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The surface

Σg ,1 = · · ·

has a mapping class group

Γg ,1 = π0(Diff∂(Σg ,1)).

Putting such surfaces next to each other provides homomorphisms

Γg ,1 × Γh,1
◦g,h−→ Γg+h,1

which endows ⊕
g≥0

H∗(Γg ,1;k)

with an associative unital multiplication ·.



Homological stability for the Γg ,1 concerns the effect on homology of

Γg−1,1
e×Id−→ Γ1,1 × Γg−1,1

◦1,g−1−→ Γg ,1.

This is precisely the map

σ · − : Hd(Γg−1,1;k) −→ Hd(Γg ,1;k)

given by left multiplication by the generator σ ∈ H0(Γ1,1;k).

Question: For fixed d , is this map surjective / injective for g � d?

Relative homology measures the failure of homological stability.

Theorem (Boldsen, R-W; earlier results by Harer, Ivanov)
Hd(Γg ,1, Γg−1,1;k) = 0 for d ≤ 2g−2

3 .
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Main Theorem (Galatius–Kupers–R-W)
There are maps

ϕ∗ : Hd−2(Γg−3,1, Γg−4,1;k) −→ Hd(Γg ,1, Γg−1,1;k)

which are epimorphisms for d ≤ 3g−1
4 and isomorphisms for d ≤ 3g−5

4 .

If k = Q they are epimorphisms for d ≤ 4g−1
5 and isomorphisms for

d ≤ 4g−6
5 .

There are elaborations for surfaces with additional boundaries and with
marked points, and for homology with certain twisted coefficients.
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The idea

Stability concerns the structure of⊕
g≥0

Hd(Γg ,1;k)

as a k[σ]-module: stability = bound on generators and relations.

⊕
g≥0 H∗(Γg ,1;k) is a k-algebra: should study algebra generators

and relations (and relations between relations, and ...) instead!
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The homomorphism

Γg ,1 × Γh,1
swap−→ Γh,1 × Γg ,1

◦h,g−→ Γg+h,1

differs from ◦g ,h by conjugation by the diffeomorphism

· · ·
g

· · ·
h

bg ,h

Conjugation acts as the identity on group homology, so the multiplication
on

⊕
g≥0 H∗(Γg ,1;k) is commutative.



In fact this structure makes ⊔
g≥0

Γg ,1

into a braided monoidal groupoid, so makes

R+ :=
⊔
g≥0

BΓg ,1

into a unital E2-algebra. This gives

H∗(R+) =
⊕
g≥0

H∗(Γg ,1;k)

further structure: a Browder bracket

[−,−] : Hd(Γg ,1;k)⊗ Hd′(Γg ′,1;k) −→ Hd+d′+1(Γg+g ′,1;k)

as well as Dyer–Lashof operations in Fp-homology, and more.



Rather than trying to study “generators” and “relations” for

H∗(R+) =
⊕
g≥0

H∗(Γg ,1;k)

as an algebraic object having this rich structure, we shall study the
E2-algebra

R+ =
⊔
g≥0

BΓg ,1

and attempt to describe its E2-algebra “generators” and “relations”.

We can worry about extracting homological information out of this later.



The little 2-cubes operad C2 has

e1

e2

en

C2(n) =

· · ·

Associated monad

X 7→ E2(X ) =
⊔
n≥1

C2(n)×Σn X
n

given by space of unordered little 2-cubes each labelled by X . Forgetting
intermediate cubes gives a map

α : E2(E2(X )) −→ E2(X ).



An non-unital E2-algebra X = (X , µ) is a space X and a µ : E2(X )→ X
compatible with α in the evident way. Our space

R =
⊔
g≥1

BΓg ,1

has such a non-unital E2-algebra structure.

To record individual genera, consider R as a N-graded pointed space: the
functor

R : N −→ Top∗

given by R(g) = (BΓg ,1)+.

⇒ R ∈ AlgE2
(TopN

∗ ).

For X ∈ TopN
∗ write

Hg ,d(X ) := H̃d(X (g)).
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Attaching cells: The graded sphere Sg ,d−1 ∈ TopN
∗ is given by

Sg ,d−1(g) =

{
∗ if h 6= g

Sd−1 if h = g ,

and the graded disc Dg ,d is similar.

A map f : Sg ,d−1 → X extends to an E2-map f ′ : E2(Sg ,d−1)→ X from
the free E2-algebra on Sg ,d−1, and we can form the push-out

E2(Sg ,d−1) X

E2(Dg ,d) X ∪E2

f Dg ,d

f ′

E2(inc)

in AlgE2
(TopN

∗ ). This is attaching a (g , d)-dimensional E2-cell to X.

A cellular E2-algebra is one constructed from ∗ by attaching cells in this
way.



Detecting cells: For X ∈ AlgE2
(TopN

∗ ) define

E2(X ) =
∨

n≥1 C2(n)+ ∧Σn X
∧n X QE2 (X)

µX

c

where c collapses all factors with n > 1 to the basepoint, and applies
C2(1)+ → S0. This is the E2-indecomposables of X.

Calculate: QE2 (E2(Y )) ∼= Y .

Observe: QE2 : AlgE2
(TopN

∗ )→ TopN
∗ preserves colimits.

⇒ QE2 (X ∪E2

f Dg ,d) ∼= QE2 (X) ∪QE2 (f ) D
g ,d ,

so QE2 (X) has one ordinary (g , d)-cell for each E2-(g , d)-cell of X.
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E2-homology: QE2 is not homotopy invariant and must be derived: we
can let

QE2

L (X) = QE2 (cX) = { a graded cell complex with one
(g , d)-cell for each E2-(g , d)-cell of cX}

for a cellular approximation cX
∼→ X.

Write
HE2

g ,d(X;k) := Hg ,d(QE2

L (X);k).

If k is a field, the discussion so far shows

dimk H
E2

g ,d(X;k) ≤ number of E2-(g , d)-cells in any
E2-cellular approximation of X.

Theorem
If we take k-linear singular simplices this is sharp: a X ∈ AlgE2

(sModN
k

)

has a cellular approximation cX
∼→ X with dimk H

E2

g ,d(X;k)-many
E2-(g , d)-cells.
Furthermore cX can be taken to be “CW”, not just “cellular”.
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There is a model for QE2

L (X) in terms of a two-fold bar construction;
instances have been given by Getzler–Jones, Basterra–Mandell, Fresse,
Francis. For the E2-algebra R =

⊔
g≥1 BΓg ,1 this leads us to study the

simplicial complex whose p-simplices are (p + 1) arcs on the surface Σg ,1,
which cut it into (p + 2) components each of which have non-zero genus.

Σ3,1

•

•

•

•

We show that this simplicial complex is (g − 3)-connected, so

Theorem (Galatius–Kupers–R-W)
HE2

g ,d(R) = 0 for d < g − 1.

Thus there is an E2-cellular approximation cR
∼→ R only having

(g , d)-cells for d ≥ g − 1.
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F. Cohen has calculated the homology of free unital E2-(and more
generally Ek -)algebras. Working for simplicity over Q, one has

H∗,∗(E+
2 (X );Q) = free Gerstenhaber algebra on H∗,∗(X ;Q)

= free graded commutative algebra on
the free graded Lie algebra on H∗,∗(X ;Q)

For example

H∗,∗(E+
2 (S1,0

σ );Q) = Q[σ, [σ, σ]]/([σ, σ]2)

0

1

2

1

Qσ1

2

Qσ2

3

Qσ3

4

Qσ4Z1
0

Q[σ, σ] Qσ[σ, σ] Qσ2[σ, σ]

d/g
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Low-dimensional homology of Γg ,1 has been studied in detail by many
mathematicians:

Abhau, Benson, Bödigheimer, Boes, F. Cohen, Ehrenfried, Godin, Harer,
Hermann, Korkmaz, Looijenga, Meyer, Morita, Mumford, Pitsch,
Sakasai, Stipsicz, Tommasi, Wang, ...



What is known in homological degrees ≤ 3 is:

0

1

2

3

4

5

2

Qσ2

3

Qσ3

4

Qσ4

5

Qσ5

6

Qσ6

7

Qσ7

1

QσQ1
0

Qτ

Q

Q

Q

Q

Qλσ2 Qλσ3 Qλσ4Qλ Qλσ

Q2Q2? ?

? ? ? ?

d/g



This allows us to construct an explicit E2-cell structure in homological
degrees ≤ 2 and d < g − 1 as:

0

1

2

3

4

5

2

Qσ2

3

Qσ3

4

Qσ4

5

Qσ5

6

Qσ6

7

Qσ7

1

QσQ1
0

Qτ

Q

Q

Q

Q

Qλσ1 Qλσ2 Qλσ3 Qλσ4Qλ

Q2Q2? ?

? ? ? ?

d/g

ρ, ρ′

?

The cells ρ and ρ′ are attached along ∂(ρ) = [σ, σ] and ∂(ρ′) = σ · τ .
The lowest slope d

g in which there may be an additional E2-cell is 3
4 .



Homological stability: Construct the R+-module cofibre sequence

S1,0 ⊗ R+ σ·−−→ R+ −→ R+/σ.

This has Hg ,d(R+/σ) = Hd(Γg ,1, Γg−1,1;Q), so homological stability
means finding a vanishing line for this.

Filtering R+ by its E2-skeleta gives a spectral sequence going from

E 1
g ,p,q = Hg ,p+q,q(E+

2 (S1,0,0
σ ⊕ S3,2,2

λ ⊕ S2,2,2
ρ ⊕ · · · )/σ)

to Hg ,p+q(R+/σ), where the generators · · · all have slope ≥ 3
4 . Cohen’s

calculation identifies the E 1-page, and the d1-differential satisfies
d1(ρ) = [σ, σ]. It is then an elementary piece of homological algebra to
show that E 2

g ,p,q = 0 for p+q
g < 2

3 .

This recovers the known homological stability range, with slope 2
3 .

Analysing the argument, all that is used particular to mapping class
group—in addition to the vanishing line for E2-cells—is that

H1(Γ1,1) −→ H1(Γ2,1)

is onto (which follows from the fact that the Γg ,1 are generated by
non-separating Dehn twists). This argument extends to Z-coefficients.
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Secondary homological stability: Construct the R+-module cofibre
sequence

S3,2 ⊗ R+/σ
λ·−−→ R+/σ −→ R+/(σ, λ).

This gives (λ · −)∗ : Hd−2(Γg−3,1, Γg−4,1;Q)→ Hd(Γg ,1, Γg−1,1;Q) so
secondary stability (with Q-coefficients) means finding a slope 3

4
vanishing line for Hg ,d(R+/(σ, λ)).

Proceed exactly as before: there is a spectral sequence going from

E 1
g ,p,q = Hg ,p+q,q(E+

2 (S1,0,0
σ ⊕ S3,2,2

λ ⊕ S2,2,2
ρ ⊕ · · · )/(σ, λ))

to Hg ,p+q(R+/(σ, λ)), where the generators · · · all have slope ≥ 3
4 . Still

have d1(ρ) = [σ, σ], and again it is an elementary piece of homological
algebra to show that E 2

g ,p,q = 0 for p+q
g < 3

4 .

This argument does not extend to Z-coefficients.
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Z-coefficients (outline). We show that

H2(Γ3,1;Z) −→ H2(Γ3,1, Γ2,1;Z)
∂−→ H1(Γ2,1;Z)

is Z{λ} 10→ Z{µ} ∂→ Z/10{σ · τ} → 0, so the map

λ · − : H0(Γ0,1, Γ−1,0;Z) = Z{1} −→ H2(Γ3,1, Γ2,1;Z) = Z{µ}

is multiplication by 10 and so not epi or iso. So this is not the correct
“secondary stability” map to try to show is an isomorphism!

Instead, take µ ∈ H3,2(R+/σ), use that R+/σ is a R+-module to
represent it by a R+-module map

µ : S3,2 ⊗ R+ −→ R+/σ,

check that the R+-module map

S3,2 ⊗ S1,0 ⊗ R+ S3,2⊗σ−→ S3,2 ⊗ R+ µ−→ R+/σ,

which is an element of H4,2(R+/σ) = 0, vanishes, and hence extend µ to
a map

ϕ : S3,2 ⊗ R+/σ −→ R+/σ.
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As always in obstruction theory, there is a choice of extensions

ϕ : S3,2 ⊗ R+/σ −→ R+/σ,

forming a torsor for H4,3(R+/σ) =?; never mind: will prove that they all
induce isomorphisms in the 3

4 -range.

Strategy: We know how to construct R+ as a CW-E2-algebra having no
(g , d)-cells with d < g − 1; this comes with a skeletal filtration, inducing
a filtration on R+/σ.

We show that ϕ can be given the structure of a filtered map; this is quite
subtle: need to show that all choices of ϕ’s come from filtered maps. This
gives a filtration on the cofibre Cϕ, so a spectral sequence going from

H∗,∗,∗
(

(S
0,0,0
F`

⊕ S
3,3,3
F`

ρ4) ⊗ E2(S
1,0,0
F`

σ ⊕ S
1,1,1
F`

τ ⊕ S
2,2,2
F`

ρ1 ⊕ S
2,2,2
F`

ρ2 ⊕ S
3,2,2
F`

ρ3 ⊕
⊕
α∈I S

gα,dα,dα
F`

)/σ

)

to H∗,∗(Cϕ;F`) (here dα
gα
≥ 3

4 ). Then we use Cohen’s calculations of the
F`-homology of free E2-algebras, and compute the effect of the
d1-differential: we find that E 2

g ,p,q = 0 for p+q
g < 3

4 .
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