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Surfaces in a manifold

Let M be a smooth manifold of dimension d , possibly with boundary ∂M.

Definition

Let E(M) denote the set of pairs (X , `X ), where X ⊂ M is a subset
which has the structure of a compact, closed, connected, smooth,
2-dimensional submanifold, and `X is an orientation of X .

Choosing for each integer g ≥ 0 an oriented surface Σg of genus g , there
is a surjective function∐

g≥0

Emb(Σg ,M) −→ E(M),

given by sending an embedding to its image. We equip Emb(Σg ,M)
with the Whitney topology, and E(M) with the quotient topology.

We denote by Eg (M) the path component which is the quotient of
Emb(Σg ,M). Our aim is to study the topology of the space Eg (M), and
in particular the cohomology H∗(Eg (M)).
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The philosophy of scanning

The space E(M) has points consisting of oriented, closed surfaces in M.
What does this look like “at the microscopic scale” in M?

At a small scale, M looks like a d-dimensional vector space V , and an
oriented surface looks like an oriented affine plane R2 ⊂ V . Or, if we are
far away from the surface, it looks like ∅ ⊂ V .

That is, we locally see an oriented 2-plane in V , and a normal vector.
This normal vector can also be “infinitely long”, and we then forget
about the oriented 2-plane.
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The philosophy of scanning (cont.)

The space of oriented affine planes in V containing the origin is the
Grassmannian Gr+2 (V ). If we do not insist that the plane contains the
origin, then an oriented affine plane is given by a pair

(L ∈ Gr+2 (V ), v ∈ L⊥),

so the space of them is the total space of the vector bundle
γ⊥2 → Gr+2 (V ). If the vector v gets very long, then the affine plane is far
away from the origin: thus, adding the point ∅ gives the Thom space

Th(γ⊥2 → Gr+2 (V )).

Definition

We call this S(V ). It is natural in the vector space V .

We think of S(V ) as the space of (possibly empty) affine surfaces in V .
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The scanning map

To describe scanning honestly, we have to modify the space E(M)
slightly. Choose a Riemannian metric g on M, and let

Eν(M) ⊂ (0,∞)× E(M)

be the set of pairs (ε, X ) such that the exponential map exp : ν(X ) → M
is an embedding when restricted to vectors of length at most ε.
We define a map

M × Eν(M) −→ Sfib(TM) = tm∈MS(TmM)

(x , ε,X ) 7−→

{
∅ ∈ S(TxM) x 6∈ νε(X )

(TpX + v ⊂ TxM, v
ε−|v | ∈ (TpX )⊥) x = v ∈ νε(X )p

with adjoint the scanning map

Eν(M) −→ Γc(Sfib(TM) → M).
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The main theorem

If M is simply-connected and of dimension at least 6, one can show that
there is a natural bijection

π0(Γc(Sfib(TM) → M)) ∼= Z× H2(M; Z)

under which the scanning map sends (X , `X ) to (χ(X )
2 , [X ]). We let

Γc(Sfib(TM) → M)g denote those path components corresponding to
{1− g} × H2(M; Z).

Theorem (Cantero–R-W)

If M is simply-connected and of dimension at least 6, the scanning map

Eg (M) −→ Γc(Sfib(TM) → M)g

induces an isomorphism on integral homology in degrees ∗ ≤ 2g−2
3 .
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Relation to previous work

This result is based on, and recovers, several older results. If we let
M = Rn, we obtain the statement that

Eg (Rn) −→ ΩnTh(γ⊥2 → Gr+2 (Rn))

is an isomorphism on integral homology in degrees ∗ ≤ 2g−2
3 .

Taking the limit as n →∞,

Eg (Rn) approximates BDiff+(Σg ), the classifying space of the
diffeomorphism group of Σg ,

the right-hand side becomes the infinite loop space of a certain
spectrum (in the sense of stable homotopy theory) MTSO(2).

Theorem (Madsen–Weiss)

There is a map
BDiff+(Σg ) −→ Ω∞

• MTSO(2)

which induces an isomorphism on integral homology in degrees ∗ ≤ 2g−2
3 .
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Relation to previous work (cont.)

Theorem (Madsen–Weiss)

There is a map
BDiff+(Σg ) −→ Ω∞

• MTSO(2)

which induces an isomorphism on integral homology in degrees ∗ ≤ 2g−2
3 .

The right-hand side is independent of g , so this formulation of the
Madsen–Weiss theorem also implies that H∗(BDiff+(Σg ); Z) is
independent of g in the stable range. This was an older result, due to
Harer, with improvements to the stable range by Ivanov, Boldsen, and
R-W.

Because there is no direct way to compare BDiff+(Σg ) and
BDiff+(Σg+1), to prove Harer’s stability theorem one must work with
surfaces with boundary; we must do the same.
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Surfaces with boundary

If M is a manifold with boundary, and we are given a 1-manifold δ ⊂ M
consisting of b circles, define

E(M; δ)

to be the set of pairs (X , `X ) where X ⊂ M is a connected, smooth,
2-dimensional submanifold with boundary δ ⊂ ∂M, and `X is an
orientation.

We give this a topology as before, and let Eg ,b(M; δ) denote those path
components where the surface has genus g (and b boundary
components).

If b = 0, there is only one possible δ and this recovers our old definition.
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Stabilisation maps
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Homological stability

Theorem (Cantero–R-W)

Let M be simply connected and of dimension at least 6.

1 Any map αg ,b induces an isomorphism in homology in degrees
∗ ≤ 2g−2

3 and an epimorphism in degrees ∗ ≤ 2g+1
3 .

2 Any map βg ,b induces an isomorphism in homology in degrees
∗ ≤ 2g−3

3 and an epimorphism in degrees ∗ ≤ 2g
3 . (If one of the

outgoing boundary conditions on the pair of pants is contractible in
∂M then the map βg ,b is also a monomorphism in all degrees.)

3 Any map γg ,b induces an isomorphism in homology in degrees
∗ ≤ 2g

3 and an epimorphism in degrees ∗ ≤ 2g+3
3 . If b ≥ 2, then it is

always an epimorphism.

The proof of this theorem is the most delicate and technically involved of
any stability theorem I have seen.
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Identifying the stable homology (outline)

To identify the stable homology as that of Γc(Sfib(TM) → M), we use a
modification of an argument of Galatius, Madsen, Tillmann, and Weiss.
Let U ⊂ ∂M be a ball, and W = M ∪U (U × [0,∞)).

A “group completion” result, which relates the space E(M; δ) to the
fibre of a map

Bp : B(C∂
2 (U) o F ) −→ BC∂

2 (U) (1)

between classifying spaces of certain cobordism categories,

A “parametrised surgery” result, which identifies the classifying
spaces of the categories C∂

2 (U) and C∂
2 (U) o F to those of less

specialised categories C2(U) and C2(U) o F ,

An “h-principle” result, which identifies the classifying space of
C2(U) and C2(U) o F with spaces of sections.

In total, this identifies (1) with the fibration

Γ(Sfib(TW ) → W ) −→ Γ(Sfib(TU × (0,∞)) → U × [0,∞))

whose fibre is Γc(Sfib(TM) → M).
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Identifying the stable homology (detail)

Define a category C2(U):

Objects are: a real number t ∈ R>0 and a 1-manifold δ ⊂ {t} × U.

Morphisms are: a pairs of real numbers t0 < t1 ∈ R>0 and a surface
X ⊂ [t0, t1]× U, which is collared near the boundary.

Source and target maps are given by intersecting X with {t0} × U
and {t1} × U respectively; composition is given by concatenation of
cobordisms.

The objects and morphisms of this category are suitably topologised.

Let Mt = M ∪U (U × [0, t]). We define a functor

F : C2(U) −→ Top

by sending δ ⊂ {t} × U to the space E(Mt ; δ), and given a cobordism
X ⊂ [t, s]× U from δ to δ′, gluing it on gives a map

E(Mt ; δ) −→ E(Ms ; δ
′).

Oscar Randal-Williams Surfaces in a manifold



Identifying the stable homology (detail, cont.)

This in not quite true: the space E(Mt ; δ) consists only of connected
surfaces, whereas morphisms in C2(U) do not have to be connected.
To get a functor, we must restrict to the subcategory C∂

2 (U) where we
only allow those morphisms X ⊂ [t0, t1]× U such that the pair
(X ,X ∩ {t0} × U) is connected.

Oscar Randal-Williams Surfaces in a manifold



Identifying the stable homology (detail, cont.)

We can form the Grothendieck construction

p : C∂
2 (U) o F −→ C∂

2 (U) ⇒ Bp : B(C∂
2 (U) o F ) −→ BC∂

2 (U).

The fibre of this map (over a suitable basepoint) is E(M; δ).

A cobordism X : δ  δ gives a loop in BC∂
2 (U), and this induces the map

− ◦ X : E(M; δ) → E(M; δ)

on the fibre. This is not an equivalence: it will not even typically be
surjective on π0. Thus Bp is not a fibration.

By suitably stabilising the functor F , we can make Bp be a homology
fibration: its fibre is homology equivalent to its homotopy fibre. This is
why the main theorem is homological, not homotopical; it is unavoidable.
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