The space of surfaces in a manifold

Oscar Randal-Williams

University of Cambridge

October 19, 2012

joint work with Federico Cantero

Surfaces in a manifold

Let *M* be a smooth manifold of dimension *d*, possibly with boundary ∂M .

Definition

Let $\mathcal{E}(M)$ denote the set of pairs (X, ℓ_X) , where $X \subset M$ is a subset which has the structure of a compact, closed, connected, smooth, 2-dimensional submanifold, and ℓ_X is an orientation of X.

Choosing for each integer $g\geq 0$ an oriented surface Σ_g of genus g, there is a surjective function

$$\coprod_{g\geq 0}\operatorname{Emb}(\Sigma_g,M)\longrightarrow \mathcal{E}(M),$$

given by sending an embedding to its image. We equip $\operatorname{Emb}(\Sigma_g, M)$ with the Whitney topology, and $\mathcal{E}(M)$ with the quotient topology.

We denote by $\mathcal{E}_g(M)$ the path component which is the quotient of $\operatorname{Emb}(\Sigma_g, M)$. Our aim is to study the topology of the space $\mathcal{E}_g(M)$, and in particular the cohomology $H^*(\mathcal{E}_g(M))$.

The philosophy of scanning

The space $\mathcal{E}(M)$ has points consisting of oriented, closed surfaces in M. What does this look like "at the microscopic scale" in M?

At a small scale, M looks like a d-dimensional vector space V, and an oriented surface looks like an oriented affine plane $\mathbb{R}^2 \subset V$. Or, if we are far away from the surface, it looks like $\emptyset \subset V$.

That is, we locally see an oriented 2-plane in V, and a normal vector. This normal vector can also be "infinitely long", and we then forget about the oriented 2-plane.

The space of oriented affine planes in V containing the origin is the Grassmannian $\operatorname{Gr}_2^+(V)$. If we do not insist that the plane contains the origin, then an oriented affine plane is given by a pair

$$(L \in \operatorname{Gr}_2^+(V), v \in L^{\perp}),$$

so the space of them is the total space of the vector bundle $\gamma_2^{\perp} \to \operatorname{Gr}_2^+(V)$. If the vector v gets very long, then the affine plane is far away from the origin: thus, adding the point \emptyset gives the Thom space

$$\operatorname{Th}(\gamma_2^{\perp} \to \operatorname{Gr}_2^+(V)).$$

Definition

We call this $\mathcal{S}(V)$. It is natural in the vector space V.

We think of S(V) as the space of (possibly empty) affine surfaces in V.

The scanning map

To describe scanning honestly, we have to modify the space $\mathcal{E}(M)$ slightly. Choose a Riemannian metric g on M, and let

 $\mathcal{E}^\nu(M) \subset (0,\infty) \times \mathcal{E}(M)$

be the set of pairs (ε, X) such that the exponential map $\exp : \nu(X) \to M$ is an embedding when restricted to vectors of length at most ε . We define a map

$$\begin{split} M \times \mathcal{E}^{\nu}(M) &\longrightarrow \mathcal{S}^{fib}(TM) = \sqcup_{m \in M} \mathcal{S}(T_m M) \\ (x, \varepsilon, X) &\longmapsto \begin{cases} \varnothing \in \mathcal{S}(T_x M) & x \notin \nu_{\varepsilon}(X) \\ (T_p X + v \subset T_x M, \frac{v}{\varepsilon - |v|} \in (T_p X)^{\perp}) & x = v \in \nu_{\varepsilon}(X)_p \end{cases} \end{split}$$

with adjoint the scanning map

$$\mathcal{E}^{\nu}(M) \longrightarrow \Gamma_{c}(\mathcal{S}^{fib}(TM) \to M).$$

If M is simply-connected and of dimension at least 6, one can show that there is a natural bijection

$$\pi_0(\Gamma_c(\mathcal{S}^{fib}(TM)\to M))\cong\mathbb{Z}\times H_2(M;\mathbb{Z})$$

under which the scanning map sends (X, ℓ_X) to $(\frac{\chi(X)}{2}, [X])$. We let $\Gamma_c(S^{fib}(TM) \to M)_g$ denote those path components corresponding to $\{1-g\} \times H_2(M; \mathbb{Z})$.

Theorem (Cantero-R-W)

If M is simply-connected and of dimension at least 6, the scanning map

$$\mathcal{E}_g(M) \longrightarrow \Gamma_c(\mathcal{S}^{fib}(TM) \to M)_g$$

induces an isomorphism on integral homology in degrees $* \leq \frac{2g-2}{3}$.

This result is based on, and recovers, several older results. If we let $M = \mathbb{R}^n$, we obtain the statement that

$$\mathcal{E}_g(\mathbb{R}^n) \longrightarrow \Omega^n \mathrm{Th}(\gamma_2^{\perp} \to \mathrm{Gr}_2^+(\mathbb{R}^n))$$

is an isomorphism on integral homology in degrees $* \leq \frac{2g-2}{3}$. Taking the limit as $n \to \infty$,

- $\mathcal{E}_g(\mathbb{R}^n)$ approximates $B\text{Diff}^+(\Sigma_g)$, the classifying space of the diffeomorphism group of Σ_g ,
- the right-hand side becomes the infinite loop space of a certain spectrum (in the sense of stable homotopy theory) **MTSO**(2).

Theorem (Madsen–Weiss)

There is a map

$$BDiff^+(\Sigma_g) \longrightarrow \Omega^{\infty}_{\bullet} \mathbf{MTSO}(2)$$

which induces an isomorphism on integral homology in degrees $* \leq \frac{2g-2}{3}$.

Relation to previous work (cont.)

Theorem (Madsen–Weiss)

There is a map

```
B\mathrm{Diff}^+(\Sigma_g) \longrightarrow \Omega^\infty_{\bullet} \mathbf{MTSO}(2)
```

which induces an isomorphism on integral homology in degrees $* \leq \frac{2g-2}{3}$.

The right-hand side is independent of g, so this formulation of the Madsen–Weiss theorem also implies that $H_*(BDiff^+(\Sigma_g); \mathbb{Z})$ is independent of g in the stable range. This was an older result, due to Harer, with improvements to the stable range by Ivanov, Boldsen, and R-W.

Because there is no direct way to compare $BDiff^+(\Sigma_g)$ and $BDiff^+(\Sigma_{g+1})$, to prove Harer's stability theorem one must work with *surfaces with boundary*; we must do the same.

If *M* is a manifold with boundary, and we are given a 1-manifold $\delta \subset M$ consisting of *b* circles, define

 $\mathcal{E}(M;\delta)$

to be the set of pairs (X, ℓ_X) where $X \subset M$ is a connected, smooth, 2-dimensional submanifold with boundary $\delta \subset \partial M$, and ℓ_X is an orientation.

We give this a topology as before, and let $\mathcal{E}_{g,b}(M; \delta)$ denote those path components where the surface has genus g (and b boundary components).

If b = 0, there is only one possible δ and this recovers our old definition.

Stabilisation maps

Theorem (Cantero–R-W)

Let M be simply connected and of dimension at least 6.

- Any map α_{g,b} induces an isomorphism in homology in degrees
 * ≤ ^{2g-2}/₃ and an epimorphism in degrees * ≤ ^{2g+1}/₃.
- Any map β_{g,b} induces an isomorphism in homology in degrees
 * ≤ ^{2g-3}/₃ and an epimorphism in degrees * ≤ ^{2g}/₃. (If one of the
 outgoing boundary conditions on the pair of pants is contractible in
 ∂M then the map β_{g,b} is also a monomorphism in all degrees.)
- Any map $\gamma_{g,b}$ induces an isomorphism in homology in degrees $* \leq \frac{2g}{3}$ and an epimorphism in degrees $* \leq \frac{2g+3}{3}$. If $b \geq 2$, then it is always an epimorphism.

The proof of this theorem is the most delicate and technically involved of any stability theorem I have seen.

Identifying the stable homology (outline)

To identify the stable homology as that of $\Gamma_c(\mathcal{S}^{fib}(TM) \to M)$, we use a modification of an argument of Galatius, Madsen, Tillmann, and Weiss. Let $U \subset \partial M$ be a ball, and $W = M \cup_U (U \times [0, \infty))$.

• A "group completion" result, which relates the space $\mathcal{E}(M; \delta)$ to the fibre of a map

$$Bp: B(\mathcal{C}_{2}^{\partial}(U) \wr F) \longrightarrow B\mathcal{C}_{2}^{\partial}(U)$$
(1)

between classifying spaces of certain cobordism categories,

- A "parametrised surgery" result, which identifies the classifying spaces of the categories C[∂]₂(U) and C[∂]₂(U) ≥ F to those of less specialised categories C₂(U) and C₂(U) ≥ F,
- An "*h*-principle" result, which identifies the classifying space of $C_2(U)$ and $C_2(U) \wr F$ with spaces of sections.
- In total, this identifies (1) with the fibration

$$\Gamma(\mathcal{S}^{\textit{fib}}(\mathit{TW}) \to \mathit{W}) \longrightarrow \Gamma(\mathcal{S}^{\textit{fib}}(\mathit{TU} \times (0,\infty)) \to \mathit{U} \times [0,\infty))$$

whose fibre is $\Gamma_c(\mathcal{S}^{fib}(TM) \to M)$.

Define a category $C_2(U)$:

- Objects are: a real number $t \in \mathbb{R}_{>0}$ and a 1-manifold $\delta \subset \{t\} \times U$.
- Morphisms are: a pairs of real numbers $t_0 < t_1 \in \mathbb{R}_{>0}$ and a surface $X \subset [t_0, t_1] \times U$, which is collared near the boundary.
- Source and target maps are given by intersecting X with $\{t_0\} \times U$ and $\{t_1\} \times U$ respectively; composition is given by concatenation of cobordisms.
- The objects and morphisms of this category are suitably topologised.

Let $M_t = M \cup_U (U \times [0, t])$. We define a functor

$$F: \mathcal{C}_2(U) \longrightarrow \mathbf{Top}$$

by sending $\delta \subset \{t\} \times U$ to the space $\mathcal{E}(M_t; \delta)$, and given a cobordism $X \subset [t, s] \times U$ from δ to δ' , gluing it on gives a map

$$\mathcal{E}(M_t; \delta) \longrightarrow \mathcal{E}(M_s; \delta').$$

Identifying the stable homology (detail, cont.)

This in not quite true: the space $\mathcal{E}(M_t; \delta)$ consists only of *connected* surfaces, whereas morphisms in $\mathcal{C}_2(U)$ do not have to be connected. To get a functor, we must restrict to the subcategory $\mathcal{C}_2^{\partial}(U)$ where we only allow those morphisms $X \subset [t_0, t_1] \times U$ such that the pair $(X, X \cap \{t_0\} \times U)$ is connected.

Identifying the stable homology (detail, cont.)

We can form the Grothendieck construction

 $p: \mathcal{C}_2^{\partial}(U) \wr F \longrightarrow \mathcal{C}_2^{\partial}(U) \quad \Rightarrow \quad Bp: B(\mathcal{C}_2^{\partial}(U) \wr F) \longrightarrow B\mathcal{C}_2^{\partial}(U).$

The fibre of this map (over a suitable basepoint) is $\mathcal{E}(M; \delta)$.

A cobordism $X : \delta \rightsquigarrow \delta$ gives a loop in $\mathcal{BC}_2^{\partial}(U)$, and this induces the map

$$-\circ X: \mathcal{E}(M; \delta) \to \mathcal{E}(M; \delta)$$

on the fibre. This is not an equivalence: it will not even typically be surjective on π_0 . Thus Bp is not a fibration.

By suitably stabilising the functor F, we can make Bp be a homology fibration: its fibre is homology equivalent to its homotopy fibre. This is why the main theorem is homological, not homotopical; it is unavoidable.

Bibliography

For more details see

- - Federico Cantero and Oscar Randal-Williams Homological stability for spaces of surfaces, to appear.
- Søren Galatius, Ulrike Tillmann, Ib Madsen, and Michael Weiss The homotopy type of the cobordism category, Acta Math. 202 (2009), no. 2, 195-239.
- Søren Galatius and Oscar Randal-Williams
 Monoids of moduli spaces of manifolds, Geom. Topol. 14 (2010), no. 3, 1243-1302.

John L. Harer

Stability of the homology of the mapping class groups of orientable surfaces, Ann. of Math. (2) 121 (1985), no. 2, 215-249.