" Rikje = 9”" Rjkie = 7tk
Both g and Ric are elements of 72 (M). A metric g is called Einstein if r = \g for some
constant A.

10.21 Definition

For any non-zero v € T, (M) the Ricci curvature in the direction v is defined by

Ri
Ric(v) = 0]
o]l
If ||v]] = 1 then r(v) = r(v,v). Moreover if ||v|| = 1 we may extend {v} to an orthonormal basis

{e1 =wv,ea,...,e,} of T, (M). Then

r(v) = ZR(ei,v,ei,v) = ZR(ei,v,ei7v),
i=1 i=2

since R(ey,e1,e1,e1) =0, and thus % is an average of sectional curvatures K, (II;) where

II; = span{v,e;}, > 2.

10.22 Lemma

The Ricci curvatures at p are all equal to a constant (say A) if and only if Ric = Ag at p (g is
Einstein ‘at p’).

<« One way is clear. For the converse, we simply note that the Ricci curvatures all being
equal to A imply that for any non-zero v € T, (M) we have Ric(v,v) = A (v, v). Since Ric(-,) is a
symmetric bilinear form the polarization identity gives

2Ric(v,w) = rw+w,v+w)—r(v,v) —r(w,w)
= AMNv4w,v+w)—A{v,w) — \{w,w)
= Av,w),

since the polarisation identity also applies to the symmetric bilinear form (-,-). »

10.23 Definition

The Ricci tensor r and the metric together determine another endomorphism 6 : T, (M) — T), (M)
defined
RiC('U, ) = <9('U), > :

The scalar curvature scal(p) at p is the trace of 6. If {e1,...,e,} is an orthonormal basis of
T, (M) then we have
Ric(e;) = Ric(ei, e;) = (0(ei), ei) = i,
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and so

tr(d) = z": 0!
i=1

= ) (0e)es)

i=1

= Z Ric(e;).
i=1

Thus scal(p) is an average of Ricci curvatures.
If (z%,...,2™) are normal coordinates about p then writing

0(0;) = 610,

we have .
gje0] = (0(9:),0¢) = Ric (0;,0¢) = T4,
and hence _ _
0] = g''rue
and so

scal(p) = Y _6i(p)

The following theorem is in a similar vein to Schur’s Theorem 10.17.

10.24 Theorem

Let (M, g) be a connected Riemannian manifold of dimension n > 3. Then if the Ricci curvatures
of M are pointwise constant, that is, Ric(v) = A(p) for all v # 0 € T}, (M), where A : M — R, then
A is constant, and so M is Einstein.

< By Lemma 10.22 and the assumption if (z!,...,2") are normal coordinates about p then

7i5(p) = A(P)gij (p)-

In what follows, everything is to be evaluated at p; for notational simplicity however we will omit
this from the notation. We will also once again suspend our use of the summation convention, as
it will prove confusing in this proof. Fix some m € {1,...,n}. Then by (56),

0 0
dxm (Rhjni) + e (Rhjmn) + 3h (Rpjim) = 0. (57)
Using r;; = Ag;; we obtain
oA Oy
Yorm dxm

0 .
= 5gm > 6" Riju
ol

0
= ) M — (Rijui),
— O
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and hence for any 1 <1i < n,

890’” Z o (Rnini) - (58)
Thus setting ¢ = j in (57)and substituting we have
1)) 0
8a:m + — Oz (hamh) Oz R (Rhum) = 07

and so summing both sides over 1,

Z Z hahn +Z O Rhmhm +Z Z Oz h zhmz +Z Oxm zmzm)~ (59)

h 175m h#m 1
Now 9 9
Z Z e (Rhinn) = — Z Z e (Rinmi) »
h i#m h#m i

and since (58) holds for any 4, (59) becomes
A
1)) 5 0

"ozm T “ogm’

and hence a
—2)— =0.
(n—2)5-
Since m was arbitrary we conclude dA, = 0; thus A is locally constant. Since M is connected, A is

constant. »

We will conclude the course with a short discussion of how to define a metric on a Riemannian
manifold.

10.25 Definitions

Let (M, g) be a connected Riemannian manifold. Given a piecewise smooth curve ¢ : [a,b] — M,
we define the length of ¢ to be

b
o) = / (e(t), é(t)) dt.

If the image of ¢ is contained in a single chart (U, h) with coordinates (z
the coefficients of g with respect to this chart then we can write

b b
0= [ o), cn = [ o et) S (e -as(etar

Given p,q € M, we define the distance between p and ¢ to be

1
,...,2™), and g;; are

d(p,q) :=inf {¢(c) | ¢: [a,b] — M piecewise smooth, c(a) = p,c(b) =q}. (60)

We shall shortly prove that this defines a metric on M. First however we check that d(p,q) is
always finite.

10.26 Lemma

Let (M, g) be a connected Riemannian manifold. Then given any two p,q € M, there exists a
piecewise smooth curve from ¢ from p to q.

<« Fixpe M. Set
U, := {q € M | there exists a piecewise smooth curve ¢ from p to ¢} .

Using local coordinates, it is easy to see that U, is open. Similarly M\U, is open. Since U, # ()
as p € M and M is connected, it follows U, = M as claimed. »
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10.27 Proposition

Let (M, g) be a connected Riemannian manifold. Then the function d : M x M — R defined in
(60) is a metric on M.

<« The only property of a metric that it is not immediate d satisfies is d(p,q) > 0 for p # q.
To check this, let p # ¢ € M and (U, h) a chart about p. Then there exists € > 0 such that

¢V i=h' (B)).

Let (2%,...,2") be the local coordinates of h, and gij the coordinates of g with respect to the xt.
Since [g;; o h(x)] is a positive definite smooth (in x) matrix and Be(h(p)) C R™ is compact, there
exists A > 0 such that for any £ € R"™ and any = € V' we have

9ii (h(2))€'€ = M.
Thus for any curve piecewise smooth curve ¢ : [a,b] — M with ¢(a) = p, c¢(b) = ¢, we have
E(C) > (C|C_1(Vﬁc([a,b])) > Ae,

since as ¢ ¢ V, there exists y € dB.(h(p)) such that h=1(y) = ¢(d) for some d € (a,b], and then

b d
o= [ woama= [ \/gz-jm(c(t))jt [ (e(t) - 9 (c(t) bt > Ae.
This completes the proof. »

10.28 Definition

Let (M, g) be a connected Riemannian manifold. We say that M is complete if M is complete
as a metric space under the metric d of Proposition 10.27.



