Diffeomorphisms of discs

Oscar Randal-Williams

 Estati sver ley int Europeen Corrmision

LEVERHULME
TRUST

Smoothing theory

M a topological d-manifold, maybe with smooth boundary ∂M

$$
\mathcal{S} m(M)=\{\text { space of smooth structures on } M \text {, fixed near } \partial M\}
$$

("space" interpreted liberally).

Smoothing theory

M a topological d-manifold, maybe with smooth boundary ∂M

$$
\mathcal{S} m(M)=\{\text { space of smooth structures on } M \text {, fixed near } \partial M\}
$$

("space" interpreted liberally).
Recording germs of smooth structure near each point gives a map

$$
\mathcal{S m}(M) \longrightarrow \Gamma_{\partial}(\mathcal{S m}(T M) \rightarrow M)
$$

(the space of sections of the bundle with fibre $\mathcal{S m}\left(T_{m} M\right) \cong \mathcal{S} m\left(\mathbb{R}^{d}\right)$)

Smoothing theory

M a topological d-manifold, maybe with smooth boundary ∂M

$$
\mathcal{S} m(M)=\{\text { space of smooth structures on } M \text {, fixed near } \partial M\}
$$

("space" interpreted liberally).
Recording germs of smooth structure near each point gives a map

$$
\mathcal{S m}(M) \longrightarrow \Gamma_{\partial}(\mathcal{S m}(T M) \rightarrow M)
$$

(the space of sections of the bundle with fibre $\mathcal{S m}\left(T_{m} M\right) \cong \mathcal{S m}\left(\mathbb{R}^{d}\right)$)
Theorem. [Hirsch-Mazur '74, Kirby-Siebenmann '77]
For $d \neq 4$ this map is a homotopy equivalence.

Smoothing theory

M a topological d-manifold, maybe with smooth boundary ∂M

$$
\mathcal{S} m(M)=\{\text { space of smooth structures on } M \text {, fixed near } \partial M\}
$$

("space" interpreted liberally).
Recording germs of smooth structure near each point gives a map

$$
\mathcal{S m}(M) \longrightarrow \Gamma_{\partial}(\mathcal{S m}(T M) \rightarrow M)
$$

(the space of sections of the bundle with fibre $\mathcal{S m}\left(T_{m} M\right) \cong \mathcal{S m}\left(\mathbb{R}^{d}\right)$)
Theorem. [Hirsch-Mazur '74, Kirby-Siebenmann '77]
For $d \neq 4$ this map is a homotopy equivalence.
$\operatorname{Homeo}_{\partial}(M)$ acts on $\mathcal{S m}(M)$, giving

$$
\mathcal{S m}(M) \cong \bigsqcup_{[W]} \operatorname{Homeo}_{\partial}(W) / \operatorname{Diff}_{\partial}(W)
$$

Similarly, $\operatorname{Sm}\left(\mathbb{R}^{d}\right) \cong \operatorname{Homeo}\left(\mathbb{R}^{d}\right) / \operatorname{Diff}\left(\mathbb{R}^{d}\right)$

A consequence of smoothing theory

Write Top $(d):=\operatorname{Homeo}\left(\mathbb{R}^{d}\right)$. By linearising have $\operatorname{Diff}\left(\mathbb{R}^{d}\right) \simeq O(d)$, so

$$
\mathcal{S m}\left(\mathbb{R}^{d}\right) \simeq \operatorname{Top}(d) / O(d) .
$$

A consequence of smoothing theory

Write $\operatorname{Top}(d):=\operatorname{Homeo}\left(\mathbb{R}^{d}\right)$. By linearising have $\operatorname{Diff}\left(\mathbb{R}^{d}\right) \simeq O(d)$, so

$$
\mathcal{S m}\left(\mathbb{R}^{d}\right) \simeq \operatorname{Top}(d) / O(d)
$$

Applied to $D^{d}, d \neq 4$, smoothing theory gives a map $\operatorname{Homeo}_{\partial}\left(D^{d}\right) / \operatorname{Diff}_{\partial}\left(D^{d}\right) \longrightarrow \Gamma_{\partial}\left(\mathcal{S m}\left(T D^{d}\right) \rightarrow D^{d}\right)=\operatorname{map}_{\partial}\left(D^{d}, \operatorname{Top}(d) / O(d)\right)$ which is a homotopy equivalence to the path components it hits.

A consequence of smoothing theory

Write $\operatorname{Top}(d):=\operatorname{Homeo}\left(\mathbb{R}^{d}\right)$. By linearising have $\operatorname{Diff}\left(\mathbb{R}^{d}\right) \simeq O(d)$, so

$$
\mathcal{S m}\left(\mathbb{R}^{d}\right) \simeq \operatorname{Top}(d) / O(d)
$$

Applied to $D^{d}, d \neq 4$, smoothing theory gives a map
$\operatorname{Homeo}_{\partial}\left(D^{d}\right) / \operatorname{Diff}_{\partial}\left(D^{d}\right) \longrightarrow \Gamma_{\partial}\left(\mathcal{S m}\left(T D^{d}\right) \rightarrow D^{d}\right)=\operatorname{map}_{\partial}\left(D^{d}, \operatorname{Top}(d) / O(d)\right)$
which is a homotopy equivalence to the path components it hits.
The Alexander trick $\mathrm{Homeo}_{\partial}\left(D^{d}\right) \simeq *$ implies

$$
\begin{equation*}
\operatorname{BDiff}_{\partial}\left(D^{d}\right) \simeq \Omega_{0}^{d} T o p(d) / O(d) \tag{Morlet}
\end{equation*}
$$

or if you prefer

$$
\operatorname{Diff}_{\partial}\left(D^{d}\right) \simeq \Omega^{d+1} \operatorname{Top}(d) / O(d) .
$$

A consequence of smoothing theory

Write $\operatorname{Top}(d):=$ Homeo $\left(\mathbb{R}^{d}\right)$. By linearising have $\operatorname{Diff}\left(\mathbb{R}^{d}\right) \simeq O(d)$, so

$$
\mathcal{S m}\left(\mathbb{R}^{d}\right) \simeq \operatorname{Top}(d) / O(d)
$$

Applied to $D^{d}, d \neq 4$, smoothing theory gives a map
$\operatorname{Homeo}_{\partial}\left(D^{d}\right) / \operatorname{Diff}_{\partial}\left(D^{d}\right) \longrightarrow \Gamma_{\partial}\left(S m\left(T D^{d}\right) \rightarrow D^{d}\right)=\operatorname{map}_{\partial}\left(D^{d}, \operatorname{Top}(d) / O(d)\right)$
which is a homotopy equivalence to the path components it hits.
The Alexander trick $\mathrm{Homeo}_{\partial}\left(D^{d}\right) \simeq *$ implies

$$
\begin{equation*}
\operatorname{BDiff}_{\partial}\left(D^{d}\right) \simeq \Omega_{0}^{d} \operatorname{Top}(d) / O(d) \tag{Morlet}
\end{equation*}
$$

or if you prefer

$$
\operatorname{Diff}_{\partial}\left(D^{d}\right) \simeq \Omega^{d+1} \operatorname{Top}(d) / O(d) .
$$

$O(d)$ is "well understood" so $\operatorname{Diff}_{\partial}\left(D^{d}\right)$ and $\operatorname{Top}(d)$ are equidifficult.
But $\operatorname{Diff}_{\partial}\left(D^{d}\right)$ is more approachable: can use smoothness.

What do we know?

The theorem of Farrell and Hsiang

The classical approach to studying $\operatorname{Diff}_{\partial}(M)$ breaks up as

The theorem of Farrell and Hsiang

The classical approach to studying $\operatorname{Diff}_{\partial}(M)$ breaks up as

1. Space of homotopy self-equivalences hAut $_{\partial}(M)$ analysed by homotopy theory.

The theorem of Farrell and Hsiang

The classical approach to studying $\operatorname{Diff}_{\partial}(M)$ breaks up as

1. Space of homotopy self-equivalences hAut $_{\partial}(M)$ analysed by homotopy theory.
2. Comparison hAut ${ }_{\partial}(M) /$ Diff $_{\partial}(M)$ with "block-diffeomorphisms" analysed by surgery theory.

The theorem of Farrell and Hsiang

The classical approach to studying $\operatorname{Diff}_{\partial}(M)$ breaks up as

1. Space of homotopy self-equivalences hAut $_{\partial}(M)$ analysed by homotopy theory.
2. Comparison hAut ${ }_{\partial}(M) /$ Diff $_{\partial}(M)$ with "block-diffeomorphisms" analysed by surgery theory.
3. Comparison $\widetilde{\text { Diff }}_{\partial}(M) / \operatorname{Diff}_{\partial}(M)$ with diffeomorphisms analysed by pseudoisotopy theory (and hence K-theory), but only valid in the "pseudoisotopy stable range".

The theorem of Farrell and Hsiang

The classical approach to studying $\operatorname{Diff}_{\partial}(M)$ breaks up as

1. Space of homotopy self-equivalences hAut $_{\partial}(M)$ analysed by homotopy theory.
2. Comparison hAut ${ }_{\partial}(M) /$ Diff $_{\partial}(M)$ with "block-diffeomorphisms" analysed by surgery theory.
3. Comparison $\widetilde{\text { Diff }}_{\partial}(M) / \operatorname{Diff}_{\partial}(M)$ with diffeomorphisms analysed by pseudoisotopy theory (and hence K-theory), but only valid in the "pseudoisotopy stable range".
[Igusa '84]: this is at least $\min \left(\frac{d-7}{2}, \frac{d-4}{3}\right) \sim \frac{d}{3}$.

The theorem of Farrell and Hsiang

The classical approach to studying $\operatorname{Diff}_{\partial}(M)$ breaks up as

1. Space of homotopy self-equivalences hAut $_{\partial}(M)$ analysed by homotopy theory.
2. Comparison hAut ${ }_{\partial}(M) /$ Diff $_{\partial}(M)$ with "block-diffeomorphisms" analysed by surgery theory.
3. Comparison $\widetilde{\text { Diff }}_{\partial}(M) / \operatorname{Diff}_{\partial}(M)$ with diffeomorphisms analysed by pseudoisotopy theory (and hence K-theory), but only valid in the "pseudoisotopy stable range".
[Igusa '84]: this is at least $\min \left(\frac{d-7}{2}, \frac{d-4}{3}\right) \sim \frac{d}{3}$. [RW '17]: it is at most $d-2$.

The theorem of Farrell and Hsiang

The classical approach to studying $\operatorname{Diff}_{\partial}(M)$ breaks up as

1. Space of homotopy self-equivalences hAut $_{\partial}(M)$ analysed by homotopy theory.
2. Comparison hAut ${ }_{\partial}(M) /$ Diff $_{\partial}(M)$ with "block-diffeomorphisms" analysed by surgery theory.
3. Comparison $\widetilde{\text { Diff }}_{\partial}(M) / \operatorname{Diff}_{\partial}(M)$ with diffeomorphisms analysed by pseudoisotopy theory (and hence K-theory), but only valid in the "pseudoisotopy stable range". [Igusa '84]: this is at least $\min \left(\frac{d-7}{2}, \frac{d-4}{3}\right) \sim \frac{d}{3}$. [RW '17]: it is at most $d-2$.

Theorem. [Farrell-Hsiang '78]

$$
\pi_{*}\left(\text { BDiff }_{\partial}\left(D^{d}\right)\right) \otimes \mathbb{Q}= \begin{cases}0 & d \text { even } \\ \mathbb{Q}[4] \oplus \mathbb{Q}[8] \oplus \mathbb{Q}[12] \oplus \cdots & d \text { odd }\end{cases}
$$

in the pseudoisotopy stable range for d (so certainly for $* \lesssim \frac{d}{3}$).

The theorems of Watanabe

Theorem. [Watanabe '09]
For $2 n+1 \geq 5$ and $r \geq 2$ there is a surjection

$$
\pi_{(2 r)(2 n)}\left(\text { BDiff }_{\partial}\left(D^{2 n+1}\right)\right) \otimes \mathbb{Q} \rightarrow \mathcal{A}_{r}^{\text {odd }}
$$

The theorems of Watanabe

Theorem. [Watanabe '09]
For $2 n+1 \geq 5$ and $r \geq 2$ there is a surjection

$$
\pi_{(2 r)(2 n)}\left(\text { BDiff }_{\partial}\left(D^{2 n+1}\right)\right) \otimes \mathbb{Q} \rightarrow \mathcal{A}_{r}^{\text {odd }}
$$

where

The theorems of Watanabe

Theorem. [Watanabe '09]
For $2 n+1 \geq 5$ and $r \geq 2$ there is a surjection

$$
\pi_{(2 r)(2 n)}\left(\text { BDiff }_{\partial}\left(D^{2 n+1}\right)\right) \otimes \mathbb{Q} \rightarrow \mathcal{A}_{r}^{\text {odd }}
$$

where

has $\operatorname{dim}\left(\mathcal{A}_{r}^{\text {odd }}\right)=1,1,1,2,2,3,4,5,6,8,9, \ldots$

The theorems of Watanabe

Theorem. [Watanabe '09]
For $2 n+1 \geq 5$ and $r \geq 2$ there is a surjection

$$
\pi_{(2 r)(2 n)}\left(\text { BDiff }_{\partial}\left(D^{2 n+1}\right)\right) \otimes \mathbb{Q} \rightarrow \mathcal{A}_{r}^{\text {odd }}
$$

where

has $\operatorname{dim}\left(\mathcal{A}_{r}^{\text {odd }}\right)=1,1,1,2,2,3,4,5,6,8,9, \ldots$
Theorem. [Watanabe '18]
There is a surjection

$$
\pi_{r}\left(\text { BDiff }_{\partial}\left(D^{4}\right)\right) \otimes \mathbb{Q} \rightarrow \mathcal{A}_{r}^{\text {even }}
$$

The theorems of Watanabe

Theorem. [Watanabe '09]
For $2 n+1 \geq 5$ and $r \geq 2$ there is a surjection

$$
\pi_{(2 r)(2 n)}\left(\text { BDiff }_{\partial}\left(D^{2 n+1}\right)\right) \otimes \mathbb{Q} \rightarrow \mathcal{A}_{r}^{\text {odd }}
$$

where

has $\operatorname{dim}\left(\mathcal{A}_{r}^{\text {odd }}\right)=1,1,1,2,2,3,4,5,6,8,9, \ldots$
Theorem. [Watanabe '18]
There is a surjection

$$
\pi_{r}\left(\text { BDiff }_{\partial}\left(D^{4}\right)\right) \otimes \mathbb{Q} \rightarrow \mathcal{A}_{r}^{\text {even }}
$$

where $\operatorname{dim}\left(\mathcal{A}_{r}^{\text {even }}\right)=0,1,0,0,1,0,0,0,1, \ldots\left(\operatorname{so} \pi_{2}\left(\operatorname{BDiff}_{\partial}\left(D^{4}\right)\right) \neq 0\right)$

The theorem of Weiss

Closely related to the classical story is the fact that the stable map

$$
O=\underset{d \rightarrow \infty}{\operatorname{colim}} O(d) \longrightarrow \text { Top }=\underset{d \rightarrow \infty}{\operatorname{colim}} \operatorname{Top}(d)
$$

is a \mathbb{Q}-equivalence, and hence

$$
H^{*}(\text { BTop } ; \mathbb{Q}) \cong H^{*}(B O ; \mathbb{Q})=\mathbb{Q}\left[p_{1}, p_{2}, p_{3}, \ldots\right] .
$$

The theorem of Weiss

Closely related to the classical story is the fact that the stable map

$$
O=\underset{d \rightarrow \infty}{\operatorname{colim}} O(d) \longrightarrow \text { Top }=\underset{d \rightarrow \infty}{\operatorname{colim}} \operatorname{Top}(d)
$$

is a \mathbb{Q}-equivalence, and hence

$$
H^{*}(\text { BTop } ; \mathbb{Q}) \cong H^{*}(B O ; \mathbb{Q})=\mathbb{Q}\left[p_{1}, p_{2}, p_{3}, \ldots\right] .
$$

In $H^{*}(B O(2 n) ; \mathbb{Q})$ the usual definition of Pontrjagin classes shows

$$
\begin{equation*}
p_{n}=e^{2} \text { and } p_{n+i}=0 \text { for all } i>0 \tag{!}
\end{equation*}
$$

The theorem of Weiss

Closely related to the classical story is the fact that the stable map

$$
O=\underset{d \rightarrow \infty}{\operatorname{colim}} O(d) \longrightarrow \text { Top }=\underset{d \rightarrow \infty}{\operatorname{colim}} \operatorname{Top}(d)
$$

is a \mathbb{Q}-equivalence, and hence

$$
H^{*}(\text { BTop } ; \mathbb{Q}) \cong H^{*}(B O ; \mathbb{Q})=\mathbb{Q}\left[p_{1}, p_{2}, p_{3}, \ldots\right] .
$$

In $H^{*}(B O(2 n) ; \mathbb{Q})$ the usual definition of Pontrjagin classes shows

$$
\begin{equation*}
p_{n}=e^{2} \text { and } p_{n+i}=0 \text { for all } i>0 \tag{!}
\end{equation*}
$$

Theorem. [Weiss '15]
For many n and $i \geq 0$ there are classes $w_{n, i} \in \pi_{4(n+i)}(B T o p(2 n))$ which pair nontrivially with p_{n+i} (i.e. (!) does not hold on $\operatorname{BTop}(2 n)$). $\Rightarrow \pi_{2 n-1+4 i}\left(\right.$ BDiff $\left._{\partial}\left(D^{2 n}\right)\right) \otimes \mathbb{Q} \neq 0$ for such n and i.

A pattern

A pattern

Inspired by Weiss' argument, Alexander Kupers and I have begun a programme to determine

$$
\pi_{*}\left(\text { BDiff }_{\partial}\left(D^{2 n}\right)\right) \otimes \mathbb{Q}
$$

as completely as possible. The first installment is:
A. Kupers, O. R-W, On diffeomorphisms of even-dimensional discs (arXiv:2007.13884)

A pattern

Inspired by Weiss' argument, Alexander Kupers and I have begun a programme to determine

$$
\pi_{*}\left(\operatorname{BDiff}_{\partial}\left(D^{2 n}\right)\right) \otimes \mathbb{Q}
$$

as completely as possible. The first installment is:
A. Kupers, O. R-W, On diffeomorphisms of even-dimensional discs (arXiv:2007.13884)

Here we

1. fully determine these groups in degrees $* \leq 4 n-10$,

A pattern

Inspired by Weiss' argument, Alexander Kupers and I have begun a programme to determine

$$
\pi_{*}\left(\operatorname{BDiff}_{\partial}\left(D^{2 n}\right)\right) \otimes \mathbb{Q}
$$

as completely as possible. The first installment is:
A. Kupers, O. R-W, On diffeomorphisms of even-dimensional discs (arXiv:2007.13884)

Here we

1. fully determine these groups in degrees $* \leq 4 n-10$,
2. determine them in higher degrees outside of certain "bands",

A pattern

Inspired by Weiss' argument, Alexander Kupers and I have begun a programme to determine

$$
\pi_{*}\left(\operatorname{BDiff}_{\partial}\left(D^{2 n}\right)\right) \otimes \mathbb{Q}
$$

as completely as possible. The first installment is:
A. Kupers, O. R-W, On diffeomorphisms of even-dimensional discs (arXiv:2007.13884)

Here we

1. fully determine these groups in degrees $* \leq 4 n-10$,
2. determine them in higher degrees outside of certain "bands",
3. understand something about the structure of these bands.

A pattern

Theorem. [Kupers-R-W]
Let $2 n \geq 6$.
(i) If $d<2 n-1$ then $\pi_{d}\left(\operatorname{BDiff}_{\partial}\left(D^{2 n}\right)\right) \otimes \mathbb{Q}$ vanishes, and
(ii) if $d \geq 2 n-1$ then $\pi_{d}\left(\right.$ BDiff $\left._{\partial}\left(D^{2 n}\right)\right) \otimes \mathbb{Q}$ is

$$
\begin{cases}\mathbb{Q} & \text { if } d \equiv 2 n-1 \bmod 4 \text { and } d \notin \bigcup_{r \geq 2}[2 r(n-2)-1,2 r n-1], \\ 0 & \text { if } d \not \equiv 2 n-1 \bmod 4 \text { and } d \notin \bigcup_{r \geq 2}[2 r(n-2)-1,2 r n-1], \\ ? & \text { otherwise. }\end{cases}
$$

A pattern

Using the fibre sequence $\frac{\operatorname{Top}(2 n)}{O(2 n)} \rightarrow \frac{\text { Top }}{O(2 n)} \rightarrow \frac{\text { Top }}{\operatorname{Top}(2 n)}$ we have the Reformulation (slightly stronger).
For $2 n \geq 6$ the groups $\pi_{*}\left(\Omega_{0}^{2 n+1}\left(\frac{\text { Top }}{\operatorname{Top}(2 n)}\right)\right) \otimes \mathbb{Q}$ are supported in degrees

$$
* \in \bigcup[2 r(n-2)-1,2 r n-2] .
$$

A pattern

Using the fibre sequence $\frac{\operatorname{Top}(2 n)}{O(2 n)} \rightarrow \frac{\text { Top }}{O(2 n)} \rightarrow \frac{\text { Top }}{\operatorname{Top}(2 n)}$ we have the Reformulation (slightly stronger).
For $2 n \geq 6$ the groups $\pi_{*}\left(\Omega_{0}^{2 n+1}\left(\frac{\text { Top }}{\operatorname{Top}(2 n)}\right)\right) \otimes \mathbb{Q}$ are supported in degrees

$$
* \in \bigcup[2 r(n-2)-1,2 r n-2] .
$$

Reflecting $D^{2 n}$ or $\mathbb{R}^{2 n}$ induces compatible involutions on

$$
\Omega_{0}^{2 n+1} \frac{\text { Top }}{\text { Top }(2 n)} \longrightarrow \text { BDiff }_{\partial}\left(D^{2 n}\right) \simeq \Omega_{0}^{2 n} \frac{\text { Top }(2 n)}{O(2 n)} \longrightarrow \Omega_{0}^{2 n} \frac{\text { Top }}{O(2 n)} .
$$

A pattern

Using the fibre sequence $\frac{\operatorname{Top}(2 n)}{O(2 n)} \rightarrow \frac{\text { Top }}{O(2 n)} \rightarrow \frac{\text { Top }}{\operatorname{Top}(2 n)}$ we have the Reformulation (slightly stronger).
For $2 n \geq 6$ the groups $\pi_{*}\left(\Omega_{0}^{2 n+1}\left(\frac{\text { Top }}{\operatorname{Top}(2 n)}\right)\right) \otimes \mathbb{Q}$ are supported in degrees

$$
* \in \bigcup_{r \geq 2}[2 r(n-2)-1,2 r n-2] .
$$

Reflecting $D^{2 n}$ or $\mathbb{R}^{2 n}$ induces compatible involutions on

$$
\Omega_{0}^{2 n+1} \frac{\text { Top }}{\operatorname{Top}(2 n)} \longrightarrow \text { BDiff }_{\partial}\left(D^{2 n}\right) \simeq \Omega_{0}^{2 n} \frac{\operatorname{Top}(2 n)}{O(2 n)} \longrightarrow \Omega_{0}^{2 n} \frac{\text { Top }}{O(2 n)} .
$$

We show this acts as -1 on

$$
\pi_{*}\left(\Omega_{0}^{2 n} \frac{T o p}{O(2 n)}\right) \otimes \mathbb{Q}=\mathbb{Q}[2 n-1] \oplus \mathbb{Q}[2 n+3] \oplus \mathbb{Q}[2 n+7] \oplus \cdots
$$

and acts on $\pi_{*}\left(\Omega_{0}^{2 n+1}\left(\frac{\text { Top }}{\operatorname{Top}(2 n)}\right)\right) \otimes \mathbb{Q}$ as $(-1)^{r}$ in the r th band.

A pattern

Using the fibre sequence $\frac{\operatorname{Top}(2 n)}{O(2 n)} \rightarrow \frac{\text { Top }}{O(2 n)} \rightarrow \frac{\text { Top }}{\operatorname{Top}(2 n)}$ we have the Reformulation (slightly stronger).
For $2 n \geq 6$ the groups $\pi_{*}\left(\Omega_{0}^{2 n+1}\left(\frac{\text { Top }}{\operatorname{Top}(2 n)}\right)\right) \otimes \mathbb{Q}$ are supported in degrees

$$
* \in \bigcup_{r \geq 2}[2 r(n-2)-1,2 r n-2] .
$$

Reflecting $D^{2 n}$ or $\mathbb{R}^{2 n}$ induces compatible involutions on

$$
\Omega_{0}^{2 n+1} \frac{\text { Top }}{\operatorname{Top}(2 n)} \longrightarrow \text { BDiff }_{\partial}\left(D^{2 n}\right) \simeq \Omega_{0}^{2 n} \frac{\operatorname{Top}(2 n)}{O(2 n)} \longrightarrow \Omega_{0}^{2 n} \frac{\text { Top }}{O(2 n)} .
$$

We show this acts as -1 on

$$
\pi_{*}\left(\Omega_{0}^{2 n} \frac{T o p}{O(2 n)}\right) \otimes \mathbb{Q}=\mathbb{Q}[2 n-1] \oplus \mathbb{Q}[2 n+3] \oplus \mathbb{Q}[2 n+7] \oplus \cdots
$$

and acts on $\pi_{*}\left(\Omega_{0}^{2 n+1}\left(\frac{\text { Top }}{\text { Top }(2 n)}\right)\right) \otimes \mathbb{Q}$ as $(-1)^{r}$ in the r th band.
The orange/blue colours in the chart are the $+1 /-1$ eigenspaces.

The first uncertainty

We also determine to some extent what happens in the first band shown in the chart:

The first uncertainty

We also determine to some extent what happens in the first band shown in the chart: the groups $\pi_{*}\left(\Omega^{2 n+1}\left(\frac{\text { Top }}{\operatorname{Top}(2 n)}\right)\right) \otimes \mathbb{Q}$ in degrees [$4 n-9,4 n-4$] are calculated by a chain complex of the form

$$
\mathbb{Q}^{2} \longleftarrow \mathbb{Q}^{4} \longleftarrow \mathbb{Q}^{10} \longleftarrow \mathbb{Q}^{21} \longleftarrow \mathbb{Q}^{15} \longleftrightarrow \mathbb{Q}^{3}
$$

The first uncertainty

We also determine to some extent what happens in the first band shown in the chart: the groups $\pi_{*}\left(\Omega^{2 n+1}\left(\frac{\text { Top }}{\operatorname{Top}(2 n)}\right)\right) \otimes \mathbb{Q}$ in degrees [$4 n-9,4 n-4$] are calculated by a chain complex of the form

$$
\mathbb{Q}^{2} \longleftarrow \mathbb{Q}^{4} \longleftarrow \mathbb{Q}^{10} \longleftarrow \mathbb{Q}^{21} \longleftarrow \mathbb{Q}^{15} \longleftarrow \mathbb{Q}^{3}
$$

We don't know the differentials, but it has Euler characteristic 1 so must have some homology.
It lies in the +1 -eigenspace, so injects into $\pi_{*}\left(\right.$ BDiff $\left._{\partial}\left(D^{2 n}\right)\right) \otimes \mathbb{Q}$.

The first uncertainty

We also determine to some extent what happens in the first band shown in the chart: the groups $\pi_{*}\left(\Omega^{2 n+1}\left(\frac{\text { Top }}{\operatorname{Top}(2 n)}\right)\right) \otimes \mathbb{Q}$ in degrees [$4 n-9,4 n-4$] are calculated by a chain complex of the form

$$
\mathbb{Q}^{2} \longleftarrow \mathbb{Q}^{4} \longleftarrow \mathbb{Q}^{10} \longleftarrow \mathbb{Q}^{21} \longleftarrow \mathbb{Q}^{15} \longleftarrow \mathbb{Q}^{3}
$$

We don't know the differentials, but it has Euler characteristic 1 so must have some homology.
It lies in the +1 -eigenspace, so injects into $\pi_{*}\left(\right.$ BDiff $\left._{\partial}\left(D^{2 n}\right)\right) \otimes \mathbb{Q}$.
By analogy with Watanabe's theorem for D^{4} one expects

$$
\operatorname{dim} \pi_{4 n-6}\left(\text { BDiff }_{\partial}\left(D^{2 n}\right)\right) \otimes \mathbb{Q} \geq 1
$$

which is compatible with the above.

Remarks on the proof

Philosophy

Many results in this flavour of geometric topology are relative: they describe the difference between

1. topological/smooth manifolds (smoothing)
2. homotopy equivalences/block diffeomorphisms (surgery)
3. block diffeomorphisms/diffeomorphisms (pseudoisotopy)

Philosophy

Many results in this flavour of geometric topology are relative: they describe the difference between

1. topological/smooth manifolds (smoothing)
2. homotopy equivalences/block diffeomorphisms (surgery)
3. block diffeomorphisms/diffeomorphisms (pseudoisotopy) Weiss suggested a new kind of relativisation: for M with $\partial M=S^{d-1}$ and $\frac{1}{2} \partial M:=D^{d-1} \subset S^{d-1}$ he showed that

$$
\frac{\operatorname{Diff}_{\partial}(M)}{\operatorname{Diff}_{\partial}\left(D^{d}\right)} \simeq E m b_{1 / 2 \partial}^{\simeq}(M)
$$

Philosophy

Many results in this flavour of geometric topology are relative: they describe the difference between

1. topological/smooth manifolds (smoothing)
2. homotopy equivalences/block diffeomorphisms (surgery)
3. block diffeomorphisms/diffeomorphisms (pseudoisotopy) Weiss suggested a new kind of relativisation: for M with $\partial M=S^{d-1}$ and $\frac{1}{2} \partial M:=D^{d-1} \subset S^{d-1}$ he showed that

$$
\frac{\operatorname{Diff}_{\partial}(M)}{\operatorname{Diff}_{\partial}\left(D^{d}\right)} \simeq E m b_{1 / 2 \partial}^{\simeq}(M)
$$

Under mild conditions on M such a self-embedding space can be analysed using the theory of embedding calculus.
(The "codimension" of such embeddings can be ≥ 3.)

Philosophy

Many results in this flavour of geometric topology are relative: they describe the difference between

1. topological/smooth manifolds (smoothing)
2. homotopy equivalences/block diffeomorphisms (surgery)
3. block diffeomorphisms/diffeomorphisms (pseudoisotopy) Weiss suggested a new kind of relativisation: for M with $\partial M=S^{d-1}$ and $\frac{1}{2} \partial M:=D^{d-1} \subset S^{d-1}$ he showed that

$$
\frac{\operatorname{Diff}_{\partial}(M)}{\operatorname{Diff}_{\partial}\left(D^{d}\right)} \simeq E m b_{1 / 2 \partial}^{\simeq}(M)
$$

Under mild conditions on M such a self-embedding space can be analysed using the theory of embedding calculus.
(The "codimension" of such embeddings can be ≥ 3.)
Strategy: find a manifold M for which one can understand $E m b_{1 / 2 \lambda}^{\simeq}(M)$ and $\operatorname{Diff}_{\partial}(M)$, then deduce things about $\operatorname{Diff}_{\partial}\left(D^{d}\right)$.

The manifold $W_{g, 1}$

A good choice is

$$
W_{g, 1}:=D^{2 n} \# g\left(S^{n} \times S^{n}\right)
$$

especially for "arbitrarily large" g.

The manifold $W_{g, 1}$

A good choice is

$$
W_{g, 1}:=D^{2 n} \# g\left(S^{n} \times S^{n}\right)
$$

especially for "arbitrarily large" g.

Theorem. [Madsen-Weiss '07 $2 n=2$, Galatius-R-W ' $142 n \geq 4$]

$$
\lim _{g \rightarrow \infty} H^{*}\left(\operatorname{BDiff}_{\partial}\left(W_{g, 1}\right) ; \mathbb{Q}\right)=\mathbb{Q}\left[\kappa_{c} \mid c \in \mathcal{B}\right]
$$

Here \mathcal{B} is the set of monomials in $e, p_{n-1}, p_{n-2}, \ldots, p_{\left\lceil\frac{n+1}{4}\right\rceil}$.

The manifold $W_{g, 1}$

A good choice is

$$
W_{g, 1}:=D^{2 n} \# g\left(S^{n} \times S^{n}\right)
$$

especially for "arbitrarily large" g.

Theorem. [Madsen-Weiss '07 $2 n=2$, Galatius-R-W ' $142 n \geq 4$]

$$
\lim _{g \rightarrow \infty} H^{*}\left(\operatorname{BDiff}_{\partial}\left(W_{g, 1}\right) ; \mathbb{Q}\right)=\mathbb{Q}\left[\kappa_{c} \mid c \in \mathcal{B}\right]
$$

Here \mathcal{B} is the set of monomials in $e, p_{n-1}, p_{n-2}, \ldots, p_{\left\lceil\frac{n+1}{4}\right\rceil}$.
Theorem. [Berglund-Madsen '20 $2 n \geq 6$]

$$
\begin{aligned}
& \lim _{g \rightarrow \infty} H^{*}\left(\widetilde{B D i f f}_{\partial}\left(W_{g, 1}\right) ; \mathbb{Q}\right)=\mathbb{Q}\left[\tilde{\kappa}_{c}^{\xi} \mid(c, \xi) \in \mathcal{B}^{\prime}\right] \\
& \lim _{g \rightarrow \infty} H^{*}\left(\operatorname{BhAut}_{\partial}\left(W_{g, 1}\right) ; \mathbb{Q}\right)=\mathbb{Q}\left[\tilde{\kappa}_{c}^{\xi} \mid(c, \xi) \in \mathcal{B}^{\prime \prime}\right]
\end{aligned}
$$

Here \mathcal{B}^{\prime} and $\mathcal{B}^{\prime \prime}$ are much more complicated than \mathcal{B}, and we will probably never be able to enumerate them completely.

Difficulties I

Embedding calculus describes $E m b_{1 / 2 \lambda}^{\cong}\left(W_{g, 1}\right)$ as the limit of a tower

$$
T_{1} E m b_{1 / 2 \lambda}^{\cong}\left(W_{g, 1}\right) \longleftarrow T_{2} E m b_{1 / 2 \lambda}^{\cong}\left(W_{g, 1}\right) \longleftarrow T_{3} E m b_{1 / 2 \lambda}^{\simeq}\left(W_{g, 1}\right) \cdots
$$

Difficulties I

Embedding calculus describes $E m b_{1 / 2 \lambda}^{\simeq}\left(W_{g, 1}\right)$ as the limit of a tower

$$
T_{1} E m b_{1 / 2 \lambda}^{\simeq}\left(W_{g, 1}\right) \longleftarrow T_{2} E m b_{1 / 2 \lambda}^{\simeq}\left(W_{g, 1}\right) \longleftarrow T_{3} E m b_{1 / 2 \lambda}^{\simeq}\left(W_{g, 1}\right) \cdots
$$

The term $T_{1} E m b_{1 / 22}^{\cong}\left(W_{g, 1}\right)$ is close to being the space of homotopy self-equivalences of $W_{g, 1}$ relative to half the boundary; if we instead use framed self-embeddings then it is:

$$
T_{1} E m b_{1 / 2 \lambda}^{\cong, f r}\left(W_{g, 1}\right) \simeq h A u t{\underset{1}{1 / 2 \lambda}}_{\simeq}\left(W_{g, 1}\right)
$$

(and the higher layers don't change).

Difficulties I

Embedding calculus describes $E m b_{1 / 2 \lambda}^{\cong}\left(W_{g, 1}\right)$ as the limit of a tower

$$
T_{1} E m b_{1 / 2 \lambda}^{\cong}\left(W_{g, 1}\right) \longleftarrow T_{2} E m b_{1 / 2 \lambda}^{\cong}\left(W_{g, 1}\right) \longleftarrow T_{3} E m b_{1 / 2 \lambda}^{\cong}\left(W_{g, 1}\right) \cdots
$$

The term $T_{1} E m b_{1 / 22}^{\cong}\left(W_{g, 1}\right)$ is close to being the space of homotopy self-equivalences of $W_{g, 1}$ relative to half the boundary; if we instead use framed self-embeddings then it is:

$$
T_{1} E m b_{1 / 2 \partial}^{\cong, f r}\left(W_{g, 1}\right) \simeq h A u t_{1 / 2 \partial}^{\simeq}\left(W_{g, 1}\right)
$$

(and the higher layers don't change).
By rational homotopy theory, for $L:=\operatorname{Lie}\left(s^{-1} H_{n}\left(W_{g, 1} ; \mathbb{Q}\right)\right)$ have

$$
\pi_{*>0}\left(h A u t_{1 / 2 \partial}\left(W_{g, 1}\right)\right) \otimes \mathbb{Q}=\operatorname{Der}^{+}(L, L)=\operatorname{Hom}_{\mathbb{Q}}\left(s^{-1} H_{n}\left(W_{g, 1} ; \mathbb{Q}\right), L\right),
$$

supported in degrees which are multiples of $n-1$.

Difficulties I

The higher layers are described as spaces of sections

$$
L_{k} E m b_{1 / 2 \partial}^{\simeq}\left(W_{g, 1}\right) \simeq \Gamma_{\partial}(\underbrace{z_{k} \longleftarrow \text { tohofi }_{I \subseteq[k]} E m b\left(I, W_{g, 1}\right)}_{\operatorname{Conf}_{k}\left(W_{g, 1}\right)})
$$

Difficulties I

The higher layers are described as spaces of sections
$L_{k} E m b_{1 / 2 \partial}^{\cong}\left(W_{g, 1}\right) \simeq \Gamma_{\partial}\left({\underset{\text { Cohofib }}{I \subseteq[k]} \operatorname{Emb}\left(I, W_{g, 1}\right)}_{Z_{k} \longleftarrow}^{\operatorname{Conf}_{k}\left(W_{g, 1}\right)}\right)$
The homotopy groups of such a space can be computed by a twisted form of the Federer spectral sequence. Rationally express this as

$$
\begin{gathered}
E_{p, q}^{2} \otimes \mathbb{Q}=\left[H^{p}\left(W_{g, 1}^{k}, \Delta_{1 / 2 \partial} ; \mathbb{Q}\right) \otimes \pi_{q}\left(\text { tohofib }_{I \subseteq[k]} E m b\left(I, W_{g, 1}\right)\right)\right]^{\mathfrak{S}_{k}} \\
\Rightarrow \pi_{q-p}\left(L_{k} E m b_{1 / 2 \partial}^{\cong}\left(W_{g, 1}\right)\right) \otimes \mathbb{Q} .
\end{gathered}
$$

Difficulties I

The higher layers are described as spaces of sections
$L_{k} E m b_{1 / 2 \partial}^{\cong}\left(W_{g, 1}\right) \simeq \Gamma_{\partial}\left({\underset{\text { cohofi }}{I \subseteq[k]} \operatorname{Emb}\left(I, W_{g, 1}\right)}_{Z_{k} \longleftarrow}^{\operatorname{Conf}_{k}\left(W_{g, 1}\right)}\right)$
The homotopy groups of such a space can be computed by a twisted form of the Federer spectral sequence. Rationally express this as

$$
\begin{gathered}
E_{p, q}^{2} \otimes \mathbb{Q}=\left[H^{p}\left(W_{g, 1}^{k}, \Delta_{1 / 2 \partial} ; \mathbb{Q}\right) \otimes \pi_{q}\left(\text { tohofib }_{I \subseteq[k]} E m b\left(I, W_{g, 1}\right)\right)\right]^{\mathfrak{S}_{k}} \\
\Rightarrow \pi_{q-p}\left(L_{k} E m b_{1 / 2 \partial}^{\cong}\left(W_{g, 1}\right)\right) \otimes \mathbb{Q} .
\end{gathered}
$$

The main issue is to determine/estimate the characters of

$$
H^{p}\left(W_{g, 1}^{k}, \Delta_{1 / 2 \partial} ; \mathbb{Q}\right) \quad \text { and } \quad \pi_{q}\left(E m b\left([k], W_{g, 1}\right)\right) \otimes \mathbb{Q}
$$

as representations of $\mathfrak{S}_{k} \times \pi_{0}\left(\operatorname{Diff}_{\partial}\left(W_{g, 1}\right)\right)$.

Difficulties I

The character of $H^{p}\left(W_{g, 1}^{k}, \Delta_{1 / 2 \partial} ; \mathbb{Q}\right)$ can be determined easily using a theorem of Petersen '20.

The character of $\pi_{q}\left(E m b\left([k], W_{q, 1}\right)\right) \otimes \mathbb{Q}$ is much more complicated, but we are able to get a closed expression for it by relating it to an extended form of the Drinfel'd-Kohno Lie algebra, using Koszul duality, recognising the Koszul dual, and working with this.

Difficulties I

The character of $H^{p}\left(W_{g, 1}^{k}, \Delta_{1 / 2 \partial} ; \mathbb{Q}\right)$ can be determined easily using a theorem of Petersen '20.

The character of $\pi_{q}\left(E m b\left([k], W_{q, 1}\right)\right) \otimes \mathbb{Q}$ is much more complicated, but we are able to get a closed expression for it by relating it to an extended form of the Drinfel'd-Kohno Lie algebra, using Koszul duality, recognising the Koszul dual, and working with this.

We are able to completely determine rational homotopy of the layers of the embedding calculus tower, but not their interaction.

Difficulties I

The character of $H^{p}\left(W_{g, 1}^{k}, \Delta_{1 / 2 \partial} ; \mathbb{Q}\right)$ can be determined easily using a theorem of Petersen '20.

The character of $\pi_{q}\left(E m b\left([k], W_{q, 1}\right)\right) \otimes \mathbb{Q}$ is much more complicated, but we are able to get a closed expression for it by relating it to an extended form of the Drinfel'd-Kohno Lie algebra, using Koszul duality, recognising the Koszul dual, and working with this.

We are able to completely determine rational homotopy of the layers of the embedding calculus tower, but not their interaction.
Nonetheless this lets us prove that $\pi_{*}\left(E m b_{1 / 22}^{\cong}=, f r\left(W_{g, 1}\right)\right) \otimes \mathbb{Q}$ is supported in degrees $* \in \cup_{r \geq 1}[r(n-2)-1, r(n-1)]$. This is the darkly shaded region in the chart.

Dificulties II

While we have very good understanding of $H^{*}\left(B \operatorname{Diff}_{\partial}\left(W_{g, 1}\right) ; \mathbb{Q}\right)$, the strategy requires $\pi_{*}\left(\right.$ BDiff $\left._{\partial}\left(W_{g, 1}\right)\right) \otimes \mathbb{Q}$.

Difficulties II

While we have very good understanding of $H^{*}\left(\operatorname{BDiff}_{\partial}\left(W_{g, 1}\right) ; \mathbb{Q}\right)$, the strategy requires $\pi_{*}\left(\right.$ BDiff $\left._{\partial}\left(W_{g, 1}\right)\right) \otimes \mathbb{Q}$.
$\pi_{1}\left(\right.$ BDiff $\left._{\partial}\left(W_{g, 1}\right)\right) \sim S p_{2 g}(\mathbb{Z})$ (n odd) or $O_{g, g}(\mathbb{Z})$ (n even)
\Rightarrow wildly complicated group, not nilpotent: cannot expect to determine the rational homotopy of $\operatorname{BDiff}_{\partial}\left(W_{g, 1}\right)$ from cohomology.

Difficulties II

While we have very good understanding of $H^{*}\left(\operatorname{BDiff} f_{\partial}\left(W_{g, 1}\right) ; \mathbb{Q}\right)$, the strategy requires $\pi_{*}\left(\right.$ BDiff $\left._{\partial}\left(W_{g, 1}\right)\right) \otimes \mathbb{Q}$.
$\pi_{1}\left(\right.$ BDiff $\left._{\partial}\left(W_{g, 1}\right)\right) \sim S p_{2 g}(\mathbb{Z})$ (n odd) or $O_{g, g}(\mathbb{Z})$ (n even)
\Rightarrow wildly complicated group, not nilpotent: cannot expect to determine the rational homotopy of $\operatorname{BDiff}_{\partial}\left(W_{g, 1}\right)$ from cohomology.
Can pass to the Torelli subgroup

$$
\operatorname{Tor}_{\partial}\left(W_{g, 1}\right):=\operatorname{ker}\left(\operatorname{Diff}_{\partial}\left(W_{g, 1}\right) \rightarrow \operatorname{Aut}\left(H_{n}\left(W_{g, 1} ; \mathbb{Z}\right)\right)\right)
$$

to eliminate the arithmetic group, but this changes the cohomology.

Difficulties II

While we have very good understanding of $H^{*}\left(\operatorname{BDiff} f_{\partial}\left(W_{g, 1}\right) ; \mathbb{Q}\right)$, the strategy requires $\pi_{*}\left(\right.$ BDiff $\left._{\partial}\left(W_{g, 1}\right)\right) \otimes \mathbb{Q}$.
$\pi_{1}\left(\right.$ BDiff $\left._{\partial}\left(W_{g, 1}\right)\right) \sim S p_{2 g}(\mathbb{Z})$ (n odd) or $O_{g, g}(\mathbb{Z})$ (n even)
\Rightarrow wildly complicated group, not nilpotent: cannot expect to determine the rational homotopy of $\operatorname{BDiff}_{\partial}\left(W_{g, 1}\right)$ from cohomology.
Can pass to the Torelli subgroup

$$
\operatorname{Tor}_{\partial}\left(W_{g, 1}\right):=\operatorname{ker}\left(\operatorname{Diff}_{\partial}\left(W_{g, 1}\right) \rightarrow \operatorname{Aut}\left(H_{n}\left(W_{g, 1} ; \mathbb{Z}\right)\right)\right)
$$

to eliminate the arithmetic group, but this changes the cohomology.
In two companion papers we prove that the space $B \operatorname{Tor}_{\partial}\left(W_{g, 1}\right)$ is nilpotent, and determine $H^{*}\left(\right.$ BTor $\left._{\partial}\left(W_{g, 1}\right) ; \mathbb{Q}\right)$ as $g \rightarrow \infty$.
A. Kupers, O. R-W, On the cohomology of Torelli groups

Forum of Mathematics, Pi, 8 (2020)
A. Kupers, O. R-W, The cohomology of Torelli groups is algebraic

Forum of Mathematics, Sigma, to appear

Dificulties II

Adapting this to the framed case, we produce a fibration

$$
X_{1}(g) \longrightarrow B \operatorname{Tor}_{\partial}^{f r}\left(W_{g, 1}\right) \longrightarrow X_{0}
$$

with $H^{*}\left(X_{0} ; \mathbb{Q}\right)=\Lambda_{\mathbb{Q}}\left[\bar{\sigma}_{4 j-2 n-1} \mid j>n / 2\right]$.

Difficulties II

Adapting this to the framed case, we produce a fibration

$$
X_{1}(g) \longrightarrow B \operatorname{Tor}_{\partial}^{f r}\left(W_{g, 1}\right) \longrightarrow X_{0}
$$

with $H^{*}\left(X_{0} ; \mathbb{Q}\right)=\Lambda_{\mathbb{Q}}\left[\bar{\sigma}_{L j-2 n-1} \mid j>n / 2\right]$.
We show that in a stable range, $H^{*}\left(X_{1}(g) ; \mathbb{Q}\right)$ is generated by classes

$$
\kappa\left(v_{1} \otimes \cdots \otimes v_{r}\right) \in H^{(r-2) n}\left(X_{1}(g) ; \mathbb{Q}\right) \quad r \geq 3, \quad v_{i} \in H^{n}\left(W_{g, 1} ; \mathbb{Q}\right)
$$

subject only to the relations (where $\left\{a_{i}\right\}$ and $\left\{a_{i}^{\#}\right\}$ are dual bases)
(i) linearity in each v_{i},
(ii) $\kappa\left(v_{\sigma(1)} \otimes v_{\sigma(2)} \otimes \cdots \otimes v_{\sigma(r)}\right)=\operatorname{sign}(\sigma)^{n} \cdot \kappa\left(v_{1} \otimes v_{2} \otimes \cdots \otimes v_{r}\right)$,
(iii) $\sum_{i} \kappa\left(v \otimes a_{i}\right) \cdot \kappa\left(a_{i}^{\#} \otimes w\right)=\kappa(v \otimes w)$, for any tensors v and w,
(iv) $\sum_{i} \kappa\left(v \otimes a_{i} \otimes a_{i}^{\#}\right)=0$ for any tensor v.

Difficulties II

Adapting this to the framed case, we produce a fibration

$$
X_{1}(g) \longrightarrow \operatorname{Tor}_{\partial}{ }_{\partial}^{f r}\left(W_{g, 1}\right) \longrightarrow X_{0}
$$

with $H^{*}\left(X_{0} ; \mathbb{Q}\right)=\Lambda_{\mathbb{Q}}\left[\bar{\sigma}_{4 j-2 n-1} \mid j>n / 2\right]$.
We show that in a stable range, $H^{*}\left(X_{1}(g) ; \mathbb{Q}\right)$ is generated by classes

$$
\kappa\left(v_{1} \otimes \cdots \otimes v_{r}\right) \in H^{(r-2) n}\left(X_{1}(g) ; \mathbb{Q}\right) \quad r \geq 3, \quad v_{i} \in H^{n}\left(W_{g, 1} ; \mathbb{Q}\right)
$$

subject only to the relations (where $\left\{a_{i}\right\}$ and $\left\{a_{i}^{\#}\right\}$ are dual bases)
(i) linearity in each v_{i},
(ii) $\kappa\left(v_{\sigma(1)} \otimes v_{\sigma(2)} \otimes \cdots \otimes v_{\sigma(r)}\right)=\operatorname{sign}(\sigma)^{n} \cdot \kappa\left(v_{1} \otimes v_{2} \otimes \cdots \otimes v_{r}\right)$,
(iii) $\sum_{i} \kappa\left(v \otimes a_{i}\right) \cdot \kappa\left(a_{i}^{\#} \otimes w\right)=\kappa(v \otimes w)$, for any tensors v and w,
(iv) $\sum_{i} \kappa\left(v \otimes a_{i} \otimes a_{i}^{\#}\right)=0$ for any tensor v.

The unstable Adams spectral sequence then shows
$\pi_{*}\left(B \operatorname{Tor}_{\partial}^{f r}\left(W_{g, 1}\right)\right) \otimes \mathbb{Q}=\left(\bigoplus_{j>n / 2} \mathbb{Q}[4 j-2 n-1]\right)$ " $\oplus "\binom{$ something supported in }{$* \in \bigcup_{r \geq 0} r(r(n-1)+1, r n-2]}$
The second piece is the lightly shaded region in the chart.

Optimism

Divergent embedding calculus

Can apply embedding calculus to diffeomorphisms, considered as codimension o embeddings. It need not converge and in fact does not converge: by work of Fresse, Turchin, and Willwacher '17 it predicts (modulo a subtlety) that $\pi_{*}\left(\right.$ BDiff $\left._{\partial}\left(D^{2 n}\right)\right) \otimes \mathbb{Q}$ should be

$$
\left(\bigoplus_{i>0} \mathbb{Q}[2 n-4 i]\right) \oplus \mathbb{Q}[4 n-6] \oplus \mathbb{Q}[8 n-10] \oplus \mathbb{Q}[10 n-15] \oplus \cdots
$$

so misses the Weiss classes and starts with some spurious classes. But apart from this it has classes supported in our bands, and here is given precisely by Kontsevich's graph complex $\mathrm{GC}_{2 n}^{2}$.

Divergent embedding calculus

Can apply embedding calculus to diffeomorphisms, considered as codimension o embeddings. It need not converge and in fact does not converge: by work of Fresse, Turchin, and Willwacher '17 it predicts (modulo a subtlety) that $\pi_{*}\left(\right.$ BDiff $\left._{\partial}\left(D^{2 n}\right)\right) \otimes \mathbb{Q}$ should be

$$
\left(\bigoplus_{i>0} \mathbb{Q}[2 n-4 i]\right) \oplus \mathbb{Q}[4 n-6] \oplus \mathbb{Q}[8 n-10] \oplus \mathbb{Q}[10 n-15] \oplus \cdots
$$

so misses the Weiss classes and starts with some spurious classes. But apart from this it has classes supported in our bands, and here is given precisely by Kontsevich's graph complex $\mathrm{GC}_{2 n}^{2}$.

Could there be a rational fibration

$$
\operatorname{BDiff}_{\partial}\left(D^{2 n}\right) \longrightarrow B T_{\infty} \operatorname{Diff}_{\partial}\left(D^{2 n}\right) \longrightarrow \Omega^{\infty+2 n} L(\mathbb{Z}) ?
$$

Evidence

Could there be a rational fibration

$$
\operatorname{BDiff}_{\partial}\left(D^{2 n}\right) \longrightarrow B T_{\infty} \text { Diff }_{\partial}\left(D^{2 n}\right) \longrightarrow \Omega^{\infty+2 n} L(\mathbb{Z}) \text { ? }
$$

Evidence.

It is consistent with everything we know, and would explain Watanabe's and Weiss' results.

Evidence

Could there be a rational fibration

$$
\operatorname{BDiff}_{\partial}\left(D^{2 n}\right) \longrightarrow B T_{\infty} \operatorname{Diff}_{\partial}\left(D^{2 n}\right) \longrightarrow \Omega^{\infty+2 n} L(\mathbb{Z}) ?
$$

Evidence.

It is consistent with everything we know, and would explain Watanabe's and Weiss' results.

Evidence. [Knudsen-Kupers '20]
If $d \geq 6, M^{d} 2$-connected, $\partial M=S^{d-1}$ then

$$
\operatorname{hofib}^{\left.B D D i f f_{\partial}(M) \rightarrow B T_{\infty} \operatorname{Diff}_{\partial}(M)\right)}
$$

is independent of M.

Evidence

Could there be a rational fibration

$$
\operatorname{BDiff}_{\partial}\left(D^{2 n}\right) \longrightarrow B T_{\infty} \operatorname{Diff}_{\partial}\left(D^{2 n}\right) \longrightarrow \Omega^{\infty+2 n} L(\mathbb{Z}) ?
$$

Evidence.

It is consistent with everything we know, and would explain Watanabe's and Weiss' results.

Evidence. [Knudsen-Kupers '20]
If $d \geq 6, M^{d} 2$-connected, $\partial M=S^{d-1}$ then

$$
\operatorname{hofib}^{\left.B D D i f f_{\partial}(M) \rightarrow B T_{\infty} \operatorname{Diff}_{\partial}(M)\right)}
$$

is independent of M.
Evidence. [Krannich, last week]
This homotopy fibre is an infinite loop space.

Evidence

Could there be a rational fibration

$$
\operatorname{BDiff}_{\partial}\left(D^{2 n}\right) \longrightarrow B T_{\infty} \operatorname{Diff}_{\partial}\left(D^{2 n}\right) \longrightarrow \Omega^{\infty+2 n} L(\mathbb{Z}) ?
$$

Evidence.

It is consistent with everything we know, and would explain Watanabe's and Weiss' results.

Evidence. [Knudsen-Kupers '20]
If $d \geq 6, M^{d} 2$-connected, $\partial M=S^{d-1}$ then

$$
\operatorname{hofib}^{\left.B D D i f f_{\partial}(M) \rightarrow B T_{\infty} \operatorname{Diff}_{\partial}(M)\right)}
$$

is independent of M.
Evidence. [Krannich, last week]
This homotopy fibre is an infinite loop space.
Evidence. [Prigge '20]
The family signature theorem does not hold on $\mathrm{BT}_{2} \operatorname{Diff}_{\partial}(M)$.

Questions?

