Homeomorphisms of \mathbb{R}^{d}

Oscar Randal-Williams
 Estatis sealey ithe Europeen Cormisssion

LEVERHULME TRUST

Homeomorphisms of \mathbb{R}^{d}

My goal is to explain some recent advances in understanding the algebraic topology of the group

$$
\operatorname{Top}(d)=\operatorname{Homeo}\left(\mathbb{R}^{d}\right)
$$

of homeomorphisms of \mathbb{R}^{d} (with the usual compact-open topology).

Homeomorphisms of \mathbb{R}^{d}

My goal is to explain some recent advances in understanding the algebraic topology of the group

$$
\operatorname{Top}(d)=\operatorname{Homeo}\left(\mathbb{R}^{d}\right)
$$

of homeomorphisms of \mathbb{R}^{d} (with the usual compact-open topology).
To study the algebraic topology of a topological group G as a group, it is usual to investigate it's so-called classifying space

$$
B G:=\{\text { some contractible free } G \text {-space }\} / G .
$$

Homeomorphisms of \mathbb{R}^{d}

My goal is to explain some recent advances in understanding the algebraic topology of the group

$$
\operatorname{Top}(d)=\operatorname{Homeo}\left(\mathbb{R}^{d}\right)
$$

of homeomorphisms of \mathbb{R}^{d} (with the usual compact-open topology).
To study the algebraic topology of a topological group G as a group, it is usual to investigate it's so-called classifying space

$$
B G:=\{\text { some contractible free } G \text {-space }\} / G .
$$

The classifying space $B T o p(d)$ has a concrete meaning: it classifies fibre bundles with fibre \mathbb{R}^{d}.

Homeomorphisms of \mathbb{R}^{d}

My goal is to explain some recent advances in understanding the algebraic topology of the group

$$
\operatorname{Top}(d)=\operatorname{Homeo}\left(\mathbb{R}^{d}\right)
$$

of homeomorphisms of \mathbb{R}^{d} (with the usual compact-open topology).
To study the algebraic topology of a topological group G as a group, it is usual to investigate it's so-called classifying space

$$
B G:=\{\text { some contractible free } G \text {-space }\} / G .
$$

The classifying space $B T o p(d)$ has a concrete meaning: it classifies fibre bundles with fibre \mathbb{R}^{d}.

I will try to express what we know via the homotopy groups
$\pi_{n}(B T o p(d))=\pi_{n-1}(\operatorname{Top}(d))=\frac{\left\{\text { continuous maps } f: S^{n-1} \rightarrow \operatorname{Top}(d)\right\}}{\text { homotopy }}$
or, suppressing torsion, their rationalisations $\pi_{n}(B \operatorname{Top}(d)) \otimes \mathbb{Q}$.

Diffeomorphisms of \mathbb{R}^{d}

Let me start with the simpler example of the group

$$
\operatorname{Diff}\left(\mathbb{R}^{d}\right)
$$

of diffeomorphisms of \mathbb{R}^{d} (with the weak C^{∞}-topology).

Diffeomorphisms of \mathbb{R}^{d}

Let me start with the simpler example of the group

$$
\operatorname{Diff}\left(\mathbb{R}^{d}\right)
$$

of diffeomorphisms of \mathbb{R}^{d} (with the weak C^{∞}-topology).
The formula

$$
\begin{aligned}
{[0,1] \times \operatorname{Diff}\left(\mathbb{R}^{d}\right) } & \longrightarrow \operatorname{Diff}\left(\mathbb{R}^{d}\right) \\
(t, f) & \longmapsto\left(x \mapsto \frac{f(t \cdot x)-f(0)}{t}+t \cdot f(0)\right)
\end{aligned}
$$

Diffeomorphisms of \mathbb{R}^{d}

Let me start with the simpler example of the group

$$
\operatorname{Diff}\left(\mathbb{R}^{d}\right)
$$

of diffeomorphisms of \mathbb{R}^{d} (with the weak C^{∞}-topology).
The formula

$$
\begin{aligned}
{[0,1] \times \operatorname{Diff}\left(\mathbb{R}^{d}\right) } & \longrightarrow \operatorname{Diff}\left(\mathbb{R}^{d}\right) \\
(t, f) & \longmapsto\left(x \mapsto \frac{f(t \cdot x)-f(0)}{t}+t \cdot f(0)\right)
\end{aligned}
$$

gives a deformation retraction from $\operatorname{Diff}\left(\mathbb{R}^{d}\right)$ to its subgroup $G L(d)$ of linear diffeomorphisms.

Diffeomorphisms of \mathbb{R}^{d}

Let me start with the simpler example of the group

$$
\operatorname{Diff}\left(\mathbb{R}^{d}\right)
$$

of diffeomorphisms of \mathbb{R}^{d} (with the weak C^{∞}-topology).
The formula

$$
\begin{aligned}
{[0,1] \times \operatorname{Diff}\left(\mathbb{R}^{d}\right) } & \longrightarrow \operatorname{Diff}\left(\mathbb{R}^{d}\right) \\
(t, f) & \longmapsto\left(x \mapsto \frac{f(t \cdot x)-f(0)}{t}+t \cdot f(0)\right)
\end{aligned}
$$

gives a deformation retraction from $\operatorname{Diff}\left(\mathbb{R}^{d}\right)$ to its subgroup $G L(d)$ of linear diffeomorphisms.

The Gram-Schmidt process deforms $G L(d)$ to its subgroup $O(d)$.

Diffeomorphisms of \mathbb{R}^{d}

Let me start with the simpler example of the group

$$
\operatorname{Diff}\left(\mathbb{R}^{d}\right)
$$

of diffeomorphisms of \mathbb{R}^{d} (with the weak C^{∞}-topology).
The formula

$$
\begin{aligned}
{[0,1] \times \operatorname{Diff}\left(\mathbb{R}^{d}\right) } & \longrightarrow \operatorname{Diff}\left(\mathbb{R}^{d}\right) \\
(t, f) & \longmapsto\left(x \mapsto \frac{f(t \cdot x)-f(0)}{t}+t \cdot f(0)\right)
\end{aligned}
$$

gives a deformation retraction from $\operatorname{Diff}\left(\mathbb{R}^{d}\right)$ to its subgroup $G L(d)$ of linear diffeomorphisms.

The Gram-Schmidt process deforms $G L(d)$ to its subgroup $O(d)$.
$O(d)$ is a compact Lie group and its topology is well understood:
e.g. $\pi_{*}(B O(d)) \otimes \mathbb{Q}=\stackrel{\lfloor(d-1) / 2\rfloor}{\bigoplus_{i=1}} \mathbb{Q}[4 i] \oplus \begin{cases}\mathbb{Q}[d] & d \text { even } \\ 0 & d \text { odd } .\end{cases}$

Stabilising by dimension

There are inclusions

Stabilising by dimension

There are inclusions

and smoothing theory identifies
$\pi_{n}\left(\frac{\text { Top }}{O}\right) \cong \Theta_{n}:=\left\{\right.$ smooth oriented n-manifolds homeomorphic to $\left.S^{n}\right\}$, the group of so-called homotopy n-spheres (not quite true for $n \leq 4$).

Stabilising by dimension

There are inclusions

and smoothing theory identifies
$\pi_{n}\left(\frac{\text { Top }}{O}\right) \cong \Theta_{n}:=\left\{\right.$ smooth oriented n-manifolds homeomorphic to $\left.S^{n}\right\}$, the group of so-called homotopy n-spheres (not quite true for $n \leq 4$).

The theorem of Kervaire-Milnor determines these groups:

$$
\begin{array}{lllll}
\Theta_{5}=0 & \Theta_{6}=0 & \Theta_{7}=\mathbb{Z} / 28 & \Theta_{8}=\mathbb{Z} / 2 & \Theta_{9}=(\mathbb{Z} / 2)^{3} \\
\Theta_{10}=\mathbb{Z} / 6 & \Theta_{11}=\mathbb{Z} / 992 & \Theta_{12}=0 & \Theta_{13}=\mathbb{Z} / 3 & \Theta_{14}=\mathbb{Z} / 2
\end{array}
$$

and in particular shows that they are all finite abelian groups.

Stabilising by dimension

There are inclusions

and smoothing theory identifies
$\pi_{n}\left(\frac{\text { Top }}{O}\right) \cong \Theta_{n}:=\left\{\right.$ smooth oriented n-manifolds homeomorphic to $\left.S^{n}\right\}$,
the group of so-called homotopy n-spheres (not quite true for $n \leq 4$).
The theorem of Kervaire-Milnor determines these groups:

$$
\begin{array}{lllll}
\Theta_{5}=0 & \Theta_{6}=0 & \Theta_{7}=\mathbb{Z} / 28 & \Theta_{8}=\mathbb{Z} / 2 & \Theta_{9}=(\mathbb{Z} / 2)^{3} \\
\Theta_{10}=\mathbb{Z} / 6 & \Theta_{11}=\mathbb{Z} / 992 & \Theta_{12}=0 & \Theta_{13}=\mathbb{Z} / 3 & \Theta_{14}=\mathbb{Z} / 2
\end{array}
$$

and in particular shows that they are all finite abelian groups.
$\Rightarrow \pi_{*}($ BTop $) \otimes \mathbb{Q} \cong \pi_{*}(B O) \otimes \mathbb{Q}=\underset{i \geq 1}{\bigoplus} \mathbb{Q}[4 i]$

Stabilising by dimension II

To understand what we have lost when stabilising by dimension, we should analyse the differences between adjacent steps.

Stabilising by dimension II

To understand what we have lost when stabilising by dimension, we should analyse the differences between adjacent steps.
Smooth case. We have $\frac{O(d+1)}{O(d)} \cong S^{d}$, as $O(d+1)$ acts transitively on S^{d} with stabiliser $O(d)$. Thus $O(d) \rightarrow O(d+1)$ is $(d-1)$-connected.

Stabilising by dimension II

To understand what we have lost when stabilising by dimension, we should analyse the differences between adjacent steps.
Smooth case. We have $\frac{O(d+1)}{O(d)} \cong S^{d}$, as $O(d+1)$ acts transitively on S^{d} with stabiliser $O(d)$. Thus $O(d) \rightarrow O(d+1)$ is $(d-1)$-connected.
Furthermore, these differences can be related to one another:

$$
\begin{gathered}
\frac{O(d+1)}{O(d)} \longrightarrow \Omega \frac{O(d+2)}{O(d+1)}=\operatorname{map}_{*}\left(S^{1}, \frac{O(d+2)}{O(d+1)}\right) \\
O(d) \cdot A \longmapsto\left(\theta \mapsto O(d+1) \cdot R_{\theta}(A \oplus 1) R_{\theta}^{-1}\right),
\end{gathered}
$$

where $R_{\theta} \in O(d+2)$ rotates by θ in the last two coordinates.

Stabilising by dimension II

To understand what we have lost when stabilising by dimension, we should analyse the differences between adjacent steps.
Smooth case. We have $\frac{O(d+1)}{O(d)} \cong S^{d}$, as $O(d+1)$ acts transitively on S^{d} with stabiliser $O(d)$. Thus $O(d) \rightarrow O(d+1)$ is $(d-1)$-connected.
Furthermore, these differences can be related to one another:

$$
\begin{gathered}
\frac{O(d+1)}{O(d)} \longrightarrow \Omega \frac{O(d+2)}{O(d+1)}=\operatorname{map}_{*}\left(S^{1}, \frac{O(d+2)}{O(d+1)}\right) \\
O(d) \cdot A \longmapsto\left(\theta \mapsto O(d+1) \cdot R_{\theta}(A \oplus 1) R_{\theta}^{-1}\right),
\end{gathered}
$$

where $R_{\theta} \in O(d+2)$ rotates by θ in the last two coordinates.
The source and target of this map are both ($d-1$)-connected, but the map is $(2 d-1)$-connected: this is Freudenthal's suspension theorem.

Interlude: stable homotopy theory

This data, a collection \mathbb{X} of based spaces X_{d} and structure maps
$X_{d} \rightarrow \Omega X_{d+1}$, is precisely a spectrum in the sense of stable homotopy theory. The example here is the sphere spectrum \mathbb{S}.

Interlude: stable homotopy theory

This data, a collection \mathbb{X} of based spaces X_{d} and structure maps
$X_{d} \rightarrow \Omega X_{d+1}$, is precisely a spectrum in the sense of stable homotopy theory. The example here is the sphere spectrum \mathbb{S}.

Using the structure maps we can make sense of

$$
\pi_{i}(\mathbb{X}):=\underset{d \rightarrow \infty}{\operatorname{colim}} \pi_{i+d}\left(X_{d}\right)
$$

and so on. The next basic theorem in this subject is

$$
\pi_{i}(\mathbb{S})= \begin{cases}0 & i<0 \\ \mathbb{Z} & i=0 \\ \text { finite abelian } & i>0\end{cases}
$$

Interlude: stable homotopy theory

This data, a collection \mathbb{X} of based spaces X_{d} and structure maps
$X_{d} \rightarrow \Omega X_{d+1}$, is precisely a spectrum in the sense of stable homotopy theory. The example here is the sphere spectrum \mathbb{S}.

Using the structure maps we can make sense of

$$
\pi_{i}(\mathbb{X}):=\underset{d \rightarrow \infty}{\operatorname{colim}} \pi_{i+d}\left(X_{d}\right)
$$

and so on. The next basic theorem in this subject is

$$
\pi_{i}(\mathbb{S})= \begin{cases}0 & i<0 \\ \mathbb{Z} & i=0 \\ \text { finite abelian } & i>0\end{cases}
$$

In relation to our story, we have

$$
\pi_{i+d}\left(\frac{O(d+1)}{O(d)}\right) \cong \pi_{i}(\mathbb{S})
$$

for $i+d<2 d-1$. This gives a sense in which the homotopy groups of $\frac{O(d+1)}{O(d)}$ are "the same" for varying d.

Stabilising by dimension III

Topological case. $\frac{\operatorname{Top}(d+1)}{\operatorname{Top(d)}}$ cannot be identified with a known space: it is its own thing. It is still $(d-1)$-connected. The same rotation map as before makes the collection of these spaces into a spectrum, though now the structure map

$$
\frac{\operatorname{Top}(d+1)}{\operatorname{Top}(d)} \longrightarrow \Omega \frac{\operatorname{Top}(d+2)}{\operatorname{Top}(d+1)}
$$

is only known to be $\sim \frac{4}{3} d$-connected (Igusa '88).

Stabilising by dimension III

Topological case. $\frac{\operatorname{Top}(d+1)}{\operatorname{Top(d)}}$ cannot be identified with a known space: it is its own thing. It is still $(d-1)$-connected. The same rotation map as before makes the collection of these spaces into a spectrum, though now the structure map

$$
\frac{\operatorname{Top}(d+1)}{\operatorname{Top}(d)} \longrightarrow \Omega \frac{\operatorname{Top}(d+2)}{\operatorname{Top}(d+1)}
$$

is only known to be $\sim \frac{4}{3} d$-connected (Igusa '88).
Theorem (Waldhausen '81). The associated spectrum is $K(\mathbb{S})$.

Stabilising by dimension III

Topological case. $\frac{\operatorname{Top}(d+1)}{\operatorname{Top(d)}}$ cannot be identified with a known space: it is its own thing. It is still $(d-1)$-connected. The same rotation map as before makes the collection of these spaces into a spectrum, though now the structure map

$$
\frac{\operatorname{Top}(d+1)}{\operatorname{Top}(d)} \longrightarrow \Omega \frac{\operatorname{Top}(d+2)}{\operatorname{Top}(d+1)}
$$

is only known to be $\sim \frac{4}{3} d$-connected (Igusa '88).
Theorem (Waldhausen '81). The associated spectrum is $K(\mathbb{S})$.
Combining with the calculation (Borel ' 74) of $K_{*}(\mathbb{Z}) \otimes \mathbb{Q}$ gives

$$
\pi_{d+*}\left(\frac{\operatorname{Top}(d+1)}{\operatorname{Top}(d)}\right) \otimes \mathbb{Q}=\mathbb{Q}[0] \oplus \mathbb{Q}[5] \oplus \mathbb{Q}[9] \oplus \mathbb{Q}[13] \oplus \cdots
$$

for $d+* \lesssim \frac{4}{3} d$.

Stabilising by dimension III

Topological case. $\frac{\operatorname{Top}(d+1)}{\operatorname{Top(d)}}$ cannot be identified with a known space: it is its own thing. It is still $(d-1)$-connected. The same rotation map as before makes the collection of these spaces into a spectrum, though now the structure map

$$
\frac{\operatorname{Top}(d+1)}{\operatorname{Top}(d)} \longrightarrow \Omega \frac{\operatorname{Top}(d+2)}{\operatorname{Top}(d+1)}
$$

is only known to be $\sim \frac{4}{3} d$-connected (Igusa '88).
Theorem (Waldhausen '81). The associated spectrum is $K(\mathbb{S})$.
Combining with the calculation (Borel ' 74) of $K_{*}(\mathbb{Z}) \otimes \mathbb{Q}$ gives

$$
\pi_{d+*}\left(\frac{\operatorname{Top}(d+1)}{\operatorname{Top}(d)}\right) \otimes \mathbb{Q}=\mathbb{Q}[0] \oplus \mathbb{Q}[5] \oplus \mathbb{Q}[9] \oplus \mathbb{Q}[13] \oplus \cdots
$$

for $d+* \lesssim \frac{4}{3} d$. In degrees $\lesssim \frac{4}{3} d$ this leads to
$\pi_{*}(B \operatorname{Top}(d)) \otimes \mathbb{Q}=\bigoplus_{i=1}^{\infty} \mathbb{Q}[4 i] \oplus \begin{cases}\mathbb{Q}[d] & d \text { even } \\ \bigoplus_{j=1}^{\infty} \mathbb{Q}[d+1+4 j] & d \text { odd } .\end{cases}$

A pattern

The story so far was complete by 1988, and not much had changed until recently. The impetus has been a ' 15 theorem of Weiss on "topological Pontrjagin classes", and especially a perspective adopted in his argument.

Contemplating this perspective led Kupers and I to the following:

A pattern

The story so far was complete by 1988, and not much had changed until recently. The impetus has been a ' 15 theorem of Weiss on "topological Pontrjagin classes", and especially a perspective adopted in his argument.

Contemplating this perspective led Kupers and I to the following:
Theorem (Kupers-R-W '20). $\pi_{*}\left(\frac{\text { Top }}{\operatorname{Top}(2 n)}\right) \otimes \mathbb{Q}$ is $\mathbb{Q}[2 n]$ plus classes in the bands of degrees

$$
\bigcup_{s \geq 3}[2 s(n-2)+4,2 s(n-1)+4]
$$

A pattern

The story so far was complete by 1988, and not much had changed until recently. The impetus has been a ' 15 theorem of Weiss on "topological Pontrjagin classes", and especially a perspective adopted in his argument.

Contemplating this perspective led Kupers and I to the following:
Theorem (Kupers-R-W '20). $\pi_{*}\left(\frac{\text { Top }}{\operatorname{Top}(2 n)}\right) \otimes \mathbb{Q}$ is $\mathbb{Q}[2 n]$ plus classes in the bands of degrees

$$
\bigcup_{s \geq 3}[2 s(n-2)+4,2 s(n-1)+4] .
$$

Furthermore, there is something nontrivial in the $s=3$ band:

Indications on the proof

One cannot really study Top(d) by thinking about homeomorphisms.

Indications on the proof

One cannot really study Top(d) by thinking about homeomorphisms. Instead, one uses "smoothing theory" in the manner of Morlet:

$$
\frac{\text { Homeo }_{\partial}\left(D^{d}\right)}{\operatorname{Diff}_{\partial}\left(D^{d}\right)} \simeq \Omega_{0}^{d}\left(\frac{\text { Homeo }\left(\mathbb{R}^{d}\right)}{\operatorname{Diff}\left(\mathbb{R}^{d}\right)}\right) \simeq \Omega_{0}^{d}\left(\frac{\operatorname{Top}(d)}{O(d)}\right)
$$

Indications on the proof

One cannot really study Top(d) by thinking about homeomorphisms. Instead, one uses "smoothing theory" in the manner of Morlet:

$$
\frac{\text { Homeo }_{\partial}\left(D^{d}\right)}{\operatorname{Diff}_{\partial}\left(D^{d}\right)} \simeq \Omega_{o}^{d}\left(\frac{\text { Homeo }\left(\mathbb{R}^{d}\right)}{\operatorname{Diff}\left(\mathbb{R}^{d}\right)}\right) \simeq \Omega_{0}^{d}\left(\frac{\operatorname{Top}(d)}{O(d)}\right) .
$$

Alexander trick: For $f: D^{d} \rightarrow D^{d}$ a homeomorphism fixing ∂D^{d}, consider

$$
f_{t}(x)= \begin{cases}x & |x| \geq t \\ t \cdot f(x / t) & |x| \leq t\end{cases}
$$

Indications on the proof

One cannot really study Top(d) by thinking about homeomorphisms. Instead, one uses "smoothing theory" in the manner of Morlet:

$$
\frac{\text { Homeo }_{\partial}\left(D^{d}\right)}{\operatorname{Diff}_{\partial}\left(D^{d}\right)} \simeq \Omega_{o}^{d}\left(\frac{\text { Homeo }\left(\mathbb{R}^{d}\right)}{\operatorname{Diff}\left(\mathbb{R}^{d}\right)}\right) \simeq \Omega_{0}^{d}\left(\frac{\operatorname{Top}(d)}{O(d)}\right) .
$$

Alexander trick: For $f: D^{d} \rightarrow D^{d}$ a homeomorphism fixing ∂D^{d}, consider

$$
f_{t}(x)= \begin{cases}x & |x| \geq t \\ t \cdot f(x / t) & |x| \leq t\end{cases}
$$

$\Rightarrow \operatorname{Homeo}_{\partial}\left(D^{d}\right) \simeq *$

Indications on the proof

One cannot really study Top(d) by thinking about homeomorphisms. Instead, one uses "smoothing theory" in the manner of Morlet:

$$
\frac{\text { Homeo }_{\partial}\left(D^{d}\right)}{\operatorname{Diff}_{\partial}\left(D^{d}\right)} \simeq \Omega_{o}^{d}\left(\frac{\text { Homeo }\left(\mathbb{R}^{d}\right)}{\operatorname{Diff}\left(\mathbb{R}^{d}\right)}\right) \simeq \Omega_{0}^{d}\left(\frac{\operatorname{Top}(d)}{O(d)}\right) .
$$

Alexander trick: For $f: D^{d} \rightarrow D^{d}$ a homeomorphism fixing ∂D^{d}, consider

$$
f_{t}(x)= \begin{cases}x & |x| \geq t \\ t \cdot f(x / t) & |x| \leq t\end{cases}
$$

\Rightarrow Homeo $_{\partial}\left(D^{d}\right) \simeq *$
$\Rightarrow \operatorname{BDiff}_{\partial}\left(D^{d}\right) \simeq \Omega_{0}^{d}\left(\frac{\operatorname{Top}(d)}{O(d)}\right)$

Indications on the proof

One cannot really study Top(d) by thinking about homeomorphisms. Instead, one uses "smoothing theory" in the manner of Morlet:

$$
\frac{\text { Homeo }_{\partial}\left(D^{d}\right)}{\operatorname{Diff}_{\partial}\left(D^{d}\right)} \simeq \Omega_{0}^{d}\left(\frac{\text { Homeo }\left(\mathbb{R}^{d}\right)}{\operatorname{Diff}\left(\mathbb{R}^{d}\right)}\right) \simeq \Omega_{0}^{d}\left(\frac{\operatorname{Top}(d)}{O(d)}\right) .
$$

Alexander trick: For $f: D^{d} \rightarrow D^{d}$ a homeomorphism fixing ∂D^{d}, consider

$$
f_{t}(x)= \begin{cases}x & |x| \geq t \\ t \cdot f(x / t) & |x| \leq t\end{cases}
$$

\Rightarrow Homeo $_{\partial}\left(D^{d}\right) \simeq *$
$\Rightarrow B \operatorname{Diff}_{\partial}\left(D^{d}\right) \simeq \Omega_{0}^{d}\left(\frac{\operatorname{Top}(d)}{O(d)}\right)$
So understanding homeomorphisms of \mathbb{R}^{d} is more or less the same as understanding diffeomorphisms of D^{d}, and this is how it is usually approached.

Indications on the proof II

Stabilising by complexity

A programme of Galatius and myself, extending the Madsen-Weiss theorem to high dimensions, gives a good understanding of diffeomorphism groups of manifolds of dimension $2 n$ which are "complicated" in the sense that they contain many $S^{n} \times S^{n \prime}$.

Indications on the proof II

Stabilising by complexity

A programme of Galatius and myself, extending the Madsen-Weiss theorem to high dimensions, gives a good understanding of diffeomorphism groups of manifolds of dimension $2 n$ which are "complicated" in the sense that they contain many $S^{n} \times S^{n \prime}$.

In particular for the manifolds

$$
W_{g, 1}:=D^{2 n} \# g\left(S^{n} \times S^{n}\right)
$$

one has

Indications on the proof II

Stabilising by complexity

A programme of Galatius and myself, extending the Madsen-Weiss theorem to high dimensions, gives a good understanding of diffeomorphism groups of manifolds of dimension $2 n$ which are "complicated" in the sense that they contain many $S^{n} \times S^{n}$ s.
In particular for the manifolds

$$
W_{g, 1}:=D^{2 n} \# g\left(S^{n} \times S^{n}\right)
$$

one has

Theorem. (Madsen-Weiss '07 $2 n=2$, Galatius-R-W '14 $2 n \geq 4$)

$$
\lim _{g \rightarrow \infty} H^{*}\left(\text { BDiff }_{\partial}\left(W_{g, 1}\right) ; \mathbb{Q}\right)=\mathbb{Q}\left[\kappa_{c} \mid c \in \mathcal{B}\right]
$$

Here \mathcal{B} is the set of monomials in $e, p_{n-1}, p_{n-2}, \ldots, p_{\left\lceil\frac{n+1}{4}\right\rceil}$.

Indications on the proof II

Stabilising by complexity

A programme of Galatius and myself, extending the Madsen-Weiss theorem to high dimensions, gives a good understanding of diffeomorphism groups of manifolds of dimension $2 n$ which are "complicated" in the sense that they contain many $S^{n} \times S^{n}$ s.
In particular for the manifolds

$$
W_{g, 1}:=D^{2 n} \# g\left(S^{n} \times S^{n}\right)
$$

one has

Theorem. (Madsen-Weiss' $072 n=2$, Galatius-R-W '14 $2 n \geq 4$)

$$
\lim _{g \rightarrow \infty} H^{*}\left(\text { BDiff }_{\partial}\left(W_{g, 1}\right) ; \mathbb{Q}\right)=\mathbb{Q}\left[\kappa_{c} \mid c \in \mathcal{B}\right]
$$

Here \mathcal{B} is the set of monomials in $e, p_{n-1}, p_{n-2}, \ldots, p_{\left\lceil\frac{n+1}{4}\right\rceil}$.
(For $2 n \neq 4$ there is also a "stability theorem" saying how quickly the limit is attained.)

Indications on the proof III

Destabilising

As $D^{2 n}=W_{0,1}$, to understand $B \operatorname{Diff}_{\partial}\left(D^{2 n}\right)$ one can try to reverse the effect of stabilising.

Indications on the proof III

Destabilising

As $D^{2 n}=W_{0,1}$, to understand $B \operatorname{Diff}_{\partial}\left(D^{2 n}\right)$ one can try to reverse the effect of stabilising.

The crucial insight in this direction is due to Weiss, who observed that there is a fibre sequence

$$
\operatorname{BDiff}_{\partial}\left(D^{2 n}\right) \longrightarrow \operatorname{BDiff}_{\partial}\left(W_{g, 1}\right) \longrightarrow B E m b_{\partial}^{\cong} / 2\left(W_{g, 1}\right) .
$$

Indications on the proof III

Destabilising

As $D^{2 n}=W_{0,1}$, to understand $B \operatorname{Diff}_{\partial}\left(D^{2 n}\right)$ one can try to reverse the effect of stabilising.
The crucial insight in this direction is due to Weiss, who observed that there is a fibre sequence

$$
\operatorname{BDiff}_{\partial}\left(D^{2 n}\right) \longrightarrow \operatorname{BDiff}_{\partial}\left(W_{g, 1}\right) \longrightarrow B E m b_{\partial / 2}^{\cong}\left(W_{g, 1}\right) .
$$

The rightmost term consists of selfembeddings of $W_{g, 1}$ which are not required to be the identity on the boundary, but only on half of the boundary.

Indications on the proof III

Destabilising

As $D^{2 n}=W_{0,1}$, to understand $B \operatorname{Diff}_{\partial}\left(D^{2 n}\right)$ one can try to reverse the effect of stabilising.
The crucial insight in this direction is due to Weiss, who observed that there is a fibre sequence

$$
\operatorname{BDiff}_{\partial}\left(D^{2 n}\right) \longrightarrow \operatorname{BDiff}_{\partial}\left(W_{g, 1}\right) \longrightarrow B E m b b_{\partial / 2}^{\cong}\left(W_{g, 1}\right) .
$$

The rightmost term consists of selfembeddings of $W_{g, 1}$ which are not required to be the identity on the boundary, but only on half of the boundary.

Because of the change of boundary conditions, these embeddings have "codimension n " from the point of view of embedding theory. If $n \geq 3$ this space is therefore accessible using the Goodwillie-Weiss "calculus of embeddings".

