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M a topological d-manifold, maybe with smooth boundary oM
Sm(M) = { space of smooth structures on M, fixed near OM }
(“space” interpreted liberally).
Recording germs of smooth structure near each point gives a map
Sm(M) — T5(Sm(TM) — M)
(the space of sections of the bundle with fibre Sm(T,,M) = Sm(R?))

Theorem. [Hirsch-Mazur '74, Kirby-Siebenmann '77]
For d # 4 this map is a homotopy equivalence.

Homeoy(M) acts on Sm(M), giving

Sm(M) = | |Homeo(W)/Diffa(W)
w]

Similarly, Sm(RY) = Homeo(RY)/Diff (R%)
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A consequence of smoothing theory

Write Top(d) := Homeo(RRY). By linearising have Diff (R?) ~ O(d), so
Sm(RY) ~ Top(d)/0(d).

Applied to D9, d # 4, smoothing theory gives a map
Homeo,(D?)/Diff5(DY) —s T5(Sm(TDY) — DY) = map, (DY, Top(d)/0(d))
which is a homotopy equivalence to the path components it hits.
The Alexander trick Homeo,(D?) ~ * implies

BDIff5(D?) ~ Q4Top(d)/0(d) (Morlet)
or if you prefer

Diffs(D?) ~ Q4" Top(d)/0(d).
0(d) is “well understood” so Diff5(D?) and Top(d) are equidifficult.

But Diffs(D9) is more approachable: can use smoothness.
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The theorem of Farrell and Hsiang

The classical approach to studying Diffs(M) breaks up as

1. Space of homotopy self-equivalences hAuty(M)
analysed by homotopy theory.

2. Comparison hAuts(M)/Diff (M) with “block-diffeomorphisms”
analysed by surgery theory.

3. Comparison Diff ,(M)/Diff ;(M) with diffeomorphisms
analysed by pseudoisotopy theory (and hence K-theory), but
only valid in the “pseudoisotopy stable range”.

[Igusa '84]: this is at least min(4;Z, 4=%) ~ 4.
[RW '17]: it is at most d — 2.

Theorem. [Farrell-Hsiang '78]

i . ; _ 0 d even

in the pseudoisotopy stable range for d (so certainly for x < %).
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The theorems of Watanabe

Theorem. [Watanabe '09]
For2n +1>5and r > 2 there is a surjection

7(ar)(2n) (BDIffa (D*"*")) ® Q — AP

where

X=-r

has dim(A%99) =1,1,1,2,2,3,4,5,6,8,9,...

Theorem. [Watanabe "18]
There is a surjection

7r(BDiffa(D*)) ® Q — AZ*"

where dim(A8"®") = 0,1,0,0,1,0,0,0,1, ... (s0 m,(BDiffs(D*)) # 0)
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The theorem of Weiss

Closely related to the classical story is the fact that the stable map

0 = colimO(d) — Top = <(:jo|im Top(d)
—00

d—oo

is a Q-equivalence, and hence
H*(BTop; Q) = H*(BO; Q) = Q[ps, p2,Ps, - - .

In H*(BO(2n); Q) the usual definition of Pontrjagin classes shows

pn=e*and p,.;=oforalli > o. 0]

Theorem. [Weiss "15]
For many nand i > o there are classes w,; € m,(,)(BTop(2n)) which
pair nontrivially with p,_; (i.e. (!) does not hold on BTop(2n)).

= Tn_144i(BDIffa(D*")) ® Q # o for such n and i.
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A pattern

Inspired by Weiss’ argument, Alexander Kupers and | have begun a
programme to determine

m.(BDiff(D*")) ® Q

as completely as possible. The first installment is:

A. Kupers, 0. R-W, On diffeomorphisms of even-dimensional discs
(arXiv:2007.13884)

Here we
1. fully determine these groups in degrees * < 4n — 10,

2. determine them in higher degrees outside of certain “bands”,
3. understand something about the structure of these bands.



7. (BDIffo(D*")) ® Q -

o= Q{Welss daés}

m= uncertainty, but  survives

i W= uncertainty, e may not survive:

6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 4O 42 44 46 48 50 52 54 56 58 60 62 64



A pattern

Theorem. [Kupers—-R-W]
Let 2n > 6.

(i) If d < 2n — 1 then =y4(BDIff 5(D*")) ® Q vanishes, and
(i) if d > 2n — 1 then 74(BDIiff ,(D?*")) ® Q is

Q ifd=2n—1mods4andd ¢ |J[2r(n—2) —1,2rn —1],

r>2

o ifd#2n—1modsganddé¢ |J[2r(n—2) —1,2rn —1],

r>2
?  otherwise.
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Using the fibre sequence Tg‘(’gf,’)’) — o — Topom We have the

Reformulation (slightly stronger).
For 2n > 6 the groups Tr*(Qé”“(To;‘Zgn))) ® Q are supported in
degrees

« € Jlr(n—2) —1,2r —2].
r>2
Reflecting D" or R?" induces compatible involutions on

Qg roﬁgn) — BDIff o(D*") ~ QF" Tg?g)’) — Q3 oT(gﬁ)'

We show this acts as —1 on

(R o) ®Q = Q[2n — 11 © Q2n +3] @ Q2n + 7] & ---
and acts on w*(Qé”*‘(To;‘zgn))) ® Q as (—1)" in the rth band.

The orange/blue colours in the chart are the +1/—1 eigenspaces.
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The first uncertainty

We also determine to some extent what happens in the first band

shown in the chart: the groups w*(Qz”“(To;‘Z‘z’n))) ® Q in degrees

[4n —9,4n — 4] are calculated by a chain complex of the form

Q2<7Q4<7Q10<;Q21<;Q15<_)Q3

We don't know the differentials, but it has Euler characteristic 1 so
must have some homology.

It lies in the +1-eigenspace, so injects into .. (BDiffs(D*")) ® Q.

By analogy with Watanabe’s theorem for D* one expects

which is compatible with the above.

10
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Philosophy

Many results in this flavour of geometric topology are relative: they
describe the difference between

1. topological/smooth manifolds (smoothing)
2. homotopy equivalences/block diffeomorphisms (surgery)
3. block diffeomorphisms/diffeomorphisms (pseudoisotopy)

Weiss has suggested a new kind of relativisation:
for M with OM = S9~" and 19M := D9=" ¢ S9=" he showed that
DiﬁB(M) ~ =]

the space of self-embeddings of M
relative to half its boundary, which
are isotopic to diffeomorphisms.
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Such a self-embedding space can often be analysed using the
theory of embedding calculus.
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Philosophy

= Weiss fibre sequence
BDiff5(D) — BDiffs(M) — BEmby), (M)
Such a self-embedding space can often be analysed using the
theory of embedding calculus.
Strategy: find a manifold M for which one can understand

BEmb1_/26( ) and BDiff5(M), then deduce things about BDiff5(D9).

A good choice is
Wy, = D*"#g(S" x S")
especially for “arbitrarily large” g.

Theorem. [Madsen-Weiss '07 2n = 2, Galatius-R-W "14 2n > 4]
Jlim_H* (BDiffo(Wq.1): @) = Qlic| ¢ € B]

Here B is the set of monomialsin e, py_1,pn_2,. .. Doy 12
A



Diffeomorphism groups

Embedding calculus (which will be discussed by A. Kupers in the

next talk) will only allow us to access w*(BEmbma(WgJ)) ® Q, so to
pursue the strategy requires . (BDiffs(Wg.1)) ® Q instead of

H*(BDiffs(Wg,1); Q).
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Embedding calculus (which will be discussed by A. Kupers in the
next talk) will only allow us to access . (BEmb,,(Wg,1)) @ Q, so to
pursue the strategy requires . (BDiffs(Wg.1)) ® Q instead of

H*(BDiﬁa(Wgﬂ); Q)
Theorem. [Kreck '79]
For n > 3 there are extensions
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Diffeomorphism groups

Embedding calculus (which will be discussed by A. Kupers in the
next talk) will only allow us to access . (BEmb,,(Wg,1)) @ Q, so to
pursue the strategy requires . (BDiffs(Wg.1)) ® Q instead of

H*(BDiﬁa(Wgﬂ); Q).
Theorem. [Kreck '79]
For n > 3 there are extensions
Og¢4(Z) neven
0 — lg — m(BDiffo(Wg.1)) — { Spag(Z) n=3,7
Sp3;(Z) nodd not37
o — @2n+1 — Ig — HOm(Hn(Wg1, Z),S?TnSO(n)) — 0.
= 74(BDiff5(Wg 1)) wildly complicated group, not nilpotent: cannot

expect to determine the rational homotopy of BDiffs(Wg ;) from its
rational cohomology.

13



Torelli groups

Can pass to the (infinite index) Torelli subgroup

Og,4(Z) neven
Tors(Wy 1) := Rer | Diffo(Wg1) = Gy := { Spag(Z) n=3,7
Sp3s(Z) n odd not 3,7

to eliminate the arithmetic group, but this changes the cohomology.
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to eliminate the arithmetic group, but this changes the cohomology.
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Forum of Mathematics, Sigma, to appear
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Torelli groups

Can pass to the (infinite index) Torelli subgroup
Og,4(Z) neven
Tors(Wy 1) := Rer | Diffo(Wg1) = Gy := { Spag(Z) n=3,7
Sp3s(Z) n odd not 3,7
to eliminate the arithmetic group, but this changes the cohomology.

In A. Kupers, 0. R-W, The cohomology of Torelli groups is algebraic
Forum of Mathematics, Sigma, to appear

(i) BTory(Wq,) is nilpotent,
(i) Gy-representations H(BTors(W, 1); Q) are algebraic, i.e. extend
to representations of the ambient algebraic groups 04 g or Sp,,.

This is done using the Torelli version of the Weiss fibre sequence
BDiff5(D*") — BTors(Wg,1) — BTorEmbZ,,(W,.,1)

and embedding calculus to qualitatively understand the third term;
the first contributes only trivial G-representations. e



(Twisted) Miller-Morita-Mumford classes

The space BTory(Wg 1) carries a smooth bundle
W, — E - BTory(W,.)

(Wg = #9S" x S") with a trivial sub-D?>"-bundle and a trivialisation of
the local system 1" (Wy; Z).
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(Twisted) Miller-Morita-Mumford classes

The space BTory(Wg 1) carries a smooth bundle
W, — E - BTory(W,.)

(Wg = #9S" x S") with a trivial sub-D?>"-bundle and a trivialisation of
the local system 1" (Wy; Z).

It has a section s given by 0 € D?", so a split exact sequence

0 — H(BTory(Wy.1); Q) = H"(E; Q) - H"(Wg; Q) — 0
with splitting ¢ : H"(Wy; Q) — H"(E; Q).
Have vertical tangent bundle T,E — E, so for any ¢ € H*(BSO(2n); Q)
and vq,...,v, € H'(Wg; Q) we can form

eV ur) = [ CTaE) o) o) € HI 102 BTory (W) Q).

Under the Gg-action these transform via Gg O H"(Wg; Q).

For r = o these are the usual Miller-Morita-Mumford classes. 15
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e(Ve, V) = / C(TAE) - (Vi) - - - (Vi)

Let {a;} be a basis of H"(W,; Q), and {a,#} be the Poincaré dual
basis characterised by fWg a,# -@; = dj. It is easy to show that:



Relations among Twisted Miller-Morita-Mumford classes

e(Ve, V) = / C(TAE) - (Vi) - - - (Vi)

Let {a;} be a basis of H"(W,; Q), and {a,#} be the Poincaré dual
basis characterised by fWg a,# -@; = dj. It is easy to show that:

(i) (c,va,..., V) = Ke(Va, ..., V) is linear in c and each v;,



Relations among Twisted Miller-Morita-Mumford classes

e(Ve, V) = / C(TAE) - (Vi) - - - (Vi)

Let {a;} be a basis of H"(W,; Q), and {a,#} be the Poincaré dual
basis characterised by fWg a,# -@; = dj. It is easy to show that:

(i) (c,va,..., V) = Ke(Va, ..., V) is linear in c and each v;,

(i1) Ke(Vo(ry, - - -+ Vo) = sign(o)" - ke(Va, ..., V),



Relations among Twisted Miller-Morita-Mumford classes

e(Ve, V) = / C(TAE) - (Vi) - - - (Vi)

Let {a;} be a basis of H"(W,; Q), and {a,#} be the Poincaré dual

basis characterised by fWg a,# -@; = dj. It is easy to show that:
(i) (c,va,..., V) = Ke(Va, ..., V) is linear in c and each v;,

(i1) Ke(Vo(ry, - - -+ Vo) = sign(o)" - ke(Va, ..., V),

(i) Y kc(Vay -3V, 0)) - ke (QF Vi, o, Vr) = Ficer (Vay -, Vi),



Relations among Twisted Miller-Morita-Mumford classes

e(Ve, V) = / C(TAE) - (Vi) - - - (Vi)
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basis characterised by fWg a,# -@; = dj. It is easy to show that:

(i) (c,va,..., V) = Ke(Va, ..., V) is linear in c and each v;,
(i1) Ke(Vo(ry, - - -+ Vo) = sign(o)" - ke(Va, ..., V),
(i) Y kc(Vay -3V, 0)) - ke (QF Vi, o, Vr) = Ficer (Vay -, Vi),
(iv) > kc(Vas -, v, aj, al#) = Ke.c(Vay- -+, V),

(V) Ke, = O.



Relations among Twisted Miller-Morita-Mumford classes

e(Ve, V) = / C(TAE) - (Vi) - - - (Vi)

Let {a;} be a basis of H”(Wg Q) and {a#} be the Poincaré dual

basis characterised by fW -@; = dj. It is easy to show that:
(i) (c,va,..., V) = Ke(Va, ..., V) is linear in c and each v;,
(i1) Ke(Vo(ys - - .,vo( )) = sign(o)" - ke(Va, ..., V),

(i) Y= ke(va, - a;) - Hcl(a;#, Vigas o5 Vr) = Ko (Va, -, Vi),

(iv) > kc(Vas -, v, aj, a#) = Ke.c(Vay- -+, V),

(V) Ke, = O.
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Cohomology of Torelli groups

In  A. Kupers, 0. R-W, On the cohomology of Torelli groups
Forum of Mathematics, Pi, 8 (2020)

(combined with the algebraicity theorem) we show

Theorem. [Kupers-R-W "20]
If 2n > 6 then the Gg-equivariant ring homomorphism
Njlie(vi, ..., ve) | Ic| + n(r —2) > o]
(the relations (i) - (v))
is an isomorphism in a stable range.

— H*(BTors(Wy.1); Q)
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Cohomology of Torelli groups

In  A. Kupers, 0. R-W, On the cohomology of Torelli groups
Forum of Mathematics, Pi, 8 (2020)

(combined with the algebraicity theorem) we show

Theorem. [Kupers-R-W "20]
If 2n > 6 then the Gg-equivariant ring homomorphism
Njlie(vi, ..., ve) | Ic| + n(r —2) > o]
(the relations (i) - (v))
is an isomorphism in a stable range.

— H*(BTors(Wy.1); Q)

Remark. This is not an efficient presentation! It can be simplified.

Strategy: Every irreducible representation of Gg € {Og g,Sp,,} is a
summand of H"(Wgy; Q)®F for some k, so a map ¢ of algebraic
Gg-representations is an isomorphism < [p ® H"(W,; Q)®*]% is for
all k.

= Evaluate [~ ® H"(Wg; Q)®k]% of both sides.
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An idea of the proof |

Consider Serre spectral sequence with H"(Wg; Q)®*-coefficients for
BTory(Wg,1) — BDiffa(Wg,1) — BG}.

Using work of Borel on stable cohomology of arithmetic groups, it
the form

E2'? = HP(Goo; Q) ® [HO(BTors(Wy 1); Q) ® H" (Wg; Q)®¥]%
= HP9(BDiffs(Wg.1); 1" (Wg; Q)%F)
in a stable range.

Borel has calculated H*(G.,; Q), and the work of Galatius-R-W can
be used to calculate H*(BDiffs(Wg.1); H"(Wg; Q)®F) in a stable range.

= collapse and determines [H*(BTors(Wg.); Q) ® H"(Wg; Q)®k]% to
be given by partitions of {1,2,..., R} with parts labelled by B (with
some constraints on degrees of labels).



An idea of the proof i

Classical invariant theory shows that
[H"(Wg; Q)®"% = {(signed) matchings of {1,2,...,r}}

for g > r; the bijection is implemented by inserting the invariant
vector w :=>";a; ® ai’ € H"(Wg; Q)®2.
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for g > r; the bijection is implemented by inserting the invariant
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An idea of the proof i

Classical invariant theory shows that
[H"(Wg; Q)®"% = {(signed) matchings of {1,2,...,r}}

for g > r; the bijection is implemented by inserting the invariant
vector w :=>";a; ® ai’ € H"(Wg; Q)®2.

[A(B[K’C(V’H sty V’) ‘ |C| + n(r - 2) > O]
= : :

(the relations (i) - (v))
the graded vector space of graphs with legs {1,2, ..., R}, vertices
labelled by ¢ € B, and certain signs | shall ignore, modulo

Using these relations to contract all internal edges, this is the same
as partitions of {1,2,..., Rk} with parts labelled by B (with some
constraints). O

Gg
® H”(Wg:@)®k] =

19



Returning to the disc

To prove our results about BDiffy(D*") we in fact work with the
framed analogue of the Weiss fibre sequence

BDIff} (D*") — BDIff} (Wg 1) —» BEmbL (W 1).
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Returning to the disc

To prove our results about BDiffy(D*") we in fact work with the
framed analogue of the Weiss fibre sequence

BDIff} (D*") — BDIff} (Wg 1) —» BEmbL (W 1).

The story is more complicated in the framed case. Have a fibration
Xi(g) — BTor” 5 (Wg1) — Xo
with H*(Xo; Q) = /\Q[(_Tzdfznf‘l [j>n/2).
We show that in a stable range H*(X,(g); Q) is generated by classes
K(Va, V2, v3) € H'(X1(9); Q) vi € H"(Wg1; Q)
subject only to the relations
(i) linearity in each v;,
(ii) r(v. o(1)s Vo(2): Vo(3)) = SIgn(o)" - k(vs, V2, v3),
(i) 3 k(va, v, ) (A, vs, ve) = 3 k(va, Vs, ;) - w(a, Ve, 1),
i

(iv) > 5(vs, @, a; #) = o for any v,.
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Returning to the disc

To prove our results about BDiffy(D*") we in fact work with the
framed analogue of the Weiss fibre sequence

BDIff} (D*") — BDIff} (Wg 1) —» BEmbL (W 1).

The story is more complicated in the framed case. Have a fibration
Xi(g) — BTor” 5 (Wg1) — Xo
with H*(Xo; Q) = /\Q[(_Tzdfznf‘l [j>n/2).
We show that in a stable range H*(X,(g); Q) is generated by classes
K(Va, V2, v3) € H'(X:(9); Q) vi € H'(Wg+; Q)
subject only to the relations
(i) linearity in each v;,
(i1) K(Voq), Vo(a): Vo) = SIgn(o)" - k(va, V2, v3),
(i) >, (v1,v2, ) - r(aF, s, ve) = 32 k(va, Vs, G;) - (a7, V6, 1),

(iv) 3 k(va, a;,a) = o for any v,.
Cohomology supported in degrees which are multiples of n. 20



Returning to the disc

The unstable Adams spectral sequence then shows

o (BTor (Wp, )o@ = | €D Qluj—2n—1] | “e" (Euingmapensain )
j>n/2
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The unstable Adams spectral sequence then shows
M " ” h. d i
. (BTor§ Wy, )50 = | €D Qiaj—2n—1) | e (Sopnpessonedin)
j>n/2 a
In the Torelli version of the framed Weiss fibre sequence
BDIff]f (D°") — BTorly(Wy.1) — BTorEmb_J" (W, ,)
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the first part, coming from X,, provides the Weiss classes,
and the second part, coming from X;(g), provides the P
lightly-shaded unknown region in the chart. o)
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Returning to the disc

The unstable Adams spectral sequence then shows
. (BTor) (W) ©Q = (@ Qlyj —2n - 11) g (Sorhing o )
>n/2

In the Torelli version of the framed Weiss fibre sequence

BDIff]f (D°") — BTorly(Wy.1) — BTorEmb_J" (W, ,)

1/20
the first part, coming from X,, provides the Weiss classes, 2
and the second part, coming from X;(g), provides the P
lightly-shaded unknown region in the chart. o)

In the next talk Alexander Kupers will explain the darkly-shaded
unknown region, coming from analysing w*(BEme;g(Wgﬂ)) ® Qvia
embedding calculus.

21



Questions?



7. (BDIffo(D*")) ® Q -

o= Q{Welss daés}

m= uncertainty, but  survives

i W= uncertainty, e may not survive:

6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 4O 42 44 46 48 50 52 54 56 58 60 62 64
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