Michaelmas Term 2021 O. Randal-Williams

Part III Algebraic Topology / Example Sheet 4

- 1. If $\{C_{\bullet}(a), \rho_{ab}\}_{a \in I}$ is a direct system of chain complexes, show that $H_k(\lim_{\to} C_{\bullet}(a)) = \lim_{\to} H_k(C_{\bullet}(a))$. Deduce that a direct limit of exact sequences is exact.
- **2.** (i) Which of the following are \mathbb{Z} -orientable? (1) \mathbb{RP}^3 (2) $\mathbb{RP}^2 \times \mathbb{CP}^2$ (3) $K \# T^2$, where K is the Klein bottle (# denotes connect sum).
 - (ii) Prove that any manifold has a Z-orientable double cover.
- **3.*** If M is a connected compact d-manifold and $x \in M$, show that $H_d(M \setminus x; \mathbb{F}_2) = 0$.
- If $H_d(M; \mathbb{Z}) \cong \mathbb{Z}$, deduce that the restriction map $\operatorname{res}_x : \mathbb{Z} \cong H_d(M; \mathbb{Z}) \to H_d(M|x; \mathbb{Z}) \cong \mathbb{Z}$ is injective, and that the index of its image is independent of x. [Hint: Show it is locally constant as a function of x.] Hence show that M is \mathbb{Z} -orientable.
- **4.** (i) Let M be a compact connected \mathbb{Z} -oriented d-manifold. Show that there is a degree one map $M \to S^d$.
- (ii) If M and N are compact connected \mathbb{Z} -oriented manifolds of the same dimension and $f: M \to N$ is a map of non-zero degree, is $f^*: H^*(N; \mathbb{Z}) \to H^*(M; \mathbb{Z})$ necessarily injective?
- (iii) Prove that if a finite group G acts freely on S^n then some G-orbit is not contained in any open hemisphere. [Hint: Construct a map $S^n/G \to S^n$.]
- **5.** Show that the only non-trivial cup-products in $(S^2 \times S^8) \# (S^4 \times S^6)$ are those forced by Poincaré duality. Give an example of a space in which that conclusion would not be true.
- **6.** Let $f: \mathbb{CP}^n \to \mathbb{CP}^n$ be a map of degree 8. What can you say about n?
- 7. (i) Show that there is no map from \mathbb{CP}^2 to itself of degree -1.
 - (ii) Show that there is no map from $\mathbb{CP}^2 \times \mathbb{CP}^2$ to itself of degree -1.
- 8. (i) If M is a smooth manifold, show that it is equivalent to give an R-orientation of the manifold M and an R-orientation of the vector bundle TM.
- (ii) Let V be a real n-dimensional vector space. Show that a \mathbb{Z} -orientation of V, meaning a choice of generator of $H^n(V, V \{0\}) \cong \mathbb{Z}$, is equivalent to an orientation in the sense of linear algebra, i.e. a choice of ordered basis, where bases differing by a positive determinant matrix are equivalent.
- (iii) If M is R-oriented and $Y \subset M$ is a compact submanifold, show an R-orientation of Y determines an R-co-orientation of Y (i.e. an R-orientation of its normal bundle).
- (iv) If M is R-oriented and $Y, Z \subset M$ are compact R-oriented submanifolds which meet transversely, show that an ordering of Y and Z defines a R-co-orientation of $Y \cap Z$.
- **9.*** Consider the manifold $S^m \times \mathbb{CP}^1$ with the free involution τ defined by $\tau(x, [z_0, z_1]) := (-x, [\bar{z}_0, \bar{z}_1])$. Let P(m) be the quotient space under this involution. Compute the groups $H^*(P(m); \mathbb{Z})$ and the ring $H^*(P(m); \mathbb{F}_2)$. [Hint: find a cell structure to compute the cohomology groups, and use the intersection product to compute the cohomology ring.]
- **10.** (i) Suppose $Y \subset X$ is a smooth compact submanifold of a smooth compact manifold. Using the tubular neighbourhood theorem, prove $H_c^*(X \setminus Y) \cong H^*(X,Y)$.
- (ii) Suppose $M \subset S^d$ is a compact (d-1)-dimensional smooth submanifold. Show that the complement $S^d \setminus M$ has one more path component than M does.
- (iii) Suppose $M \subset \mathbb{R}^d$ is a compact (d-1)-dimensional smooth submanifold. Show that $\mathbb{R}^d \setminus M$ consists of a bounded and an unbounded region, and hence that the 1-dimensional normal bundle

of $M \subset \mathbb{R}^d$ is trivial. Describe the degree of the map $\nu: M \to S^d$ which assigns to each point its unit outward-pointing normal vector. [Hint: relate the degree of ν to a vector field on M.]

- 11. (i) Show by induction on the dimension that a non-degenerate skew-symmetric bilinear form over \mathbb{R} is equivalent to a direct sum of copies of the form $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$. Hence show that any oriented closed 6-manifold M has $\dim_{\mathbb{Q}} H_3(M;\mathbb{Q})$ even.
- (ii) Let V be a vector space with a non-degenerate skew form as above. If $W \subset V$ is isotropic, meaning $\langle \cdot, \cdot \rangle|_{W \times W} \equiv 0$, show that $\dim(W) \leq \frac{\dim(V)}{2}$. What does this say about the cohomology classes defined by a collection of pairwise disjoint 3-dimensional submanifolds of a closed oriented 6-manifold?
- 12. Let M be a compact \mathbb{Z} -oriented smooth d-manifold.
- (i) If $f: M \to M$ be an orientation-preserving smooth map such that $f^p = \mathrm{Id}_M$, and the fixed-points of f form a discrete set, show that

$$\#\{\text{fixed points of } f\} = \sum_{k=0}^{d} (-1)^k \operatorname{Tr}(f^*: H^k(M; \mathbb{Q}) \to H^k(M; \mathbb{Q}))$$

and if p is prime show that $\#\{\text{fixed points of } f\} \equiv \chi(M) \mod p$. [Hint: Rational canonical form.] (ii) If the circle group S^1 acts smoothly on M with discrete fixed set M^{S^1} , show that $\#M^{S^1} = M^{S^1}$

- $\chi(M)$.
- 13. Let n > 1. For a continuous map $\phi: S^{2n-1} \to S^n$, let Y_{ϕ} be the space obtained by attaching a (2n)-cell to S^n via ϕ . Compute $H^*(Y_\phi)$. Fixing $\alpha_i \in H^i(Y_\phi)$ to be generators for $i \in \{n, 2n\}$, define $h(\phi)$ by $\alpha_n^2 = h(\phi)\alpha_{2n}$.
 - (i) If ϕ is homotopic to a constant map, then show that $h(\phi) = 0$.
- (ii) Let n be even. Fix a base-point $e \in S^n$. By considering the quotient $(S^n \times S^n)/\sim$ for \sim the equivalence relation $(x,e) \sim (e,x) \ \forall x$, show that there is a map $\phi: S^{2n-1} \to S^n$ with $h(\phi) = \pm 2$. Hence show that there are infinitely-many non-homotopic maps from S^{2n-1} to S^n .

Comments or corrections to or257@cam.ac.uk