in the homology of mapping class groups

Oscar Randal-Williams

University of Cambridge

with S. Galatius and A. Kupers; available as arXiv:1805.07187.

The surface

has a mapping class group

$$\Gamma_{g,1} = \pi_0(\mathrm{Diff}_\partial(\Sigma_{g,1})).$$

Putting such surfaces next to each other provides homomorphisms

$$\Gamma_{g,1} \times \Gamma_{h,1} \xrightarrow{\circ_{g,h}} \Gamma_{g+h,1}$$

which endows

$$\bigoplus_{g\geq 0}H_*(\Gamma_{g,1};\Bbbk)$$

with an associative unital multiplication $\cdot.$

Homological stability for the $\Gamma_{g,1}$ concerns the effect on homology of

$$\Gamma_{g-1,1} \stackrel{e \times \mathit{ld}}{\longrightarrow} \Gamma_{1,1} \times \Gamma_{g-1,1} \stackrel{\circ_{1,g-1}}{\longrightarrow} \Gamma_{g,1}.$$

This is precisely the map

$$\sigma \cdot - : H_d(\Gamma_{g-1,1}; \Bbbk) \longrightarrow H_d(\Gamma_{g,1}; \Bbbk)$$

given by left multiplication by the generator $\sigma \in H_0(\Gamma_{1,1}; \Bbbk)$.

Homological stability for the $\Gamma_{g,1}$ concerns the effect on homology of

$$\Gamma_{g-1,1} \stackrel{e \times \mathit{ld}}{\longrightarrow} \Gamma_{1,1} \times \Gamma_{g-1,1} \stackrel{\circ_{1,g-1}}{\longrightarrow} \Gamma_{g,1}.$$

This is precisely the map

$$\sigma \cdot - : H_d(\Gamma_{g-1,1}; \Bbbk) \longrightarrow H_d(\Gamma_{g,1}; \Bbbk)$$

given by left multiplication by the generator $\sigma \in H_0(\Gamma_{1,1}; \Bbbk)$.

Question: For fixed d, is this map surjective / injective for $g \gg d$?

Relative homology measures the failure of homological stability. Theorem (Boldsen, R-W; earlier results by Harer, Ivanov) $H_d(\Gamma_{g,1},\Gamma_{g-1,1}; \Bbbk) = 0$ for $d \leq \frac{2g-2}{3}$.

Main Theorem (Galatius–Kupers–R-W) *There are maps*

$$\varphi_* \colon H_{d-2}(\Gamma_{g-3,1},\Gamma_{g-4,1};\mathbb{k}) \longrightarrow H_d(\Gamma_{g,1},\Gamma_{g-1,1};\mathbb{k})$$

which are epimorphisms for $d \leq \frac{3g-1}{4}$ and isomorphisms for $d \leq \frac{3g-5}{4}$
If $\mathbb{k} = \mathbb{Q}$ they are epimorphisms for $d \leq \frac{4g-1}{5}$ and isomorphisms for $d \leq \frac{4g-6}{5}$.

Main Theorem (Galatius–Kupers–R-W) There are maps

$$\varphi_* \colon H_{d-2}(\Gamma_{g-3,1},\Gamma_{g-4,1};\mathbb{k}) \longrightarrow H_d(\Gamma_{g,1},\Gamma_{g-1,1};\mathbb{k})$$
which are epimorphisms for $d \leq \frac{3g-1}{4}$ and isomorphisms for $d \leq \frac{3g-5}{4}$.
If $\mathbb{k} = \mathbb{Q}$ they are epimorphisms for $d \leq \frac{4g-1}{5}$ and isomorphisms for $d \leq \frac{4g-6}{5}$.

There are elaborations for surfaces with additional boundaries and with marked points, and for homology with certain twisted coefficients.

The idea

Stability concerns the structure of

$$\bigoplus_{g\geq 0}H_d(\Gamma_{g,1};\Bbbk)$$

as a $k[\sigma]$ -module: stability = bound on generators and relations.

The idea

Stability concerns the structure of

$$\bigoplus_{g\geq 0}H_d(\Gamma_{g,1};\Bbbk)$$

as a $k[\sigma]$ -module: stability = bound on generators and relations.

 $\bigoplus_{g\geq 0} H_*(\Gamma_{g,1}; \mathbb{k})$ is a \mathbb{k} -algebra: should study algebra generators and relations (and relations between relations, and ...) instead!

The homomorphism

$$\Gamma_{g,1} \times \Gamma_{h,1} \stackrel{\text{swap}}{\longrightarrow} \Gamma_{h,1} \times \Gamma_{g,1} \stackrel{\circ_{h,g}}{\longrightarrow} \Gamma_{g+h,1}$$

differs from $\circ_{g,h}$ by conjugation by the diffeomorphism

Conjugation acts as the identity on group homology, so the multiplication on $\bigoplus_{g\geq 0} H_*(\Gamma_{g,1}; \mathbb{k})$ is commutative.

In fact this structure makes

$$\bigsqcup_{g\geq 0} \Gamma_{g,1}$$

into a braided monoidal groupoid, so makes

$$\mathbf{R}^+ := \bigsqcup_{g \ge 0} B\Gamma_{g,1}$$

into a unital E_2 -algebra. This gives

$$H_*(\mathbf{R}^+) = \bigoplus_{g \ge 0} H_*(\Gamma_{g,1}; \Bbbk)$$

further structure: a Browder bracket

$$[-,-]: H_d(\Gamma_{g,1}; \Bbbk) \otimes H_{d'}(\Gamma_{g',1}; \Bbbk) \longrightarrow H_{d+d'+1}(\Gamma_{g+g',1}; \Bbbk)$$

as well as Dyer–Lashof operations in \mathbb{F}_p -homology, and more.

Rather than trying to study "generators" and "relations" for

$$H_*(\mathbf{R}^+) = \bigoplus_{g \ge 0} H_*(\Gamma_{g,1}; \Bbbk)$$

as an algebraic object having this rich structure, we shall study the E_2 -algebra

$$\mathbf{R}^+ = \bigsqcup_{g \ge 0} B\Gamma_{g,1}$$

and attempt to describe its E_2 -algebra "generators" and "relations".

We can worry about extracting homological information out of this later.

The little 2-cubes operad C_2 has

Associated monad

$$X \mapsto E_2(X) = \bigsqcup_{n \ge 1} \mathcal{C}_2(n) \times_{\Sigma_n} X^n$$

given by space of unordered little 2-cubes each labelled by X. Forgetting intermediate cubes gives a map

$$\alpha: E_2(E_2(X)) \longrightarrow E_2(X).$$

An non-unital E_2 -algebra $\mathbf{X} = (X, \mu)$ is a space X and a $\mu : E_2(X) \to X$ compatible with α in the evident way. Our space

$$\mathbf{R} = \bigsqcup_{g \ge 1} B\Gamma_{g,1}$$

has such a non-unital E_2 -algebra structure.

An non-unital E_2 -algebra $\mathbf{X} = (X, \mu)$ is a space X and a $\mu : E_2(X) \to X$ compatible with α in the evident way. Our space

$$\mathbf{R} = \bigsqcup_{g \ge 1} B \Gamma_{g,1}$$

has such a non-unital E_2 -algebra structure.

To record individual genera, consider ${\bf R}$ as a $\mathbb{N}\mbox{-}graded$ pointed space: the functor

$$\mathbf{R}:\mathbb{N}\longrightarrow\mathsf{Top}_{*}$$

given by $\mathbf{R}(g) = (B\Gamma_{g,1})_+$.

$$\Rightarrow \mathbf{R} \in \mathsf{Alg}_{E_2}(\mathsf{Top}^{\mathbb{N}}_*).$$

For $X \in \mathsf{Top}^{\mathbb{N}}_*$ write

$$H_{g,d}(X) := \tilde{H}_d(X(g)).$$

Attaching cells: The graded sphere $S^{g,d-1} \in \mathsf{Top}^{\mathbb{N}}_*$ is given by

$$S^{g,d-1}(g) = \begin{cases} * & \text{if } h \neq g \\ S^{d-1} & \text{if } h = g, \end{cases}$$

and the graded disc $D^{g,d}$ is similar.

A map $f : S^{g,d-1} \to \mathbf{X}$ extends to an E_2 -map $f' : \mathbf{E}_2(S^{g,d-1}) \to \mathbf{X}$ from the free E_2 -algebra on $S^{g,d-1}$, and we can form the push-out

in $\operatorname{Alg}_{E_2}(\operatorname{Top}_*^{\mathbb{N}})$. This is attaching a (g, d)-dimensional E_2 -cell to **X**. A *cellular* E_2 -*algebra* is one constructed from * by attaching cells in this way. **Detecting cells**: For $\mathbf{X} \in Alg_{E_2}(Top_*^{\mathbb{N}})$ define

$$E_2(X) = \bigvee_{n \ge 1} \mathcal{C}_2(n)_+ \wedge_{\Sigma_n} X^{\wedge n} \xrightarrow[]{\mu_X}{\longrightarrow} X \longrightarrow Q^{E_2}(\mathbf{X})$$

where *c* collapses all factors with n > 1 to the basepoint, and applies $C_2(1)_+ \rightarrow S^0$. This is the *E*₂-indecomposables of **X**.

Detecting cells: For $\mathbf{X} \in Alg_{E_2}(Top_*^{\mathbb{N}})$ define

$$E_2(X) = \bigvee_{n \ge 1} \mathcal{C}_2(n)_+ \wedge_{\Sigma_n} X^{\wedge n} \xrightarrow[]{\mu_X}{\longrightarrow} X \longrightarrow Q^{E_2}(\mathbf{X})$$

where *c* collapses all factors with n > 1 to the basepoint, and applies $C_2(1)_+ \rightarrow S^0$. This is the *E*₂-indecomposables of **X**.

Calculate: $Q^{E_2}(\mathbf{E}_2(Y)) \cong Y$.

Detecting cells: For $\mathbf{X} \in Alg_{E_2}(Top_*^{\mathbb{N}})$ define

$$E_2(X) = \bigvee_{n \ge 1} \mathcal{C}_2(n)_+ \wedge_{\Sigma_n} X^{\wedge n} \xrightarrow[]{\mu_X}{\longrightarrow} X \longrightarrow Q^{E_2}(\mathbf{X})$$

where c collapses all factors with n > 1 to the basepoint, and applies $C_2(1)_+ \rightarrow S^0$. This is the E_2 -indecomposables of **X**.

Calculate: $Q^{E_2}(\mathbf{E}_2(Y)) \cong Y$. **Observe**: $Q^{E_2} : \operatorname{Alg}_{E_2}(\operatorname{Top}_*^{\mathbb{N}}) \to \operatorname{Top}_*^{\mathbb{N}}$ preserves colimits.

$$\Rightarrow Q^{E_2}(\mathbf{X} \cup_f^{E_2} \mathbf{D}^{g,d}) \cong Q^{E_2}(\mathbf{X}) \cup_{Q^{E_2}(f)} D^{g,d},$$

so $Q^{E_2}(\mathbf{X})$ has one ordinary (g, d)-cell for each E_2 -(g, d)-cell of \mathbf{X} .

 E_2 -homology: Q^{E_2} is not homotopy invariant and must be derived: we can let

$$Q_{\mathbb{L}}^{E_2}(\mathbf{X}) = Q^{E_2}(c\mathbf{X}) = \{ egin{array}{c} \mathsf{a graded cell complex with one} \ (g,d) ext{-cell for each } E_2 ext{-}(g,d) ext{-cell of } c\mathbf{X} \} \}$$

for a cellular approximation $c\mathbf{X} \xrightarrow{\sim} \mathbf{X}$.

Write

$$H_{g,d}^{E_2}(\mathbf{X}; \mathbb{k}) := H_{g,d}(Q_{\mathbb{L}}^{E_2}(\mathbf{X}); \mathbb{k}).$$

If ${\bf k}$ is a field, the discussion so far shows

 $\dim_{\Bbbk} H_{g,d}^{E_2}(\mathbf{X}; \Bbbk) \leq \underset{E_2 \text{-cellular approximation of } \mathbf{X}.$

 E_2 -homology: Q^{E_2} is not homotopy invariant and must be derived: we can let

$$Q_{\mathbb{L}}^{E_2}(\mathbf{X}) = Q^{E_2}(c\mathbf{X}) = \{ \begin{smallmatrix} \mathsf{a} \text{ graded cell complex with one} \\ (g,d)\text{-cell for each } E_2\text{-}(g,d)\text{-cell of } c\mathbf{X} \}$$

for a cellular approximation $c\mathbf{X} \xrightarrow{\sim} \mathbf{X}$.

Write

$$H_{g,d}^{E_2}(\mathbf{X}; \mathbb{k}) := H_{g,d}(Q_{\mathbb{L}}^{E_2}(\mathbf{X}); \mathbb{k}).$$

If ${\ensuremath{\Bbbk}}$ is a field, the discussion so far shows

 $\dim_{\Bbbk} H^{E_2}_{g,d}(\mathbf{X}; \Bbbk) \leq ^{\text{number of } E_2 - (g, d) \text{-cells in any}}_{E_2 \text{-cellular approximation of } \mathbf{X}.$

Theorem

If we take \Bbbk -linear singular simplices this is sharp: a $\mathbf{X} \in Alg_{E_2}(sMod_{\Bbbk}^{\mathbb{N}})$ has a cellular approximation $c\mathbf{X} \xrightarrow{\sim} \mathbf{X}$ with $\dim_{\Bbbk} H_{g,d}^{E_2}(\mathbf{X}; \Bbbk)$ -many E_2 -(g, d)-cells. Furthermore $c\mathbf{X}$ can be taken to be "CW", not just "cellular". There is a model for $Q_{\mathbb{L}}^{E_2}(\mathbf{X})$ in terms of a two-fold bar construction; instances have been given by Getzler–Jones, Basterra–Mandell, Fresse, Francis. For the E_2 -algebra $\mathbf{R} = \bigsqcup_{g \ge 1} B\Gamma_{g,1}$ this leads us to study the simplicial complex whose *p*-simplices are (p+1) arcs on the surface $\Sigma_{g,1}$, which cut it into (p+2) components each of which have non-zero genus.

There is a model for $Q_{\mathbb{L}}^{E_2}(\mathbf{X})$ in terms of a two-fold bar construction; instances have been given by Getzler–Jones, Basterra–Mandell, Fresse, Francis. For the E_2 -algebra $\mathbf{R} = \bigsqcup_{g \ge 1} B\Gamma_{g,1}$ this leads us to study the simplicial complex whose *p*-simplices are (p+1) arcs on the surface $\Sigma_{g,1}$, which cut it into (p+2) components each of which have non-zero genus.

We show that this simplicial complex is (g - 3)-connected, so

Theorem (Galatius–Kupers–R-W) $H_{g,d}^{E_2}(\mathbf{R}) = 0$ for d < g - 1.

Thus there is an E_2 -cellular approximation $c\mathbf{R} \xrightarrow{\sim} \mathbf{R}$ only having (g, d)-cells for $d \ge g - 1$.

F. Cohen has calculated the homology of free unital E_2 -(and more generally E_k -)algebras. Working for simplicity over \mathbb{Q} , one has

 $H_{*,*}(\mathbf{E}_2^+(X); \mathbb{Q}) =$ free Gerstenhaber algebra on $H_{*,*}(X; \mathbb{Q})$

 $= \begin{smallmatrix} \mathsf{free \ graded \ commutative \ algebra \ on}_{\mathsf{the \ free \ graded \ Lie \ algebra \ on}} H_{*,*}(X;\mathbb{Q})$

F. Cohen has calculated the homology of free unital E_2 -(and more generally E_k -)algebras. Working for simplicity over \mathbb{Q} , one has

 $\begin{aligned} H_{*,*}(\mathbf{E}_2^+(X);\mathbb{Q}) &= \text{free Gerstenhaber algebra on } H_{*,*}(X;\mathbb{Q}) \\ &= \frac{\text{free graded commutative algebra on}}{\text{the free graded Lie algebra on}} H_{*,*}(X;\mathbb{Q}) \end{aligned}$

For example

$$H_{*,*}(\mathbf{E}_2^+(S_{\sigma}^{1,0});\mathbb{Q}) = \mathbb{Q}[\sigma, [\sigma, \sigma]]/([\sigma, \sigma]^2)$$

Low-dimensional homology of $\Gamma_{g,1}$ has been studied in detail by many mathematicians:

Abhau, Benson, Bödigheimer, Boes, F. Cohen, Ehrenfried, Godin, Harer, Hermann, Korkmaz, Looijenga, Meyer, Morita, Mumford, Pitsch, Sakasai, Stipsicz, Tommasi, Wang, ... What is known in homological degrees \leq 3 is:

This allows us to construct an explicit E_2 -cell structure in homological degrees ≤ 2 and d < g - 1 as:

The cells ρ and ρ' are attached along $\partial(\rho) = [\sigma, \sigma]$ and $\partial(\rho') = \sigma \cdot \tau$. The lowest slope $\frac{d}{g}$ in which there may be an additional E_2 -cell is $\frac{3}{4}$.

Homological stability: Construct the R⁺-module cofibre sequence

$$S^{1,0} \otimes \mathbf{R}^+ \xrightarrow{\sigma \cdot -} \mathbf{R}^+ \longrightarrow \mathbf{R}^+ / \sigma.$$

This has $H_{g,d}(\mathbf{R}^+/\sigma) = H_d(\Gamma_{g,1},\Gamma_{g-1,1};\mathbb{Q})$, so homological stability means finding a vanishing line for this.

Homological stability: Construct the **R**⁺-module cofibre sequence

$$S^{1,0} \otimes \mathbf{R}^+ \xrightarrow{\sigma \cdot -} \mathbf{R}^+ \longrightarrow \mathbf{R}^+ / \sigma.$$

This has $H_{g,d}(\mathbf{R}^+/\sigma) = H_d(\Gamma_{g,1},\Gamma_{g-1,1};\mathbb{Q})$, so homological stability means finding a vanishing line for this.

Filtering \mathbf{R}^+ by its E_2 -skeleta gives a spectral sequence going from

$$E^{1}_{g,p,q} = H_{g,p+q,q}(\mathbf{E}^{+}_{2}(S^{1,0,0}_{\sigma} \oplus S^{3,2,2}_{\lambda} \oplus S^{2,2,2}_{\rho} \oplus \cdots)/\sigma)$$

to $H_{g,p+q}(\mathbf{R}^+/\sigma)$, where the generators \cdots all have slope $\geq \frac{3}{4}$. Cohen's calculation identifies the E^1 -page, and the d^1 -differential satisfies $d^1(\rho) = [\sigma, \sigma]$. It is then an elementary piece of homological algebra to show that $E_{g,p,q}^2 = 0$ for $\frac{p+q}{g} < \frac{2}{3}$.

Homological stability: Construct the **R**⁺-module cofibre sequence

$$S^{1,0} \otimes \mathbf{R}^+ \xrightarrow{\sigma \cdot -} \mathbf{R}^+ \longrightarrow \mathbf{R}^+ / \sigma.$$

This has $H_{g,d}(\mathbf{R}^+/\sigma) = H_d(\Gamma_{g,1},\Gamma_{g-1,1};\mathbb{Q})$, so homological stability means finding a vanishing line for this.

Filtering \mathbf{R}^+ by its E_2 -skeleta gives a spectral sequence going from

$$E^{1}_{g,\rho,q} = H_{g,\rho+q,q}(\mathbf{E}^{+}_{2}(S^{1,0,0}_{\sigma} \oplus S^{3,2,2}_{\lambda} \oplus S^{2,2,2}_{
ho} \oplus \cdots)/\sigma)$$

to $H_{g,p+q}(\mathbf{R}^+/\sigma)$, where the generators \cdots all have slope $\geq \frac{3}{4}$. Cohen's calculation identifies the E^1 -page, and the d^1 -differential satisfies $d^1(\rho) = [\sigma, \sigma]$. It is then an elementary piece of homological algebra to show that $E_{g,p,q}^2 = 0$ for $\frac{p+q}{g} < \frac{2}{3}$. This recovers the known homological stability range, with slope $\frac{2}{3}$. Analysing the argument, all that is used particular to mapping class group—in addition to the vanishing line for E_2 -cells—is that

$$H_1(\Gamma_{1,1}) \longrightarrow H_1(\Gamma_{2,1})$$

is onto (which follows from the fact that the $\Gamma_{g,1}$ are generated by non-separating Dehn twists). This argument extends to \mathbb{Z} -coefficients.

Secondary homological stability: Construct the **R**⁺-module cofibre sequence

$$S^{3,2} \otimes \mathbf{R}^+ / \sigma \xrightarrow{\lambda \cdot -} \mathbf{R}^+ / \sigma \longrightarrow \mathbf{R}^+ / (\sigma, \lambda).$$

This gives $(\lambda \cdot -)_* : H_{d-2}(\Gamma_{g-3,1}, \Gamma_{g-4,1}; \mathbb{Q}) \to H_d(\Gamma_{g,1}, \Gamma_{g-1,1}; \mathbb{Q})$ so secondary stability (with Q-coefficients) means finding a slope $\frac{3}{4}$ vanishing line for $H_{g,d}(\mathbf{R}^+/(\sigma, \lambda))$. **Secondary homological stability**: Construct the **R**⁺-module cofibre sequence

$$S^{3,2} \otimes \mathbf{R}^+ / \sigma \xrightarrow{\lambda \cdot -} \mathbf{R}^+ / \sigma \longrightarrow \mathbf{R}^+ / (\sigma, \lambda).$$

This gives $(\lambda \cdot -)_* : H_{d-2}(\Gamma_{g-3,1}, \Gamma_{g-4,1}; \mathbb{Q}) \to H_d(\Gamma_{g,1}, \Gamma_{g-1,1}; \mathbb{Q})$ so secondary stability (with \mathbb{Q} -coefficients) means finding a slope $\frac{3}{4}$ vanishing line for $H_{g,d}(\mathbf{R}^+/(\sigma, \lambda))$.

Proceed exactly as before: there is a spectral sequence going from

$$\mathsf{E}^{1}_{g,\rho,q} = \mathsf{H}_{g,\rho+q,q}(\mathsf{E}^{1}_{2}(S^{1,0,0}_{\sigma} \oplus S^{3,2,2}_{\lambda} \oplus S^{2,2,2}_{\rho} \oplus \cdots)/(\sigma,\lambda))$$

to $H_{g,p+q}(\mathbf{R}^+/(\sigma,\lambda))$, where the generators \cdots all have slope $\geq \frac{3}{4}$. Still have $d^1(\rho) = [\sigma,\sigma]$, and again it is an elementary piece of homological algebra to show that $E_{g,p,q}^2 = 0$ for $\frac{p+q}{g} < \frac{3}{4}$.

Secondary homological stability: Construct the **R**⁺-module cofibre sequence

$$S^{3,2} \otimes \mathbf{R}^+ / \sigma \xrightarrow{\lambda \cdot -} \mathbf{R}^+ / \sigma \longrightarrow \mathbf{R}^+ / (\sigma, \lambda).$$

This gives $(\lambda \cdot -)_* : H_{d-2}(\Gamma_{g-3,1}, \Gamma_{g-4,1}; \mathbb{Q}) \to H_d(\Gamma_{g,1}, \Gamma_{g-1,1}; \mathbb{Q})$ so secondary stability (with \mathbb{Q} -coefficients) means finding a slope $\frac{3}{4}$ vanishing line for $H_{g,d}(\mathbf{R}^+/(\sigma, \lambda))$.

Proceed exactly as before: there is a spectral sequence going from

$$\mathsf{E}^{1}_{g,\rho,q} = \mathsf{H}_{g,\rho+q,q}(\mathsf{E}^{1}_{2}(S^{1,0,0}_{\sigma} \oplus S^{3,2,2}_{\lambda} \oplus S^{2,2,2}_{\rho} \oplus \cdots)/(\sigma,\lambda))$$

to $H_{g,p+q}(\mathbf{R}^+/(\sigma,\lambda))$, where the generators \cdots all have slope $\geq \frac{3}{4}$. Still have $d^1(\rho) = [\sigma,\sigma]$, and again it is an elementary piece of homological algebra to show that $E_{g,p,q}^2 = 0$ for $\frac{p+q}{g} < \frac{3}{4}$.

This argument **does not** extend to \mathbb{Z} -coefficients.

 \mathbb{Z} -coefficients (outline). We show that

$$\begin{aligned} & H_2(\Gamma_{3,1};\mathbb{Z}) \longrightarrow H_2(\Gamma_{3,1},\Gamma_{2,1};\mathbb{Z}) \stackrel{\partial}{\longrightarrow} H_1(\Gamma_{2,1};\mathbb{Z}) \\ &\text{is } \mathbb{Z}\{\lambda\} \stackrel{10}{\to} \mathbb{Z}\{\mu\} \stackrel{\partial}{\to} \mathbb{Z}/10\{\sigma \cdot \tau\} \to 0, \text{ so the map} \\ & \lambda \cdot - : H_0(\Gamma_{0,1},\Gamma_{-1,0};\mathbb{Z}) = \mathbb{Z}\{1\} \longrightarrow H_2(\Gamma_{3,1},\Gamma_{2,1};\mathbb{Z}) = \mathbb{Z}\{\mu\} \end{aligned}$$

is multiplication by 10 and so not epi or iso. So this is not the correct "secondary stability" map to try to show is an isomorphism!

 \mathbb{Z} -coefficients (outline). We show that

$$\begin{aligned} & H_2(\Gamma_{3,1};\mathbb{Z}) \longrightarrow H_2(\Gamma_{3,1},\Gamma_{2,1};\mathbb{Z}) \xrightarrow{\partial} H_1(\Gamma_{2,1};\mathbb{Z}) \\ &\text{is } \mathbb{Z}\{\lambda\} \xrightarrow{10} \mathbb{Z}\{\mu\} \xrightarrow{\partial} \mathbb{Z}/10\{\sigma \cdot \tau\} \to 0, \text{ so the map} \\ &\lambda \cdot - : H_0(\Gamma_{0,1},\Gamma_{-1,0};\mathbb{Z}) = \mathbb{Z}\{1\} \longrightarrow H_2(\Gamma_{3,1},\Gamma_{2,1};\mathbb{Z}) = \mathbb{Z}\{\mu\} \end{aligned}$$

is multiplication by 10 *and so not epi or iso*. So this is not the correct "secondary stability" map to try to show is an isomorphism!

Instead, take $\mu \in H_{3,2}(\mathbf{R}^+/\sigma)$, use that \mathbf{R}^+/σ is a \mathbf{R}^+ -module to represent it by a \mathbf{R}^+ -module map

$$\mu: S^{3,2} \otimes \mathbf{R}^+ \longrightarrow \mathbf{R}^+ / \sigma,$$

check that the \mathbf{R}^+ -module map

$$S^{3,2} \otimes S^{1,0} \otimes \mathbf{R}^+ \stackrel{S^{3,2} \otimes \sigma}{\longrightarrow} S^{3,2} \otimes \mathbf{R}^+ \stackrel{\mu}{\longrightarrow} \mathbf{R}^+ / \sigma,$$

which is an element of $H_{4,2}(\mathbf{R}^+/\sigma) = 0$, vanishes, and hence extend μ to a map

$$\varphi: S^{3,2} \otimes \mathbf{R}^+ / \sigma \longrightarrow \mathbf{R}^+ / \sigma.$$

As always in obstruction theory, there is a choice of extensions

$$\varphi: S^{3,2} \otimes \mathbf{R}^+ / \sigma \longrightarrow \mathbf{R}^+ / \sigma,$$

forming a torsor for $H_{4,3}(\mathbf{R}^+/\sigma) = ?$; never mind: will prove that they all induce isomorphisms in the $\frac{3}{4}$ -range.

As always in obstruction theory, there is a choice of extensions

$$\varphi: S^{3,2} \otimes \mathbf{R}^+ / \sigma \longrightarrow \mathbf{R}^+ / \sigma,$$

forming a torsor for $H_{4,3}(\mathbf{R}^+/\sigma) = ?$; never mind: will prove that they *all* induce isomorphisms in the $\frac{3}{4}$ -range.

Strategy: We know how to construct \mathbf{R}^+ as a CW- E_2 -algebra having no (g, d)-cells with d < g - 1; this comes with a skeletal filtration, inducing a filtration on \mathbf{R}^+/σ .

As always in obstruction theory, there is a choice of extensions

$$\varphi: S^{3,2} \otimes \mathbf{R}^+ / \sigma \longrightarrow \mathbf{R}^+ / \sigma,$$

forming a torsor for $H_{4,3}(\mathbf{R}^+/\sigma) = ?$; never mind: will prove that they *all* induce isomorphisms in the $\frac{3}{4}$ -range.

Strategy: We know how to construct \mathbf{R}^+ as a CW- E_2 -algebra having no (g, d)-cells with d < g - 1; this comes with a skeletal filtration, inducing a filtration on \mathbf{R}^+/σ .

We show that φ can be given the structure of a filtered map; this is quite subtle: need to show that all choices of φ 's come from filtered maps. This gives a filtration on the cofibre \mathbf{C}_{φ} , so a spectral sequence going from

$$H_{*,*,*}\left((S^{0,0,0}_{\mathbb{F}_{\ell}}\oplus S^{3,3,3}_{\mathbb{F}_{\ell}}\rho_{4})\otimes\overline{\mathbf{E}_{2}(S^{1,0,0}_{\mathbb{F}_{\ell}}\sigma\oplus S^{1,1,1}_{\mathbb{F}_{\ell}}\tau\oplus S^{2,2,2}_{\mathbb{F}_{\ell}}\rho_{1}\oplus S^{2,2,2}_{\mathbb{F}_{\ell}}\rho_{2}\oplus S^{3,2,2}_{\mathbb{F}_{\ell}}\rho_{3}\oplus \bigoplus_{\alpha\in I}S^{g\alpha,d_{\alpha},d_{\alpha}}_{\mathbb{F}_{\ell}})/\sigma\right)$$

to $H_{*,*}(\mathbf{C}_{\varphi}; \mathbb{F}_{\ell})$ (here $\frac{d_{\alpha}}{g_{\alpha}} \geq \frac{3}{4}$). Then we use Cohen's calculations of the \mathbb{F}_{ℓ} -homology of free E_2 -algebras, and compute the effect of the d^1 -differential: we find that $E_{g,p,q}^2 = 0$ for $\frac{p+q}{g} < \frac{3}{4}$.