Metastability in the homology of mapping class groups

Oscar Randal-Williams

University of Cambridge
with S. Galatius and A. Kupers; available as arXiv:1805.07187.

The surface

has a mapping class group

$$
\Gamma_{g, 1}=\pi_{0}\left(\operatorname{Diff}_{\partial}\left(\Sigma_{g, 1}\right)\right) .
$$

Putting such surfaces next to each other provides homomorphisms

$$
\Gamma_{g, 1} \times \Gamma_{h, 1} \xrightarrow{\mathrm{o}_{g, h}} \Gamma_{g+h, 1}
$$

which endows

$$
\bigoplus_{g \geq 0} H_{*}\left(\Gamma_{g, 1} ; \mathbb{k}\right)
$$

with an associative unital multiplication .

Homological stability for the $\Gamma_{g, 1}$ concerns the effect on homology of

$$
\Gamma_{g-1,1} \xrightarrow{e \times l d} \Gamma_{1,1} \times \Gamma_{g-1,1} \xrightarrow{\circ_{1, g-1}} \Gamma_{g, 1}
$$

This is precisely the map

$$
\sigma \cdot-: H_{d}\left(\Gamma_{g-1,1} ; \mathbb{k}\right) \longrightarrow H_{d}\left(\Gamma_{g, 1} ; \mathbb{k}\right)
$$

given by left multiplication by the generator $\sigma \in H_{0}\left(\Gamma_{1,1} ; \mathbb{k}\right)$.

Homological stability for the $\Gamma_{g, 1}$ concerns the effect on homology of

$$
\Gamma_{g-1,1} \xrightarrow{e \times l d} \Gamma_{1,1} \times \Gamma_{g-1,1} \xrightarrow{\circ_{1, g-1}} \Gamma_{g, 1}
$$

This is precisely the map

$$
\sigma \cdot-: H_{d}\left(\Gamma_{g-1,1} ; \mathbb{k}\right) \longrightarrow H_{d}\left(\Gamma_{g, 1} ; \mathbb{k}\right)
$$

given by left multiplication by the generator $\sigma \in H_{0}\left(\Gamma_{1,1} ; \mathbb{k}\right)$.
Question: For fixed d, is this map surjective / injective for $g \gg d$?
Relative homology measures the failure of homological stability.
Theorem (Boldsen, R-W; earlier results by Harer, Ivanov)
$H_{d}\left(\Gamma_{g, 1}, \Gamma_{g-1,1} ; \mathbb{k}\right)=0$ for $d \leq \frac{2 g-2}{3}$.

Main Theorem (Galatius-Kupers-R-W)

There are maps

$$
\varphi_{*}: H_{d-2}\left(\Gamma_{g-3,1}, \Gamma_{g-4,1} ; \mathbb{k}\right) \longrightarrow H_{d}\left(\Gamma_{g, 1}, \Gamma_{g-1,1} ; \mathbb{k}\right)
$$

which are epimorphisms for $d \leq \frac{3 g-1}{4}$ and isomorphisms for $d \leq \frac{3 g-5}{4}$. If $\mathbb{k}=\mathbb{Q}$ they are epimorphisms for $d \leq \frac{4 g-1}{5}$ and isomorphisms for $d \leq \frac{4 g-6}{5}$.

Main Theorem (Galatius-Kupers-R-W)

There are maps

$$
\varphi_{*}: H_{d-2}\left(\Gamma_{g-3,1}, \Gamma_{g-4,1} ; \mathbb{k}\right) \longrightarrow H_{d}\left(\Gamma_{g, 1}, \Gamma_{g-1,1} ; \mathbb{k}^{k}\right)
$$

which are epimorphisms for $d \leq \frac{3 g-1}{4}$ and isomorphisms for $d \leq \frac{3 g-5}{4}$. If $\mathbb{k}=\mathbb{Q}$ they are epimorphisms for $d \leq \frac{4 g-1}{5}$ and isomorphisms for $d \leq \frac{4 g-6}{5}$.

There are elaborations for surfaces with additional boundaries and with marked points, and for homology with certain twisted coefficients.

The idea

Stability concerns the structure of

$$
\bigoplus_{g \geq 0} H_{d}\left(\Gamma_{g, 1} ; \mathbb{k}\right)
$$

as a $\mathbb{k}[\sigma]$-module: stability $=$ bound on generators and relations.

The idea

Stability concerns the structure of

$$
\bigoplus_{g \geq 0} H_{d}\left(\Gamma_{g, 1} ; \mathbb{k}\right)
$$

as a $\mathbb{k}[\sigma]$-module: stability $=$ bound on generators and relations.
$\bigoplus_{g>0} H_{*}\left(\Gamma_{g, 1} ; \mathbb{k}\right)$ is a \mathbb{k}-algebra: should study algebra generators and relations (and relations between relations, and ...) instead!

The homomorphism

$$
\Gamma_{g, 1} \times \Gamma_{h, 1} \xrightarrow{\text { swap }} \Gamma_{h, 1} \times \Gamma_{g, 1} \xrightarrow{o_{h, g}} \Gamma_{g+h, 1}
$$

differs from $\circ_{g, h}$ by conjugation by the diffeomorphism

Conjugation acts as the identity on group homology, so the multiplication on $\bigoplus_{g \geq 0} H_{*}\left(\Gamma_{g, 1} ; \mathbb{k}\right)$ is commutative.

In fact this structure makes

$$
\bigsqcup_{g \geq 0} \Gamma_{g, 1}
$$

into a braided monoidal groupoid, so makes

$$
\mathbf{R}^{+}:=\bigsqcup_{g \geq 0} B \Gamma_{g, 1}
$$

into a unital E_{2}-algebra. This gives

$$
H_{*}\left(\mathbf{R}^{+}\right)=\bigoplus_{g \geq 0} H_{*}\left(\Gamma_{g, 1} ; \mathbb{k}\right)
$$

further structure: a Browder bracket

$$
[-,-]: H_{d}\left(\Gamma_{g, 1} ; \mathbb{k}\right) \otimes H_{d^{\prime}}\left(\Gamma_{g^{\prime}, 1} ; \mathbb{k}\right) \longrightarrow H_{d+d^{\prime}+1}\left(\Gamma_{g+g^{\prime}, 1} ; \mathbb{k}\right)
$$

as well as Dyer-Lashof operations in \mathbb{F}_{p}-homology, and more.

Rather than trying to study "generators" and "relations" for

$$
H_{*}\left(\mathbf{R}^{+}\right)=\bigoplus_{g \geq 0} H_{*}\left(\Gamma_{g, 1} ; \mathbb{k}\right)
$$

as an algebraic object having this rich structure, we shall study the E_{2}-algebra

$$
\mathbf{R}^{+}=\bigsqcup_{g \geq 0} B \Gamma_{g, 1}
$$

and attempt to describe its E_{2}-algebra "generators" and "relations".
We can worry about extracting homological information out of this later.

The little 2 -cubes operad \mathcal{C}_{2} has

Associated monad

$$
X \mapsto E_{2}(X)=\bigsqcup_{n \geq 1} \mathcal{C}_{2}(n) \times \Sigma_{n} X^{n}
$$

given by space of unordered little 2-cubes each labelled by X. Forgetting intermediate cubes gives a map

$$
\alpha: E_{2}\left(E_{2}(X)\right) \longrightarrow E_{2}(X) .
$$

An non-unital E_{2}-algebra $\mathbf{X}=(X, \mu)$ is a space X and a $\mu: E_{2}(X) \rightarrow X$ compatible with α in the evident way. Our space

$$
\mathbf{R}=\bigsqcup_{g \geq 1} B \Gamma_{g, 1}
$$

has such a non-unital E_{2}-algebra structure.

An non-unital E_{2}-algebra $\mathbf{X}=(X, \mu)$ is a space X and a $\mu: E_{2}(X) \rightarrow X$ compatible with α in the evident way. Our space

$$
\mathbf{R}=\bigsqcup_{g \geq 1} B \Gamma_{g, 1}
$$

has such a non-unital E_{2}-algebra structure.
To record individual genera, consider \mathbf{R} as a \mathbb{N}-graded pointed space: the functor

$$
\mathbf{R}: \mathbb{N} \longrightarrow \mathrm{Top}_{*}
$$

given by $\mathbf{R}(g)=\left(B \Gamma_{g, 1}\right)_{+}$.

$$
\Rightarrow \mathbf{R} \in \operatorname{Alg}_{E_{2}}\left(\operatorname{Top}_{*}^{\mathbb{N}}\right)
$$

For $X \in \operatorname{Top}_{*}^{\mathbb{N}}$ write

$$
H_{g, d}(X):=\tilde{H}_{d}(X(g)) .
$$

Attaching cells: The graded sphere $S^{g, d-1} \in \operatorname{Top}_{*}^{\mathbb{N}}$ is given by

$$
S^{g, d-1}(g)= \begin{cases}* & \text { if } h \neq g \\ S^{d-1} & \text { if } h=g\end{cases}
$$

and the graded disc $D^{g, d}$ is similar.
A map $f: S^{g, d-1} \rightarrow \mathbf{X}$ extends to an E_{2}-map $f^{\prime}: \mathbf{E}_{2}\left(S^{g, d-1}\right) \rightarrow \mathbf{X}$ from the free E_{2}-algebra on $S^{g, d-1}$, and we can form the push-out

in $\operatorname{Alg}_{E_{2}}\left(\operatorname{Top}_{*}^{\mathbb{N}}\right)$. This is attaching a (g, d)-dimensional E_{2}-cell to \mathbf{X}.
A cellular E_{2}-algebra is one constructed from $*$ by attaching cells in this way.

Detecting cells: For $\mathbf{X} \in \operatorname{Alg}_{E_{2}}\left(\operatorname{Top}_{*}^{\mathbb{N}}\right)$ define

$$
E_{2}(X)=\bigvee_{n \geq 1} \mathcal{C}_{2}(n)_{+} \wedge_{\Sigma_{n}} X^{\wedge n} \xrightarrow[c]{\stackrel{\mu_{X}}{\longrightarrow}} X \longrightarrow Q^{E_{2}}(\mathbf{X})
$$

where c collapses all factors with $n>1$ to the basepoint, and applies $\mathcal{C}_{2}(1)_{+} \rightarrow S^{0}$. This is the E_{2}-indecomposables of \mathbf{X}.

Detecting cells: For $\mathbf{X} \in \operatorname{Alg}_{E_{2}}\left(\operatorname{Top}_{*}^{\mathbb{N}}\right)$ define

$$
E_{2}(X)=\bigvee_{n \geq 1} \mathcal{C}_{2}(n)_{+} \wedge_{\Sigma_{n}} X^{\wedge n} \xrightarrow[c]{\stackrel{\mu_{X}}{\longrightarrow}} X \longrightarrow Q^{E_{2}}(\mathbf{X})
$$

where c collapses all factors with $n>1$ to the basepoint, and applies $\mathcal{C}_{2}(1)_{+} \rightarrow S^{0}$. This is the E_{2}-indecomposables of \mathbf{X}.

Calculate: $Q^{E_{2}}\left(\mathbf{E}_{2}(Y)\right) \cong Y$.

Detecting cells: For $\mathbf{X} \in \operatorname{Alg}_{E_{2}}\left(\operatorname{Top}_{*}^{\mathbb{N}}\right)$ define

$$
E_{2}(X)=\bigvee_{n \geq 1} \mathcal{C}_{2}(n)_{+} \wedge_{\Sigma_{n}} X^{\wedge n} \xrightarrow[c]{\stackrel{\mu_{X}}{\longrightarrow}} X \longrightarrow Q^{E_{2}}(\mathbf{X})
$$

where c collapses all factors with $n>1$ to the basepoint, and applies $\mathcal{C}_{2}(1)_{+} \rightarrow S^{0}$. This is the E_{2}-indecomposables of \mathbf{X}.

Calculate: $Q^{E_{2}}\left(\mathbf{E}_{2}(Y)\right) \cong Y$.
Observe: $Q^{E_{2}}: \operatorname{Alg}_{E_{2}}\left(\operatorname{Top}_{*}^{\mathbb{N}}\right) \rightarrow \operatorname{Top}_{*}^{\mathbb{N}}$ preserves colimits.

$$
\Rightarrow Q^{E_{2}}\left(\mathbf{X} \cup_{f}^{E_{2}} \mathbf{D}^{g, d}\right) \cong Q^{E_{2}}(\mathbf{X}) \cup_{Q^{E_{2}(f)}} D^{g, d}
$$

so $Q^{E_{2}}(\mathbf{X})$ has one ordinary (g, d)-cell for each $E_{2}-(g, d)$-cell of \mathbf{X}.
E_{2}-homology: $Q^{E_{2}}$ is not homotopy invariant and must be derived: we can let

$$
Q_{\mathbb{L}}^{E_{2}}(\mathbf{X})=Q^{E_{2}}(c \mathbf{X})=\left\{\begin{array}{c}
\text { a graded cell complex with one } \\
(g, d) \text {-cell for each } E_{2} \text { - }(g, d) \text {-cell of } c \mathbf{X}
\end{array}\right\}
$$

for a cellular approximation $c \mathbf{X} \xrightarrow{\sim} \mathbf{X}$.

Write

$$
H_{g, d}^{E_{2}}(\mathbf{X} ; \mathbb{k}):=H_{g, d}\left(Q_{\mathbb{L}}^{E_{2}}(\mathbf{X}) ; \mathbb{k}\right) .
$$

If \mathbb{k} is a field, the discussion so far shows

$$
\operatorname{dim}_{\mathbb{k}} H_{g, d}^{E_{2}}(\mathbf{X} ; \mathbb{k}) \leq \begin{gathered}
\text { number of } E_{2}-(g, d) \text {-cells in any } \\
E_{2} \text {-cellular approximation of } \mathbf{X} .
\end{gathered}
$$

E_{2}-homology: $Q^{E_{2}}$ is not homotopy invariant and must be derived: we can let

$$
Q_{\mathbb{L}}^{E_{2}}(\mathbf{X})=Q^{E_{2}}(c \mathbf{X})=\left\{\begin{array}{c}
\text { a graded cell complex with one }
\end{array}(g, d) \text {-cell for each } E_{2}-(g, d) \text {-cell of } c \mathbf{X}\right\}
$$

for a cellular approximation $c \mathbf{X} \xrightarrow{\sim} \mathbf{X}$.

Write

$$
H_{g, d}^{E_{2}}(\mathbf{X} ; \mathbb{k}):=H_{g, d}\left(Q_{\mathbb{L}}^{E_{2}}(\mathbf{X}) ; \mathbb{k}\right) .
$$

If \mathbb{k} is a field, the discussion so far shows

Theorem
If we take \mathbb{k}-linear singular simplices this is sharp: a $\mathbf{X} \in \operatorname{Alg}_{E_{2}}\left(\operatorname{sMod}_{\mathbb{k}}^{\mathbb{N}}\right)$ has a cellular approximation $c \mathbf{X} \xrightarrow{\sim} \mathbf{X}$ with $\operatorname{dim}_{k} H_{g, d}^{E_{2}}(\mathbf{X} ; \mathbb{k})$-many E_{2} - (g, d)-cells.
Furthermore $c \mathbf{X}$ can be taken to be "CW", not just "cellular".

There is a model for $Q_{\mathbb{L}}^{E_{2}}(\mathbf{X})$ in terms of a two-fold bar construction; instances have been given by Getzler-Jones, Basterra-Mandell, Fresse, Francis. For the E_{2}-algebra $\mathbf{R}=\bigsqcup_{g \geq 1} B \Gamma_{g, 1}$ this leads us to study the simplicial complex whose p-simplices are $(p+1)$ arcs on the surface $\Sigma_{g, 1}$, which cut it into ($p+2$) components each of which have non-zero genus.

There is a model for $Q_{\mathbb{L}}^{E_{2}}(\mathbf{X})$ in terms of a two-fold bar construction; instances have been given by Getzler-Jones, Basterra-Mandell, Fresse, Francis. For the E_{2}-algebra $\mathbf{R}=\bigsqcup_{g \geq 1} B \Gamma_{g, 1}$ this leads us to study the simplicial complex whose p-simplices are $(p+1)$ arcs on the surface $\Sigma_{g, 1}$, which cut it into $(p+2)$ components each of which have non-zero genus.

We show that this simplicial complex is $(g-3)$-connected, so
Theorem (Galatius-Kupers-R-W)
$H_{g, d}^{E_{2}}(\mathbf{R})=0$ for $d<g-1$.
Thus there is an E_{2}-cellular approximation $c \mathbf{R} \xrightarrow{\sim} \mathbf{R}$ only having (g, d)-cells for $d \geq g-1$.
F. Cohen has calculated the homology of free unital E_{2}-(and more generally E_{k}-)algebras. Working for simplicity over \mathbb{Q}, one has

$$
\begin{aligned}
H_{*, *}\left(\mathbf{E}_{2}^{+}(X) ; \mathbb{Q}\right) & =\text { free Gerstenhaber algebra on } H_{*, *}(X ; \mathbb{Q}) \\
& =\begin{array}{c}
\text { free graded commutative algebra on } \\
\text { the free graded Lie algebra on }
\end{array} H_{*, *}(X ; \mathbb{Q})
\end{aligned}
$$

F. Cohen has calculated the homology of free unital E_{2}-(and more generally E_{k}-)algebras. Working for simplicity over \mathbb{Q}, one has

$$
\begin{aligned}
& H_{*, *}\left(\mathbf{E}_{2}^{+}(X) ; \mathbb{Q}\right)=\text { free Gerstenhaber algebra on } H_{*, *}(X ; \mathbb{Q}) \\
&=\begin{array}{c}
\text { free graded commutative algebra on } \\
\text { the free graded Lie algebra on }
\end{array} \\
& H_{*, *}(X ; \mathbb{Q})
\end{aligned}
$$

For example

$$
H_{*, *}\left(\mathbf{E}_{2}^{+}\left(S_{\sigma}^{1,0}\right) ; \mathbb{Q}\right)=\mathbb{Q}[\sigma,[\sigma, \sigma]] /\left([\sigma, \sigma]^{2}\right)
$$

Low-dimensional homology of $\Gamma_{g, 1}$ has been studied in detail by many mathematicians:

Abhau, Benson, Bödigheimer, Boes, F. Cohen, Ehrenfried, Godin, Harer, Hermann, Korkmaz, Looijenga, Meyer, Morita, Mumford, Pitsch, Sakasai, Stipsicz, Tommasi, Wang, ...

What is known in homological degrees ≤ 3 is:

This allows us to construct an explicit E_{2}-cell structure in homological degrees ≤ 2 and $d<g-1$ as:

The cells ρ and ρ^{\prime} are attached along $\partial(\rho)=[\sigma, \sigma]$ and $\partial\left(\rho^{\prime}\right)=\sigma \cdot \tau$. The lowest slope $\frac{d}{g}$ in which there may be an additional E_{2}-cell is $\frac{3}{4}$.

Homological stability: Construct the \mathbf{R}^{+}-module cofibre sequence

$$
S^{1,0} \otimes \mathbf{R}^{+} \xrightarrow{\sigma \cdot-} \mathbf{R}^{+} \longrightarrow \mathbf{R}^{+} / \sigma .
$$

This has $H_{g, d}\left(\mathbf{R}^{+} / \sigma\right)=H_{d}\left(\Gamma_{g, 1}, \Gamma_{g-1,1} ; \mathbb{Q}\right)$, so homological stability means finding a vanishing line for this.

Homological stability: Construct the \mathbf{R}^{+}-module cofibre sequence

$$
S^{1,0} \otimes \mathbf{R}^{+} \xrightarrow{\sigma \cdot-} \mathbf{R}^{+} \longrightarrow \mathbf{R}^{+} / \sigma
$$

This has $H_{g, d}\left(\mathbf{R}^{+} / \sigma\right)=H_{d}\left(\Gamma_{g, 1}, \Gamma_{g-1,1} ; \mathbb{Q}\right)$, so homological stability means finding a vanishing line for this.

Filtering \mathbf{R}^{+}by its E_{2}-skeleta gives a spectral sequence going from

$$
E_{g, p, q}^{1}=H_{g, p+q, q}\left(\mathbf{E}_{2}^{+}\left(S_{\sigma}^{1,0,0} \oplus S_{\lambda}^{3,2,2} \oplus S_{\rho}^{2,2,2} \oplus \cdots\right) / \sigma\right)
$$

to $H_{g, p+q}\left(\mathbf{R}^{+} / \sigma\right)$, where the generators \cdots all have slope $\geq \frac{3}{4}$. Cohen's calculation identifies the E^{1}-page, and the d^{1}-differential satisfies $d^{1}(\rho)=[\sigma, \sigma]$. It is then an elementary piece of homological algebra to show that $E_{g, p, q}^{2}=0$ for $\frac{p+q}{g}<\frac{2}{3}$.

Homological stability: Construct the \mathbf{R}^{+}-module cofibre sequence

$$
S^{1,0} \otimes \mathbf{R}^{+} \xrightarrow{\sigma \cdot} \mathbf{R}^{+} \longrightarrow \mathbf{R}^{+} / \sigma .
$$

This has $H_{g, d}\left(\mathbf{R}^{+} / \sigma\right)=H_{d}\left(\Gamma_{g, 1}, \Gamma_{g-1,1} ; \mathbb{Q}\right)$, so homological stability means finding a vanishing line for this.

Filtering \mathbf{R}^{+}by its E_{2}-skeleta gives a spectral sequence going from

$$
E_{g, p, q}^{1}=H_{g, p+q, q}\left(\mathbf{E}_{2}^{+}\left(S_{\sigma}^{1,0,0} \oplus S_{\lambda}^{3,2,2} \oplus S_{\rho}^{2,2,2} \oplus \cdots\right) / \sigma\right)
$$

to $H_{g, p+q}\left(\mathbf{R}^{+} / \sigma\right)$, where the generators \cdots all have slope $\geq \frac{3}{4}$. Cohen's calculation identifies the E^{1}-page, and the d^{1}-differential satisfies $d^{1}(\rho)=[\sigma, \sigma]$. It is then an elementary piece of homological algebra to show that $E_{g, p, q}^{2}=0$ for $\frac{p+q}{g}<\frac{2}{3}$.
This recovers the known homological stability range, with slope $\frac{2}{3}$. Analysing the argument, all that is used particular to mapping class group-in addition to the vanishing line for E_{2}-cells-is that

$$
H_{1}\left(\Gamma_{1,1}\right) \longrightarrow H_{1}\left(\Gamma_{2,1}\right)
$$

is onto (which follows from the fact that the $\Gamma_{g, 1}$ are generated by non-separating Dehn twists). This argument extends to \mathbb{Z}-coefficients.

Secondary homological stability: Construct the \mathbf{R}^{+}-module cofibre sequence

$$
S^{3,2} \otimes \mathbf{R}^{+} / \sigma \xrightarrow{\lambda \cdot-} \mathbf{R}^{+} / \sigma \longrightarrow \mathbf{R}^{+} /(\sigma, \lambda) .
$$

This gives $(\lambda \cdot-)_{*}: H_{d-2}\left(\Gamma_{g-3,1}, \Gamma_{g-4,1} ; \mathbb{Q}\right) \rightarrow H_{d}\left(\Gamma_{g, 1}, \Gamma_{g-1,1 ;} ; \mathbb{Q}\right)$ so secondary stability (with \mathbb{Q}-coefficients) means finding a slope $\frac{3}{4}$ vanishing line for $H_{g, d}\left(\mathbf{R}^{+} /(\sigma, \lambda)\right)$.

Secondary homological stability: Construct the \mathbf{R}^{+}-module cofibre sequence

$$
S^{3,2} \otimes \mathbf{R}^{+} / \sigma \xrightarrow{\lambda \cdot-} \mathbf{R}^{+} / \sigma \longrightarrow \mathbf{R}^{+} /(\sigma, \lambda) .
$$

This gives $(\lambda \cdot-)_{*}: H_{d-2}\left(\Gamma_{g-3,1}, \Gamma_{g-4,1} ; \mathbb{Q}\right) \rightarrow H_{d}\left(\Gamma_{g, 1}, \Gamma_{g-1,1} ; \mathbb{Q}\right)$ so secondary stability (with \mathbb{Q}-coefficients) means finding a slope $\frac{3}{4}$ vanishing line for $H_{g, d}\left(\mathbf{R}^{+} /(\sigma, \lambda)\right)$.

Proceed exactly as before: there is a spectral sequence going from

$$
E_{g, p, q}^{1}=H_{g, p+q, q}\left(\mathbf{E}_{2}^{+}\left(S_{\sigma}^{1,0,0} \oplus S_{\lambda}^{3,2,2} \oplus S_{\rho}^{2,2,2} \oplus \cdots\right) /(\sigma, \lambda)\right)
$$

to $H_{g, p+q}\left(\mathbf{R}^{+} /(\sigma, \lambda)\right)$, where the generators \cdots all have slope $\geq \frac{3}{4}$. Still have $d^{1}(\rho)=[\sigma, \sigma]$, and again it is an elementary piece of homological algebra to show that $E_{g, p, q}^{2}=0$ for $\frac{p+q}{g}<\frac{3}{4}$.

Secondary homological stability: Construct the \mathbf{R}^{+}-module cofibre sequence

$$
S^{3,2} \otimes \mathbf{R}^{+} / \sigma \xrightarrow{\lambda \cdot-} \mathbf{R}^{+} / \sigma \longrightarrow \mathbf{R}^{+} /(\sigma, \lambda) .
$$

This gives $(\lambda \cdot-)_{*}: H_{d-2}\left(\Gamma_{g-3,1}, \Gamma_{g-4,1} ; \mathbb{Q}\right) \rightarrow H_{d}\left(\Gamma_{g, 1}, \Gamma_{g-1,1} ; \mathbb{Q}\right)$ so secondary stability (with \mathbb{Q}-coefficients) means finding a slope $\frac{3}{4}$ vanishing line for $H_{g, d}\left(\mathbf{R}^{+} /(\sigma, \lambda)\right)$.

Proceed exactly as before: there is a spectral sequence going from

$$
E_{g, p, q}^{1}=H_{g, p+q, q}\left(\mathbf{E}_{2}^{+}\left(S_{\sigma}^{1,0,0} \oplus S_{\lambda}^{3,2,2} \oplus S_{\rho}^{2,2,2} \oplus \cdots\right) /(\sigma, \lambda)\right)
$$

to $H_{g, p+q}\left(\mathbf{R}^{+} /(\sigma, \lambda)\right)$, where the generators \cdots all have slope $\geq \frac{3}{4}$. Still have $d^{1}(\rho)=[\sigma, \sigma]$, and again it is an elementary piece of homological algebra to show that $E_{g, p, q}^{2}=0$ for $\frac{p+q}{g}<\frac{3}{4}$.

This argument does not extend to \mathbb{Z}-coefficients.
\mathbb{Z}-coefficients (outline). We show that

$$
H_{2}\left(\Gamma_{3,1} ; \mathbb{Z}\right) \longrightarrow H_{2}\left(\Gamma_{3,1}, \Gamma_{2,1} ; \mathbb{Z}\right) \xrightarrow{\partial} H_{1}\left(\Gamma_{2,1} ; \mathbb{Z}\right)
$$

is $\mathbb{Z}\{\lambda\} \xrightarrow{\text { 10 }} \mathbb{Z}\{\mu\} \xrightarrow{\partial} \mathbb{Z} / 10\{\sigma \cdot \tau\} \rightarrow 0$, so the map

$$
\lambda \cdot-: H_{0}\left(\Gamma_{0,1}, \Gamma_{-1,0} ; \mathbb{Z}\right)=\mathbb{Z}\{1\} \longrightarrow H_{2}\left(\Gamma_{3,1}, \Gamma_{2,1} ; \mathbb{Z}\right)=\mathbb{Z}\{\mu\}
$$

is multiplication by 10 and so not epi or iso. So this is not the correct "secondary stability" map to try to show is an isomorphism!
\mathbb{Z}-coefficients (outline). We show that

$$
H_{2}\left(\Gamma_{3,1} ; \mathbb{Z}\right) \longrightarrow H_{2}\left(\Gamma_{3,1}, \Gamma_{2,1} ; \mathbb{Z}\right) \xrightarrow{\partial} H_{1}\left(\Gamma_{2,1} ; \mathbb{Z}\right)
$$

is $\mathbb{Z}\{\lambda\} \xrightarrow{10} \mathbb{Z}\{\mu\} \xrightarrow{\partial} \mathbb{Z} / 10\{\sigma \cdot \tau\} \rightarrow 0$, so the map

$$
\lambda \cdot-: H_{0}\left(\Gamma_{0,1}, \Gamma_{-1,0} ; \mathbb{Z}\right)=\mathbb{Z}\{1\} \longrightarrow H_{2}\left(\Gamma_{3,1}, \Gamma_{2,1} ; \mathbb{Z}\right)=\mathbb{Z}\{\mu\}
$$

is multiplication by 10 and so not epi or iso. So this is not the correct "secondary stability" map to try to show is an isomorphism!

Instead, take $\mu \in H_{3,2}\left(\mathbf{R}^{+} / \sigma\right)$, use that \mathbf{R}^{+} / σ is a \mathbf{R}^{+}-module to represent it by a \mathbf{R}^{+}-module map

$$
\mu: S^{3,2} \otimes \mathbf{R}^{+} \longrightarrow \mathbf{R}^{+} / \sigma
$$

check that the \mathbf{R}^{+}-module map

$$
S^{3,2} \otimes S^{1,0} \otimes \mathbf{R}^{+} \stackrel{S^{3,2} \otimes \sigma}{\longrightarrow} S^{3,2} \otimes \mathbf{R}^{+} \xrightarrow{\mu} \mathbf{R}^{+} / \sigma,
$$

which is an element of $H_{4,2}\left(\mathbf{R}^{+} / \sigma\right)=0$, vanishes, and hence extend μ to a map

$$
\varphi: S^{3,2} \otimes \mathbf{R}^{+} / \sigma \longrightarrow \mathbf{R}^{+} / \sigma .
$$

As always in obstruction theory, there is a choice of extensions

$$
\varphi: S^{3,2} \otimes \mathbf{R}^{+} / \sigma \longrightarrow \mathbf{R}^{+} / \sigma
$$

forming a torsor for $H_{4,3}\left(\mathbf{R}^{+} / \sigma\right)=$?; never mind: will prove that they all induce isomorphisms in the $\frac{3}{4}$-range.

As always in obstruction theory, there is a choice of extensions

$$
\varphi: S^{3,2} \otimes \mathbf{R}^{+} / \sigma \longrightarrow \mathbf{R}^{+} / \sigma
$$

forming a torsor for $H_{4,3}\left(\mathbf{R}^{+} / \sigma\right)=$?; never mind: will prove that they all induce isomorphisms in the $\frac{3}{4}$-range.

Strategy: We know how to construct \mathbf{R}^{+}as a $\mathrm{CW}-E_{2}$-algebra having no (g, d)-cells with $d<g-1$; this comes with a skeletal filtration, inducing a filtration on \mathbf{R}^{+} / σ.

As always in obstruction theory, there is a choice of extensions

$$
\varphi: S^{3,2} \otimes \mathbf{R}^{+} / \sigma \longrightarrow \mathbf{R}^{+} / \sigma
$$

forming a torsor for $H_{4,3}\left(\mathbf{R}^{+} / \sigma\right)=$?; never mind: will prove that they all induce isomorphisms in the $\frac{3}{4}$-range.

Strategy: We know how to construct \mathbf{R}^{+}as a $\mathrm{CW}-E_{2}$-algebra having no (g, d)-cells with $d<g-1$; this comes with a skeletal filtration, inducing a filtration on \mathbf{R}^{+} / σ.

We show that φ can be given the structure of a filtered map; this is quite subtle: need to show that all choices of φ 's come from filtered maps. This gives a filtration on the cofibre \mathbf{C}_{φ}, so a spectral sequence going from

to $H_{*, *}\left(\mathbf{C}_{\varphi} ; \mathbb{F}_{\ell}\right)$ (here $\left.\frac{d_{\alpha}}{g_{\alpha}} \geq \frac{3}{4}\right)$. Then we use Cohen's calculations of the \mathbb{F}_{ℓ}-homology of free E_{2}-algebras, and compute the effect of the d^{1}-differential: we find that $E_{g, p, q}^{2}=0$ for $\frac{p+q}{g}<\frac{3}{4}$.

