Michaelmas Term 2021 O. Randal-Williams

Part III Algebraic Topology / Example Sheet 1

1.

- (i) Prove that homotopy equivalence is an equivalence relation on topological spaces.
- (ii) Which of the following are homotopy equivalent to S^1 ? (a) the annulus $\{1 < |z| < r\}$, (b) a bagel, (c) a genus two surface with a disc sewn across one of the holes, (d) the complement of a point in the real projective plane \mathbb{RP}^2 .
- **2.** Compute $H^0(X)$ for a topological space X. Give an example of a space X for which $H_0(X)$ and $H^0(X)$ are not isomorphic.
- **3.** What can you say about the group G and/or the homomorphism α in an exact sequence of the shape
 - (i) $0 \to \mathbb{Z}/2 \to G \to \mathbb{Z} \to 0$;
 - (ii) $0 \to G \to \mathbb{Z} \xrightarrow{\alpha} \mathbb{Z} \to \mathbb{Z}/2 \to 0$;
- (iii) $0 \to \mathbb{Z}/4 \xrightarrow{\alpha} G \oplus \mathbb{Z}/2 \to \mathbb{Z}/4 \to 0$?

4.

- (i) The suspension ΣX of a space X is the quotient of $X \times [0,1]$ by the map which collapses each end of the cylinder to a point: $X \times \{0\} \sim p_0$ and $X \times \{1\} \sim p_1$. Observe $\Sigma S^n \cong S^{n+1}$. Hence or otherwise prove there are maps $f: S^n \to S^n$ of any degree, for any n > 0.
- (ii) Suppose A is a closed manifold. Is ΣA necessarily homeomorphic to a closed manifold? Justify your answer.
- **5.** If $f: S^n \to S^n$ has no fixed points, show that it is homotopic to the antipodal map. Hence show that if a group G acts freely on S^{2n} then $|G| \leq 2$.

6.

- (i) Finish the proof (begun in lectures) of the theorem that a short exact sequence of chain complexes has an associated long exact sequence on homology, by showing that the sequence obtained really is exact.
- (ii) Finish the proof (begun in lectures) of the 5-lemma.
- 7. If $X \subset \mathbb{R}^n$ is convex, show (without using homotopy invariance!) that $H_i(X) = 0$ for i > 0.

8.*

- (i) Compute the homology groups of the closed orientable surface Σ_g of genus g.
- (ii) Compute $H_*(\Sigma_2, A)$ where A is a simple closed curve which: (a) separates Σ_2 into two genus one pieces with one boundary component each; (b) is a non-separating simple closed curve cutting along which gives a genus one surface with two holes, and (c) bounds an embedded disc.

9.* Using Mayer–Vietoris, compute the cohomology groups of complex projective space \mathbb{CP}^k . For each n, construct a closed connected 4-dimensional manifold X_n with $H^1(X_n) = 0$ and $H^2(X_n) \cong \mathbb{Z}^n$. [Hint: look up the "connect sum".]

10.

(i) Define relative cohomology $H^*(X,A)$ in such a way that there is a long exact sequence

$$\cdots \to H^i(X,A) \to H^i(X) \to H^i(A) \to H^{i+1}(X,A) \to \cdots$$

(ii) Compute the relative cohomology $H^*(D, \{p_1, \dots, p_k\})$ of the closed disc in $\mathbb C$ relative to k points.

Comments or corrections to or257@cam.ac.uk