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has a mapping class group
Mg1 = mo(Diffy(Xg.1))-
Putting such surfaces next to each other provides homomorphisms

Og,h
Mg X Th1 —> Tgina

which endows

@H*(rg-,l;]k)

g20

with an associative unital multiplication -.



Homological stability for the ', 1 concerns the effect on homology of

exId O1,g—1
Fg_Ll — F171 X Fg_l,l — rg71.

This is precisely the map
g — . Hd(l'g,l_yl;lk) — Hd(l'gyl;Ik)

given by left multiplication by the generator o € Hy(I'1,1; k).



Homological stability for the ', 1 concerns the effect on homology of

exId O1,g—1
Fg_Ll — F171 X Fg_l,l — rg71.

This is precisely the map
g — . Hd(l'g,l_rl; ]k) — Hd(l'gyl; Ik)
given by left multiplication by the generator o € Hy(I'1,1; k).

Question: For fixed d, is this map surjective / injective for g > d?

Relative homology measures the failure of homological stability.

Theorem (Boldsen, R-W; earlier results by Harer, lvanov)
Hg(Tg1,Tg—11;k) =0 for d < 262,



Main Theorem (Galatius—Kupers—R-W)

There are maps

0t Hi—o(Tg—31,Tg—a1:k) — Ha(Mg1,Mg—1,1:k)

3g—5

and isomorphisms for d < =;

. . . 3g—1
which are epimorphisms for d < ==

If k = Q they are epimorphisms for d < 4@%1 and isomorphisms for
d <0
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There are maps

0t Hi—o(Tg—31,Tg—a1:k) — Ha(Mg1,Mg—1,1:k)
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and isomorphisms for d < =;

which are epimorphisms for d <

If k = Q they are epimorphisms for d < 4@%1 and isomorphisms for
d < %0

There are elaborations for surfaces with additional boundaries and with
marked points, and for homology with certain twisted coefficients.



The idea

Stability concerns the structure of

D Ha(lg1i k)

>0

as a k[o]-module: stability = bound on generators and relations.



The idea

Stability concerns the structure of

D Ha(lg1i k)

g>0
as a k[o]-module: stability = bound on generators and relations.

@D,>0 H:(Tg,1; k) is a k-algebra: should study algebra generators
and relations (and relations between relations, and ...) instead!



The homomorphism
I'g,l X F,,,l Sﬂ rh,1 X rg,l m I—ngh,l

differs from o, , by conjugation by the diffeomorphism
) C /J ) C

Conjugation acts as the identity on group homology, so the multiplication
on @, Hi(Tg,1; k) is commutative.

0




In fact this structure makes

L Tea

g20

into a braided monoidal groupoid, so makes

RT:=| | Brga

g>0

into a unital Ex-algebra. This gives

H.(RY) = @D Hu(Mgai )

g>0
further structure: a Browder bracket
[—, —] . Hd(rg,l; ]k) ® Hd/(rg/,l; ]k) — Hd+d/+1(rg+g/7l; Ik)

as well as Dyer—Lashof operations in [F,-homology, and more.



Rather than trying to study “generators” and “relations” for

H.(R") = P Hu(Mg1: k)

g>0

as an algebraic object having this rich structure, we shall study the

E>-algebra
R =| | Blga
g>0

and attempt to describe its E,-algebra “generators” and “relations”.

We can worry about extracting homological information out of this later.



The little 2-cubes operad C, has

Cz(n) =

€1

€n

Associated monad

X B(X) = | | Ca(n) x5, X"

n>1

given by space of unordered little 2-cubes each labelled by X. Forgetting
intermediate cubes gives a map

(a2 E2(E2(X)) — EQ(X)



An non-unital Ey-algebra X = (X, 1) is a space X and a p : E3(X) — X
compatible with « in the evident way. Our space

R= |_| Bl .

g>1

has such a non-unital E;-algebra structure.



An non-unital Ey-algebra X = (X, 1) is a space X and a p : E3(X) — X
compatible with « in the evident way. Our space

R=||Brg.

g1
has such a non-unital E;-algebra structure.

To record individual genera, consider R as a N-graded pointed space: the

functor
R:N — Top,

given by R(g) = (Blg1)+.
=Re AIgEZ(TopT).

For X € Topf write 3
Hg.a(X) := Ha(X(g)).



Attaching cells: The graded sphere 58971 ¢ Topf is given by

. ifh#g
ced-1,) _ ) * i
() {Sdl if h=g,

and the graded disc D89 is similar.

A map f: S8971 5 X extends to an Ey-map f’ : Ep(S8971) — X from
the free E,-algebra on S&:971 and we can form the push-out

Ey(Sed-1) —

J{Ez(inc) J

Ex(D89) —— XUP D&

in /—\IgEz(Topr). This is attaching a (g, d)-dimensional Ey-cell to X.

A cellular Ey-algebra is one constructed from x by attaching cells in this
way.



Detecting cells: For X € Algg, (Top.') define
x
Ex(X) = V51 C2(n)+ Ag, X7 — X —— Q%(X)

where ¢ collapses all factors with n > 1 to the basepoint, and applies
Ca(1); — S°. This is the Ey-indecomposables of X.
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Calculate: QB2 (Ex(Y)) =Y.



Detecting cells: For X € Algg, (Top.') define
x
Ex(X) = V51 C2(n)+ Ag, X7 — X —— Q%(X)

where ¢ collapses all factors with n > 1 to the basepoint, and applies
Ca(1); — S°. This is the Ey-indecomposables of X.
Calculate: QB2 (Ex(Y)) =Y.
Observe: QF : AIgEQ(Toij) — Top! preserves colimits.
= QEZ(X Ufz Dg,d) o QEQ(X) UQEz(f) Dg,d,
so QE2(X) has one ordinary (g, d)-cell for each E>-(g, d)-cell of X.



E>-homology: QF is not homotopy invariant and must be derived: we
can let

a graded cell complex with one
QE(X) = Q%(cX) = {(g, d) el for each Ex(z d)tcell of cX
for a cellular approximation cX = X.
Write
He2y(Xi k) = Hg,a(QF(X); k).
If k is a field, the discussion so far shows

dlm]k H (X ]k) < number of E>-(g, d)-cells in any

— Ey-cellular approximation of X.



E>-homology: QF is not homotopy invariant and must be derived: we
can let

E, _ NE _ a graded cell complex with one
Qr*(X) = Q7 (cX) = {(4, d)-cell for each Eu(g, d)-cell of cX

for a cellular approximation cX = X.

Write
HE (X k) = Hga(Q(X); k).

If k is a field, the discussion so far shows

. E> i number of E>-(g, d)-cells in any
dlm]k Hg7d(x’ ]k) < Ej-cellular approximation of X.

Theorem
If we take k-linear singular simplices this is sharp: a X € AIgEZ(sModE)

has a cellular approximation cX = X with dimy HgEfd(X; k)-many
Ex-(g, d)-cells.
Furthermore cX can be taken to be “CW”, not just “cellular”.



There is a model for Q(X) in terms of a two-fold bar construction;
instances have been given by Getzler—Jones, Basterra—Mandell, Fresse,
Francis. For the Ey-algebra R = |_|ng Bl'z 1 this leads us to study the
simplicial complex whose p-simplices are (p + 1) arcs on the surface X 1,
which cut it into (p + 2) components each of which have non-zero genus.

0

31
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simplicial complex whose p-simplices are (p + 1) arcs on the surface X 1,
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31

We show that this simplicial complex is (g — 3)-connected, so
Theorem (Galatius—Kupers—R-W)
HgEfd(R) =0ford<g—1

Thus there is an Ey-cellular approximation cR = R only having
(g, d)-cells for d > g — 1.



F. Cohen has calculated the homology of free unital Ey-(and more
generally Ex-)algebras. Working for simplicity over Q, one has

H. .(E (X); Q) = free Gerstenhaber algebra on H, .(X; Q)

__ free graded commutative algebra on .
- the free graded Lie algebra on H*7*(X Q)



F. Cohen has calculated the homology of free unital Ey-(and more
generally Ex-)algebras. Working for simplicity over Q, one has

H. .(E (X); Q) = free Gerstenhaber algebra on H, .(X; Q)

__ free graded commutative algebra on .
- the free graded Lie algebra on H*7*(X Q)

For example

H.«(E3(5,°): Q) = Qlo. [0, o1/([o o]*)

1 Q[o, 0] - Qo[o, 0] Qo?[o,0]

— 071 — Qo! — Qo? — Qo3 — Qo* —

d/g(‘] 1 2 3 4
|



Low-dimensional homology of I, 1 has been studied in detail by many
mathematicians:

Abhau, Benson, Bodigheimer, Boes, F. Cohen, Ehrenfried, Godin, Harer,
Hermann, Korkmaz, Looijenga, Meyer, Morita, Mumford, Pitsch,
Sakasai, Stipsicz, Tommasi, Wang, ...



What is known in homological degrees < 3 is:

: Q ? ? ? ?
‘ 7 7 Q? Q@
3 Q Q

’ QA QAo Qo2 QAc®  QAc*
1 Qr

0Ql — Qo — Qo2 —Q
d/g

1 2

03 — Qo* — Qo® — Q0% — Qo” —
3 4 5 6 7



This allows us to construct an explicit E-cell structure in homological
degrees <2 and d < g — 1 as:

: Q

: Q - Q

2 0,0 QA - QAot - QAo? - QAo? - QAo
1 Qr

0 Q1 — Qo — Qo? — Qo — Qo* — Qo — Qo — Qo —
d/g+ 1 2 3 4 5 6 7

The cells p and p’ are attached along 9(p) = [0, 0] and I(p') =0 - 7.
The lowest slope g in which there may be an additional Ey-cell is %.



Homological stability: Construct the RT-module cofibre sequence

$¥0 @ R* 25 RY — R* /0.

This has Hg g(RT/0) = Ha(Tg,1,Tg—1,1; Q), so homological stability
means finding a vanishing line for this.



Homological stability: Construct the RT-module cofibre sequence

$¥0 @ R* 25 RY — R* /0.

This has Hg g(RT/0) = Ha(Tg,1,Tg—1,1; Q), so homological stability
means finding a vanishing line for this.

Filtering RT by its E,-skeleta gives a spectral sequence going from

1 10,0 ¢y 6322 gy G222 g,
Eg p,q Hg7p+q7q(E2+(Sa D 5,\ 5 ~)/0o)
to Hg p+q(RT/0), where the generators - - - all have slope > 2. Cohen's
calculation identifies the El-page, and the d!-differential satisfies

d*(p) = [0, o). It is then an elementary piece of homological algebra to

2 pta 2
show that Egpq =0 for T < 3



Homological stability: Construct the RT-module cofibre sequence

$¥0 @ R* 25 RY — R* /0.

This has Hg g(RT/0) = Ha(Tg,1,Tg—1,1; Q), so homological stability
means finding a vanishing line for this.

Filtering RT by its E,-skeleta gives a spectral sequence going from

1 10,0 ¢y 6322 gy G222 g,
Eg p,q Hg7p+q7q(E2+(Sa D 5,\ 5 ~)/0o)
to Hg p+q(RT/0), where the generators - - - all have slope > 2. Cohen's
calculation identifies the El-page, and the d!-differential satisfies

d*(p) = [0, o). It is then an elementary piece of homological algebra to

2 pta 2
show that Egpq =0 for T < 3

This recovers the known homological stability range, with slope %
Analysing the argument, all that is used particular to mapping class
group—in addition to the vanishing line for E,-cells—is that

Hi(F1,1) — Hi(M2,1)

is onto (which follows from the fact that the [, 1 are generated by
non-separating Dehn twists). This argument extends to Z-coefficients.



Secondary homological stability: Construct the RT™-module cofibre
sequence

$32@ Rt o 25 R /o — R /(0, ).

This giVES ()\ . —)4< . Hd_g(rg_&l7 Fg_4,1; @) — Hd(rg71, rg_171; Q) SO
secondary stability (with Q-coefficients) means finding a slope %
vanishing line for Hg 4(R™"/(o, A)).
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Secondary homological stability: Construct the RT™-module cofibre
sequence

$32@ Rt o 25 R /o — R /(0, ).

This giVES ()\ . —)4< . Hd_g(rg_&l7 Fg_4,1; @) — Hd(rg71, rg_171; Q) SO
secondary stability (with Q-coefficients) means finding a slope %
vanishing line for Hg 4(R™"/(o, A)).

Proceed exactly as before: there is a spectral sequence going from

32,2 2,
Egl,p,q = g=P+q,q(E§r(5;70’o ®57 @ 55 g )/ (o, 7))
to Hg p+q(RT/(0, X)), where the generators - - - all have slope > 2. Still
have d'(p) = [0, o], and again it is an elementary piece of homological

2 _ ptq 3
algebra to show that E; , =0 for z <1

This argument does not extend to Z-coefficients.



Z-coefficients (outline). We show that
Hy(M31;Z) — Ha(M31,T21:Z) SN Hi(M2,1;Z)
is Z{\} L Z{u} 4 Z/10{c - 7} — 0, so the map
A= Ho(Fo1,T-10:Z) = Z{1} — Ha(T3.1,T21; Z) = Z{}

is multiplication by 10 and so not epi or iso. So this is not the correct
“secondary stability” map to try to show is an isomorphism!



Z-coefficients (outline). We show that
Hy(M31;Z) — Ha(M31,T21:Z) SN Hi(M2,1;Z)
is Z{\} L Z{u} 4 Z/10{c - 7} — 0, so the map
A= Ho(Fo1,T-10:Z) = Z{1} — Ha(T3.1,T21; Z) = Z{}

is multiplication by 10 and so not epi or iso. So this is not the correct
“secondary stability” map to try to show is an isomorphism!

Instead, take p € H32(R" /o), use that R /o is a RT-module to
represent it by a RT-module map

p:S*?®RT — R /o,
check that the RT-module map
§32 % 510 R+ 587 632 o R+ L R /g,

which is an element of Hy»(R™ /o) = 0, vanishes, and hence extend p to

a map
¢:5*?@R" /o — RY /0.



As always in obstruction theory, there is a choice of extensions
0:5*?2@R" /o — Rt /o,

forming a torsor for Hy 3(R" /o) =7; never mind: will prove that they all

induce isomorphisms in the %—range.
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Strategy: We know how to construct RT as a CW-E-algebra having no
(g, d)-cells with d < g — 1; this comes with a skeletal filtration, inducing
a filtration on R™ /o



As always in obstruction theory, there is a choice of extensions
0:5*?2@R" /o — Rt /o,

forming a torsor for Hy 3(R" /o) =7; never mind: will prove that they all
3

induce isomorphisms in the z-range.
Strategy: We know how to construct RT as a CW-E-algebra having no

(g, d)-cells with d < g — 1; this comes with a skeletal filtration, inducing
a filtration on R™ /o

We show that ¢ can be given the structure of a filtered map; this is quite
subtle: need to show that all choices of ’s come from filtered maps. This
gives a filtration on the cofibre C,,, so a spectral sequence going from

0,0,0 . 3,3,3 10,0, - o111 22,2 22,2 32,2 e d.
e (6200 @ 5332 00) © E2(517 % @ Sp e @ F22 01 © 22700 © 527203 © Baer B %09 /o)

to H, . (Cy; Fy) (here £ do > 3) Then we use Cohen'’s calculations of the
F-homology of free E2 algebras and compute the effect of the

d!-differential: we find that Eép ¢=0 for p;r—q < %



