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Premise

Want to study the homology of things like GLn(k), in particular its
behaviour with respect to varying n.

Have stabilisation maps

A 7→

[
A 0
0 1

]
: GLn−1(k) −→ GLn(k)

and homological stability hopes these are homology isomorphisms
in a range of degrees going to∞ with n.

Equivalently, it hopes that

Hd(GLn(k),GLn−1(k)) = 0 for all d ≤ f (n)

for some divergent function f .
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Reformulation

The space
R+ =

⊔
n≥0

BGLn(k)

is a unital E∞-algebra in the category of N-graded spaces. Write
Hn,d(R+) := Hd(BGLn(k)) for homology in this category.

For the basepoint σ ∈ H0(BGL1(k)) the stabilisation map can be
described in terms of the E∞-multiplication as

− · σ : Hd(BGLn−1(k)) −→ Hd(BGLn(k)).

Writing R+/σ for the cofibre in graded spaces of − · σ : R+[1]→ R+,

Hd(GLn(k),GLn−1(k)) = Hn,d(R+/σ).

Goal: Exploit the E∞-structure on R+ to analyse homological
stability.

Everything is based on joint work with S. Galatius and A. Kupers.
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Homotopy theory of Ek-algebras



Graded objects

Let C denote sSet, sSet∗, Sp, or (because we are eventually
interested in taking k-homology) sModk.

Write ⊗ for the cartesian, smash, or tensor product.

We will consider N-graded objects in C, meaning CN := Fun(N,C).
This is given the Day convolution monoidal structure:

(X ⊗ Y)(n) =
⊔

a+b=n

X(a)⊗ Y(b).

Define bigraded homology groups as Hn,d(X;k) := Hd(X(n);k).

Define graded spheres in sSetN as

Sn,d(m) =

{
Sd if n = m
∅ else

and similarly discs Dn,d. Analogously in the other categories.
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Ek-algebras

Let Ck denote the non-unital (Ck(0) = ∅) little k-cubes operad.

e1

e2

en

C2(n) =

· · ·

The categories CN are all tensored over Top: can make sense of the
monad

Ek(X) :=
⊔
n≥1
Ck(n)�Sn X⊗n

and so of Ek-algebras X in CN. Call the category of these AlgEk
(CN). 4



Ek-cells

Each CN may be given the levelwise model structure, and AlgEk
(CN)

then has the projective model structure, making

X 7→ Ek(X) : CN � AlgEk
(CN) : X ← [ X

a Quillen adjunction.

Given an Ek-algebra X and a map f : Sn,d−1 → X can define the cell
attachment X ∪Ek

f Dn,d as the pushout in AlgEk
(CN) of

Ek(Dn,d)←− Ek(Sn,d−1)
f ad

−→ X.

Cellular Ek-algebras are those formed by iterated cell attachments.

(Every object is equivalent to a cellular one, as usual.)
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Filtrations

Let D := CN and Z≤ be the poset of integers. A filtered object in D is
a functor Z≤ → D, and DZ≤ is the category of such.

The underlying object of a filtered X is colimZ≤ X ∈ D.

The filtration quotients of a filtered X are the cofibres, i.e. the
pointed objects given by the pushouts

∗ ←− X(n− 1) −→ X(n).

Taking associated graded gives a strong monoidal functor

gr : DZ≤ −→ DZ
∗ .

If X is cofibrant have a spectral sequence

E1
n,p,q = H̃n,p+q(gr(X)(q))⇒ Hn,p+q(colim X).

A filtered Ek-algebra in D is an Ek-algebra in DZ≤ .

A CW-Ek-algebra is (roughly) a cellular object in filtered Ek-algebras,
where the attaching maps of the d-cells have filtration ≤ d− 1. 6



Indecomposables

For X ∈ AlgEk
(CN
∗ ) define the Ek-indecomposables of X by

Ek(X) =
⊔

n≥1 Ck(n)�Sn X⊗n X QEk (X)
µX

c

where c collapses all factors with n > 1 to the basepoint, and
applies the augmentation ε : Ck(1)+ → S0.

QEk is left adjoint to the inclusion CN
∗ → AlgEk

(CN
∗ ) by imposing the

trivial Ek-action.

Have QEk (Ek(X)) = X (the coequaliser is split).

If X is a cellular Ek-algebra then it follows that QEk (X) is a cellular
object with a (g,d)-cell for each Ek-(g,d)-cell of X.

If X is not cofibrant we should instead evaluate the derived functor

QEk
L (X) := QEk (cofibrant replacement of X).

AKA topological Quillen homology (for the operad Ck).
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Ek-homology and minimal cell structures

Define Ek-homology as HEk
n,d(X) := Hn,d(QEk

L (X)).

If k is a field, the discussion so far shows

dimk HE2
n,d(X;k) ≤ number of E2-(n, d)-cells in any

E2-cellular approximation of X.

Just as in classical homotopy theory, homology can be used to
detect minimal cell structures as long as we work in a stable
context.

The following will su�ce for now.

Theorem. Let k be a field and C be the category of simplicial
k-modules (or Hk-module spectra). Then X ∈ AlgE2

(CN) has a cellular
approximation cX ∼→ X with dimk HE2

g,d(X)-many E2-(g,d)-cells.

Furthermore cX can be taken to be “CW”, not just “cellular”.
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Computing Ek-homology

QEk
L (X) may also be computed by a k-fold bar construction.

Instances of this have previously been given by Getzler–Jones,
Basterra–Mandell, Fresse, Francis.

In particular, if X is an E1-algebra it can be rectified to a nonunital
associative algebra X and unitalised to an associative algebra X+.
This unitalisation has an augmentation ε : X+ → 1. Then there is an
equivalence

1 ∨ ΣQE1
L (X) ' B(1; X+

;1)

with the two-sided bar construction.

(Something similar can be done for all Ek.)

From this perspective it is easy to see that vanishing lines for
E1-homology imply vanishing lines for E2-homology, and so on.
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The mapping class group
E2-algebra



The mapping class group E2-algebra

The surface

Σg,1 = · · ·

has a mapping class group

Γg,1 = π0(Diff∂(Σg,1)).

The collection
⊔

g≥0 Γg,1 has the structure of a braided monoidal
groupoid, so taking nerves gives a unital E2-algebra R+ in sSetN with

R+(g) ' BΓg,1.

Write R+
k
∈ AlgE+

k
(sModN

k
) for its k-linearisation.
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A vanishing line for E2-homology

The bar construction model for QE1
L (R) leads us to study the

simplicial complex whose p-simplices are (p + 1) arcs on the surface
Σg,1, which cut it into (p + 2) components each of which have
non-zero genus.

Σ3,1

•

•

•

•

This is analogous to the Tits building of a vector space. We show
that this simplicial complex is (g− 3)-connected, and deduce

Theorem (Galatius–Kupers–R-W). HE2
g,d(R) = 0 for d < g− 1.

Thus there is an E2-cellular approximation C ∼→ R only having
(g,d)-cells for d ≥ g− 1.
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Data

Many calculations of Hd(Γg,1) available for small g and d through the
e�orts of many mathematicians: Abhau, Benson, Bödigheimer, Boes,
F. Cohen, Ehrenfried, Godin, Harer, Hermann, Korkmaz, Looijenga,
Meyer, Morita, Mumford, Pitsch, Sakasai, Stipsicz, Tommasi, Wang, ...

0

1

2

1

Z
2

Z
3

Z
4

Z
5

Z
6

ZZ
0

Z Z/10

Z/2 Z⊕ Z/2 Z Z Z

d/g

(Rows eventually constant = homological stability!)

However need more refined information than just abstract groups:
E2-structure, as encoded by multiplication − · −, Browder bracket
[−,−], Dyer–Lashof operations Qi

`(−) for all primes `, ...
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Refined data

0

1

2

1

Z{σ}
2

Z{σ2}
3

Z{σ3}
4

Z{σ4}
5

Z{σ5}
6

Z{σ6}Z
0

Z{τ} Z/10

Z/2 Z⊕ Z/2 Z Z Z

d/g

Here τ is the class of a right-handed Dehn twist.

H2,1(R+) = Z/10 generated by στ . Have [σ, σ] = 4στ , Q1
Z(σ) = 3στ .

(For an integral lift Q1
Z : H∗,0(R+)→ H∗,1(R+) of the F2 Dyer–Lashof

operation Q1
2, defined by universal example.)

H2,2(R+) H3,2(R+) H3,2(R+/σ) H2,1(R+)

Z/2 Z{λ} ⊕ Z/2 Z{µ} Z/10{στ}

−·σ ∂

inj λ7→10µ µ7→στ
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E2-homology

The vanishing line gives the following chart for HE2
g,d(R).

0

1

2

3

4

5

2 3 4 5 6 710

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

? ?

d/g
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E2-homology

Reverse engineering the low-degree E2-homology lets us complete
the chart for HE2

g,d(R) as follows.

0

1

2

3

4

5

2 3 4 5 6 710

?

?

?

Z{σ}

Z{τ}

?

?

?

?⊕ Z{ρ, ρ′}

?

?

?

Z{ρ′′}

?

?

?

?

? ?

d/g

Attaching maps are ∂ρ = 10στ , ∂ρ′ = Q1
Z(σ)− 3στ , ∂ρ′′ = σ2τ . 15



Homological stability



Homological stability

Theorem (Harer, Ivanov, Boldsen, R-W). Hd(Γg,1, Γg−1,1) = 0 if d < 2g
3 .

The slope in this statement has been steadily improved, from
Harer’s original 1

3 to Ivanov’s 1
2 , to the 2

3 obtained by Boldsen and
myself. These proofs were similar in spirit to each other, but all very
di�erent to what I present here.

Proof using E2-cells. Need Hg,d(R+/σ) = 0 for d < 2g
3 . Enough to

show this with k-coe�cients for prime fields k.

Construct a minimal CW-complex model for Rk ∈ AlgE2
(sModN

k
), a

filtered object fC with colim fC ∼→ Rk. Then

gr(fC) ' E2

(⊕
cells α

Sgα,dα,dα
k

)
.

Can unitalise and form the cofibre fC+/σ in filtered objects, with

gr(fC+/σ) ' E+
2

(⊕
cells α

Sgα,dα,dα
k

)
/σ.
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Proof of homological stability

The spectral sequence for a filtered object is

E1
∗,∗,∗ = H∗,∗,∗

(
E+

2

(⊕
cells α

Sgα,dα,dα
k

)
/σ

)
⇒ H∗,∗(R+

k
/σ).

We now use F. Cohen’s calculation of homology of free Ek-algebras.

This describes

H∗,∗,∗

(
E+

2

(⊕
cells α

Sgα,dα,dα
F`

))
as given by the free graded-commutative algebra on QI

`y where y is
a basic Lie word in classes xα of tridegree (gα,dα,dα) and QI

` is a
Dyer–Lashof monomial satisfying the usual admissibility and excess
conditions.

Taking the cofibre of σ simply quotients this by the ideal (σ).
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Proof of homological stability

0

1

2

3

4

5

2 3 4 5 6 710

?

?

?

Z{σ}

Z{τ}

?

?

?

?⊕ Z{ρ, ρ′}

?

?

?

Z{ρ′′}

?

?

?

?

? ?

d/g

By observation all commutative algebra generators apart from σ,
[σ, σ] if ` 6= 2, and Q1

2(σ) if ` = 2, lie in bidegrees (g,d) with d
g >

2
3 .

Have Q1
Z(σ) ≡ Q1

2(σ) mod 2, and Q1
Z(σ) ≡ − 1

2 [σ, σ] mod ` for ` 6= 2.

But d1(ρ′) = Q1
Z(σ)− 3στ ≡ Q1

Z(σ) mod (σ).

Quotienting out σ and calculating with this, one shows that
E2

g,d,∗ = 0 as long as d
g >

2
3 , and so Hg,d(R+

k
/σ) = 0 in this range

too. 18



Secondary homological stability



Secondary homological stability

By thinking about such E2-cell structures, we discovered the
following higher order form of homological stability.

Theorem (Galatius–Kupers–R-W). There are maps

ϕ∗ : Hd−2(Γg−3,1, Γg−4,1;k) −→ Hd(Γg,1, Γg−1,1;k)

which are epimorphisms for d ≤ 3g−1
4 and isomorphisms for

d ≤ 3g−5
4 .

(There is also an improved slope for k = Q, and an extension to
surfaces with further marked points and boundaries, and to certain
systems of local coe�cients. I will not discuss this.)

I will outline the proof of this statement in the case k = Q, and at
the end discuss what needs to be done to promote it to an integral
statement.
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The rational secondary stabilisation map

We work with R+
Q ∈ AlgE2

(sModN
Q).

As R+
Q is an E2-algebra, the cofibre R+

Q/σ of right multiplication by σ
still has a right R+

Q-module structure. Represent the class
λ ∈ H3,2(R+

Q) by a map of simplicial modules λ : S3,2 → R+
Q .

Can then form a cofibre sequence

R+
Q/σ ⊗ S3,2 −·λ−→ R+

Q/σ −→ R+
Q/(σ, λ).

This defines the secondary stabilisation map

− · λ : Hd−2(Γg−3,1, Γg−4,1;Q) −→ Hd(Γg,1, Γg−1,1;Q)

so need to show that Hg,d(R+
Q/(σ, λ)) = 0 for d < 3g

4 .
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Proof of rational secondary homological stability

Recall the attaching maps for the low-dimensional E2-cells of R+ are

∂ρ = 10στ, ∂ρ′ = Q1
Z(σ)− 3στ, ∂ρ′′ = σ2τ

and that over Q we have Q1
Z(σ) = − 1

2 [σ, σ].

In particular

∂(− 1
5 (10ρ′ + 3ρ)) = [σ, σ],

∂(10ρ′′ − σρ) = 0.

In fact the cycle 10ρ′′ − σρ represents the class λ ∈ H3,2(R+
Q).

The above data provides an E2-map

A+ := E+
2 (S1,0σ ⊕ S3,2λ) ∪E2

[σ,σ] D2,2ρ′′′ −→ R+
Q .

More or less tautologically we have HE2
g,d(RQ,A) = 0 for d

g <
3
4 .

Thus R+
Q can be obtained from A+ by attaching (g,d)-cells with

d
g ≥

3
4 .
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Proof of rational secondary homological stability

If we filter such a relative CW structure

A+ −→ colim fC+ ∼−→ R+
Q

by relative skeleta, it has associated graded

gr(fC+) ' A+
E2⊕

E+
2

(⊕
cells α

Sgα,dα,dα

)
with dα

gα ≥
3
4 .

Taking the cofibre of − · σ and then of − · λ in filtered objects, we get
a spectral sequence

E1
∗,∗,∗ = H∗,∗,∗

(
A+ ⊕E2 E+

2

(
⊕cells αSgα,dα,dα

)
/(σ, λ)

)
⇒ H∗,∗(R+

Q/(σ, λ)).

We want to show that the target vanishes in slope < 3
4 , and the cells

α all have slope ≥ 3
4 . It is enough to establish the required

vanishing of
H∗,∗(A+/(σ, λ)).
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Proof of rational secondary homological stability

To do this we give

A+ = E+
2 (S1,0σ ⊕ S3,2λ) ∪E2

[σ,σ] D2,2ρ′′′

the filtration where σ and λ have filtration 0 and ρ′′′ has filtration 1.
Get a new spectral sequence

E1
∗,∗,∗ = H∗,∗,∗(E+

2 (S1,0,0σ⊕S3,2,0λ⊕S2,2,1ρ′′′)/(σ, λ))⇒ H∗,∗(A+/(σ, λ)),

with d1(ρ′′′) = [σ, σ].

By F. Cohen’s calculations, H∗,∗,∗(E+
2 (S1,0,0σ ⊕ S3,2,0λ⊕ S2,2,1ρ′′′)) is

the free graded commutative algebra on the free graded Lie algebra
on {σ, λ, ρ′′′}. The only commutative algebra generators of slope < 3

4
are σ, λ, [σ, σ]. The first two are killed by quotienting out by (σ, λ),
and the last is d1(ρ′′′). A bit of care shows E2

g,d,∗ = 0 for d
g <

3
4 .
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What we know about Hd(Γg,1, Γg−1,1;Q)

0

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8 9 10 11 12
Q
0

Q

Q
?

Q

Q

Q

Q

?
?
?
?
?
?
?

?
?
?
?
?
?

?
?
?
?
?
?

?
?
?
?
?

?
?
?
?

?
?
?
?

?
?
?

?
?

?
? ?

d =
2g−1

3

d =
4g−1

5

Figure 1: Hd(Γg,1, Γg−1,1;Q); ? means unknown, ? means not zero.

Non-zero groups: use results of Faber, Kontsevich, Morita.
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Integral secondary homological
stability



The secondary homological stability map

The main issue with proving the secondary homological stability
theorem with Z-coe�cients is formulating what the map should be.

H−1,0(R+) H0,0(R+) H0,0(R+/σ) H−1,−1(R+)

H2,2(R+) H3,2(R+) H3,2(R+/σ) H2,1(R+)

Z/2 Z{λ} ⊕ Z/2 Z{µ} Z/10{στ}

−·σ ∼

−·λ −·λ

∂

−·λ

−·σ ∂

inj λ 7→10µ µ7→στ

shows that

− · λ : Z = H0,0(R+/σ) −→ H3,2(R+/σ) = Z

is multiplication by 10, so not surjective: thus this map cannot
induce an epi/isomorphism in the desired range.

Instead want to “multiply by µ”, but µ is not a class on R+, only on
R+/σ, which is not an E2-algebra...
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The secondary homological stability map

To resolve this extend µ : S3,2 → R+/σ to a right R+-module map

µad : S3,2 ⊗ R+ −→ R+/σ

and observe that the right R+-module map

S3,2 ⊗ S1,0 ⊗ R+ S3,2⊗σ−→ S3,2 ⊗ R+ −→ R+/σ

corresponds to a class in the group H4,2(R+/σ), which vanishes by
ordinary homological stability. Choosing a nullhomotopy gives an
extension

ϕ : S3,2 ⊗ R+/σ −→ R+/σ,

which is a secondary stabilisation map. Want to show that the
cofibre Cϕ has a slope 3

4 vanishing line.

In fact get H4,3(R+/σ)-many such maps (don’t know what this group
is), but will show all their cofibres have the required vanishing.
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Proof of integral secondary homological stability

The first step is to show that all the secondary stabilisation maps

ϕ : S3,2 ⊗ R+/σ −→ R+/σ

just constructed may be promoted to filtered maps, where R+ is
given its skeletal filtration for a minimal CW-structure, and S3,2 is
given filtration precisely 3.

This means repeating the obstruction-theory argument which
constructed ϕ but now in the category of filtered objects.

The groups carrying the obstruction (and parameterising choices of
nullhomotopy if the obstruction vanishes) in the category of filtered
objects are in principle di�erent, and it requires some slightly
subtle work to show that the ϕ can indeed all be promoted to
filtered maps.
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Proof of integral secondary homological stability

Now that the ϕ are lifted to filtered maps, we get a filtration on their
cofibres Cϕ. To establish Hg,d(Cϕ) = 0 for d

g <
3
4 it is enough to do so

with F`-coe�cients for each prime `.

The filtration gives a spectral sequence with E1-page

H∗,∗,∗
((

S0,0,0
F`

⊕ S3,3,3
F`

κ

)
⊗ E+2

(
S1,0,0
F`

σ ⊕ S1,1,1
F`

τ ⊕ S2,2,2
F`

ρ ⊕ S2,2,2
F`

ρ′ ⊕ S3,2,2
F`

ρ′′ ⊕
⊕
α Sgα,dα,dα

F`

)
/σ

)

converging to H∗,∗(Cϕ;F`). This has

d1(κ) = ρ′′, d1(ρ′) = Q1
Z(σ) =

{
Q1

2(σ) ` = 2
− 1

2 [σ, σ] ` 6= 2

and σ, τ, ρ, ρ′′ are d1-cycles. Using this and F. Cohen’s description of
the homology of free E2-algebras, some homological algebra shows
that E2

g,p,q = 0 for p+q
g < 3

4 , and hence Hg,d(Cϕ;F`) = 0 for d
g <

3
4 .
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