

Part III Algebraic Topology // Example Sheet 4

1. If $\{C_\bullet(a), \rho_{ab}\}_{a \in I}$ is a direct system of chain complexes, show that $H_k(\varinjlim C_\bullet(a)) = \varinjlim H_k(C_\bullet(a))$. Deduce that a direct limit of exact sequences is exact.

2.

- (i) Which of the following are \mathbb{Z} -orientable? (a) \mathbb{RP}^3 , (b) $\mathbb{RP}^2 \times \mathbb{CP}^2$, (c) $K \# T^2$, where K is the Klein bottle ($\#$ denotes connect sum).
- (ii) Prove that any manifold has a \mathbb{Z} -orientable double cover.

3.* If M is a connected compact d -manifold and $x \in M$, show that $H_d(M \setminus x; \mathbb{F}_2) = 0$.

If in addition $H_d(M; \mathbb{Z}) \cong \mathbb{Z}$, deduce that the restriction map $\text{res}_x : \mathbb{Z} \cong H_d(M; \mathbb{Z}) \rightarrow H_d(M|x; \mathbb{Z}) \cong \mathbb{Z}$ is injective, and that the index of its image is independent of x . [Hint: Show it is locally constant as a function of x .] Hence show that M is \mathbb{Z} -orientable.

4.

- (i) Let M be a compact connected \mathbb{Z} -oriented d -manifold. Show that there is a degree one map $M \rightarrow S^d$.
- (ii) If M and N are compact connected \mathbb{Z} -oriented manifolds of the same dimension and $f : M \rightarrow N$ is a map of non-zero degree, is $f^* : H^*(N; \mathbb{Z}) \rightarrow H^*(M; \mathbb{Z})$ necessarily injective?
- (iii) Prove that if a finite group G acts freely on S^n then some G -orbit is not contained in any open hemisphere. [Hint: Construct a map $S^n/G \rightarrow S^n$.]

5. Show that the only non-trivial cup-products in $(S^2 \times S^8) \# (S^4 \times S^6)$ are those forced by Poincaré duality. Give an example of a space in which that conclusion would not be true.

6. Let $f : \mathbb{CP}^n \rightarrow \mathbb{CP}^n$ be a map of degree 8. What can you say about n ?

7. Show that there is no map from \mathbb{CP}^2 to itself of degree -1 . Show that there is no map from $\mathbb{CP}^2 \times \mathbb{CP}^2$ to itself of degree -1 .

8.

- (i) If M is a smooth manifold, show that it is equivalent to give an R -orientation of the manifold M and an R -orientation of the vector bundle TM .
- (ii) Let V be a real n -dimensional vector space. Show that a \mathbb{Z} -orientation of V , meaning a choice of generator of $H^n(V, V - \{0\}) \cong \mathbb{Z}$, is equivalent to an orientation in the sense of linear algebra, i.e. a choice of ordered basis, where bases differing by a positive determinant matrix are equivalent.
- (iii) If M is R -oriented and $Y \subset M$ is a compact submanifold, show an R -orientation of Y determines an R -co-orientation of Y (i.e. an R -orientation of its normal bundle).
- (iv) If M is R -oriented and $Y, Z \subset M$ are compact R -oriented submanifolds which meet transversely, show that an ordering of Y and Z defines a R -co-orientation of $Y \cap Z$.

9.* Consider the manifold $S^m \times \mathbb{CP}^1$ with the free involution τ defined by $\tau(x, [z_0, z_1]) := (-x, [\bar{z}_0, \bar{z}_1])$. Let $P(m)$ be the quotient space under this involution. Compute the groups $H^*(P(m); \mathbb{Z})$ and the ring $H^*(P(m); \mathbb{F}_2)$. [Hint: find a cell structure to compute the cohomology groups, and use the intersection product to compute the cohomology ring.]

10.

- (i) Suppose $Y \subset X$ is a smooth compact submanifold of a smooth compact manifold. Using the tubular neighbourhood theorem, prove $H_c^*(X \setminus Y) \cong H^*(X, Y)$.
- (ii) Suppose $M \subset S^d$ is a compact $(d-1)$ -dimensional smooth submanifold. Show that the complement $S^d \setminus M$ has one more path component than M does.
- (iii) Suppose $M \subset \mathbb{R}^d$ is a compact $(d-1)$ -dimensional smooth submanifold. Show that $\mathbb{R}^d \setminus M$ consists of a bounded and an unbounded region, and hence that the 1-dimensional normal bundle of $M \subset \mathbb{R}^d$ is trivial. Describe the degree of the map $\nu : M \rightarrow S^{d-1}$ which assigns to each point its unit outward-pointing normal vector. [Hint: relate the degree of ν to a vector field on M .]

11.

- (i) Show by induction on the dimension that a non-degenerate skew-symmetric bilinear form over \mathbb{R} is equivalent to a direct sum of copies of the form $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$. Hence show that any oriented closed 6-manifold M has $\dim_{\mathbb{Q}} H_3(M; \mathbb{Q})$ even.
- (ii) Let V be a vector space with a non-degenerate skew form as above. If $W \subset V$ is *isotropic*, meaning $\langle \cdot, \cdot \rangle|_{W \times W} \equiv 0$, show that $\dim(W) \leq \frac{\dim(V)}{2}$. What does this say about the cohomology classes defined by a collection of pairwise disjoint 3-dimensional submanifolds of a closed oriented 6-manifold?

12. Let M be a compact \mathbb{Z} -oriented smooth d -manifold.

- (i) If $f : M \rightarrow M$ be an orientation-preserving smooth map such that $f^p = \text{Id}_M$, and the fixed-points of f form a discrete set, show that

$$\#\{\text{fixed points of } f\} = \sum_{k=0}^d (-1)^k \text{Tr}(f^* : H^k(M; \mathbb{Q}) \rightarrow H^k(M; \mathbb{Q}))$$

and if p is prime show that $\#\{\text{fixed points of } f\} \equiv \chi(M) \pmod{p}$. [Hint: Rational canonical form.]

- (ii) If the circle group S^1 acts smoothly on M with discrete fixed set M^{S^1} , show $\#M^{S^1} = \chi(M)$.

13. Let $n > 1$. For a continuous map $\phi : S^{2n-1} \rightarrow S^n$, let Y_ϕ be the space obtained by attaching a $(2n)$ -cell to S^n via ϕ . Compute $H^*(Y_\phi)$. Fixing $\alpha_i \in H^i(Y_\phi)$ to be generators for $i \in \{n, 2n\}$, define $h(\phi)$ by $\alpha_n^2 = h(\phi)\alpha_{2n}$.

- (i) If ϕ is homotopic to a constant map, then show that $h(\phi) = 0$.
- (ii) Let n be even. Fix a base-point $e \in S^n$. By considering the attaching map of the $2n$ -cell of $S^n \times S^m$ show that there is a map $\phi : S^{2n-1} \rightarrow S^n$ having $h(\phi) = \pm 2$. Hence show that there are infinitely-many non-homotopic maps $S^{2n-1} \rightarrow S^n$.