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Smoothing theory

M a topological d-manifold, maybe with smooth boundary ∂M

Sm(M) = { space of smooth structures on M, fixed near ∂M }

(“space” interpreted liberally).

Recording germs of smooth structure near each point gives a map

Sm(M) −→ Γ∂(Sm(TM)→ M)

(the space of sections of the bundle with fibre Sm(TmM) ∼= Sm(Rd))

Theorem. [Hirsch–Mazur ’74, Kirby–Siebenmann ’77]
For d 6= 4 this map is a homotopy equivalence.

Homeo∂(M) acts on Sm(M), giving

Sm(M) ∼=
⊔
[W]

Homeo∂(W)/Di�∂(W)

Similarly, Sm(Rd) ∼= Homeo(Rd)/Di� (Rd)
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A consequence of smoothing theory

Write Top(d) := Homeo(Rd). By linearising have Di� (Rd) ' O(d), so

Sm(Rd) ' Top(d)/O(d).

Applied to Dd, d 6= 4, smoothing theory gives a map

Homeo∂(Dd)/Di�∂(Dd) −→ Γ∂(Sm(TDd)→ Dd) = map∂(Dd, Top(d)/O(d))

which is a homotopy equivalence to the path components it hits.

The Alexander trick Homeo∂(Dd) ' ∗ implies

BDi�∂(Dd) ' Ωd
0Top(d)/O(d) (Morlet)

or if you prefer
Di�∂(Dd) ' Ωd+1Top(d)/O(d).

O(d) is “well understood” so Di�∂(Dd) and Top(d) are equidi�cult.

But Di�∂(Dd) is more approachable: can use smoothness.

2



A consequence of smoothing theory

Write Top(d) := Homeo(Rd). By linearising have Di� (Rd) ' O(d), so

Sm(Rd) ' Top(d)/O(d).

Applied to Dd, d 6= 4, smoothing theory gives a map

Homeo∂(Dd)/Di�∂(Dd) −→ Γ∂(Sm(TDd)→ Dd) = map∂(Dd, Top(d)/O(d))

which is a homotopy equivalence to the path components it hits.

The Alexander trick Homeo∂(Dd) ' ∗ implies

BDi�∂(Dd) ' Ωd
0Top(d)/O(d) (Morlet)

or if you prefer
Di�∂(Dd) ' Ωd+1Top(d)/O(d).

O(d) is “well understood” so Di�∂(Dd) and Top(d) are equidi�cult.

But Di�∂(Dd) is more approachable: can use smoothness.

2



A consequence of smoothing theory

Write Top(d) := Homeo(Rd). By linearising have Di� (Rd) ' O(d), so

Sm(Rd) ' Top(d)/O(d).

Applied to Dd, d 6= 4, smoothing theory gives a map

Homeo∂(Dd)/Di�∂(Dd) −→ Γ∂(Sm(TDd)→ Dd) = map∂(Dd, Top(d)/O(d))

which is a homotopy equivalence to the path components it hits.

The Alexander trick Homeo∂(Dd) ' ∗ implies

BDi�∂(Dd) ' Ωd
0Top(d)/O(d) (Morlet)

or if you prefer
Di�∂(Dd) ' Ωd+1Top(d)/O(d).

O(d) is “well understood” so Di�∂(Dd) and Top(d) are equidi�cult.

But Di�∂(Dd) is more approachable: can use smoothness.

2



A consequence of smoothing theory

Write Top(d) := Homeo(Rd). By linearising have Di� (Rd) ' O(d), so

Sm(Rd) ' Top(d)/O(d).

Applied to Dd, d 6= 4, smoothing theory gives a map

Homeo∂(Dd)/Di�∂(Dd) −→ Γ∂(Sm(TDd)→ Dd) = map∂(Dd, Top(d)/O(d))

which is a homotopy equivalence to the path components it hits.

The Alexander trick Homeo∂(Dd) ' ∗ implies

BDi�∂(Dd) ' Ωd
0Top(d)/O(d) (Morlet)

or if you prefer
Di�∂(Dd) ' Ωd+1Top(d)/O(d).

O(d) is “well understood” so Di�∂(Dd) and Top(d) are equidi�cult.

But Di�∂(Dd) is more approachable: can use smoothness.

2



What do we know?



The theorem of Farrell and Hsiang

The classical approach to studying Di�∂(M) breaks up as

1. Space of homotopy self-equivalences hAut∂(M)

analysed by homotopy theory.
2. Comparison hAut∂(M)/D̃i�∂(M) with “block-di�eomorphisms”

analysed by surgery theory.
3. Comparison D̃i�∂(M)/Di�∂(M) with di�eomorphisms

analysed by pseudoisotopy theory (and hence K-theory), but
only valid in the “pseudoisotopy stable range”.

[Igusa ’84]: this is at least min(d−7
2 , d−4

3 ) ∼ d
3 .

[RW ’17]: it is at most d− 2.

Theorem. [Farrell–Hsiang ’78]

π∗(BDi�∂(Dd))⊗Q =

{
0 d even
Q[4]⊕Q[8]⊕Q[12]⊕ · · · d odd

in the pseudoisotopy stable range for d (so certainly for ∗ . d
3 ).
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The theorems of Watanabe

Theorem. [Watanabe ’09]
For 2n+ 1 ≥ 5 and r ≥ 2 there is a surjection

π(2r)(2n)(BDi�∂(D2n+1))⊗Q� Aoddr

where

has dim(Aoddr ) = 1, 1, 1, 2, 2, 3, 4, 5, 6, 8, 9, . . .

Theorem. [Watanabe ’18]
There is a surjection

πr(BDi�∂(D4))⊗Q� Aevenr

where dim(Aevenr ) = 0, 1,0,0, 1,0,0,0, 1, . . . (so π2(BDi�∂(D4)) 6= 0)
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The theorem of Weiss

Closely related to the classical story is the fact that the stable map

O = colim
d→∞

O(d) −→ Top = colim
d→∞

Top(d)

is a Q-equivalence, and hence

H∗(BTop;Q) ∼= H∗(BO;Q) = Q[p1,p2,p3, . . .].

In H∗(BO(2n);Q) the usual definition of Pontrjagin classes shows

pn = e2 and pn+i = 0 for all i > 0. (!)

Theorem. [Weiss ’15]
For many n and i ≥ 0 there are classes wn,i ∈ π4(n+i)(BTop(2n)) which
pair nontrivially with pn+i (i.e. (!) does not hold on BTop(2n)).

⇒ π2n−1+4i(BDi�∂(D2n))⊗Q 6= 0 for such n and i.
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A pattern



A pattern

Inspired by Weiss’ argument, Alexander Kupers and I have begun a
programme to determine

π∗(BDi�∂(D2n))⊗Q

as completely as possible. The first installment is:

A. Kupers, O. R-W, On di�eomorphisms of even-dimensional discs
(arXiv:2007.13884)

Here we

1. fully determine these groups in degrees ∗ ≤ 4n− 10,
2. determine them in higher degrees outside of certain “bands”,
3. understand something about the structure of these bands.
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π∗(BDi�∂(D2n))⊗Q

= Q{Weiss class}

= uncertainty, but • survives

= uncertainty, • may not survive
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A pattern

Theorem. [Kupers–R-W]
Let 2n ≥ 6.

(i) If d < 2n− 1 then πd(BDi�∂(D2n))⊗Q vanishes, and
(ii) if d ≥ 2n− 1 then πd(BDi�∂(D2n))⊗Q is

Q if d ≡ 2n−1 mod 4 and d /∈
⋃
r≥2

[2r(n−2)− 1, 2rn− 1],

0 if d 6≡ 2n−1 mod 4 and d /∈
⋃
r≥2

[2r(n−2)− 1, 2rn− 1],

? otherwise.

8



A pattern

Using the fibre sequence Top(2n)
O(2n) →

Top
O(2n) →

Top
Top(2n) we have the

Reformulation (slightly stronger).
For 2n ≥ 6 the groups π∗(Ω2n+1

0 ( Top
Top(2n) ))⊗Q are supported in

degrees
∗ ∈

⋃
r≥2

[2r(n− 2)− 1, 2rn− 2].

Reflecting D2n or R2n induces compatible involutions on

Ω2n+1
0

Top
Top(2n) −→ BDi�∂(D2n) ' Ω2n

0
Top(2n)
O(2n) −→ Ω2n

0
Top
O(2n) .

We show this acts as −1 on

π∗(Ω2n
0

Top
O(2n) )⊗Q = Q[2n− 1]⊕Q[2n+ 3]⊕Q[2n+ 7]⊕ · · ·

and acts on π∗(Ω2n+1
0 ( Top

Top(2n) ))⊗Q as (−1)r in the rth band.

The orange/blue colours in the chart are the +1/−1 eigenspaces.
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The first uncertainty

We also determine to some extent what happens in the first band
shown in the chart:

the groups π∗(Ω2n+1( Top
Top(2n) ))⊗Q in degrees

[4n− 9, 4n− 4] are calculated by a chain complex of the form

Q2 Q4 Q10 Q21 Q15 Q3

We don’t know the di�erentials, but it has Euler characteristic 1 so
must have some homology.

It lies in the +1-eigenspace, so injects into π∗(BDi�∂(D2n))⊗Q.

By analogy with Watanabe’s theorem for D4 one expects

dimπ4n−6(BDi�∂(D2n))⊗Q ≥ 1

which is compatible with the above.
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Details of the proof



Philosophy

Many results in this flavour of geometric topology are relative: they
describe the di�erence between

1. topological/smooth manifolds (smoothing)
2. homotopy equivalences/block di�eomorphisms (surgery)
3. block di�eomorphisms/di�eomorphisms (pseudoisotopy)

Weiss has suggested a new kind of relativisation:

for M with ∂M = Sd−1 and 1
2∂M := Dd−1 ⊂ Sd−1 he showed that

Di�∂(M)

Di�∂(Dd)
' Emb∼=1/2∂(M)

the space of self-embeddings of M
relative to half its boundary, which
are isotopic to di�eomorphisms.
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Philosophy

⇒ Weiss fibre sequence

BDi�∂(Dd) −→ BDi�∂(M) −→ BEmb∼=1/2∂(M)

Such a self-embedding space can often be analysed using the
theory of embedding calculus.

Strategy: find a manifold M for which one can understand
BEmb∼=1/2∂(M) and BDi�∂(M), then deduce things about BDi�∂(Dd).

A good choice is

Wg,1 := D2n#g(Sn × Sn)

especially for “arbitrarily large” g.

Theorem. [Madsen–Weiss ’07 2n = 2, Galatius–R-W ’14 2n ≥ 4]

lim
g→∞

H∗(BDi�∂(Wg,1);Q) = Q[κc | c ∈ B]

Here B is the set of monomials in e,pn−1,pn−2, . . . ,pdn+1
4 e

.
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Di�eomorphism groups

Embedding calculus (which will be discussed by A. Kupers in the
next talk) will only allow us to access π∗(BEmb

∼=
1/2∂(Wg,1))⊗Q, so to

pursue the strategy requires π∗(BDi�∂(Wg,1))⊗Q instead of
H∗(BDi�∂(Wg,1);Q).

Theorem. [Kreck ’79]
For n ≥ 3 there are extensions

0 −→ Ig −→ π1(BDi�∂(Wg,1)) −→


Og,g(Z) n even
Sp2g(Z) n = 3, 7
Spq2g(Z) n odd not 3,7

0 −→ Θ2n+1 −→ Ig −→ Hom(Hn(Wg,1;Z), SπnSO(n)) −→ 0.

⇒ π1(BDi�∂(Wg,1)) wildly complicated group, not nilpotent: cannot
expect to determine the rational homotopy of BDi�∂(Wg,1) from its
rational cohomology.
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Torelli groups

Can pass to the (infinite index) Torelli subgroup

Tor∂(Wg,1) := ker

Di�∂(Wg,1)� G′g :=


Og,g(Z) n even
Sp2g(Z) n = 3, 7
Spq2g(Z) n odd not 3,7


to eliminate the arithmetic group, but this changes the cohomology.

In A. Kupers, O. R-W, The cohomology of Torelli groups is algebraic
Forum of Mathematics, Sigma, to appear

(i) BTor∂(Wg,1) is nilpotent,
(ii) G′g-representations Hi(BTor∂(Wg,1);Q) are algebraic, i.e. extend

to representations of the ambient algebraic groups Og,g or Sp2g.

This is done using the Torelli version of the Weiss fibre sequence

BDi�∂(D2n) −→ BTor∂(Wg,1) −→ BTorEmb∼=1/2∂(Wg,1)

and embedding calculus to qualitatively understand the third term;
the first contributes only trivial G′g-representations.
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(Twisted) Miller–Morita–Mumford classes

The space BTor∂(Wg,1) carries a smooth bundle

Wg
i−→ E π−→ BTor∂(Wg,1)

(Wg = #gSn × Sn) with a trivial sub-D2n-bundle and a trivialisation of
the local system Hn(Wg;Z).

It has a section s given by 0 ∈ D2n, so a split exact sequence

0 −→ Hn(BTor∂(Wg,1);Q)
π∗−→ Hn(E;Q)

i∗−→ Hn(Wg;Q) −→ 0

with splitting ι : Hn(Wg;Q)→ Hn(E;Q).

Have vertical tangent bundle TπE→ E, so for any c ∈ H∗(BSO(2n);Q)

and v1, . . . , vr ∈ Hn(Wg;Q) we can form

κc(v1, . . . , vr) :=

∫
π

c(TπE) · ι(v1) · · · ι(vr) ∈ H|c|+n(r−2)(BTor∂(Wg,1);Q).

Under the G′g-action these transform via G′g � Hn(Wg;Q).

For r = 0 these are the usual Miller–Morita–Mumford classes.
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Relations among Twisted Miller–Morita–Mumford classes

κc(v1, . . . , vr) :=

∫
π

c(TπE) · ι(v1) · · · ι(vr)

Let {ai} be a basis of Hn(Wg;Q), and {a#i } be the Poincaré dual
basis characterised by

∫
Wg
a#i · aj = δij. It is easy to show that:

(i) (c, v1, . . . , vr)→ κc(v1, . . . , vr) is linear in c and each vi,
(ii) κc(vσ(1), . . . , vσ(r)) = sign(σ)n · κc(v1, . . . , vr),

(iii)
∑

i κc(v1, . . . , vj,ai) · κc′(a#i , vj+1, . . . , vr) = κc·c′(v1, . . . , vr),
(iv)

∑
i κc(v1, . . . , vr,ai,a#i ) = κe·c(v1, . . . , vr),

(v) κLi = 0.
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basis characterised by

∫
Wg
a#i · aj = δij. It is easy to show that:

(i) (c, v1, . . . , vr)→ κc(v1, . . . , vr) is linear in c and each vi,

(ii) κc(vσ(1), . . . , vσ(r)) = sign(σ)n · κc(v1, . . . , vr),
(iii)

∑
i κc(v1, . . . , vj,ai) · κc′(a#i , vj+1, . . . , vr) = κc·c′(v1, . . . , vr),

(iv)
∑

i κc(v1, . . . , vr,ai,a#i ) = κe·c(v1, . . . , vr),
(v) κLi = 0.

16



Relations among Twisted Miller–Morita–Mumford classes

κc(v1, . . . , vr) :=

∫
π

c(TπE) · ι(v1) · · · ι(vr)

Let {ai} be a basis of Hn(Wg;Q), and {a#i } be the Poincaré dual
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Cohomology of Torelli groups

In A. Kupers, O. R-W, On the cohomology of Torelli groups
Forum of Mathematics, Pi, 8 (2020)

(combined with the algebraicity theorem) we show

Theorem. [Kupers–R-W ’20]
If 2n ≥ 6 then the G′g-equivariant ring homomorphism

Λ∗Q[κc(v1, . . . , vr) | |c|+ n(r − 2) > 0]

(the relations (i) – (v))
−→ H∗(BTor∂(Wg,1);Q)

is an isomorphism in a stable range.

Remark. This is not an e�cient presentation! It can be simplified.

Strategy: Every irreducible representation of Gg ∈ {Og,g,Sp2g} is a
summand of Hn(Wg;Q)⊗k for some k, so a map ϕ of algebraic
Gg-representations is an isomorphism⇔ [ϕ⊗ Hn(Wg;Q)⊗k]Gg is for
all k.

⇒ Evaluate [−⊗ Hn(Wg;Q)⊗k]Gg of both sides.
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An idea of the proof I

Consider Serre spectral sequence with Hn(Wg;Q)⊗k-coe�cients for

BTor∂(Wg,1) −→ BDi�∂(Wg,1) −→ BG′g.

Using work of Borel on stable cohomology of arithmetic groups, it
the form

Ep,q2 = Hp(G∞;Q)⊗ [Hq(BTor∂(Wg,1);Q)⊗ Hn(Wg;Q)⊗k]Gg

⇒ Hp+q(BDi�∂(Wg,1);Hn(Wg;Q)⊗k)

in a stable range.

Borel has calculated H∗(G∞;Q), and the work of Galatius–R-W can
be used to calculate H∗(BDi�∂(Wg,1);Hn(Wg;Q)⊗k) in a stable range.

⇒ collapse and determines [H∗(BTor∂(Wg,1);Q)⊗ Hn(Wg;Q)⊗k]Gg to
be given by partitions of {1, 2, . . . , k} with parts labelled by B (with
some constraints on degrees of labels).
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An idea of the proof II

Classical invariant theory shows that

[Hn(Wg;Q)⊗r]Gg ∼= {(signed) matchings of {1, 2, . . . , r}}

for g� r; the bijection is implemented by inserting the invariant
vector ω :=

∑
i ai ⊗ a

#
i ∈ H

n(Wg;Q)⊗2.

⇒
[

Λ∗Q[κc(v1, . . . , vr) | |c|+ n(r − 2) > 0]

(the relations (i) – (v))
⊗ Hn(Wg;Q)⊗k

]Gg
=

the graded vector space of graphs with legs {1, 2, . . . , k}, vertices
labelled by c ∈ B, and certain signs I shall ignore, modulo

Using these relations to contract all internal edges, this is the same
as partitions of {1, 2, . . . , k} with parts labelled by B (with some
constraints).
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Returning to the disc

To prove our results about BDi�∂(D2n) we in fact work with the
framed analogue of the Weiss fibre sequence

BDi� fr
∂ (D2n) −→ BDi� fr

∂ (Wg,1) −→ BEmb∼=,fr1/2∂(Wg,1).

The story is more complicated in the framed case. Have a fibration

X1(g) −→ BTorfr∂ (Wg,1) −→ X0

with H∗(X0;Q) = ΛQ[σ̄4j−2n−1 | j > n/2].

We show that in a stable range H∗(X1(g);Q) is generated by classes

κ(v1, v2, v3) ∈ Hn(X1(g);Q) vi ∈ Hn(Wg,1;Q)

subject only to the relations
(i) linearity in each vi,

(ii) κ(vσ(1), vσ(2), vσ(3)) = sign(σ)n · κ(v1, v2, v3),
(iii)

∑
i κ(v1, v2,ai) · κ(a#i , v5, v6) =

∑
i κ(v1, v5,ai) · κ(a#i , v6, v2),

(iv)
∑

i κ(v1,ai,a#i ) = 0 for any v1.
Cohomology supported in degrees which are multiples of n.
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Returning to the disc

The unstable Adams spectral sequence then shows

π∗(BTorfr∂ (Wg,1))⊗Q =

⊕
j>n/2

Q[4j− 2n− 1]

 “⊕”
(

something supported in
∗∈

⋃
r≥0[r(n−1)+1,rn−2]

)

In the Torelli version of the framed Weiss fibre sequence

BDi� fr
∂ (D2n) −→ BTorfr∂ (Wg,1) −→ BTorEmb∼=,fr1/2∂(Wg,1)

the first part, coming from X0, provides the Weiss classes,
and the second part, coming from X1(g), provides the
lightly-shaded unknown region in the chart.

In the next talk Alexander Kupers will explain the darkly-shaded
unknown region, coming from analysing π∗(BEmb

∼=,fr
1/2∂(Wg,1))⊗Q via

embedding calculus.
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Questions?
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π∗(BDi�∂(D2n))⊗Q

= Q{Weiss class}

= uncertainty, but • survives

= uncertainty, • may not survive
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