E_{∞}-algebras and general linear groups

Oscar Randal-Williams
 Estati sren ley int Europeen Corrmisision

LEVERHULME TRUST

Premise

All based on joint work with S. Galatius and A. Kupers, E_{∞}-cells and general linear groups of infinite fields
We want to study the homology of $G L_{n}(A)$ for various rings A, especially the behaviour with respect to varying n.
To do so, consider the totality

$$
\mathbf{R}^{+}=\coprod_{n \geq 0} B G L_{n}(A),
$$

which is a unital E_{∞}-algebra in the category of \mathbb{N}-graded spaces.
We have tried to understand cellular E_{∞}-algebra structures on \mathbf{R}^{+}, and in doing so have been led to many results which can be stated without reference to E_{∞}-algebras.
I will first explain some of these results, and later give an idea of how they all fit together.

The Steinberg module

The Steinberg module

Let \mathbb{F} be a field and V be an \mathbb{F}-vector space.
The "Tits building" is
$T(V)=$ the nerve of the poset of proper subspaces of V.
It is acted upon by $G L(V)$.

The Steinberg module

Let \mathbb{F} be a field and V be an \mathbb{F}-vector space.
The "Tits building" is
$T(V)=$ the nerve of the poset of proper subspaces of V.
It is acted upon by $G L(V)$.
Theorem (Solomon-Tits)
$T(V)$ is homotopy equivalent to a wedge of $(\operatorname{dim}(V)-2)$-spheres.

The Steinberg module

Let \mathbb{F} be a field and V be an \mathbb{F}-vector space.
The "Tits building" is

$$
T(V)=\text { the nerve of the poset of proper subspaces of } V \text {. }
$$

It is acted upon by $G L(V)$.
Theorem (Solomon-Tits)
$T(V)$ is homotopy equivalent to a wedge of $(\operatorname{dim}(V)-2)$-spheres.
The unique homology group

$$
S t(V):=\widetilde{H}_{\operatorname{dim}(V)-2}(T(V) ; \mathbb{Z})
$$

is the "Steinberg module". As $G L(V)$ acts on $T(V)$, it acts on $\operatorname{St}(V)$.

Bilinear forms on the Steinberg module

As $T(V)$ is a $(\operatorname{dim}(V)-2)$-dimensional simplicial complex, $\operatorname{St}(V)$ is a submodule of $\widetilde{C}_{\operatorname{dim}(V)-2}(T(V) ; \mathbb{Z})$.

This has a basis of complete flags in V : give it a bilinear form by declaring the complete flags to be orthonormal.

Bilinear forms on the Steinberg module

As $T(V)$ is a $(\underset{\sim}{\operatorname{dim}}(V)-2)$-dimensional simplicial complex, $S t(V)$ is a submodule of $\widetilde{C}_{\text {dim }(V)-2}(T(V) ; \mathbb{Z})$.
This has a basis of complete flags in V : give it a bilinear form by declaring the complete flags to be orthonormal.

This restricts to a positive-definite symmetric bilinear form

$$
\langle-,-\rangle: S t(V) \otimes \operatorname{St}(V) \longrightarrow \mathbb{Z}
$$

e.g. if a is an "apartment" then $\langle a, a\rangle=\operatorname{dim}(V)$!.

Bilinear forms on the Steinberg module

As $T(V)$ is a $(\operatorname{dim}(V)-2)$-dimensional simplicial complex, $\operatorname{St}(V)$ is a submodule of $\widetilde{C}_{\text {dim }(V)-2}(T(V) ; \mathbb{Z})$.
This has a basis of complete flags in V : give it a bilinear form by declaring the complete flags to be orthonormal.

This restricts to a positive-definite symmetric bilinear form

$$
\langle-,-\rangle: \operatorname{St}(V) \otimes \operatorname{St}(V) \longrightarrow \mathbb{Z},
$$

e.g. if a is an "apartment" then $\langle a, a\rangle=\operatorname{dim}(V)$!.

Theorem (Galatius-Kupers-R-W)
On coinvariants this induces $[S t(V) \otimes \operatorname{St}(V)]_{G L(V)} \xrightarrow{\sim} \mathbb{Z}$.

Bilinear forms on the Steinberg module

As $T(V)$ is a $(\operatorname{dim}(V)-2)$-dimensional simplicial complex, $\operatorname{St}(V)$ is a submodule of $\widetilde{C}_{\text {dim }(V)-2}(T(V) ; \mathbb{Z})$.
This has a basis of complete flags in V : give it a bilinear form by declaring the complete flags to be orthonormal.

This restricts to a positive-definite symmetric bilinear form

$$
\langle-,-\rangle: \operatorname{St}(V) \otimes \operatorname{St}(V) \longrightarrow \mathbb{Z},
$$

e.g. if a is an "apartment" then $\langle a, a\rangle=\operatorname{dim}(V)$!.

Theorem (Galatius-Kupers-R-W)
On coinvariants this induces $[S t(V) \otimes \operatorname{St}(V)]_{G L(V)} \xrightarrow{\sim} \mathbb{Z}$.

Corollary (Galatius-Kupers-R-W)

 For any connected commutative ring \mathbb{k}, the $\mathbb{k}[G L(V)]$-module $\mathbb{k} \otimes_{\mathbb{Z}} \operatorname{St}(V)$ is indecomposable.
Bilinear forms on the Steinberg module

There are natural multiplication maps $S t(V) \otimes S t(W) \rightarrow S t(V \oplus W)$, which give

$$
\mathbb{Z}\{1\} \oplus \bigoplus_{n \geq 1}\left[S t\left(\mathbb{F}^{n}\right) \otimes \operatorname{St}\left(\mathbb{F}^{n}\right)\right]_{\operatorname{LLn}_{n}(\mathbb{F})}
$$

the structure of a commutative ring.

Bilinear forms on the Steinberg module

There are natural multiplication maps $S t(V) \otimes S t(W) \rightarrow S t(V \oplus W)$, which give

$$
\mathbb{Z}\{1\} \oplus \bigoplus_{n \geq 1}\left[S t\left(\mathbb{F}^{n}\right) \otimes \operatorname{St}\left(\mathbb{F}^{n}\right)\right]_{\operatorname{LLn}_{n}(\mathbb{F})}
$$

the structure of a commutative ring.

Theorem (Galatius-Kupers-R-W)

The isomorphisms $\left[\operatorname{St}\left(\mathbb{F}^{n}\right) \otimes \operatorname{St}\left(\mathbb{F}^{n}\right)\right]_{L_{n}(\mathbb{F})} \xrightarrow{\sim} \mathbb{Z}$ assemble to a ring isomorphism

$$
\mathbb{Z}\{1\} \oplus \bigoplus_{n \geq 1}\left[S t\left(\mathbb{F}^{n}\right) \otimes \operatorname{St}\left(\mathbb{F}^{n}\right)\right]_{G L_{n}(\mathbb{F})} \cong \Gamma_{\mathbb{Z}}[x]
$$

to a divided power algebra i.e. $\left\langle 1, \frac{x^{1}}{1!}, \frac{x^{2}}{2!}, \frac{x^{3}}{3!}, \ldots\right\rangle_{\mathbb{Z}} \subset \mathbb{Q}[x]$.

Bilinear forms on the Steinberg module

There are natural multiplication maps $S t(V) \otimes S t(W) \rightarrow S t(V \oplus W)$, which give

$$
\mathbb{Z}\{1\} \oplus \bigoplus_{n \geq 1}\left[S t\left(\mathbb{F}^{n}\right) \otimes \operatorname{St}\left(\mathbb{F}^{n}\right)\right]_{\operatorname{LL}_{n}(\mathbb{F})}
$$

the structure of a commutative ring.

Theorem (Galatius-Kupers-R-W)

The isomorphisms $\left[\operatorname{St}\left(\mathbb{F}^{n}\right) \otimes \operatorname{St}\left(\mathbb{F}^{n}\right)\right]_{L_{n}(\mathbb{F})} \xrightarrow{\sim} \mathbb{Z}$ assemble to a ring isomorphism

$$
\mathbb{Z}\{1\} \oplus \bigoplus_{n \geq 1}\left[S t\left(\mathbb{F}^{n}\right) \otimes \operatorname{St}\left(\mathbb{F}^{n}\right)\right]_{G L_{n}(\mathbb{F})} \cong \Gamma_{\mathbb{Z}}[x]
$$

to a divided power algebra i.e. $\left\langle 1, \frac{x^{1}}{1!}, \frac{x^{2}}{2!}, \frac{x^{3}}{3!}, \ldots\right\rangle_{\mathbb{Z}} \subset \mathbb{Q}[x]$.
The proofs of these results use a presentation of $\operatorname{St}\left(\mathbb{F}^{n}\right)$ due to Lee-Szczarba, and elementary but complicated manipulations of matrices.

Rognes' connectivity conjecture

Rognes' connectivity conjecture

Let A be a connected commutative ring for which f.g. projective modules are free. (e.g. a field or local ring)

Rognes has defined a "rank filtration"

$$
* \subset F_{0} \mathbf{K}(A) \subset F_{1} \mathbf{K}(A) \subset F_{2} \mathbf{K}(A) \subset \cdots \subset \mathbf{K}(A)
$$

of the algebraic K-theory spectrum of A, and has identified the filtration quotients

$$
\frac{F_{n} \mathbf{K}(A)}{F_{n-1} \mathbf{K}(A)} \simeq \mathbf{D}\left(A^{n}\right)_{h G L_{n}(A)}
$$

as the homotopy orbits of certain $G L_{n}(A)$-spectra $\mathbf{D}\left(A^{n}\right)$, the nth stable building of A.
(Idea: the Tits building is the first space in this spectrum; the k th space is made from k-dimensional flags of submodules of A^{n}.)

Based on calculations for $n \leq 3$, Rognes conjectured that for A local or Euclidean the spectrum $\mathbf{D}\left(A^{n}\right)$ is $(2 n-3)$-connected.

Rognes' connectivity conjecture

We do not know how to prove Rognes' conjecture, however for applications it seems to be enough to know that the homotopy orbit spectrum $\mathbf{D}\left(A^{n}\right)_{h G L_{n}(A)}$ is $(2 n-3)$-connected.

Rognes' connectivity conjecture

We do not know how to prove Rognes' conjecture, however for applications it seems to be enough to know that the homotopy orbit spectrum $\mathbf{D}\left(A^{n}\right)_{h G L_{n}(A)}$ is $(2 n-3)$-connected.

Theorem (Galatius-Kupers-R-W)
(i) If A is a connected semi-local ring with all residue fields infinite, then $\mathbf{D}\left(A^{n}\right)_{h G L_{n}(A)}$ is $(2 n-3)$-connected.

Rognes' connectivity conjecture

We do not know how to prove Rognes' conjecture, however for applications it seems to be enough to know that the homotopy orbit spectrum $\mathbf{D}\left(A^{n}\right)_{h G L_{n}(A)}$ is $(2 n-3)$-connected.

Theorem (Galatius-Kupers-R-W)

(i) If A is a connected semi-local ring with all residue fields infinite, then $\mathbf{D}\left(A^{n}\right)_{h G L_{n}(A)}$ is $(2 n-3)$-connected.
(ii) If A is an infinite field then in addition

$$
H_{2 n-2}\left(\mathbf{D}\left(A^{n}\right)_{h G L_{n}(A)}\right)= \begin{cases}\mathbb{Z} & \text { if } n=1, \\ \mathbb{Z} / p & \text { if } n=p^{k} \text { with } p \text { prime }, \\ 0 & \text { otherwise. }\end{cases}
$$

Rognes had also conjectured that $H_{0}\left(G L_{n}(A) ; H_{2 n-2}\left(\mathbf{D}\left(A^{n}\right)\right)\right)$ is torsion for $n>1$, which aligns with (ii).

Homological stability

What is homological stability?

Have stabilisation maps

$$
A \mapsto\left[\begin{array}{ll}
A & 0 \\
0 & 1
\end{array}\right]: G L_{n-1}(A) \longrightarrow G L_{n}(A)
$$

and homological stability hopes these are homology isomorphisms in a range of degrees going to ∞ with n.
Equivalently, it hopes that

$$
H_{d}\left(G L_{n}(A), G L_{n-1}(A)\right)=0 \text { for all } d \leq f(n)
$$

for some divergent function f.
One can ask this question for homology with \mathbb{k}-coefficients: the function f may then depend on \mathbb{k}.

What is homological stability?

Have stabilisation maps

$$
A \mapsto\left[\begin{array}{ll}
A & 0 \\
0 & 1
\end{array}\right]: G L_{n-1}(A) \longrightarrow G L_{n}(A)
$$

and homological stability hopes these are homology isomorphisms in a range of degrees going to ∞ with n.

Equivalently, it hopes that

$$
H_{d}\left(G L_{n}(A), G L_{n-1}(A)\right)=0 \text { for all } d \leq f(n)
$$

for some divergent function f.
One can ask this question for homology with \mathbb{k}-coefficients: the function f may then depend on \mathbb{k}.

Stability with \mathbb{Z}-coefficients is known when A has finite "stable rank", by work of Maazen and van der Kallen: then $f(n)=\frac{n-s r(A)}{2}$ will do.

The Nesterenko-Suslin theorem

Sometimes one has homological stability in a range of degrees much larger than the slope $\frac{1}{2}$ range of Maazen and van der Kallen.

Nesterenko-Suslin: If A is a local ring with infinite residue field then

$$
H_{d}\left(G L_{n}(A), G L_{n-1}(A) ; \mathbb{Z}\right)=0 \text { for } d<n,
$$

and $H_{n}\left(G L_{n}(A), G L_{n-1}(A) ; \mathbb{Z}\right) \cong K_{n}^{M}(A)$, nth Milnor K-theory.

The Nesterenko-Suslin theorem

Sometimes one has homological stability in a range of degrees much larger than the slope $\frac{1}{2}$ range of Maazen and van der Kallen.

Nesterenko-Suslin: If A is a local ring with infinite residue field then

$$
H_{d}\left(G L_{n}(A), G L_{n-1}(A) ; \mathbb{Z}\right)=0 \text { for } d<n,
$$

and $H_{n}\left(G L_{n}(A), G L_{n-1}(A) ; \mathbb{Z}\right) \cong K_{n}^{M}(A)$, nth Milnor K-theory.

Recall: Milnor K-theory $K_{*}^{M}(A)$ is the graded ring generated by $K_{1}^{M}(A)=A^{\times}$and subject to the relations $a \cdot b=0 \in K_{2}^{M}(A)$ whenever $a, b \in A^{\times}$satisfy $a+b=1$. (A calculation shows it is graded commutative.)

A degree above the Nesterenko-Suslin theorem

We study these relative homology groups one degree further up (and rationally). We first show that

$$
\bigoplus_{n \geq 1} H_{n+1}\left(G L_{n}(A), G L_{n-1}(A) ; \mathbb{Q}\right)
$$

can be made into a $K_{*}^{M}(A) \otimes \mathbb{Q}$-module, then analyse how it may be generated efficiently.

A degree above the Nesterenko-Suslin theorem

We study these relative homology groups one degree further up (and rationally). We first show that

$$
\bigoplus_{n \geq 1} H_{n+1}\left(G L_{n}(A), G L_{n-1}(A) ; \mathbb{Q}\right)
$$

can be made into a $K_{*}^{M}(A) \otimes \mathbb{Q}$-module, then analyse how it may be generated efficiently.
Theorem (Galatius-Kupers-R-W) If A is a connected semi-local ring with all residue fields infinite, then there is a map of graded \mathbb{Q}-vector spaces

$$
\operatorname{Harr}_{3}\left(K_{*}^{M}(A) \otimes \mathbb{Q}\right) \longrightarrow \mathbb{Q} \otimes_{K_{*}^{M}}(A) \otimes \mathbb{Q} \bigoplus_{n \geq 1} H_{n+1}\left(G L_{n}(A), G L_{n-1}(A) ; \mathbb{Q}\right)
$$

which is an isomorphism in gradings ≥ 5.

A degree above the Nesterenko-Suslin theorem

We study these relative homology groups one degree further up (and rationally). We first show that

$$
\bigoplus_{n \geq 1} H_{n+1}\left(G L_{n}(A), G L_{n-1}(A) ; \mathbb{Q}\right)
$$

can be made into a $K_{*}^{M}(A) \otimes \mathbb{Q}$-module, then analyse how it may be generated efficiently.
Theorem (Galatius-Kupers-R-W) If A is a connected semi-local ring with all residue fields infinite, then there is a map of graded \mathbb{Q}-vector spaces

$$
\operatorname{Harr}_{3}\left(K_{*}^{M}(A) \otimes \mathbb{Q}\right) \longrightarrow \mathbb{Q} \otimes_{K_{*}^{M}(A) \otimes \mathbb{Q}} \bigoplus_{n \geq 1} H_{n+1}\left(G L_{n}(A), G L_{n-1}(A) ; \mathbb{Q}\right)
$$

which is an isomorphism in gradings ≥ 5.
Here Harr $=$ Harrison homology $=$ André-Quillen homology.
Third Harrison homology measures "relations between relations" in a presentation of the quadratic algebra $K_{*}^{M}(A) \otimes \mathbb{Q}$.

Improved homological stability

Under further assumptions on A, our methods (which I have not yet told you) instead give improved homological stability results:
Theorem (Galatius-Kupers-R-W)
(i) If A is a connected semi-local ring with all residue fields infinite and such that $K_{2}(A) \otimes \mathbb{Q}=0\left(e . g . \overline{\mathbb{F}}_{q}, \mathbb{F}_{q}(t)\right.$, number field, $\left.\overline{\mathbb{Q}}\right)$ then

$$
H_{d}\left(G L_{n}(A), G L_{n-1}(A) ; \mathbb{Q}\right)=0 \text { for } d<\frac{4 n-1}{3} .
$$

Improved homological stability

Under further assumptions on A, our methods (which I have not yet told you) instead give improved homological stability results:
Theorem (Galatius-Kupers-R-W)
(i) If A is a connected semi-local ring with all residue fields infinite and such that $K_{2}(A) \otimes \mathbb{Q}=0\left(\right.$ e.g. $\overline{\mathbb{F}}_{q}, \mathbb{F}_{q}(t)$, number field, $\left.\overline{\mathbb{Q}}\right)$ then

$$
H_{d}\left(G L_{n}(A), G L_{n-1}(A) ; \mathbb{Q}\right)=0 \text { for } d<\frac{4 n-1}{3} .
$$

(ii) If A is a connected semi-local ring with all residue fields infinite and p is a prime number such that $A^{\times} \otimes \mathbb{Z} / p=0$ then

$$
H_{d}\left(G L_{n}(A), G L_{n-1}(A) ; \mathbb{Z} / p\right)=0 \text { for } d<\frac{5 n}{4} .
$$

Improved homological stability

Under further assumptions on A, our methods (which I have not yet told you) instead give improved homological stability results:
Theorem (Galatius-Kupers-R-W)
(i) If A is a connected semi-local ring with all residue fields infinite and such that $K_{2}(A) \otimes \mathbb{Q}=0\left(e . g . \overline{\mathbb{F}}_{q}, \mathbb{F}_{q}(t)\right.$, number field, $\left.\overline{\mathbb{Q}}\right)$ then

$$
H_{d}\left(G L_{n}(A), G L_{n-1}(A) ; \mathbb{Q}\right)=0 \text { for } d<\frac{4 n-1}{3} .
$$

(ii) If A is a connected semi-local ring with all residue fields infinite and p is a prime number such that $A^{\times} \otimes \mathbb{Z} / p=0$ then

$$
H_{d}\left(G L_{n}(A), G L_{n-1}(A) ; \mathbb{Z} / p\right)=0 \text { for } d<\frac{5 n}{4} .
$$

(iii) If \mathbb{F} is an algebraically closed field then, for all primes p,

$$
H_{d}\left(G L_{n}(\mathbb{F}), G L_{n-1}(\mathbb{F}) ; \mathbb{Z} / p\right)=0 \text { for } d<\frac{5 n}{3} .
$$

Resolving some conjectures

The last part implies that if \mathbb{F} is an algebraically closed field then

$$
H_{n+1}\left(G L_{n}(\mathbb{F}), G L_{n-1}(\mathbb{F}) ; \mathbb{Z} / p\right)=0
$$

for all $n>1$ and all primes p.
This resolves a conjecture of Mirzaii on certain "higher pre-Bloch groups" $\mathfrak{p}_{n}(\mathbb{F})$, and a conjecture of Yagunov on a different notion of "higher pre-Bloch groups" $\wp_{n}(\mathbb{F})$ and $\wp_{n}(\mathbb{F})_{c l}$.

Resolving some conjectures

The last part implies that if \mathbb{F} is an algebraically closed field then

$$
H_{n+1}\left(G L_{n}(\mathbb{F}), G L_{n-1}(\mathbb{F}) ; \mathbb{Z} / p\right)=0
$$

for all $n>1$ and all primes p.
This resolves a conjecture of Mirzaii on certain "higher pre-Bloch groups" $\mathfrak{p}_{n}(\mathbb{F})$, and a conjecture of Yagunov on a different notion of "higher pre-Bloch groups" $\wp_{n}(\mathbb{F})$ and $\wp_{n}(\mathbb{F})_{c l}$.

In a different direction, we can complete an approach of Mirzaii to proving Suslin's "injectivity conjecture":
Theorem (Galatius-Kupers-R-W)
If \mathbb{F} is an infinite field and \mathbb{k} is a field in which $(n-1)$! is invertible then the stabilisation map

$$
H_{n}\left(G L_{n-1}(\mathbb{F}) ; \mathbb{k}\right) \longrightarrow H_{n}\left(G L_{n}(\mathbb{F}) ; \mathbb{k}\right)
$$

is injective.

Homology of Steinberg modules

Finally, and returning to the beginning, we prove a vanishing theorem for the homology of the Steinberg module.

Theorem (Galatius-Kupers-R-W)
If A is a connected semi-local ring with infinite residue fields, then

$$
H_{d}\left(G L_{n}(A) ; \operatorname{St}\left(A^{n}\right)\right)=0
$$

for $d<\frac{1}{2}(n-1)$.
Analogous results in the case of fields have been obtained by Ash-Putman-Sam and Miller-Nagpal-Patzt.

What do these things have to do with each other?

Reformulation

These results arose in our analysis of

$$
\mathbf{R}^{+}=\bigsqcup_{n \geq 0} B G L_{n}(A)
$$

as a unital E_{∞}-algebra in the category of \mathbb{N}-graded spaces.
Rognes' conjecture and our description of bilinear forms on the Steinberg module essentially corresponds to computing the " E_{2}-homology" of \mathbf{R}^{+}in a range of degrees.
This determines the " E_{∞}-homology" of \mathbf{R}^{+}in this range of degrees, implying that there is a cell structure on \mathbf{R}^{+}in the category of E_{∞}-algebras with highly constrained cells.

Reformulation

These results arose in our analysis of

$$
\mathbf{R}^{+}=\bigsqcup_{n \geq 0} B G L_{n}(A)
$$

as a unital E_{∞}-algebra in the category of \mathbb{N}-graded spaces.
Rognes' conjecture and our description of bilinear forms on the Steinberg module essentially corresponds to computing the " E_{2}-homology" of \mathbf{R}^{+}in a range of degrees.
This determines the " E_{∞}-homology" of \mathbf{R}^{+}in this range of degrees, implying that there is a cell structure on \mathbf{R}^{+}in the category of E_{∞}-algebras with highly constrained cells.
The applications to homological stability are calculations using this constrained cell structure and the description

$$
H_{d}\left(G L_{n}(A), G L_{n-1}(A)\right)=H_{n, d}\left(\mathbf{R}^{+} / \sigma\right)
$$

for $\sigma \in H_{0}\left(B G L_{1}(A)\right)$. I will not describe these calculations today.

Homotopy theory of E_{k}-algebras

Graded objects

Let C denote sSet, sSet_{*}, Sp , or (because we are eventually interested in taking \mathbb{k}-homology) sMod_{k}.

Write \otimes for the cartesian, smash, or tensor product.
We will consider \mathbb{N}-graded objects in C , meaning $\mathrm{C}^{\mathbb{N}}:=\operatorname{Fun}(\mathbb{N}, \mathrm{C})$.
This is given the Day convolution monoidal structure:

$$
(X \otimes Y)(n)=\bigsqcup_{a+b=n} X(a) \otimes Y(b) .
$$

Define bigraded homology groups as $H_{n, d}(X ; \mathbb{k}):=H_{d}(X(n) ; \mathbb{k})$.

E_{k}-algebras

Let \mathcal{C}_{k} denote the non-unital $\left(\mathcal{C}_{k}(0)=\varnothing\right)$ little k-cubes operad.

The categories $\mathbb{C}^{\mathbb{N}}$ are all tensored over Top: can make sense of the monad

$$
E_{k}(X):=\bigsqcup_{n \geq 1} \mathcal{C}_{k}(n) \odot_{\mathfrak{S}_{n}} X^{\otimes n}
$$

and so of E_{k}-algebras \mathbf{X} in $C^{\mathbb{N}}$. Call the category of these $\operatorname{Alg}_{E_{k}}\left(\mathbb{C}^{\mathbb{N}}\right)$.

E_{k}-indecomposables

For $\mathbf{X} \in \operatorname{Alg}_{E_{k}}\left(C_{*}^{\mathbb{N}}\right)$ define the E_{k}-indecomposables of \mathbf{X} by

$$
E_{k}(X)=\bigsqcup_{n \geq 1} \mathcal{C}_{k}(n) \odot_{\mathfrak{S}_{n}} x^{\otimes n} \xrightarrow[c]{\mu_{x}} X \longrightarrow Q^{E_{k}}(\mathbf{X})
$$

where c collapses all factors with $n>1$ to the basepoint, and applies the augmentation $\varepsilon: \mathcal{C}_{k}(1)_{+} \rightarrow S^{\circ}$.
$Q^{E_{k}}$ is left adjoint to the inclusion $C_{*}^{\mathbb{N}} \rightarrow \operatorname{Alg}_{E_{k}}\left(C_{*}^{\mathbb{N}}\right)$ by imposing the trivial E_{k}-action.

E_{k}-indecomposables

For $\mathbf{X} \in \operatorname{Alg}_{E_{k}}\left(C_{*}^{\mathbb{N}}\right)$ define the E_{k}-indecomposables of \mathbf{X} by

$$
E_{k}(X)=\bigsqcup_{n \geq 1} \mathcal{C}_{k}(n) \odot_{\mathfrak{S}_{n}} x^{\otimes n} \xrightarrow[c]{\mu_{x}} X \longrightarrow Q^{E_{k}}(\mathbf{X})
$$

where c collapses all factors with $n>1$ to the basepoint, and applies the augmentation $\varepsilon: \mathcal{C}_{k}(1)_{+} \rightarrow S^{\circ}$.
$Q^{E_{k}}$ is left adjoint to the inclusion $C_{*}^{\mathbb{N}} \rightarrow \operatorname{Alg}_{E_{k}}\left(C_{*}^{\mathbb{N}}\right)$ by imposing the trivial E_{k}-action.
e.g. Have $Q^{E_{k}}\left(\mathbf{E}_{\mathbf{k}}(X)\right)=X \quad$ (as the coequaliser is split).

E_{k}-indecomposables

For $\mathbf{X} \in \operatorname{Alg}_{E_{k}}\left(C_{*}^{\mathbb{N}}\right)$ define the E_{k}-indecomposables of \mathbf{X} by

$$
E_{k}(X)=\bigsqcup_{n \geq 1} \mathcal{C}_{k}(n) \odot_{\mathfrak{S}_{n}} x^{\otimes n} \xrightarrow[c]{\mu_{x}} X \longrightarrow Q^{E_{k}}(\mathbf{X})
$$

where c collapses all factors with $n>1$ to the basepoint, and applies the augmentation $\varepsilon: \mathcal{C}_{k}(1)_{+} \rightarrow S^{\circ}$.
$Q^{E_{k}}$ is left adjoint to the inclusion $C_{*}^{\mathbb{N}} \rightarrow \operatorname{Alg}_{E_{k}}\left(C_{*}^{\mathbb{N}}\right)$ by imposing the trivial E_{k}-action.
e.g. Have $Q^{E_{k}}\left(\mathbf{E}_{\mathbf{k}}(X)\right)=X \quad$ (as the coequaliser is split).

This construction is not homotopy invariant, so we should instead evaluate the derived functor

$$
Q_{\mathbb{L}}^{E_{k}}(\mathbf{X}):=Q^{E_{k}}(\text { cofibrant replacement of } \mathbf{X}),
$$

a.k.a. topological Quillen homology (for the operad \mathcal{C}_{k}).

E_{k}-indecomposables

For $\mathbf{X} \in \operatorname{Alg}_{E_{k}}\left(C_{*}^{\mathbb{N}}\right)$ define the E_{k}-indecomposables of \mathbf{X} by

$$
E_{k}(X)=\bigsqcup_{n \geq 1} \mathcal{C}_{k}(n) \odot_{\mathfrak{S}_{n}} X^{\otimes n} \xrightarrow[c]{\mu_{X}} X \longrightarrow Q^{E_{k}}(\mathbf{X})
$$

where c collapses all factors with $n>1$ to the basepoint, and applies the augmentation $\varepsilon: \mathcal{C}_{k}(1)_{+} \rightarrow S^{\circ}$.
$Q^{E_{k}}$ is left adjoint to the inclusion $C_{*}^{\mathbb{N}} \rightarrow \operatorname{Alg}_{E_{k}}\left(C_{*}^{\mathbb{N}}\right)$ by imposing the trivial E_{k}-action.
e.g. Have $Q^{E_{k}}\left(\mathbf{E}_{\mathbf{k}}(X)\right)=X \quad$ (as the coequaliser is split).

This construction is not homotopy invariant, so we should instead evaluate the derived functor

$$
Q_{\mathbb{L}}^{E_{k}}(\mathbf{X}):=Q^{E_{k}}(\text { cofibrant replacement of } \mathbf{X}),
$$

a.k.a. topological Quillen homology (for the operad \mathcal{C}_{k}). Write $H_{n, d}^{E_{k}}(\mathbf{X})=H_{n, d}\left(Q_{\mathbb{L}}^{E_{k}}(\mathbf{X})\right)$, the " E_{k}-homology".

Computing derived E_{k}-indecomposables

$Q_{\mathbb{L}}^{E_{k}}(\mathbf{X})$ may also be computed by a k-fold bar construction. Instances of this have previously been given by Getzler-Jones, Basterra-Mandell, Fresse, Francis.

Specifically, if \mathbf{X} is an E_{k}-algebra with unitalisation \mathbf{X}^{+}, then there is an equivalence

$$
\mathbb{1} \oplus \Sigma^{k} Q_{\mathbb{L}}^{E_{k}}(\mathbf{X}) \simeq B^{E_{k}}\left(\mathbf{X}^{+}\right)
$$

with the k-fold bar construction.

Computing derived E_{k}-indecomposables

$Q_{\mathbb{L}}^{E_{k}}(\mathbf{X})$ may also be computed by a k-fold bar construction. Instances of this have previously been given by Getzler-Jones, Basterra-Mandell, Fresse, Francis.

Specifically, if \mathbf{X} is an E_{k}-algebra with unitalisation \mathbf{X}^{+}, then there is an equivalence

$$
\mathbb{1} \oplus \Sigma^{k} Q_{\mathbb{L}}^{E_{k}}(\mathbf{X}) \simeq B^{E_{k}}\left(\mathbf{X}^{+}\right)
$$

with the k-fold bar construction.
Considering the k-fold bar construction as the bar construction of the $(k-1)$-fold bar construction gives a bar spectral sequence

$$
E_{n, p, q}^{2}=\operatorname{Tor}_{p}^{H_{*, *}\left(B^{E_{k-1}}\left(\mathbf{X}^{+}\right) ; \mathbb{k}\right)}\left(\mathbb{k}, \mathbb{k}_{k}\right)_{n, q} \Rightarrow H_{n, p+q}\left(B^{E_{k}}\left(\mathbf{X}^{+}\right) ; \mathbb{k}\right) .
$$

This allows one, in principle, to calculate the E_{k}-homology by taking iterated bar constructions.

The general linear groups

The general linear group E_{∞}-algebra

Let A be a connected commutative ring for which f.g. projective modules are free.

The symmetric monoidal category P_{A} of f.g. projective A-modules and their isomorphisms has classifying space

$$
\mathbf{R}^{+}=B P_{A} \simeq \coprod_{n \geq 0} B G L_{n}(A)
$$

and is equipped with an action of an E_{∞}-operad. We consider this as \mathbb{N}-graded via the rank functor $r: \mathrm{P}_{\mathrm{A}} \rightarrow \mathbb{N}$.

The general linear group E_{∞}-algebra

Let A be a connected commutative ring for which f.g. projective modules are free.

The symmetric monoidal category P_{A} of f.g. projective A-modules and their isomorphisms has classifying space

$$
\mathbf{R}^{+}=B P_{A} \simeq \coprod_{n \geq 0} B G L_{n}(A)
$$

and is equipped with an action of an E_{∞}-operad. We consider this as \mathbb{N}-graded via the rank functor $r: \mathrm{P}_{\mathrm{A}} \rightarrow \mathbb{N}$.
Alternatively, can consider the terminal object $\mathbf{t} \in \mathrm{sSet}^{\mathrm{P}_{\mathrm{A}}}$, which has a unique E_{∞}^{+}-algebra structure, cofibrantly replace it by \mathbf{T} as an E_{∞}^{+}-algebra, then take the Kan extension along r :

$$
\mathbf{R}^{+}=r_{*}(\mathbf{T}) \in \operatorname{Alg}_{E_{\infty}^{+}}\left(\mathrm{sSet}^{\mathbb{N}}\right) .
$$

The general linear group E_{∞}-algebra

Let A be a connected commutative ring for which f.g. projective modules are free.

The symmetric monoidal category P_{A} of f.g. projective A-modules and their isomorphisms has classifying space

$$
\mathbf{R}^{+}=B P_{A} \simeq \coprod_{n \geq 0} B G L_{n}(A)
$$

and is equipped with an action of an E_{∞}-operad. We consider this as \mathbb{N}-graded via the rank functor $r: \mathrm{P}_{A} \rightarrow \mathbb{N}$.
Alternatively, can consider the terminal object $\mathbf{t} \in \mathrm{sSet}^{\mathrm{P}_{\mathrm{A}}}$, which has a unique E_{∞}^{+}-algebra structure, cofibrantly replace it by \mathbf{T} as an E_{∞}^{+}-algebra, then take the Kan extension along r :

$$
\mathbf{R}^{+}=r_{*}(\mathbf{T}) \in \operatorname{Alg}_{E_{\infty}^{+}}\left(\mathrm{sSet}^{\mathbb{N}}\right) .
$$

We indeed have $\mathbf{R}^{+}(n) \simeq \operatorname{colim}_{r / n} \mathbf{T}=\mathbf{T}\left(A^{n}\right) / G L_{n}(A) \simeq B G L_{n}(A)$.

The E_{k}-splitting complexes

The advantage of the second description is that many constructions commute with Kan extension: we can instead compute them for the simple object $\mathbf{T} \xrightarrow{\sim} \mathbf{t}$ (at the expense of working in the complicated category sSet ${ }^{\mathrm{P}_{A}}$.

The E_{k}-splitting complexes

The advantage of the second description is that many constructions commute with Kan extension: we can instead compute them for the simple object $\mathbf{T} \xrightarrow{\sim} \mathbf{t}$ (at the expense of working in the complicated category sSet ${ }^{\mathrm{P}_{A}}$).

In particular, $B^{E_{h}}(\mathbf{T})$ has the following description: evaluated at a projective module M it is the k-fold simplicial pointed set $\widetilde{D}^{k}(M)$ with $\left(p_{1}, p_{2}, \ldots, p_{k}\right)$-simplices given by

$$
\frac{\left\{M_{i_{1}, i_{2}, \ldots, i_{k}} \leq M \text { for } 1 \leq i_{j} \leq p_{j}\right\}}{\left\{\text { those for which } \bigoplus M_{i_{1}, i_{2}, \ldots, i_{k}} \rightarrow M \text { is not an iso }\right\}}
$$

and face maps given by direct sum of submodules and degeneracies given by inserting trivial modules.
Thus we have $\left(\Sigma^{k} Q_{\mathbb{L}}^{E_{k}}(\mathbf{R})\right)(n) \simeq \widetilde{D}^{k}\left(A^{n}\right)_{h G L_{n}(A)}$ for $n>0$.

The k-fold Tits building

Rognes defines a k-fold analogue of the Tits building for M as the k-fold simplicial pointed set $D^{k}(M)$ with $\left(p_{1}, p_{2}, \ldots, p_{k}\right)$-simplices given by

$$
\frac{\left\{\text { lattices } \varphi:\left[p_{1}\right] \times \cdots \times\left[p_{k}\right] \rightarrow \operatorname{Sub}(M)\right\}}{\{\text { non-full lattices }\}}
$$

where a "lattice" is a functor to the poset of direct summands of M such that

$$
\operatorname{colim}_{\left[a_{1} \leq b_{1}\right] \times \ldots \times\left[a_{k} \leq b_{k}\right] \backslash\{b\}} \varphi \longrightarrow \varphi(b)
$$

is an isomorphism onto a direct summand, and a lattice is "full" if $\varphi\left(a_{1}, \ldots, a_{k}\right)=0$ whenever some $a_{i}=0$, and $\varphi\left(p_{1}, \ldots, p_{k}\right)=M$. Rognes' stable building $\mathbf{D}\left(A^{n}\right)$ is the spectrum with k th space $D^{k}\left(A^{n}\right)$.

The k-fold Tits building

Rognes defines a k-fold analogue of the Tits building for M as the k-fold simplicial pointed set $D^{k}(M)$ with $\left(p_{1}, p_{2}, \ldots, p_{k}\right)$-simplices given by

$$
\frac{\left\{\text { lattices } \varphi:\left[p_{1}\right] \times \cdots \times\left[p_{k}\right] \rightarrow \operatorname{Sub}(M)\right\}}{\{\text { non-full lattices }\}}
$$

where a "lattice" is a functor to the poset of direct summands of M such that

$$
\operatorname{colim}_{\left[a_{1} \leq b_{1}\right] \times \ldots \times\left[a_{k} \leq b_{k}\right] \backslash\{b\}} \varphi \longrightarrow \varphi(b)
$$

is an isomorphism onto a direct summand, and a lattice is "full" if $\varphi\left(a_{1}, \ldots, a_{k}\right)=0$ whenever some $a_{i}=0$, and $\varphi\left(p_{1}, \ldots, p_{k}\right)=M$. Rognes' stable building $\mathbf{D}\left(A^{n}\right)$ is the spectrum with k th space $D^{k}\left(A^{n}\right)$. When $k=1$ and A is a field we have $D^{1}\left(A^{n}\right) \simeq \Sigma^{2} T\left(A^{n}\right)$, the double suspension of the Tits building. By the Solomon-Tits theorem, this is a wedge of n-spheres.

The key theorem

Theorem (Galatius-Kupers-R-W)
If A is a field then the natural map $D^{2}(M) \rightarrow D^{1}(M) \wedge D^{1}(M)$ is an isomorphism, and so $D^{2}\left(A^{n}\right)$ is a wedge of $2 n$-spheres.
If A is a connected semi-local ring with all residue fields infinite, then $D^{2}\left(A^{n}\right)$ is a wedge of $2 n$-spheres.

The key theorem

Theorem (Galatius-Kupers-R-W)
If A is a field then the natural map $D^{2}(M) \rightarrow D^{1}(M) \wedge D^{1}(M)$ is an isomorphism, and so $D^{2}\left(A^{n}\right)$ is a wedge of $2 n$-spheres.

If A is a connected semi-local ring with all residue fields infinite, then $D^{2}\left(A^{n}\right)$ is a wedge of $2 n$-spheres.

The proof in the first case is completely elementary. It also gives

$$
\widetilde{H}_{2 n}\left(D^{2}\left(A^{n}\right)\right)=\operatorname{St}\left(A^{n}\right) \otimes \operatorname{St}\left(A^{n}\right),
$$

which explains our interest in computing the coinvariants of this.
(It is instructive to consider why $D^{3}(M) \rightarrow D^{1}(M) \wedge D^{1}(M) \wedge D^{1}(M)$ is no longer an isomorphism.)

The key theorem

Theorem (Galatius-Kupers-R-W)
If A is a field then the natural map $D^{2}(M) \rightarrow D^{1}(M) \wedge D^{1}(M)$ is an isomorphism, and so $D^{2}\left(A^{n}\right)$ is a wedge of $2 n$-spheres.

If A is a connected semi-local ring with all residue fields infinite, then $D^{2}\left(A^{n}\right)$ is a wedge of $2 n$-spheres.

The proof in the first case is completely elementary. It also gives

$$
\tilde{H}_{2 n}\left(D^{2}\left(A^{n}\right)\right)=\operatorname{St}\left(A^{n}\right) \otimes \operatorname{St}\left(A^{n}\right),
$$

which explains our interest in computing the coinvariants of this.
(It is instructive to consider why $D^{3}(M) \rightarrow D^{1}(M) \wedge D^{1}(M) \wedge D^{1}(M)$ is no longer an isomorphism.)

The proof in the second case is far more complicated, involving the contractibility of a complex of "submodules in general position".

Rings with many units

There are maps $\widetilde{D}^{k}(M) \rightarrow D^{k}(M)$ given by sending a k-fold splitting to the associated k-fold flag. These are never isomorphisms, but we have the following:
Theorem (Galatius-Kupers-R-W)
If A is a ring with many units then the map on homotopy orbits

$$
\widetilde{D}^{k}(M)_{h G L(M)} \longrightarrow D^{k}(M)_{h G L(M)}
$$

is a homology equivalence.

Rings with many units

There are maps $\widetilde{D}^{k}(M) \rightarrow D^{k}(M)$ given by sending a k-fold splitting to the associated k-fold flag. These are never isomorphisms, but we have the following:
Theorem (Galatius-Kupers-R-W)
If A is a ring with many units then the map on homotopy orbits

$$
\widetilde{D}^{k}(M)_{h G L(M)} \longrightarrow D^{k}(M)_{h G L(M)}
$$

is a homology equivalence.
A ring A has "many units" if for each $n \in \mathbb{N}$ there are elements a_{1}, a_{2}, $\ldots, a_{n} \in A$ all of whose partial sums are units (e.g. semi-local with infinite residue fields).

Rings with many units

There are maps $\widetilde{D}^{k}(M) \rightarrow D^{k}(M)$ given by sending a k-fold splitting to the associated k-fold flag. These are never isomorphisms, but we have the following:
Theorem (Galatius-Kupers-R-W)
If A is a ring with many units then the map on homotopy orbits

$$
\widetilde{D}^{k}(M)_{h G L(M)} \longrightarrow D^{k}(M)_{h G L(M)}
$$

is a homology equivalence.
A ring A has "many units" if for each $n \in \mathbb{N}$ there are elements a_{1}, a_{2}, $\ldots, a_{n} \in A$ all of whose partial sums are units (e.g. semi-local with infinite residue fields). This condition was discovered by Suslin and Nesterenko: it implies that the inclusions

$$
\left(\begin{array}{cc}
* & 0 \\
0 & *
\end{array}\right) \longrightarrow\left(\begin{array}{ll}
* & * \\
0 & *
\end{array}\right)
$$

induce isomorphisms on group homology (which is what we need).

Proof of Rognes' conjecture

$D^{2}\left(A^{n}\right)$ is $(2 n-1)$-connected by the Key Theorem, so $D^{2}\left(A^{n}\right)_{h G L_{n}(A)}$ is also $(2 n-1)$-connected, and this is the same as $\widetilde{D}^{2}\left(A^{n}\right)_{h G L_{n}(A)}$.

Proof of Rognes' conjecture

$D^{2}\left(A^{n}\right)$ is $(2 n-1)$-connected by the Key Theorem, so $D^{2}\left(A^{n}\right)_{h G L_{n}(A)}$ is also $(2 n-1)$-connected, and this is the same as $\widetilde{D}^{2}\left(A^{n}\right)_{h G L_{n}(A)}$.
Now $\left\{\widetilde{D}^{k}\left(A^{n}\right)_{h G L_{n}(A)}\right\}_{n \in \mathbb{N}}$ is obtained from $\left\{\widetilde{D}^{2}\left(A^{n}\right)_{h G L_{n}(A)}\right\}_{n \in \mathbb{N}}$ by taking a $(k-2)$-fold bar construction, so $\widetilde{D}^{k}\left(A^{n}\right)_{h G L_{n}(A)} \simeq D^{k}\left(A^{n}\right)_{h G L_{n}(A)}$ is (2n-1+k-2)-connected.

Proof of Rognes' conjecture

$D^{2}\left(A^{n}\right)$ is $(2 n-1)$-connected by the Key Theorem, so $D^{2}\left(A^{n}\right)_{h G L_{n}(A)}$ is also $(2 n-1)$-connected, and this is the same as $\widetilde{D}^{2}\left(A^{n}\right)_{h G L_{n}(A)}$.
Now $\left\{\widetilde{D}^{k}\left(A^{n}\right)_{h G L_{n}(A)}\right\}_{n \in \mathbb{N}}$ is obtained from $\left\{\widetilde{D}^{2}\left(A^{n}\right)_{h G L_{n}(A)}\right\}_{n \in \mathbb{N}}$ by taking a $(k-2)$-fold bar construction, so $\widetilde{D}^{k}\left(A^{n}\right)_{h G L_{n}(A)} \simeq D^{k}\left(A^{n}\right)_{h G L_{n}(A)}$ is ($2 n-1+k-2$)-connected.

This is the k th space of the spectrum $\mathbf{D}\left(A^{n}\right)_{h G L_{n}(A)}$, which is therefore $(2 n-3)$-connected. This proves part (i).

Proof of Rognes' conjecture

$D^{2}\left(A^{n}\right)$ is $(2 n-1)$-connected by the Key Theorem, so $D^{2}\left(A^{n}\right)_{h G L_{n}(A)}$ is also $(2 n-1)$-connected, and this is the same as $\widetilde{D}^{2}\left(A^{n}\right)_{h G L_{n}(A)}$.
Now $\left\{\widetilde{D}^{k}\left(A^{n}\right)_{h G L_{n}(A)}\right\}_{n \in \mathbb{N}}$ is obtained from $\left\{\widetilde{D}^{2}\left(A^{n}\right)_{h G L_{n}(A)}\right\}_{n \in \mathbb{N}}$ by taking a $(k-2)$-fold bar construction, so $\widetilde{D}^{k}\left(A^{n}\right)_{h G L_{n}(A)} \simeq D^{k}\left(A^{n}\right)_{h G L_{n}(A)}$ is ($2 n-1+k-2$)-connected.

This is the k th space of the spectrum $\mathbf{D}\left(A^{n}\right)_{h G L_{n}(A)}$, which is therefore $(2 n-3)$-connected. This proves part (i).
For part (ii), if A is a field then we have

$$
\widetilde{H}_{2 n}\left(\widetilde{D}^{2}\left(A^{n}\right)_{h G L_{n}(A)}\right)=H_{0}\left(G L_{n}(A) ; S t\left(A^{n}\right) \otimes \operatorname{St}\left(A^{n}\right)\right) .
$$

Proof of Rognes' conjecture

$D^{2}\left(A^{n}\right)$ is $(2 n-1)$-connected by the Key Theorem, so $D^{2}\left(A^{n}\right)_{h G L_{n}(A)}$ is also $(2 n-1)$-connected, and this is the same as $\widetilde{D}^{2}\left(A^{n}\right)_{h G L_{n}(A)}$.
Now $\left\{\widetilde{D}^{k}\left(A^{n}\right)_{h G L_{n}(A)}\right\}_{n \in \mathbb{N}}$ is obtained from $\left\{\widetilde{D}^{2}\left(A^{n}\right)_{n G L_{n}(A)}\right\}_{n \in \mathbb{N}}$ by taking a $(k-2)$-fold bar construction, so $\widetilde{D}^{k}\left(A^{n}\right)_{h G L_{n}(A)} \simeq D^{k}\left(A^{n}\right)_{h G L_{n}(A)}$ is ($2 n-1+k-2$)-connected.

This is the k th space of the spectrum $\mathbf{D}\left(A^{n}\right)_{h G L_{n}(A)}$, which is therefore $(2 n-3)$-connected. This proves part (i).
For part (ii), if A is a field then we have

$$
\widetilde{H}_{2 n}\left(\widetilde{D}^{2}\left(A^{n}\right)_{h G L_{n}(A)}\right)=H_{0}\left(G L_{n}(A) ; \operatorname{St}\left(A^{n}\right) \otimes \operatorname{St}\left(A^{n}\right)\right) .
$$

The first results I mentioned say that these are \mathbb{Z} and combine to form a divided power algebra $\Gamma_{\mathbb{Z}}[x]$. The bar spectral sequence shows that
$\widetilde{H}_{2 n+1}\left(\widetilde{D}^{3}\left(A^{n}\right)_{h G L_{n}(A)}\right)=\operatorname{Tor}_{1}^{\Gamma_{Z}[x]}(\mathbb{Z}, \mathbb{Z})_{n}= \begin{cases}\mathbb{Z} & \text { if } n=1, \\ \mathbb{Z} / p & \text { if } n=p^{k} \text { with } p \text { prime }, \\ 0 & \text { otherwise } .\end{cases}$

E_{∞}-homology

We have $H_{n, d}^{E_{k}}(\mathbf{R})=H_{n, d+k}\left(\widetilde{D}^{k}\left(A^{n}\right)_{h G L_{n}(A)}\right)$ and so taking colimits

$$
H_{n, d}^{E_{\infty}}(\mathbf{R})=H_{n, d}^{\text {spec }}\left(\mathbf{D}\left(A^{n}\right)_{h G L_{n}(A)}\right),
$$

which we have just shown vanishes for $d<2(n-1)$.
Furthermore, if A is a field then we have computed $H_{n, 2(n-1)}^{E_{\infty}}(\mathbf{R})$.
In fact, we also show the latter calculation is valid for connected semi-local rings with infinite residue fields as long as $n \leq 3$; we conjecture that for such rings it is valid for all n.

E_{∞}-homology

Combining the vanishing line for E_{∞}-homology with calculations of Suslin for $G L_{2}(A)$, we obtain the following chart for E_{∞}-homology:

E_{∞}-homology

Combining the vanishing line for E_{∞}-homology with calculations of Suslin for $G L_{2}(A)$, we obtain the following chart for E_{∞}-homology:

$\mathfrak{p}(A)=$ "pre-Bloch group": generated by $[x] \in A^{\times} \backslash\{1\}$ subject to

$$
[x]-[y]+\left[\frac{y}{x}\right]+\left[\frac{1-x^{-1}}{1-y^{-1}}\right]+\left[\frac{1-x}{1-y}\right]=0
$$

whenever $x, y, 1-x, 1-y$, and $x-y \in A^{\times}$.

E_{∞}-homology

Combining the vanishing line for E_{∞}-homology with calculations of Suslin for $G L_{2}(A)$, we obtain the following chart for E_{∞}-homology:

The homological stability theorems are proved by constructing a minimal cellular E_{∞}-algebra model for \mathbf{R}^{+}compatible with this chart, and studying its consequences for \mathbf{R}^{+} / σ.

Literature

Based on work with S. Galatius and A. Kupers:
E_{∞}-cells and general linear groups of infinite fields. arXiv:2005.05620.

Cellular E_{k}-algebras.
arXiv:1805.07184.

For further applications of these ideas see also:
E_{2}-cells and mapping class groups.
Publ. Math. Inst. Hautes Études Sci. 130 (2019), 1-61.
E_{∞}-cells and general linear groups of finite fields. arXiv:1810.11931.

