Spaces of manifolds

Oscar Randal-Williams

LEVERHULME TRUST

What are spaces of manifolds?

Manifolds in euclidean space

$$\mathcal{M}_d = \left\{ X \subset \mathbb{R}^\infty \, | \, \begin{smallmatrix} X \text{ is a smooth, compact,} \\ ext{closed, } d \text{-dimensional} \\ ext{submanifold} \end{smallmatrix}
ight\}$$

For such a manifold W have

$$\operatorname{\mathsf{Emb}}(W,\mathbb{R}^\infty)\longrightarrow \mathcal{M}_d$$

 $e\longmapsto e(W)$

and we give M_d the finest topology making all of these maps continuous, when the domain has the Whitney C^{∞} -topology.

In particular we have the subspaces

 $\mathcal{M}(W) = \{X \in \mathcal{M}_d \,|\, X \text{ is diffeomorphic to } W\}$

Diffeomorphism groups and fibre bundles

We have

 $\mathcal{M}(W) = \textit{Emb}(W, \mathbb{R}^\infty) / \textit{Diff}(W)$

= {a contractible space on which Diff(W) acts freely}/Diff(W) =: BDiff(W),

a model for the *classifying space* of the topological group *Diff(W)*. Form the tautological space

$$\mathcal{E}(W) := \{ (X, x) \in \mathcal{M}(W) \times \mathbb{R}^{\infty} \, | \, x \in X \}$$

Theorem. The forgetful map $\pi : \mathcal{E}(W) \to \mathcal{M}(W)$ is the universal smooth *W*-bundle, i.e. the map

$$egin{cases} {
m Maps} f: {
m B} o {
m {\cal M}}({
m W}), \ {
m up to homotopy} \end{array} \longrightarrow egin{cases} {
m Smooth W-bundles over B,} \ {
m up to isomorphism} \end{array} \ f \longmapsto f^*\pi: f^*{\cal E}(W) o B \end{cases}$$

is a bijection for any (reasonable) B.

Invariants of $\mathcal{M}(W)$

The standard invariants of algebraic topology, applied to $\mathcal{M}(W)$, have an immediate interpretation:

- (i) Homotopy groups $\pi_n(\mathcal{M}(W)) = \begin{cases} based maps S^n \to \mathcal{M}(W) \\ up to homotopy \end{cases}$ tautologically parameterise smooth W-bundles over S^n .
- (ii) Such bundles are obtained by gluing trivial bundles over the upper and lower hemisphere of S^n along a map $S^{n-1} \rightarrow Diff(W)$ ("clutching"), giving a bijection with $\pi_{n-1}(Diff(W))$.
- (iii) In particular

 $\pi_1(\mathcal{M}(W)) \cong \{ \substack{\text{diffeomorphisms } \varphi : W \to W, \\ \text{up to isotopy}} \}$

is the mapping class group of W.

(iv) Cohomology groups $H^n(\mathcal{M}(W))$ tautologically parameterise characteristic classes of smooth W-bundles.

Variants

If W is a compact manifold with non-empty boundary ∂W , then we may choose an embedding $\partial W \subset \mathbb{R}^{\infty-1}$ and form a space

$$\mathcal{M}(W) = \left\{ X \subset [0,\infty) \times \mathbb{R}^{\infty-1} \mid \right.$$

X is a smooth, compact, d-dimensional submanifold with boundary $\{0\} \times \partial W$, diffeomorphic to W relative to ∂W

Topologised similarly. It is a model for *BDiff(W)*, where *Diff(W)* denotes the group of diffeomorphisms of *W* fixing the boundary.

Can easily make variants where manifolds are equipped with "tangential structures" such as orientations, Spin structures, framings, and so on. Classification of manifolds = $\pi_o(\mathcal{M}_d)$

 \Rightarrow categorifies to understanding the homotopy type of \mathcal{M}_d

As classifying spaces for smooth fibre bundles the spaces $\mathcal{M}(W) \simeq BDiff(W)$ are central objects in geometric topology, and we are required to investigate their topology.

Fact. We don't know $H^*(\mathcal{M}(W); \mathbb{Q})$ for any W of dimension > 3.

 \Rightarrow natural sense of outrage

Diff(*W*) acts on any natural space of differential-geometric data associated to *W* (Riemannian metrics with curvature conditions, symplectic forms, ...)

 \Rightarrow can be used to probe the topology of such spaces.

Stabilising and scanning

For manifolds of even dimension d = 2n, a powerful technique for understanding the cohomology of $\mathcal{M}(W)$ has arisen over the last 10 years.

It is inspired by Madsen and Weiss' proof of the Mumford conjecture, corresponding to the case d = 2.

Stabilisation

If W is a 2n-manifold with non-empty boundary, there are maps

$$\sigma: \mathcal{M}(W) \longrightarrow \mathcal{M}(W \# S^n \times S^n)$$

Let $g(W) := \max\{g \in \mathbb{N} \mid W \cong \#^g S^n \times S^n \# W'\}$ be the *genus* of W.

Theorem. The map σ is an isomorphism on *i*-th (co)homology for

- (i) $i \leq 3g(W)/2$ if 2n = 0, [Nakaoka '60]
- (ii) $i \leq (2g(W)-2)/3$ if 2n=2, [Harer '85, Ivanov '91, Wahl '08, Boldsen '12, R-W '16]
- (iii) $i \le (g(W) 3)/2$ if $2n \ge 6$ and W is simply-connected [Galatius-R-W'18] or has virtually poly- \mathbb{Z} fundamental group. [Friedrich'17]

Scanning

It is clarifying to introduce spaces of noncompact manifolds:

 $\psi_d(N) = \{ X \subset B_1(O) \subset \mathbb{R}^N \mid \text{X is a } d\text{-dimensional submanifold} \}$

This seems complicated, but homotopically is easy: a rescaling argument shows it deforms to its subspace of affine manifolds

$$\{(P,p) \in Gr_d(\mathbb{R}^N) \times \mathbb{R}^N \mid p \in P^{\perp}\}/\{(P,p) \text{ with } |p| \ge 1\}$$

This is a standard construction in algebraic topology: the Thom space of the orthogonal complement of the tautological bundle over the Grassmannian $Gr_d(\mathbb{R}^N)$.

Scanning

Writing $\mathcal{M}(W)_N = \{X \in \mathcal{M}(W) \, | \, X \subset \mathbb{R}^N\}$, there is a "scanning map"

$$\alpha_{N} : \mathcal{M}(W)_{N} \longrightarrow \mathsf{map}_{*}(S^{N}, \psi_{d}(\mathbb{R}^{N})) =: \Omega^{N}\psi_{d}(\mathbb{R}^{N})$$
$$X \longmapsto (\mathbf{v} \mapsto X \cap B_{1}(\mathbf{v}))$$

which we think of as recording, for a given *X*, the continuously varying collection of all local pictures of *X*.

Taking the limit as $\textit{N}
ightarrow \infty$ gives a map

$$\alpha:\mathcal{M}(W)\longrightarrow \underset{N\to\infty}{\operatorname{colim}}\,\Omega^N\psi_d(\mathbb{R}^N)=:\Omega^\infty\Psi_d$$

This can't be a very good approximation, as the right-hand side depends only on the dimension *d* and not on the specific *d*-manifold *W*.

Surprisingly, after a small modification it is a good approximation.

Scanning

To a 2*n*-manifold *W* there is an associated "tangential structure" θ_W . It would take us out of our way to define it here, but as examples:

- (i) If W is an orientable surface then θ_W is "an orientation".
- (ii) If W is a non-orientable surface then θ_W is "no structure".
- (iii) If $W = \mathbb{CP}^2$ then θ_W is "an orientation".
- (iv) If $W = S^2 \times S^2$ then θ_W is "a Spin structure".
- (v) If $W = \#^{g}S^{n} \times S^{n}$ then θ_{W} is "a framing on the *n*-skeleton".

Theorem. For any 2n-manifold W the map

$$\lim_{g\to\infty} H^*(\mathcal{M}^{\theta_W}(\#^g S^n \times S^n \# W)) \longleftarrow H^*(\Omega^{\infty} \Psi_{\theta_W})$$

is an isomorphism. [Barratt-Priddy, Quillen, Segal '72 for 2n = 0, Madsen-Weiss '07 for 2n = 2, Galatius-R-W '17]

The θ_W can be removed from the LHS, complicating the RHS.

Combined with the stability theorems (for $2n \neq 4$) this calculates the cohomology of $\mathcal{M}(W)$ in a stable range depending on g(W).

Examples

The point of such a theorem is that the right-hand side can be approached by standard methods of algebraic topology, and no longer has anything to do with smooth manifolds.

It is particularly easy to do calculations with \mathbb{Q} -coefficients.

Corollary. [Madsen-Weiss, "Mumford's conjecture"]

$$\mathsf{H}^*(\mathcal{M}^+(\Sigma_{\mathcal{G}});\mathbb{Q})=\mathbb{Q}[\kappa_1,\kappa_2,\kappa_3,\ldots]$$

in degrees $* \le \frac{2g-3}{3}$. **Corollary**. For $2n \ge 6$ we have

 $H^*(\mathcal{M}(\#^{g}S^n \times S^n \setminus int(D^{2n})); \mathbb{Q}) = \mathbb{Q}[\kappa_c \,|\, c \in \mathcal{B}]$

in degrees $* \leq \frac{g-3}{2}$, where \mathcal{B} is the basis of monomials of $\mathbb{Q}[e, p_{n-1}, p_{n-2}, \dots, p_{\lceil \frac{n+1}{4} \rceil}]$ of degree > 2n (where |e| = 2n, $|p_i| = 4i$).

Discs

At an opposite extreme we have D^d , the unit disc in \mathbb{R}^d .

"Smoothing theory" in the style of Morlet: for $d \neq 4$ have

$$rac{\mathsf{Homeo}(\mathsf{D}^d)}{\mathsf{Diff}(\mathsf{D}^d)}\simeq \Omega^d_{\mathsf{O}}\left(rac{\mathsf{Homeo}(\mathbb{R}^d)}{\mathsf{O}(d)}
ight)$$

where O(d) is the orthogonal group.

Alexander trick: For $f : D^d \to D^d$ a homeomorphism fixing ∂D^d , consider

$$f_t(x) = egin{cases} x & |x| \geq t \ t \cdot f(x/t) & |x| \leq t. \end{cases}$$

 $\Rightarrow \textit{Homeo}_{\partial}(\textit{D}^d) \simeq *$

$$\Rightarrow \mathcal{M}(D^d) = \textit{BDiff}(D^d) \simeq \Omega^d_o\left(rac{\textit{Homeo}(\mathbb{R}^d)}{\textit{O}(d)}
ight)$$
 for $d
eq 4$

So understanding $\mathcal{M}(D^d)$ is more or less the same as understanding the group of homeomorphisms of \mathbb{R}^d . That is clearly important too!

Classical approach to $\mathcal{M}(W) \simeq BDiff(W)$ via

surgery theory and pseudoisotopy theory

Limiting factor comes from dimension *d* of *W* (not genus): the "pseudoisotopy stable range" is at least $\min(\frac{d-7}{2}, \frac{d-4}{3}) \sim \frac{d}{3}$ [Igusa '84] **Theorem.** [Farrell–Hsiang '78] In this range

$$\pi_*(\mathcal{M}(D^d))_{\mathbb{Q}} = \begin{cases} \mathsf{O} & d \text{ even} \\ \mathbb{Q}[4] \oplus \mathbb{Q}[8] \oplus \mathbb{Q}[12] \oplus \cdots & d \text{ odd} \end{cases}$$

The nontrivial classes come from the relation of pseudoisotopy to algebraic *K*-theory and Borel's calculation

$$K_*(\mathbb{Z})_{\mathbb{Q}} = \mathbb{Q}[\mathsf{O}] \oplus \mathbb{Q}[\mathsf{5}] \oplus \mathbb{Q}[\mathsf{9}] \oplus \mathbb{Q}[\mathsf{13}] \oplus \cdots$$

More recent work shows that the formula of Farrell and Hsiang cannot be the whole story: there are new phenomena outside of the pseudoisotopy stable range.

Theorem [Watanabe '09 '18] For *d* even, or *d* odd and *r* > 1, there is a surjection

$$\pi_{r\cdot (d-3)}(\mathcal{M}(D^d))_{\mathbb{Q}}\longrightarrow \mathcal{A}_r^{(-1)^d}$$

for \mathcal{A}_r^{\pm} certain vector spaces of trivalent graphs. These satisfy

$$\dim(\mathcal{A}_r^-) = 1, 1, 1, 2, 2, 3, 4, 5, 6, 8, 9, \dots$$
$$\dim(\mathcal{A}_r^+) = 0, 1, 0, 0, 1, 0, 0, 0, 1, \dots$$

for *r* = 1, 2, 3, . . .

Theorem [Weiss '22] There are certain maps

 $\pi_{4i-d-1}(\mathcal{M}(D^d))_{\mathbb{Q}}\longrightarrow \mathbb{Q}$

which are surjective for "many" d and $i \ge \frac{d-1}{2}$.

Inspired by Weiss' argument, Kupers and I have begun a programme to determine

 $\pi_*(\mathcal{M}(D^{2n}))_{\mathbb{Q}}$

as completely as possible. The first installment is:

Theorem. [Kupers–R-W '20 '21] Let $2n \ge 6$.

(i) If i < 2n - 1 then $\pi_i(\mathcal{M}(D^{2n}))_{\mathbb{Q}}$ vanishes, and (ii) if $i \ge 2n - 1$ then $\pi_i(\mathcal{M}(D^{2n}))_{\mathbb{Q}}$ is

 $\begin{cases} \mathbb{Q} & \text{if } i \equiv 2n-1 \mod 4 \text{ and } i \notin \bigcup_{\substack{r \geq 2}} [2r(n-2)-1, 2r(n-1)+1], \\ 0 & \text{if } i \not\equiv 2n-1 \mod 4 \text{ and } i \notin \bigcup_{\substack{r \geq 2}} [2r(n-2)-1, 2r(n-1)+1], \\ ? & \text{otherwise.} \end{cases}$

Using different techniques, Krannich and I have investigated

 $\pi_*(\mathcal{M}(D^{2n+1}))_{\mathbb{Q}}$

outside of the pseudoisotopy stable range.

Theorem. [Krannich–R-W '21] In degrees $i \leq 3n - 8$ we have

$$\pi_i(\mathcal{M}(D^{2n+1}))_{\mathbb{Q}} = K_{i+1}(\mathbb{Z})_{\mathbb{Q}} \oplus \begin{cases} \mathbb{Q} & i \equiv 2n-2 \mod 4, i \geq 2n-2 \\ 0 & \text{else} \end{cases}$$

A conjectural picture

Proposal

The "band" picture suggests that $\pi_*(\mathcal{M}(D^d))_{\mathbb{Q}}$ is a superposition of various phenomena happening on different "wavelengths"

The phenomena that occur depend only on the parity of d, but the rth phenomenon contributes to degrees around $r \cdot d$

i.e. these phenomena get "spread out" as d increases

There is a mechanism from homotopy theory that could explain this:

Orthogonal Calculus

In fact it is better to think about $BHomeo(\mathbb{R}^d)$ instead of $\mathcal{M}(D^d)$: by smoothing theory these differ in a well understood way.

Then the proposal is to consider all the $BHomeo(\mathbb{R}^d)$ at once, as the functor

 $V \mapsto BHomeo(V): \{ \begin{smallmatrix} \text{category of finite-dimensional} \\ \text{inner product spaces} \end{smallmatrix} \} \longrightarrow \{ \begin{smallmatrix} \text{category of based} \\ \textstyle \text{topological spaces} \end{smallmatrix} \}$

Weiss' orthogonal calculus proposes to consider such functors

 $F: \{ \substack{\text{category of finite-dimensional} \\ \text{inner product spaces} \} \longrightarrow \{ \substack{\text{category of based} \\ \text{topological spaces} \} \}$

as though they were functions, and develop a notion of Taylor expansions for them.

There is a notion of derivative $F^{(1)}(V) := \text{fibre}(F(V) \to F(V \oplus \mathbb{R}))$ of such a functor, and hence of being polynomial of degree $\leq r$.

Any functor *F* has a best approximation $F \rightarrow T_r F$ by a polynomial functor of degree $\leq r$, assembling to a "Taylor tower".

One remarkable thing about this theory is that the homogeneous polynomials, i.e. the fibres of $T_rF \rightarrow T_{r-1}F$, have a very particular structure: they are

 $V \longmapsto \Omega^{\infty}(\Theta F^{(r)} \wedge_{O(r)} (\mathbb{R}^r \otimes V)^+)$

for some O(r)-spectrum $\Theta F^{(r)}$.

Such a homogeneous functor $F(V) = \Omega^{\infty}(\Theta F^{(r)} \wedge_{O(r)} (\mathbb{R}^r \otimes V)^+)$ has precisely the behaviour we have observed

$$egin{aligned} \pi_*(F(V\oplus\mathbb{R}\oplus\mathbb{R}))_\mathbb{Q}&=\pi_{*-2r}(F(V))_\mathbb{Q}\ &
eq\pi_{*-r}(F(V\oplus\mathbb{R}))_\mathbb{Q} ext{ in general} \end{aligned}$$

The "band" pattern we have seen would then be explained by

- (i) $BHomeo(V) \xrightarrow{\sim} T_{\infty}BHomeo(V)$ for dim(V) large enough
- (ii) the known structure of $T_0BHomeo(-)$ and $T_1BHomeo(-)$
- (iii) Θ BHomeo^(r)//SO(r) being a finite spectrum for each $r \ge 2$

The spectra $\Theta BHomeo^{(r)} // SO(r)$ would have to be very rich, with rational homotopy groups at least containing the *r*-loop part of Kontsevich's (even and odd) commutative graph cohomology, and most probably just being equal to this.

Krannich and I have identified $\Theta BHomeo^{(2)} \simeq_{\mathbb{Q}} CoInd_{\mathcal{O}(1)}^{\mathcal{O}(2)} \mathbb{S}^{-1}$, and this proposal looks good here.

Questions?