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Homeomorphisms of Rd

My goal is to explain some recent advances in understanding the
algebraic topology of the group

Top(d) = Homeo(Rd)

of homeomorphisms of Rd (with the usual compact-open topology).

To study the algebraic topology of a topological group G as a group,
it is usual to investigate it’s so-called classifying space

BG := {some contractible free G-space}/G.

The classifying space BTop(d) has a concrete meaning: it classifies
fibre bundles with fibre Rd.

I will try to express what we know via the homotopy groups

πn(BTop(d)) = πn−1(Top(d)) =
{continuous maps f : Sn−1 → Top(d)}

homotopy
or, suppressing torsion, their rationalisations πn(BTop(d))⊗Q.
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Diffeomorphisms of Rd

Let me start with the simpler example of the group

Diff(Rd)

of diffeomorphisms of Rd (with the weak C∞-topology).

The formula

[0, 1]× Diff(Rd) −→ Diff(Rd)

(t, f ) 7−→
(
x 7→ f(t·x)−f(0)

t + t · f (0)
)

gives a deformation retraction from Diff(Rd) to its subgroup GL(d)
of linear diffeomorphisms.

The Gram–Schmidt process deforms GL(d) to its subgroup O(d).

O(d) is a compact Lie group and its topology is well understood:

e.g. π∗(BO(d))⊗Q =
⌊(d−1)/2⌋⊕

i=1
Q[4i]⊕

{
Q[d] d even
0 d odd.
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Stabilising by dimension

There are inclusions

O(d) O(d+ 1) O(d+ 2) · · · O

Top(d) Top(d+ 1) Top(d+ 2) · · · Top

and smoothing theory identifies

πn(
Top
O ) ∼= Θn := {smooth oriented n-manifolds homeomorphic to Sn},

the group of so-called homotopy n-spheres (not quite true for n ≤ 4).

The theorem of Kervaire–Milnor determines these groups:

Θ5 = 0 Θ6 = 0 Θ7 = Z/28 Θ8 = Z/2 Θ9 = (Z/2)3

Θ10 = Z/6 Θ11 = Z/992 Θ12 = 0 Θ13 = Z/3 Θ14 = Z/2

and in particular shows that they are all finite abelian groups.

⇒ π∗(BTop)⊗Q ∼= π∗(BO)⊗Q =
⊕
i≥1

Q[4i]
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Stabilising by dimension II

To understand what we have lost when stabilising by dimension, we
should analyse the differences between adjacent steps.

Smooth case. We have O(d+1)
O(d)

∼= Sd, as O(d+ 1) acts transitively on Sd

with stabiliser O(d). Thus O(d) → O(d+ 1) is (d− 1)-connected.

Furthermore, these differences can be related to one another:

O(d+1)
O(d) −→ ΩO(d+2)

O(d+1) = map∗(S1, O(d+2)
O(d+1) )

O(d) · A 7−→ (θ 7→ O(d+ 1) · Rθ(A⊕ 1)R−1
θ ),

where Rθ ∈ O(d+ 2) rotates by θ in the last two coordinates.

The source and target of this map are both (d− 1)-connected, but
the map is (2d− 1)-connected: this is Freudenthal’s suspension
theorem.

4
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Interlude: stable homotopy theory

This data, a collection X of based spaces Xd and structure maps
Xd → ΩXd+1, is precisely a spectrum in the sense of stable homotopy
theory. The example here is the sphere spectrum S.

Using the structure maps we can make sense of

πi(X) := colim
d→∞

πi+d(Xd)

and so on. The next basic theorem in this subject is

πi(S) =


0 i < 0
Z i = 0
finite abelian i > 0.

In relation to our story, we have

πi+d(
O(d+1)
O(d) ) ∼= πi(S)

for i+ d < 2d− 1. This gives a sense in which the homotopy groups
of O(d+1)

O(d) are “the same” for varying d.
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Stabilising by dimension III

Topological case. Top(d+1)
Top(d) cannot be identified with a known space:

it is its own thing. It is still (d− 1)-connected. The same rotation
map as before makes the collection of these spaces into a
spectrum, though now the structure map

Top(d+1)
Top(d) −→ Ω Top(d+2)

Top(d+1)

is only known to be ∼ 4
3d-connected (Igusa ’88).

Theorem (Waldhausen ’81). The associated spectrum is K(S).

Combining with the calculation (Borel ’74) of K∗(Z)⊗Q gives

πd+∗(
Top(d+1)
Top(d) )⊗Q = Q[0]⊕Q[5]⊕Q[9]⊕Q[13]⊕ · · ·

for d+ ∗ ≲ 4
3d. In degrees ≲ 4

3d this leads to

π∗(BTop(d))⊗Q =
∞⊕
i=1

Q[4i]⊕


Q[d] d even
∞⊕
j=1

Q[d+ 1 + 4j] d odd.
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A pattern

The story so far was complete by 1988, and not much had changed
until recently. The impetus has been a ’15 theorem of Weiss on
“topological Pontrjagin classes”, and especially a perspective
adopted in his argument.

Contemplating this perspective led Kupers and I to the following:

Theorem (Kupers–R-W ’20). π∗(
Top

Top(2n) )⊗Q is Q[2n] plus classes in
the bands of degrees⋃

s≥3
[2s(n− 2) + 4, 2s(n− 1) + 4].

Furthermore, there is something nontrivial in the s = 3 band:

Q2 Q4 Q10 Q21 Q15 Q3

7
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Indications on the proof

One cannot really study Top(d) by thinking about homeomorphisms.

Instead, one uses “smoothing theory” in the manner of Morlet:
Homeo∂(Dd)
Diff∂(Dd)

≃ Ωd
0

(
Homeo(Rd)

Diff (Rd)

)
≃ Ωd

0

(
Top(d)
O(d)

)
.

Alexander trick: For f : Dd → Dd a homeomorphism
fixing ∂Dd, consider

ft(x) =
{
x |x| ≥ t
t · f (x/t) |x| ≤ t.

⇒ Homeo∂(Dd) ≃ ∗

⇒ BDiff∂(Dd) ≃ Ωd
0

(
Top(d)
O(d)

)
So understanding homeomorphisms of Rd is more or less the same
as understanding diffeomorphisms of Dd, and this is how it is
usually approached.
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Indications on the proof II

Stabilising by complexity

A programme of Galatius and myself, extending the Madsen–Weiss
theorem to high dimensions, gives a good understanding of
diffeomorphism groups of manifolds of dimension 2n which are
“complicated” in the sense that they contain many Sn × Sn’s.

In particular for the manifolds

Wg,1 := D2n#g(Sn × Sn)

one has
Theorem. (Madsen–Weiss ’07 2n = 2, Galatius–R-W ’14 2n ≥ 4)

lim
g→∞

H∗(BDiff∂(Wg,1);Q) = Q[κc | c ∈ B]

Here B is the set of monomials in e,pn−1,pn−2, . . . ,p⌈n+1
4 ⌉.

(For 2n ̸= 4 there is also a “stability theorem” saying how quickly the
limit is attained.)
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Indications on the proof III

Destabilising

As D2n = W0,1, to understand BDiff∂(D2n) one can try to reverse the
effect of stabilising.

The crucial insight in this direction is due to Weiss, who observed
that there is a fibre sequence

BDiff∂(D2n) −→ BDiff∂(Wg,1) −→ BEmb∼=∂/2(Wg,1).

The rightmost term consists of self-
embeddings of Wg,1 which are not re-
quired to be the identity on the bound-
ary, but only on half of the boundary.
Because of the change of boundary conditions, these embeddings
have “codimension n” from the point of view of embedding theory.
If n ≥ 3 this space is therefore accessible using the
Goodwillie–Weiss “calculus of embeddings”.
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