Diffeomorphisms of discs. I

Oscar Randal-Williams

 Estatalisver ley int Europeen Corrmision

LEVERHULME TRUST

Smoothing theory

M a topological d-manifold, maybe with smooth boundary ∂M

$$
\mathcal{S} m(M)=\{\text { space of smooth structures on } M \text {, fixed near } \partial M\}
$$

("space" interpreted liberally).

Smoothing theory

M a topological d-manifold, maybe with smooth boundary ∂M

$$
\mathcal{S} m(M)=\{\text { space of smooth structures on } M \text {, fixed near } \partial M\}
$$

("space" interpreted liberally).
Recording germs of smooth structure near each point gives a map

$$
\mathcal{S m}(M) \longrightarrow \Gamma_{\partial}(\mathcal{S m}(T M) \rightarrow M)
$$

(the space of sections of the bundle with fibre $\mathcal{S m}\left(T_{m} M\right) \cong \mathcal{S} m\left(\mathbb{R}^{d}\right)$)

Smoothing theory

M a topological d-manifold, maybe with smooth boundary ∂M

$$
\mathcal{S} m(M)=\{\text { space of smooth structures on } M \text {, fixed near } \partial M\}
$$

("space" interpreted liberally).
Recording germs of smooth structure near each point gives a map

$$
\mathcal{S m}(M) \longrightarrow \Gamma_{\partial}(\mathcal{S m}(T M) \rightarrow M)
$$

(the space of sections of the bundle with fibre $\mathcal{S m}\left(T_{m} M\right) \cong \mathcal{S m}\left(\mathbb{R}^{d}\right)$)
Theorem. [Hirsch-Mazur '74, Kirby-Siebenmann '77]
For $d \neq 4$ this map is a homotopy equivalence.

Smoothing theory

M a topological d-manifold, maybe with smooth boundary ∂M

$$
\mathcal{S} m(M)=\{\text { space of smooth structures on } M \text {, fixed near } \partial M\}
$$

("space" interpreted liberally).
Recording germs of smooth structure near each point gives a map

$$
\mathcal{S m}(M) \longrightarrow \Gamma_{\partial}(\mathcal{S m}(T M) \rightarrow M)
$$

(the space of sections of the bundle with fibre $\mathcal{S m}\left(T_{m} M\right) \cong \mathcal{S m}\left(\mathbb{R}^{d}\right)$)
Theorem. [Hirsch-Mazur '74, Kirby-Siebenmann '77]
For $d \neq 4$ this map is a homotopy equivalence.
$\operatorname{Homeo}_{\partial}(M)$ acts on $\mathcal{S m}(M)$, giving

$$
\mathcal{S m}(M) \cong \bigsqcup_{[W]} \operatorname{Homeo}_{\partial}(W) / \operatorname{Diff}_{\partial}(W)
$$

Similarly, $\operatorname{Sm}\left(\mathbb{R}^{d}\right) \cong \operatorname{Homeo}\left(\mathbb{R}^{d}\right) / \operatorname{Diff}\left(\mathbb{R}^{d}\right)$

A consequence of smoothing theory

Write Top $(d):=\operatorname{Homeo}\left(\mathbb{R}^{d}\right)$. By linearising have $\operatorname{Diff}\left(\mathbb{R}^{d}\right) \simeq O(d)$, so

$$
\mathcal{S m}\left(\mathbb{R}^{d}\right) \simeq \operatorname{Top}(d) / O(d)
$$

A consequence of smoothing theory

Write $\operatorname{Top}(d):=\operatorname{Homeo}\left(\mathbb{R}^{d}\right)$. By linearising have Diff $\left(\mathbb{R}^{d}\right) \simeq O(d)$, so

$$
\mathcal{S m}\left(\mathbb{R}^{d}\right) \simeq \operatorname{Top}(d) / O(d)
$$

Applied to $D^{d}, d \neq 4$, smoothing theory gives a map $\operatorname{Homeo}_{\partial}\left(D^{d}\right) / \operatorname{Diff}_{\partial}\left(D^{d}\right) \longrightarrow \Gamma_{\partial}\left(\mathcal{S m}\left(T D^{d}\right) \rightarrow D^{d}\right)=\operatorname{map}_{\partial}\left(D^{d}, \operatorname{Top}(d) / O(d)\right)$ which is a homotopy equivalence to the path components it hits.

A consequence of smoothing theory

Write $\operatorname{Top}(d):=\operatorname{Homeo}\left(\mathbb{R}^{d}\right)$. By linearising have Diff $\left(\mathbb{R}^{d}\right) \simeq O(d)$, so

$$
\mathcal{S m}\left(\mathbb{R}^{d}\right) \simeq \operatorname{Top}(d) / O(d)
$$

Applied to $D^{d}, d \neq 4$, smoothing theory gives a map
$\operatorname{Homeo}_{\partial}\left(D^{d}\right) / \operatorname{Diff}_{\partial}\left(D^{d}\right) \longrightarrow \Gamma_{\partial}\left(\mathcal{S m}\left(T D^{d}\right) \rightarrow D^{d}\right)=\operatorname{map}_{\partial}\left(D^{d}, \operatorname{Top}(d) / O(d)\right)$
which is a homotopy equivalence to the path components it hits.
The Alexander trick $\mathrm{Homeo}_{\partial}\left(D^{d}\right) \simeq *$ implies

$$
\begin{equation*}
\operatorname{BDiff}_{\partial}\left(D^{d}\right) \simeq \Omega_{0}^{d} T o p(d) / O(d) \tag{Morlet}
\end{equation*}
$$

or if you prefer

$$
\operatorname{Diff}_{\partial}\left(D^{d}\right) \simeq \Omega^{d+1} \operatorname{Top}(d) / O(d) .
$$

A consequence of smoothing theory

Write $\operatorname{Top}(d):=$ Homeo $\left(\mathbb{R}^{d}\right)$. By linearising have $\operatorname{Diff}\left(\mathbb{R}^{d}\right) \simeq O(d)$, so

$$
\mathcal{S m}\left(\mathbb{R}^{d}\right) \simeq \operatorname{Top}(d) / O(d)
$$

Applied to $D^{d}, d \neq 4$, smoothing theory gives a map
$\operatorname{Homeo}_{\partial}\left(D^{d}\right) / \operatorname{Diff}_{\partial}\left(D^{d}\right) \longrightarrow \Gamma_{\partial}\left(S m\left(T D^{d}\right) \rightarrow D^{d}\right)=\operatorname{map}_{\partial}\left(D^{d}, \operatorname{Top}(d) / O(d)\right)$
which is a homotopy equivalence to the path components it hits.
The Alexander trick $\mathrm{Homeo}_{\partial}\left(D^{d}\right) \simeq *$ implies

$$
\begin{equation*}
\operatorname{BDiff}_{\partial}\left(D^{d}\right) \simeq \Omega_{0}^{d} \operatorname{Top}(d) / O(d) \tag{Morlet}
\end{equation*}
$$

or if you prefer

$$
\operatorname{Diff}_{\partial}\left(D^{d}\right) \simeq \Omega^{d+1} \operatorname{Top}(d) / O(d) .
$$

$O(d)$ is "well understood" so $\operatorname{Diff}_{\partial}\left(D^{d}\right)$ and Top (d) are equidifficult.
But $\operatorname{Diff}_{\partial}\left(D^{d}\right)$ is more approachable: can use smoothness.

What do we know?

The theorem of Farrell and Hsiang

The classical approach to studying $\operatorname{Diff}_{\partial}(M)$ breaks up as

The theorem of Farrell and Hsiang

The classical approach to studying $\operatorname{Diff}_{\partial}(M)$ breaks up as

1. Space of homotopy self-equivalences hAut $_{\partial}(M)$ analysed by homotopy theory.

The theorem of Farrell and Hsiang

The classical approach to studying $\operatorname{Diff}_{\partial}(M)$ breaks up as

1. Space of homotopy self-equivalences hAut $_{\partial}(M)$ analysed by homotopy theory.
2. Comparison hAut ${ }_{\partial}(M) /$ Diff $_{\partial}(M)$ with "block-diffeomorphisms" analysed by surgery theory.

The theorem of Farrell and Hsiang

The classical approach to studying $\operatorname{Diff}_{\partial}(M)$ breaks up as

1. Space of homotopy self-equivalences hAut $_{\partial}(M)$ analysed by homotopy theory.
2. Comparison hAut ${ }_{\partial}(M) /$ Diff $_{\partial}(M)$ with "block-diffeomorphisms" analysed by surgery theory.
3. Comparison $\widetilde{\text { Diff }}_{\partial}(M) / \operatorname{Diff}_{\partial}(M)$ with diffeomorphisms analysed by pseudoisotopy theory (and hence K-theory), but only valid in the "pseudoisotopy stable range".

The theorem of Farrell and Hsiang

The classical approach to studying $\operatorname{Diff}_{\partial}(M)$ breaks up as

1. Space of homotopy self-equivalences hAut $_{\partial}(M)$ analysed by homotopy theory.
2. Comparison hAut ${ }_{\partial}(M) /$ Diff $_{\partial}(M)$ with "block-diffeomorphisms" analysed by surgery theory.
3. Comparison $\widetilde{\text { Diff }}_{\partial}(M) / \operatorname{Diff}_{\partial}(M)$ with diffeomorphisms analysed by pseudoisotopy theory (and hence K-theory), but only valid in the "pseudoisotopy stable range".
[Igusa '84]: this is at least $\min \left(\frac{d-7}{2}, \frac{d-4}{3}\right) \sim \frac{d}{3}$.

The theorem of Farrell and Hsiang

The classical approach to studying $\operatorname{Diff}_{\partial}(M)$ breaks up as

1. Space of homotopy self-equivalences hAut $_{\partial}(M)$ analysed by homotopy theory.
2. Comparison hAut ${ }_{\partial}(M) /$ Diff $_{\partial}(M)$ with "block-diffeomorphisms" analysed by surgery theory.
3. Comparison $\widetilde{\text { Diff }}_{\partial}(M) / \operatorname{Diff}_{\partial}(M)$ with diffeomorphisms analysed by pseudoisotopy theory (and hence K-theory), but only valid in the "pseudoisotopy stable range".
[Igusa '84]: this is at least $\min \left(\frac{d-7}{2}, \frac{d-4}{3}\right) \sim \frac{d}{3}$. [RW '17]: it is at most $d-2$.

The theorem of Farrell and Hsiang

The classical approach to studying $\operatorname{Diff}_{\partial}(M)$ breaks up as

1. Space of homotopy self-equivalences hAut $_{\partial}(M)$ analysed by homotopy theory.
2. Comparison hAut ${ }_{\partial}(M) /$ Diff $_{\partial}(M)$ with "block-diffeomorphisms" analysed by surgery theory.
3. Comparison $\widetilde{\text { Diff }}_{\partial}(M) / \operatorname{Diff}_{\partial}(M)$ with diffeomorphisms analysed by pseudoisotopy theory (and hence K-theory), but only valid in the "pseudoisotopy stable range". [Igusa '84]: this is at least $\min \left(\frac{d-7}{2}, \frac{d-4}{3}\right) \sim \frac{d}{3}$. [RW '17]: it is at most $d-2$.

Theorem. [Farrell-Hsiang '78]

$$
\pi_{*}\left(\text { BDiff }_{\partial}\left(D^{d}\right)\right) \otimes \mathbb{Q}= \begin{cases}0 & d \text { even } \\ \mathbb{Q}[4] \oplus \mathbb{Q}[8] \oplus \mathbb{Q}[12] \oplus \cdots & d \text { odd }\end{cases}
$$

in the pseudoisotopy stable range for d (so certainly for $* \lesssim \frac{d}{3}$).

The theorems of Watanabe

Theorem. [Watanabe '09]
For $2 n+1 \geq 5$ and $r \geq 2$ there is a surjection

$$
\pi_{(2 r)(2 n)}\left(\text { BDiff }_{\partial}\left(D^{2 n+1}\right)\right) \otimes \mathbb{Q} \rightarrow \mathcal{A}_{r}^{\text {odd }}
$$

The theorems of Watanabe

Theorem. [Watanabe '09]
For $2 n+1 \geq 5$ and $r \geq 2$ there is a surjection

$$
\pi_{(2 r)(2 n)}\left(\text { BDiff }_{\partial}\left(D^{2 n+1}\right)\right) \otimes \mathbb{Q} \rightarrow \mathcal{A}_{r}^{\text {odd }}
$$

where

The theorems of Watanabe

Theorem. [Watanabe '09]
For $2 n+1 \geq 5$ and $r \geq 2$ there is a surjection

$$
\pi_{(2 r)(2 n)}\left(\text { BDiff }_{\partial}\left(D^{2 n+1}\right)\right) \otimes \mathbb{Q} \rightarrow \mathcal{A}_{r}^{\text {odd }}
$$

where

has $\operatorname{dim}\left(\mathcal{A}_{r}^{\text {odd }}\right)=1,1,1,2,2,3,4,5,6,8,9, \ldots$

The theorems of Watanabe

Theorem. [Watanabe '09]
For $2 n+1 \geq 5$ and $r \geq 2$ there is a surjection

$$
\pi_{(2 r)(2 n)}\left(\text { BDiff }_{\partial}\left(D^{2 n+1}\right)\right) \otimes \mathbb{Q} \rightarrow \mathcal{A}_{r}^{\text {odd }}
$$

where

has $\operatorname{dim}\left(\mathcal{A}_{r}^{\text {odd }}\right)=1,1,1,2,2,3,4,5,6,8,9, \ldots$
Theorem. [Watanabe '18]
There is a surjection

$$
\pi_{r}\left(\text { BDiff }_{\partial}\left(D^{4}\right)\right) \otimes \mathbb{Q} \rightarrow \mathcal{A}_{r}^{\text {even }}
$$

The theorems of Watanabe

Theorem. [Watanabe '09]
For $2 n+1 \geq 5$ and $r \geq 2$ there is a surjection

$$
\pi_{(2 r)(2 n)}\left(\text { BDiff }_{\partial}\left(D^{2 n+1}\right)\right) \otimes \mathbb{Q} \rightarrow \mathcal{A}_{r}^{\text {odd }}
$$

where

has $\operatorname{dim}\left(\mathcal{A}_{r}^{\text {odd }}\right)=1,1,1,2,2,3,4,5,6,8,9, \ldots$
Theorem. [Watanabe '18]
There is a surjection

$$
\pi_{r}\left(\text { BDiff }_{\partial}\left(D^{4}\right)\right) \otimes \mathbb{Q} \rightarrow \mathcal{A}_{r}^{\text {even }}
$$

where $\operatorname{dim}\left(\mathcal{A}_{r}^{\text {even }}\right)=0,1,0,0,1,0,0,0,1, \ldots\left(\operatorname{so} \pi_{2}\left(\operatorname{BDiff}_{\partial}\left(D^{4}\right)\right) \neq 0\right)$

The theorem of Weiss

Closely related to the classical story is the fact that the stable map

$$
O=\underset{d \rightarrow \infty}{\operatorname{colim}} O(d) \longrightarrow \text { Top }=\underset{d \rightarrow \infty}{\operatorname{colim}} \operatorname{Top}(d)
$$

is a \mathbb{Q}-equivalence, and hence

$$
H^{*}(\text { BTop } ; \mathbb{Q}) \cong H^{*}(B O ; \mathbb{Q})=\mathbb{Q}\left[p_{1}, p_{2}, p_{3}, \ldots\right] .
$$

The theorem of Weiss

Closely related to the classical story is the fact that the stable map

$$
O=\underset{d \rightarrow \infty}{\operatorname{colim}} O(d) \longrightarrow \text { Top }=\underset{d \rightarrow \infty}{\operatorname{colim}} \operatorname{Top}(d)
$$

is a \mathbb{Q}-equivalence, and hence

$$
H^{*}(\text { BTop } ; \mathbb{Q}) \cong H^{*}(B O ; \mathbb{Q})=\mathbb{Q}\left[p_{1}, p_{2}, p_{3}, \ldots\right] .
$$

In $H^{*}(B O(2 n) ; \mathbb{Q})$ the usual definition of Pontrjagin classes shows

$$
\begin{equation*}
p_{n}=e^{2} \text { and } p_{n+i}=0 \text { for all } i>0 \tag{!}
\end{equation*}
$$

The theorem of Weiss

Closely related to the classical story is the fact that the stable map

$$
O=\underset{d \rightarrow \infty}{\operatorname{colim}} O(d) \longrightarrow \text { Top }=\underset{d \rightarrow \infty}{\operatorname{colim}} \operatorname{Top}(d)
$$

is a \mathbb{Q}-equivalence, and hence

$$
H^{*}(\text { BTop } ; \mathbb{Q}) \cong H^{*}(B O ; \mathbb{Q})=\mathbb{Q}\left[p_{1}, p_{2}, p_{3}, \ldots\right] .
$$

In $H^{*}(B O(2 n) ; \mathbb{Q})$ the usual definition of Pontrjagin classes shows

$$
\begin{equation*}
p_{n}=e^{2} \text { and } p_{n+i}=0 \text { for all } i>0 \tag{!}
\end{equation*}
$$

Theorem. [Weiss '15]
For many n and $i \geq 0$ there are classes $w_{n, i} \in \pi_{4(n+i)}(B T o p(2 n))$ which pair nontrivially with p_{n+i} (i.e. (!) does not hold on $\operatorname{BTop}(2 n)$). $\Rightarrow \pi_{2 n-1+4 i}\left(\right.$ BDiff $\left._{\partial}\left(D^{2 n}\right)\right) \otimes \mathbb{Q} \neq 0$ for such n and i.

A pattern

A pattern

Inspired by Weiss' argument, Alexander Kupers and I have begun a programme to determine

$$
\pi_{*}\left(\text { BDiff }_{\partial}\left(D^{2 n}\right)\right) \otimes \mathbb{Q}
$$

as completely as possible. The first installment is:
A. Kupers, O. R-W, On diffeomorphisms of even-dimensional discs (arXiv:2007.13884)

A pattern

Inspired by Weiss' argument, Alexander Kupers and I have begun a programme to determine

$$
\pi_{*}\left(\operatorname{BDiff}_{\partial}\left(D^{2 n}\right)\right) \otimes \mathbb{Q}
$$

as completely as possible. The first installment is:
A. Kupers, O. R-W, On diffeomorphisms of even-dimensional discs (arXiv:2007.13884)

Here we

1. fully determine these groups in degrees $* \leq 4 n-10$,

A pattern

Inspired by Weiss' argument, Alexander Kupers and I have begun a programme to determine

$$
\pi_{*}\left(\operatorname{BDiff}_{\partial}\left(D^{2 n}\right)\right) \otimes \mathbb{Q}
$$

as completely as possible. The first installment is:
A. Kupers, O. R-W, On diffeomorphisms of even-dimensional discs (arXiv:2007.13884)

Here we

1. fully determine these groups in degrees $* \leq 4 n-10$,
2. determine them in higher degrees outside of certain "bands",

A pattern

Inspired by Weiss' argument, Alexander Kupers and I have begun a programme to determine

$$
\pi_{*}\left(\operatorname{BDiff}_{\partial}\left(D^{2 n}\right)\right) \otimes \mathbb{Q}
$$

as completely as possible. The first installment is:
A. Kupers, O. R-W, On diffeomorphisms of even-dimensional discs (arXiv:2007.13884)

Here we

1. fully determine these groups in degrees $* \leq 4 n-10$,
2. determine them in higher degrees outside of certain "bands",
3. understand something about the structure of these bands.

A pattern

Theorem. [Kupers-R-W]
Let $2 n \geq 6$.
(i) If $d<2 n-1$ then $\pi_{d}\left(\operatorname{BDiff}_{\partial}\left(D^{2 n}\right)\right) \otimes \mathbb{Q}$ vanishes, and
(ii) if $d \geq 2 n-1$ then $\pi_{d}\left(\right.$ BDiff $\left._{\partial}\left(D^{2 n}\right)\right) \otimes \mathbb{Q}$ is

$$
\begin{cases}\mathbb{Q} & \text { if } d \equiv 2 n-1 \bmod 4 \text { and } d \notin \bigcup_{r \geq 2}[2 r(n-2)-1,2 r n-1], \\ 0 & \text { if } d \not \equiv 2 n-1 \bmod 4 \text { and } d \notin \bigcup_{r \geq 2}[2 r(n-2)-1,2 r n-1], \\ ? & \text { otherwise. }\end{cases}
$$

A pattern

Using the fibre sequence $\frac{\operatorname{Top}(2 n)}{O(2 n)} \rightarrow \frac{\text { Top }}{O(2 n)} \rightarrow \frac{\text { Top }}{\operatorname{Top}(2 n)}$ we have the Reformulation (slightly stronger).
For $2 n \geq 6$ the groups $\pi_{*}\left(\Omega_{0}^{2 n+1}\left(\frac{\text { Top }}{\operatorname{Top}(2 n)}\right)\right) \otimes \mathbb{Q}$ are supported in degrees

$$
* \in \bigcup[2 r(n-2)-1,2 r n-2] .
$$

A pattern

Using the fibre sequence $\frac{\operatorname{Top}(2 n)}{O(2 n)} \rightarrow \frac{\text { Top }}{O(2 n)} \rightarrow \frac{\text { Top }}{\operatorname{Top}(2 n)}$ we have the Reformulation (slightly stronger).
For $2 n \geq 6$ the groups $\pi_{*}\left(\Omega_{0}^{2 n+1}\left(\frac{\text { Top }}{\operatorname{Top}(2 n)}\right)\right) \otimes \mathbb{Q}$ are supported in degrees

$$
* \in \bigcup[2 r(n-2)-1,2 r n-2] .
$$

Reflecting $D^{2 n}$ or $\mathbb{R}^{2 n}$ induces compatible involutions on

$$
\Omega_{0}^{2 n+1} \frac{\text { Top }}{\text { Top }(2 n)} \longrightarrow \text { BDiff }_{\partial}\left(D^{2 n}\right) \simeq \Omega_{0}^{2 n} \frac{\text { Top }(2 n)}{O(2 n)} \longrightarrow \Omega_{0}^{2 n} \frac{\text { Top }}{O(2 n)} .
$$

A pattern

Using the fibre sequence $\frac{\operatorname{Top}(2 n)}{O(2 n)} \rightarrow \frac{\text { Top }}{O(2 n)} \rightarrow \frac{\text { Top }}{\operatorname{Top}(2 n)}$ we have the Reformulation (slightly stronger).
For $2 n \geq 6$ the groups $\pi_{*}\left(\Omega_{0}^{2 n+1}\left(\frac{\text { Top }}{\operatorname{Top}(2 n)}\right)\right) \otimes \mathbb{Q}$ are supported in degrees

$$
* \in \bigcup_{r \geq 2}[2 r(n-2)-1,2 r n-2] .
$$

Reflecting $D^{2 n}$ or $\mathbb{R}^{2 n}$ induces compatible involutions on

$$
\Omega_{0}^{2 n+1} \frac{\text { Top }}{\operatorname{Top}(2 n)} \longrightarrow \text { BDiff }_{\partial}\left(D^{2 n}\right) \simeq \Omega_{0}^{2 n} \frac{\operatorname{Top}(2 n)}{O(2 n)} \longrightarrow \Omega_{0}^{2 n} \frac{\text { Top }}{O(2 n)} .
$$

We show this acts as -1 on

$$
\pi_{*}\left(\Omega_{0}^{2 n} \frac{T o p}{O(2 n)}\right) \otimes \mathbb{Q}=\mathbb{Q}[2 n-1] \oplus \mathbb{Q}[2 n+3] \oplus \mathbb{Q}[2 n+7] \oplus \cdots
$$

and acts on $\pi_{*}\left(\Omega_{0}^{2 n+1}\left(\frac{\text { Top }}{\operatorname{Top}(2 n)}\right)\right) \otimes \mathbb{Q}$ as $(-1)^{r}$ in the r th band.

A pattern

Using the fibre sequence $\frac{\operatorname{Top}(2 n)}{O(2 n)} \rightarrow \frac{\text { Top }}{O(2 n)} \rightarrow \frac{\text { Top }}{\operatorname{Top}(2 n)}$ we have the Reformulation (slightly stronger).
For $2 n \geq 6$ the groups $\pi_{*}\left(\Omega_{0}^{2 n+1}\left(\frac{\text { Top }}{\operatorname{Top}(2 n)}\right)\right) \otimes \mathbb{Q}$ are supported in degrees

$$
* \in \bigcup_{r \geq 2}[2 r(n-2)-1,2 r n-2] .
$$

Reflecting $D^{2 n}$ or $\mathbb{R}^{2 n}$ induces compatible involutions on

$$
\Omega_{0}^{2 n+1} \frac{\text { Top }}{\operatorname{Top}(2 n)} \longrightarrow \text { BDiff }_{\partial}\left(D^{2 n}\right) \simeq \Omega_{0}^{2 n} \frac{\operatorname{Top}(2 n)}{O(2 n)} \longrightarrow \Omega_{0}^{2 n} \frac{\text { Top }}{O(2 n)} .
$$

We show this acts as -1 on

$$
\pi_{*}\left(\Omega_{0}^{2 n} \frac{T o p}{O(2 n)}\right) \otimes \mathbb{Q}=\mathbb{Q}[2 n-1] \oplus \mathbb{Q}[2 n+3] \oplus \mathbb{Q}[2 n+7] \oplus \cdots
$$

and acts on $\pi_{*}\left(\Omega_{0}^{2 n+1}\left(\frac{\text { Top }}{\text { Top }(2 n)}\right)\right) \otimes \mathbb{Q}$ as $(-1)^{r}$ in the r th band.
The orange/blue colours in the chart are the $+1 /-1$ eigenspaces.

The first uncertainty

We also determine to some extent what happens in the first band shown in the chart:

The first uncertainty

We also determine to some extent what happens in the first band shown in the chart: the groups $\pi_{*}\left(\Omega^{2 n+1}\left(\frac{\text { Top }}{\operatorname{Top}(2 n)}\right)\right) \otimes \mathbb{Q}$ in degrees [$4 n-9,4 n-4$] are calculated by a chain complex of the form

$$
\mathbb{Q}^{2} \longleftarrow \mathbb{Q}^{4} \longleftarrow \mathbb{Q}^{10} \longleftarrow \mathbb{Q}^{21} \longleftarrow \mathbb{Q}^{15} \longleftrightarrow \mathbb{Q}^{3}
$$

The first uncertainty

We also determine to some extent what happens in the first band shown in the chart: the groups $\pi_{*}\left(\Omega^{2 n+1}\left(\frac{\text { Top }}{\operatorname{Top}(2 n)}\right)\right) \otimes \mathbb{Q}$ in degrees [$4 n-9,4 n-4$] are calculated by a chain complex of the form

$$
\mathbb{Q}^{2} \longleftarrow \mathbb{Q}^{4} \longleftarrow \mathbb{Q}^{10} \longleftarrow \mathbb{Q}^{21} \longleftarrow \mathbb{Q}^{15} \longleftarrow \mathbb{Q}^{3}
$$

We don't know the differentials, but it has Euler characteristic 1 so must have some homology.
It lies in the +1 -eigenspace, so injects into $\pi_{*}\left(\right.$ BDiff $\left._{\partial}\left(D^{2 n}\right)\right) \otimes \mathbb{Q}$.

The first uncertainty

We also determine to some extent what happens in the first band shown in the chart: the groups $\pi_{*}\left(\Omega^{2 n+1}\left(\frac{\text { Top }}{\operatorname{Top}(2 n)}\right)\right) \otimes \mathbb{Q}$ in degrees [$4 n-9,4 n-4$] are calculated by a chain complex of the form

$$
\mathbb{Q}^{2} \longleftarrow \mathbb{Q}^{4} \longleftarrow \mathbb{Q}^{10} \longleftarrow \mathbb{Q}^{21} \longleftarrow \mathbb{Q}^{15} \longleftarrow \mathbb{Q}^{3}
$$

We don't know the differentials, but it has Euler characteristic 1 so must have some homology.
It lies in the +1 -eigenspace, so injects into $\pi_{*}\left(\right.$ BDiff $\left._{\partial}\left(D^{2 n}\right)\right) \otimes \mathbb{Q}$.
By analogy with Watanabe's theorem for D^{4} one expects

$$
\operatorname{dim} \pi_{4 n-6}\left(\text { BDiff }_{\partial}\left(D^{2 n}\right)\right) \otimes \mathbb{Q} \geq 1
$$

which is compatible with the above.

Details of the proof

Philosophy

Many results in this flavour of geometric topology are relative: they describe the difference between

1. topological/smooth manifolds (smoothing)
2. homotopy equivalences/block diffeomorphisms (surgery)
3. block diffeomorphisms/diffeomorphisms (pseudoisotopy)

Philosophy

Many results in this flavour of geometric topology are relative: they describe the difference between

1. topological/smooth manifolds (smoothing)
2. homotopy equivalences/block diffeomorphisms (surgery)
3. block diffeomorphisms/diffeomorphisms (pseudoisotopy) Weiss has suggested a new kind of relativisation: for M with $\partial M=S^{d-1}$ and $\frac{1}{2} \partial M:=D^{d-1} \subset S^{d-1}$ he showed that

$$
\frac{\operatorname{Diff}_{\partial}(M)}{\operatorname{Diff}_{\partial}\left(D^{d}\right)} \simeq E m b_{1 / 2 \partial}^{\simeq}(M)
$$

the space of self-embeddings of M relative to half its boundary, which are isotopic to diffeomorphisms.

Philosophy

\Rightarrow Weiss fibre sequence

$$
\operatorname{BDiff}_{\partial}\left(D^{d}\right) \longrightarrow \operatorname{BDiff}_{\partial}(M) \longrightarrow \operatorname{BEmb}_{1 / 2 \partial}^{\simeq}(M)
$$

Such a self-embedding space can often be analysed using the theory of embedding calculus.

Philosophy

\Rightarrow Weiss fibre sequence

$$
\operatorname{BDiff}_{\partial}\left(D^{d}\right) \longrightarrow \operatorname{BDiff}_{\partial}(M) \longrightarrow \operatorname{BEmb}_{1 / 2 \partial}^{\simeq}(M)
$$

Such a self-embedding space can often be analysed using the theory of embedding calculus.

Strategy: find a manifold M for which one can understand $B E m b_{1 / 2 \lambda}^{\cong}(M)$ and $B \operatorname{Diff}_{\partial}(M)$, then deduce things about $B \operatorname{Diff}_{\partial}\left(D^{d}\right)$.

Philosophy

\Rightarrow Weiss fibre sequence

$$
\operatorname{BDiff}_{\partial}\left(D^{d}\right) \longrightarrow \operatorname{BDiff}_{\partial}(M) \longrightarrow \operatorname{BEmb}_{1 / 2 \partial}^{\simeq}(M)
$$

Such a self-embedding space can often be analysed using the theory of embedding calculus.

Strategy: find a manifold M for which one can understand $B E m b_{1 / 2 \lambda}^{\simeq}(M)$ and $B \operatorname{Diff}_{\partial}(M)$, then deduce things about $B D_{i f f}^{\partial}\left(D^{d}\right)$. A good choice is

$$
W_{g, 1}:=D^{2 n} \# g\left(S^{n} \times S^{n}\right)
$$

especially for "arbitrarily large" g.

Philosophy

\Rightarrow Weiss fibre sequence

$$
\operatorname{BDiff}_{\partial}\left(D^{d}\right) \longrightarrow \operatorname{BDiff}_{\partial}(M) \longrightarrow \operatorname{BEmb}_{1 / 2 \partial}^{\simeq}(M)
$$

Such a self-embedding space can often be analysed using the theory of embedding calculus.

Strategy: find a manifold M for which one can understand $B E m b_{1 / 2 \partial}^{\cong}(M)$ and $B \operatorname{Diff}_{\partial}(M)$, then deduce things about $B \operatorname{Diff}_{\partial}\left(D^{d}\right)$. A good choice is

$$
W_{g, 1}:=D^{2 n} \# g\left(S^{n} \times S^{n}\right)
$$

especially for "arbitrarily large" g.

Theorem. [Madsen-Weiss '07 $2 n=2$, Galatius-R-W ' $142 n \geq 4$]

$$
\lim _{g \rightarrow \infty} H^{*}\left(\operatorname{BDiff}_{\partial}\left(W_{g, 1}\right) ; \mathbb{Q}\right)=\mathbb{Q}\left[\kappa_{c} \mid c \in \mathcal{B}\right]
$$

Here \mathcal{B} is the set of monomials in $e, p_{n-1}, p_{n-2}, \ldots, p_{\left\lceil\frac{n+1}{4}\right\rceil}$.

Diffeomorphism groups

Embedding calculus (which will be discussed by A. Kupers in the next talk) will only allow us to access $\pi_{*}\left(B E m b_{1 / 2 \lambda}^{\cong}\left(W_{g, 1}\right)\right) \otimes \mathbb{Q}$, so to pursue the strategy requires $\pi_{*}\left(\right.$ BDiff $\left._{\partial}\left(W_{g, 1}\right)\right) \otimes \mathbb{Q}$ instead of $H^{*}\left(\right.$ BDiff $\left._{\partial}\left(W_{g, 1}\right) ; \mathbb{Q}\right)$.

Diffeomorphism groups

Embedding calculus (which will be discussed by A. Kupers in the next talk) will only allow us to access $\pi_{*}\left(B E m b_{1 / 2 \lambda}^{\simeq}\left(W_{g, 1}\right)\right) \otimes \mathbb{Q}$, so to pursue the strategy requires $\pi_{*}\left(\right.$ BDiff $\left._{\partial}\left(W_{g, 1}\right)\right) \otimes \mathbb{Q}$ instead of $H^{*}\left(\right.$ BDiff $\left._{\partial}\left(W_{g, 1}\right) ; \mathbb{Q}\right)$.
Theorem. [Kreck '79]
For $n \geq 3$ there are extensions

$$
\begin{gathered}
\mathrm{O} \longrightarrow I_{g} \longrightarrow \pi_{1}\left(\text { BDiff }_{\partial}\left(W_{g, 1}\right)\right) \longrightarrow \begin{cases}O_{g, g}(\mathbb{Z}) & n \text { even } \\
S p_{2 g}(\mathbb{Z}) & n=3,7 \\
S p_{2 g}^{q}(\mathbb{Z}) & n \text { odd not } 3,7\end{cases} \\
\mathrm{O} \longrightarrow \Theta_{2 n+1} \longrightarrow I_{g} \longrightarrow \operatorname{Hom}\left(H_{n}\left(W_{g, 1} ; \mathbb{Z}\right), S \pi_{n} S O(n)\right) \longrightarrow 0 .
\end{gathered}
$$

Diffeomorphism groups

Embedding calculus (which will be discussed by A. Kupers in the next talk) will only allow us to access $\pi_{*}\left(B E m b_{1 / 2 \lambda}^{\cong}\left(W_{g, 1}\right)\right) \otimes \mathbb{Q}$, so to pursue the strategy requires $\pi_{*}\left(\right.$ BDiff $\left._{\partial}\left(W_{g, 1}\right)\right) \otimes \mathbb{Q}$ instead of $H^{*}\left(\right.$ BDiff $\left._{\partial}\left(W_{g, 1}\right) ; \mathbb{Q}\right)$.
Theorem. [Kreck '79]
For $n \geq 3$ there are extensions

$$
\begin{gathered}
\mathrm{O} \longrightarrow I_{g} \longrightarrow \pi_{1}\left(\text { BDiff }_{\partial}\left(W_{g, 1}\right)\right) \longrightarrow \begin{cases}O_{g, g}(\mathbb{Z}) & n \text { even } \\
S p_{2 g}(\mathbb{Z}) & n=3,7 \\
S p_{2 g}^{q}(\mathbb{Z}) & n \text { odd not } 3,7\end{cases} \\
\mathrm{O} \longrightarrow \Theta_{2 n+1} \longrightarrow I_{g} \longrightarrow \operatorname{Hom}\left(H_{n}\left(W_{g, 1} ; \mathbb{Z}\right), S \pi_{n} S O(n)\right) \longrightarrow 0 .
\end{gathered}
$$

$\Rightarrow \pi_{1}\left(\right.$ BDiff $\left._{\partial}\left(W_{g, 1}\right)\right)$ wildly complicated group, not nilpotent: cannot expect to determine the rational homotopy of $\operatorname{BDiff}_{\partial}\left(W_{g, 1}\right)$ from its rational cohomology.

Torelli groups

Can pass to the (infinite index) Torelli subgroup

$$
\operatorname{Tor}_{\partial}\left(W_{g, 1}\right):=\operatorname{ker}\left(\operatorname{Diff} \partial\left(W_{g, 1}\right) \rightarrow G_{g}^{\prime}:=\left\{\begin{array}{ll}
O_{g, g}(\mathbb{Z}) & n \text { even } \\
S p_{2 g}(\mathbb{Z}) & n=3,7 \\
S p_{2 g}^{q}(\mathbb{Z}) & n \text { odd not } 3,7
\end{array}\right)\right.
$$

to eliminate the arithmetic group, but this changes the cohomology.

Torelli groups

Can pass to the (infinite index) Torelli subgroup

$$
\operatorname{Tor}_{\partial}\left(W_{g, 1}\right):=\operatorname{ker}\left(\operatorname{Diff} f_{\partial}\left(W_{g, 1}\right) \rightarrow G_{g}^{\prime}:=\left\{\begin{array}{ll}
O_{g, g}(\mathbb{Z}) & n \text { even } \\
S_{2 g}(\mathbb{Z}) & n=3,7 \\
{S p_{2 g}^{q}(\mathbb{Z})} & n \text { odd not 3,7 }
\end{array}\right)\right.
$$

to eliminate the arithmetic group, but this changes the cohomology.
In A. Kupers, O. R-W, The cohomology of Torelli groups is algebraic Forum of Mathematics, Sigma, to appear
(i) $\mathrm{BTor}_{\partial}\left(W_{g, 1}\right)$ is nilpotent,
(ii) G_{g}^{\prime}-representations $H^{i}\left(B \operatorname{Tor}_{\partial}\left(W_{g, 1}\right)\right.$; $\left.\mathbb{Q}\right)$ are algebraic, i.e. extend to representations of the ambient algebraic groups $\mathbf{0}_{g, g}$ or $\mathbf{S p}_{2 g}$.

Torelli groups

Can pass to the (infinite index) Torelli subgroup

$$
\operatorname{Tor}_{\partial}\left(W_{g, 1}\right):=\operatorname{ker}\left(\operatorname{Diff}\left(W_{g, 1}\right) \rightarrow G_{g}^{\prime}:=\left\{\begin{array}{ll}
O_{g, g}(\mathbb{Z}) & n \text { even } \\
S p_{2 g}(\mathbb{Z}) & n=3,7 \\
S p_{2 g}^{q}(\mathbb{Z}) & n \text { odd not } 3,7
\end{array}\right)\right.
$$

to eliminate the arithmetic group, but this changes the cohomology.
In A. Kupers, O. R-W, The cohomology of Torelli groups is algebraic Forum of Mathematics, Sigma, to appear
(i) $B T_{o r}^{\partial}\left(W_{g, 1}\right)$ is nilpotent,
(ii) G_{g}^{\prime}-representations $H^{i}\left(B \operatorname{Tor}_{\partial}\left(W_{g, 1}\right) ; \mathbb{Q}\right)$ are algebraic, i.e. extend to representations of the ambient algebraic groups $\mathbf{0}_{g, g}$ or $\mathbf{S p}_{2 g}$.
This is done using the Torelli version of the Weiss fibre sequence

$$
\mathrm{BDiff}_{\partial}\left(D^{2 n}\right) \longrightarrow \text { BTor }_{\partial}\left(W_{g, 1}\right) \longrightarrow \text { BTorEmb }_{1 / 2 \partial}^{\cong}\left(W_{g, 1}\right)
$$

and embedding calculus to qualitatively understand the third term; the first contributes only trivial G_{g}^{\prime}-representations.

(Twisted) Miller-Morita-Mumford classes

The space $B \operatorname{Tor}_{\partial}\left(W_{g, 1}\right)$ carries a smooth bundle

$$
W_{g} \xrightarrow{i} E \xrightarrow{\pi} \text { BTor }_{\partial}\left(W_{g, 1}\right)
$$

$\left(W_{g}=\#^{9} S^{n} \times S^{n}\right)$ with a trivial sub- $D^{2 n}$-bundle and a trivialisation of the local system $\mathcal{H}^{n}\left(W_{g} ; \mathbb{Z}\right)$.

(Twisted) Miller-Morita-Mumford classes

The space $B \operatorname{Tor}_{\partial}\left(W_{g, 1}\right)$ carries a smooth bundle

$$
W_{g} \xrightarrow{i} E \xrightarrow{\pi} \text { BTor }_{\partial}\left(W_{g, 1}\right)
$$

$\left(W_{g}=\#^{g} S^{n} \times S^{n}\right)$ with a trivial sub- $D^{2 n}$-bundle and a trivialisation of the local system $\mathcal{H}^{n}\left(W_{g} ; \mathbb{Z}\right)$.
It has a section s given by $o \in D^{2 n}$, so a split exact sequence

$$
\mathrm{O} \longrightarrow H^{n}\left(B \operatorname{Tor}_{\partial}\left(W_{g, 1}\right) ; \mathbb{Q}\right) \xrightarrow{\pi^{*}} H^{n}(E ; \mathbb{Q}) \xrightarrow{i^{*}} H^{n}\left(W_{g} ; \mathbb{Q}\right) \longrightarrow 0
$$

with splitting $\iota: H^{n}\left(W_{g} ; \mathbb{Q}\right) \rightarrow H^{n}(E ; \mathbb{Q})$.

(Twisted) Miller-Morita-Mumford classes

The space $B \operatorname{Tor}_{\partial}\left(W_{g, 1}\right)$ carries a smooth bundle

$$
W_{g} \xrightarrow{i} E \xrightarrow{\pi} \text { BTor }_{\partial}\left(W_{g, 1}\right)
$$

$\left(W_{g}=\#^{g} S^{n} \times S^{n}\right)$ with a trivial sub- $D^{2 n}$-bundle and a trivialisation of the local system $\mathcal{H}^{n}\left(W_{g} ; \mathbb{Z}\right)$.
It has a section s given by $o \in D^{2 n}$, so a split exact sequence

$$
\mathrm{O} \longrightarrow H^{n}\left(B \operatorname{Tor}_{\partial}\left(W_{g, 1}\right) ; \mathbb{Q}\right) \xrightarrow{\pi^{*}} H^{n}(E ; \mathbb{Q}) \xrightarrow{i^{*}} H^{n}\left(W_{g} ; \mathbb{Q}\right) \longrightarrow 0
$$

with splitting $\iota: H^{n}\left(W_{g} ; \mathbb{Q}\right) \rightarrow H^{n}(E ; \mathbb{Q})$.
Have vertical tangent bundle $T_{\pi} E \rightarrow E$, so for any $c \in H^{*}(B S O(2 n) ; \mathbb{Q})$ and $v_{1}, \ldots, v_{r} \in H^{n}\left(W_{g} ; \mathbb{Q}\right)$ we can form
$\kappa_{c}\left(v_{1}, \ldots, v_{r}\right):=\int_{\pi} c\left(T_{\pi} E\right) \cdot \iota\left(v_{1}\right) \cdots \iota\left(v_{r}\right) \in H^{|c|+n(r-2)}\left(\right.$ BTor $\left._{\partial}\left(W_{g, 1}\right) ; \mathbb{Q}\right)$.

(Twisted) Miller-Morita-Mumford classes

The space $B \operatorname{Tor}_{\partial}\left(W_{g, 1}\right)$ carries a smooth bundle

$$
W_{g} \xrightarrow{i} E \xrightarrow{\pi} \text { BTor }_{\partial}\left(W_{g, 1}\right)
$$

$\left(W_{g}=\#^{g} S^{n} \times S^{n}\right)$ with a trivial sub- $D^{2 n}$-bundle and a trivialisation of the local system $\mathcal{H}^{n}\left(W_{g} ; \mathbb{Z}\right)$.
It has a section s given by $o \in D^{2 n}$, so a split exact sequence

$$
\mathrm{O} \longrightarrow H^{n}\left(B \operatorname{Tor}_{\partial}\left(W_{g, 1}\right) ; \mathbb{Q}\right) \xrightarrow{\pi^{*}} H^{n}(E ; \mathbb{Q}) \xrightarrow{i^{*}} H^{n}\left(W_{g} ; \mathbb{Q}\right) \longrightarrow 0
$$

with splitting $\iota: H^{n}\left(W_{g} ; \mathbb{Q}\right) \rightarrow H^{n}(E ; \mathbb{Q})$.
Have vertical tangent bundle $T_{\pi} E \rightarrow E$, so for any $c \in H^{*}(B S O(2 n) ; \mathbb{Q})$ and $v_{1}, \ldots, v_{r} \in H^{n}\left(W_{g} ; \mathbb{Q}\right)$ we can form
$\kappa_{c}\left(v_{1}, \ldots, v_{r}\right):=\int_{\pi} c\left(T_{\pi} E\right) \cdot \iota\left(v_{1}\right) \cdots \iota\left(v_{r}\right) \in H^{|c|+n(r-2)}\left(\right.$ BTor $\left._{\partial}\left(W_{g, 1}\right) ; \mathbb{Q}\right)$.
Under the G_{g}^{\prime}-action these transform via $G_{g}^{\prime} \circlearrowright H^{n}\left(W_{g} ; \mathbb{Q}\right)$.
For $r=0$ these are the usual Miller-Morita-Mumford classes.

Relations among Twisted Miller-Morita-Mumford classes

$$
\kappa_{c}\left(v_{1}, \ldots, v_{r}\right):=\int_{\pi} c\left(T_{\pi} E\right) \cdot \iota\left(v_{1}\right) \cdots \iota\left(v_{r}\right)
$$

Let $\left\{a_{i}\right\}$ be a basis of $H^{n}\left(W_{g} ; \mathbb{Q}\right)$, and $\left\{a_{i}^{\#}\right\}$ be the Poincaré dual basis characterised by $\int_{w_{g}} a_{i}^{\#} \cdot a_{j}=\delta_{i j}$. It is easy to show that:

Relations among Twisted Miller-Morita-Mumford classes

$$
\kappa_{c}\left(v_{1}, \ldots, v_{r}\right):=\int_{\pi} c\left(T_{\pi} E\right) \cdot \iota\left(v_{1}\right) \cdots \iota\left(v_{r}\right)
$$

Let $\left\{a_{i}\right\}$ be a basis of $H^{n}\left(W_{g} ; \mathbb{Q}\right)$, and $\left\{a_{i}^{\#}\right\}$ be the Poincaré dual basis characterised by $\int_{W_{g}} a_{i}^{\#} \cdot a_{j}=\delta_{i j}$. It is easy to show that:
(i) $\left(c, v_{1}, \ldots, v_{r}\right) \rightarrow \kappa_{c}\left(v_{1}, \ldots, v_{r}\right)$ is linear in c and each v_{i},

Relations among Twisted Miller-Morita-Mumford classes

$$
\kappa_{c}\left(v_{1}, \ldots, v_{r}\right):=\int_{\pi} c\left(T_{\pi} E\right) \cdot \iota\left(v_{1}\right) \cdots \iota\left(v_{r}\right)
$$

Let $\left\{a_{i}\right\}$ be a basis of $H^{n}\left(W_{g} ; \mathbb{Q}\right)$, and $\left\{a_{i}^{\#}\right\}$ be the Poincaré dual basis characterised by $\int_{W_{g}} a_{i}^{\#} \cdot a_{j}=\delta_{i j}$. It is easy to show that:
(i) $\left(c, v_{1}, \ldots, v_{r}\right) \rightarrow \kappa_{c}\left(v_{1}, \ldots, v_{r}\right)$ is linear in c and each v_{i},
(ii) $\kappa_{c}\left(v_{\sigma(1)}, \ldots, v_{\sigma(r)}\right)=\operatorname{sign}(\sigma)^{n} \cdot \kappa_{c}\left(v_{1}, \ldots, v_{r}\right)$,

Relations among Twisted Miller-Morita-Mumford classes

$$
\kappa_{c}\left(v_{1}, \ldots, v_{r}\right):=\int_{\pi} c\left(T_{\pi} E\right) \cdot \iota\left(v_{1}\right) \cdots \iota\left(v_{r}\right)
$$

Let $\left\{a_{i}\right\}$ be a basis of $H^{n}\left(W_{g} ; \mathbb{Q}\right)$, and $\left\{a_{i}^{\#}\right\}$ be the Poincaré dual basis characterised by $\int_{w_{g}} a_{i}^{\#} \cdot a_{j}=\delta_{i j}$. It is easy to show that:
(i) $\left(c, v_{1}, \ldots, v_{r}\right) \rightarrow k_{c}\left(v_{1}, \ldots, v_{r}\right)$ is linear in c and each v_{i},
(ii) $\kappa_{c}\left(v_{\sigma(1)}, \ldots, v_{\sigma(r)}\right)=\operatorname{sign}(\sigma)^{n} \cdot \kappa_{c}\left(v_{1}, \ldots, v_{r}\right)$,
(iii) $\sum_{i} \kappa_{c}\left(v_{1}, \ldots, v_{j}, a_{i}\right) \cdot \kappa_{c^{\prime}}\left(a_{i}^{\#}, v_{j+1}, \ldots, v_{r}\right)=\kappa_{c \cdot c^{\prime}}\left(v_{1}, \ldots, v_{r}\right)$,

Relations among Twisted Miller-Morita-Mumford classes

$$
\kappa_{c}\left(v_{1}, \ldots, v_{r}\right):=\int_{\pi} c\left(T_{\pi} E\right) \cdot \iota\left(v_{1}\right) \cdots \iota\left(v_{r}\right)
$$

Let $\left\{a_{i}\right\}$ be a basis of $H^{n}\left(W_{g} ; \mathbb{Q}\right)$, and $\left\{a_{i}^{\#}\right\}$ be the Poincaré dual basis characterised by $\int_{w_{g}} a_{i}^{\#} \cdot a_{j}=\delta_{i j}$. It is easy to show that:
(i) $\left(c, v_{1}, \ldots, v_{r}\right) \rightarrow k_{c}\left(v_{1}, \ldots, v_{r}\right)$ is linear in c and each v_{i},
(ii) $\kappa_{c}\left(v_{\sigma(1)}, \ldots, v_{\sigma(r)}\right)=\operatorname{sign}(\sigma)^{n} \cdot \kappa_{c}\left(v_{1}, \ldots, v_{r}\right)$,
(iii) $\sum_{i} \kappa_{c}\left(v_{1}, \ldots, v_{j}, a_{i}\right) \cdot \kappa_{c^{\prime}}\left(a_{i}^{\#}, v_{j+1}, \ldots, v_{r}\right)=\kappa_{c \cdot \cdot^{\prime}}\left(v_{1}, \ldots, v_{r}\right)$,
(iv) $\sum_{i} \kappa_{c}\left(v_{1}, \ldots, v_{r}, a_{i}, a_{i}^{\#}\right)=\kappa_{e \cdot c}\left(v_{1}, \ldots, v_{r}\right)$,

Relations among Twisted Miller-Morita-Mumford classes

$$
\kappa_{c}\left(v_{1}, \ldots, v_{r}\right):=\int_{\pi} c\left(T_{\pi} E\right) \cdot \iota\left(v_{1}\right) \cdots \iota\left(v_{r}\right)
$$

Let $\left\{a_{i}\right\}$ be a basis of $H^{n}\left(W_{g} ; \mathbb{Q}\right)$, and $\left\{a_{i}^{\#}\right\}$ be the Poincaré dual basis characterised by $\int_{w_{g}} a_{i}^{\#} \cdot a_{j}=\delta_{i j}$. It is easy to show that:
(i) $\left(c, v_{1}, \ldots, v_{r}\right) \rightarrow k_{c}\left(v_{1}, \ldots, v_{r}\right)$ is linear in c and each v_{i},
(ii) $\kappa_{c}\left(v_{\sigma(1)}, \ldots, v_{\sigma(r)}\right)=\operatorname{sign}(\sigma)^{n} \cdot \kappa_{c}\left(v_{1}, \ldots, v_{r}\right)$,
(iii) $\sum_{i} \kappa_{c}\left(v_{1}, \ldots, v_{j}, a_{i}\right) \cdot \kappa_{c^{\prime}}\left(a_{i}^{\#}, v_{j+1}, \ldots, v_{r}\right)=\kappa_{c \cdot \cdot^{\prime}}\left(v_{1}, \ldots, v_{r}\right)$,
(iv) $\sum_{i} \kappa_{c}\left(v_{1}, \ldots, v_{r}, a_{i}, a_{i}^{\#}\right)=\kappa_{e \cdot c}\left(v_{1}, \ldots, v_{r}\right)$,
(v) $\kappa_{\mathcal{L}_{i}}=0$.

Relations among Twisted Miller-Morita-Mumford classes

$$
\kappa_{c}\left(v_{1}, \ldots, v_{r}\right):=\int_{\pi} c\left(T_{\pi} E\right) \cdot \iota\left(v_{1}\right) \cdots \iota\left(v_{r}\right)
$$

Let $\left\{a_{i}\right\}$ be a basis of $H^{n}\left(W_{g} ; \mathbb{Q}\right)$, and $\left\{a_{i}^{\#}\right\}$ be the Poincaré dual basis characterised by $\int_{W_{g}} a_{i}^{\#} \cdot a_{j}=\delta_{i j}$. It is easy to show that:
(i) $\left(c, v_{1}, \ldots, v_{r}\right) \rightarrow \kappa_{c}\left(v_{1}, \ldots, v_{r}\right)$ is linear in c and each v_{i},
(ii) $\kappa_{c}\left(v_{\sigma(1)}, \ldots, v_{\sigma(r)}\right)=\operatorname{sign}(\sigma)^{n} \cdot \kappa_{c}\left(v_{1}, \ldots, v_{r}\right)$,
(iii) $\sum_{i} \kappa_{c}\left(v_{1}, \ldots, v_{j}, a_{i}\right) \cdot \kappa_{c^{\prime}}\left(a_{i}^{\#}, v_{j+1}, \ldots, v_{r}\right)=\kappa_{c \cdot c^{\prime}}\left(v_{1}, \ldots, v_{r}\right)$,
(iv) $\sum_{i} \kappa_{c}\left(v_{1}, \ldots, v_{r}, a_{i}, a_{i}^{\#}\right)=\kappa_{e \cdot c}\left(v_{1}, \ldots, v_{r}\right)$,
(v) $\kappa_{\mathcal{L}_{i}}=0$.

Cohomology of Torelli groups

In A. Kupers, O. R-W, On the cohomology of Torelli groups Forum of Mathematics, Pi, 8 (2020)
(combined with the algebraicity theorem) we show
Theorem. [Kupers-R-W '20]
If $2 n \geq 6$ then the G_{g}^{\prime}-equivariant ring homomorphism

$$
\frac{\Lambda_{\mathbb{Q}}^{*}\left[\kappa_{c}\left(v_{1}, \ldots, v_{r}\right)| | c \mid+n(r-2)>0\right]}{(\text { the relations }(\mathrm{i})-(\mathrm{v}))} \longrightarrow H^{*}\left(\text { BTor }_{\partial}\left(W_{g, 1}\right) ; \mathbb{Q}\right)
$$

is an isomorphism in a stable range.

Cohomology of Torelli groups

In A. Kupers, O. R-W, On the cohomology of Torelli groups Forum of Mathematics, Pi, 8 (2020)
(combined with the algebraicity theorem) we show
Theorem. [Kupers-R-W '20]
If $2 n \geq 6$ then the G_{g}^{\prime}-equivariant ring homomorphism

$$
\frac{\Lambda_{\mathbb{Q}}^{*}\left[\kappa_{c}\left(v_{1}, \ldots, v_{r}\right)| | c \mid+n(r-2)>0\right]}{(\text { the relations }(\mathrm{i})-(\mathrm{v}))} \longrightarrow H^{*}\left(\text { BTor }_{\partial}\left(W_{g, 1}\right) ; \mathbb{Q}\right)
$$

is an isomorphism in a stable range.
Remark. This is not an efficient presentation! It can be simplified.

Cohomology of Torelli groups

In A. Kupers, O. R-W, On the cohomology of Torelli groups Forum of Mathematics, Pi, 8 (2020)
(combined with the algebraicity theorem) we show
Theorem. [Kupers-R-W '20]
If $2 n \geq 6$ then the G_{g}^{\prime}-equivariant ring homomorphism

$$
\frac{\Lambda_{\mathbb{Q}}^{*}\left[\kappa_{c}\left(v_{1}, \ldots, v_{r}\right)| | c \mid+n(r-2)>0\right]}{(\text { the relations }(\mathrm{i})-(\mathrm{v}))} \longrightarrow H^{*}\left(\text { BTor }_{\partial}\left(\mathrm{W}_{g, 1}\right) ; \mathbb{Q}\right)
$$

is an isomorphism in a stable range.
Remark. This is not an efficient presentation! It can be simplified.
Strategy: Every irreducible representation of $\mathbf{G}_{g} \in\left\{\mathbf{O}_{g, g}, \mathbf{S p}_{2 g}\right\}$ is a summand of $H^{n}\left(W_{g} ; \mathbb{Q}\right)^{\otimes k}$ for some k, so a map φ of algebraic \mathbf{G}_{g}-representations is an isomorphism $\Leftrightarrow\left[\varphi \otimes H^{n}\left(W_{g} ; \mathbb{Q}\right)^{\otimes k}\right]^{\mathbf{G}_{g}}$ is for all k.
\Rightarrow Evaluate $\left[-\otimes H^{n}\left(W_{g} ; \mathbb{Q}\right)^{\otimes k}\right]^{\mathbf{G}_{g}}$ of both sides.

An idea of the proof I

Consider Serre spectral sequence with $\mathcal{H}^{n}\left(W_{g} ; \mathbb{Q}\right)^{\otimes k}$-coefficients for

$$
\text { BTor }_{\partial}\left(W_{g, 1}\right) \longrightarrow \text { BDiff }_{\partial}\left(W_{g, 1}\right) \longrightarrow \text { BG }_{g}^{\prime} .
$$

An idea of the proof I

Consider Serre spectral sequence with $\mathcal{H}^{n}\left(W_{g} ; \mathbb{Q}\right)^{\otimes k}$-coefficients for

$$
\operatorname{BTor}_{\partial}\left(W_{g, 1}\right) \longrightarrow \text { BDiff }_{\partial}\left(W_{g, 1}\right) \longrightarrow B G_{g}^{\prime} .
$$

Using work of Borel on stable cohomology of arithmetic groups, it the form

$$
\begin{aligned}
E_{2}^{p, q}=H^{p}\left(\mathbf{G}_{\infty} ; \mathbb{Q}\right) \otimes & {\left[H^{q}\left(\text { BTor }_{\partial}\left(W_{g, 1}\right) ; \mathbb{Q}\right) \otimes H^{n}\left(W_{g} ; \mathbb{Q}\right)^{\otimes k}\right]^{\mathbf{G}_{g}} } \\
& \Rightarrow H^{p+q}\left(\text { BDiff }_{\partial}\left(W_{g, 1}\right) ; \mathcal{H}^{n}\left(W_{g} ; \mathbb{Q}\right)^{\otimes k}\right)
\end{aligned}
$$

in a stable range.

An idea of the proof I

Consider Serre spectral sequence with $\mathcal{H}^{n}\left(W_{g} ; \mathbb{Q}\right)^{\otimes k}$-coefficients for

$$
\operatorname{BTor}_{\partial}\left(W_{g, 1}\right) \longrightarrow \text { Biff }_{\partial}\left(W_{g, 1}\right) \longrightarrow B G_{g}^{\prime} .
$$

Using work of Borel on stable cohomology of arithmetic groups, it the form

$$
\begin{aligned}
E_{2}^{p, q}=H^{p}\left(\mathbf{G}_{\infty} ; \mathbb{Q}\right) \otimes\left[H^{q}(\right. & \text { BTor } \left.\left._{\partial}\left(W_{g, 1}\right) ; \mathbb{Q}\right) \otimes H^{n}\left(W_{g} ; \mathbb{Q}\right)^{\otimes k}\right]^{\mathbf{G}_{g}} \\
\Rightarrow & H^{p+q}\left(\text { BDiff }_{\partial}\left(W_{g, 1}\right) ; \mathcal{H}^{n}\left(W_{g} ; \mathbb{Q}\right)^{\otimes k}\right)
\end{aligned}
$$

in a stable range.
Borel has calculated $H^{*}\left(\mathbf{G}_{\infty} ; \mathbb{Q}\right)$, and the work of Galatius-R-W can be used to calculate $H^{*}\left(B \operatorname{Diff}_{\partial}\left(W_{g, 1}\right) ; \mathcal{H}^{n}\left(W_{g} ; \mathbb{Q}\right)^{\otimes k}\right)$ in a stable range.

An idea of the proof I

Consider Serre spectral sequence with $\mathcal{H}^{n}\left(W_{g} ; \mathbb{Q}\right)^{\otimes k}$-coefficients for

$$
\operatorname{BTor}_{\partial}\left(W_{g, 1}\right) \longrightarrow \text { Biff }_{\partial}\left(W_{g, 1}\right) \longrightarrow B G_{g}^{\prime} .
$$

Using work of Borel on stable cohomology of arithmetic groups, it the form

$$
\begin{aligned}
E_{2}^{p, q}=H^{p}\left(\mathbf{G}_{\infty} ; \mathbb{Q}\right) \otimes\left[H^{q}(\right. & \text { BTor } \left.\left._{\partial}\left(W_{g, 1}\right) ; \mathbb{Q}\right) \otimes H^{n}\left(W_{g} ; \mathbb{Q}\right)^{\otimes k}\right]^{\mathbf{G}_{g}} \\
\Rightarrow & H^{p+q}\left(\text { BDiff }_{\partial}\left(W_{g, 1}\right) ; \mathcal{H}^{n}\left(W_{g} ; \mathbb{Q}\right)^{\otimes k}\right)
\end{aligned}
$$

in a stable range.
Borel has calculated $H^{*}\left(\mathbf{G}_{\infty} ; \mathbb{Q}\right)$, and the work of Galatius-R-W can be used to calculate $H^{*}\left(\operatorname{BDiff}_{\partial}\left(W_{g, 1}\right) ; \mathcal{H}^{n}\left(W_{g} ; \mathbb{Q}\right)^{\otimes k}\right)$ in a stable range.
\Rightarrow collapse and determines $\left[H^{*}\left(B \operatorname{Tor}_{\partial}\left(W_{g, 1}\right) ; \mathbb{Q}\right) \otimes H^{n}\left(W_{g} ; \mathbb{Q}\right)^{\otimes k}\right]^{\mathbf{G}_{g}}$ to be given by partitions of $\{1,2, \ldots, k\}$ with parts labelled by \mathcal{B} (with some constraints on degrees of labels).

An idea of the proof II

Classical invariant theory shows that

$$
\left[H^{n}\left(W_{g} ; \mathbb{Q}\right)^{\otimes r}\right]^{\mathbf{G}_{g}} \cong\{(\text { signed }) \text { matchings of }\{1,2, \ldots, r\}\}
$$

for $g \gg r$; the bijection is implemented by inserting the invariant vector $\omega:=\sum_{i} a_{i} \otimes a_{i}^{\#} \in H^{n}\left(W_{g} ; \mathbb{Q}\right)^{\otimes 2}$.

An idea of the proof II

Classical invariant theory shows that

$$
\left[H^{n}\left(W_{g} ; \mathbb{Q}\right)^{\otimes r}\right]^{\mathbf{G}_{g}} \cong\{(\text { signed }) \text { matchings of }\{1,2, \ldots, r\}\}
$$

for $g \gg r$; the bijection is implemented by inserting the invariant vector $\omega:=\sum_{i} a_{i} \otimes a_{i}^{\#} \in H^{n}\left(W_{g} ; \mathbb{Q}\right)^{\otimes 2}$.

$$
\Rightarrow\left[\frac{\Lambda_{\mathbb{Q}}^{*}\left[\kappa_{c}\left(v_{1}, \ldots, v_{r}\right)| | c \mid+n(r-2)>0\right]}{\text { (the relations }(\mathrm{i})-(\mathrm{v}))} \otimes H^{n}\left(W_{g} ; \mathbb{Q}\right)^{\otimes R}\right]^{\mathbf{G}_{g}}=
$$

the graded vector space of graphs with legs $\{1,2, \ldots, k\}$, vertices labelled by $c \in \mathcal{B}$, and certain signs I shall ignore, modulo

An idea of the proof II

Classical invariant theory shows that

$$
\left[H^{n}\left(W_{g} ; \mathbb{Q}\right)^{\otimes r}\right]^{\mathbf{G}_{g}} \cong\{(\text { signed }) \text { matchings of }\{1,2, \ldots, r\}\}
$$

for $g \gg r$; the bijection is implemented by inserting the invariant vector $\omega:=\sum_{i} a_{i} \otimes a_{i}^{\#} \in H^{n}\left(W_{g} ; \mathbb{Q}\right)^{\otimes 2}$.

$$
\Rightarrow\left[\frac{\Lambda_{\mathbb{Q}}^{*}\left[\kappa_{c}\left(v_{1}, \ldots, v_{r}\right)| | c \mid+n(r-2)>0\right]}{(\text { the relations }(\mathrm{i})-(\mathrm{v}))} \otimes H^{\mathrm{n}}\left(W_{g} ; \mathbb{Q}\right)^{\otimes k}\right]^{\mathbf{G}_{g}}=
$$

the graded vector space of graphs with legs $\{1,2, \ldots, k\}$, vertices labelled by $c \in \mathcal{B}$, and certain signs I shall ignore, modulo

Using these relations to contract all internal edges, this is the same as partitions of $\{1,2, \ldots, k\}$ with parts labelled by \mathcal{B} (with some constraints).

Returning to the disc

To prove our results about $B_{\text {Diff }}^{\partial}\left(D^{2 n}\right)$ we in fact work with the framed analogue of the Weiss fibre sequence

$$
B \operatorname{Diff}_{\partial}^{f r}\left(D^{2 n}\right) \longrightarrow \operatorname{BDiff}_{\partial}^{f r}\left(W_{g, 1}\right) \longrightarrow B E m b_{1 / 2 \partial}^{\cong, f r}\left(W_{g, 1}\right) .
$$

Returning to the disc

To prove our results about $B_{\text {Diff }}^{\partial}\left(D^{2 n}\right)$ we in fact work with the framed analogue of the Weiss fibre sequence

$$
B \operatorname{Diff}_{\partial}^{f r}\left(D^{2 n}\right) \longrightarrow \operatorname{BDiffl}_{\partial}^{f r}\left(W_{g, 1}\right) \longrightarrow B E m b_{1 / 2 \partial}^{\cong, f r}\left(W_{g, 1}\right) .
$$

The story is more complicated in the framed case. Have a fibration

$$
X_{1}(g) \longrightarrow B \operatorname{Tor}_{\partial}^{f r}\left(W_{g, 1}\right) \longrightarrow X_{0}
$$

with $H^{*}\left(X_{0} ; \mathbb{Q}\right)=\Lambda_{\mathbb{Q}}\left[\bar{\sigma}_{4 j-2 n-1} \mid j>n / 2\right]$.

Returning to the disc

To prove our results about $B D_{i f f}^{\partial}\left(D^{2 n}\right)$ we in fact work with the framed analogue of the Weiss fibre sequence

$$
B D_{i f f}^{\partial r}\left(D^{2 n}\right) \longrightarrow B \text { Diff }_{\partial}^{f r}\left(W_{g, 1}\right) \longrightarrow B E m b_{1 / 2 \partial}^{\cong, f r}\left(W_{g, 1}\right) .
$$

The story is more complicated in the framed case. Have a fibration

$$
X_{1}(g) \longrightarrow B \operatorname{Tor}_{\partial}^{f r}\left(W_{g, 1}\right) \longrightarrow X_{0}
$$

with $H^{*}\left(X_{0} ; \mathbb{Q}\right)=\Lambda_{\mathbb{Q}}\left[\bar{\sigma}_{4 j-2 n-1} \mid j>n / 2\right]$.
We show that in a stable range $H^{*}\left(X_{1}(g) ; \mathbb{Q}\right)$ is generated by classes

$$
\kappa\left(v_{1}, v_{2}, v_{3}\right) \in H^{n}\left(X_{1}(g) ; \mathbb{Q}\right) \quad v_{i} \in H^{n}\left(W_{g, 1} ; \mathbb{Q}\right)
$$

subject only to the relations
(i) linearity in each v_{i},
(ii) $\kappa\left(v_{\sigma(1)}, v_{\sigma(2)}, v_{\sigma(3)}\right)=\operatorname{sign}(\sigma)^{n} \cdot \kappa\left(v_{1}, v_{2}, v_{3}\right)$,
(iii) $\sum_{i} \kappa\left(v_{1}, v_{2}, a_{i}\right) \cdot \kappa\left(a_{i}^{\#}, v_{5}, v_{6}\right)=\sum_{i} \kappa\left(v_{1}, v_{5}, a_{i}\right) \cdot \kappa\left(a_{i}^{\#}, v_{6}, v_{2}\right)$,
(iv) $\sum_{i} \kappa\left(v_{1}, a_{i}, a_{i}^{\#}\right)=0$ for any v_{1}.

Returning to the disc

To prove our results about $B D_{i f f}^{\partial}\left(D^{2 n}\right)$ we in fact work with the framed analogue of the Weiss fibre sequence

$$
B \operatorname{Diff}_{\partial}^{f r}\left(D^{2 n}\right) \longrightarrow \text { DDiff }_{\partial}^{f r}\left(W_{g, 1}\right) \longrightarrow B E m b_{1 / 2 \partial}^{\cong, f r}\left(W_{g, 1}\right) .
$$

The story is more complicated in the framed case. Have a fibration

$$
X_{1}(g) \longrightarrow B \operatorname{Tor}_{\partial}^{f r}\left(W_{g, 1}\right) \longrightarrow X_{0}
$$

with $H^{*}\left(X_{0} ; \mathbb{Q}\right)=\Lambda_{\mathbb{Q}}\left[\bar{\sigma}_{4 j-2 n-1} \mid j>n / 2\right]$.
We show that in a stable range $H^{*}\left(X_{1}(g) ; \mathbb{Q}\right)$ is generated by classes

$$
\kappa\left(v_{1}, v_{2}, v_{3}\right) \in H^{n}\left(X_{1}(g) ; \mathbb{Q}\right) \quad v_{i} \in H^{n}\left(W_{g, 1} ; \mathbb{Q}\right)
$$

subject only to the relations
(i) linearity in each v_{i},
(ii) $\kappa\left(v_{\sigma(1)}, v_{\sigma(2)}, v_{\sigma(3)}\right)=\operatorname{sign}(\sigma)^{n} \cdot \kappa\left(v_{1}, v_{2}, v_{3}\right)$,
(iii) $\sum_{i} \kappa\left(v_{1}, v_{2}, a_{i}\right) \cdot \kappa\left(a_{i}^{\#}, v_{5}, v_{6}\right)=\sum_{i} \kappa\left(v_{1}, v_{5}, a_{i}\right) \cdot \kappa\left(a_{i}^{\#}, v_{6}, v_{2}\right)$,
(iv) $\sum_{i} \kappa\left(v_{1}, a_{i}, a_{i}^{\#}\right)=0$ for any v_{1}.

Cohomology supported in degrees which are multiples of n.

Returning to the disc

The unstable Adams spectral sequence then shows
$\pi_{*}\left(B \operatorname{Tor}_{\partial}^{f r}\left(W_{g, 1}\right)\right) \otimes \mathbb{Q}=\left(\bigoplus_{j>n / 2} \mathbb{Q}[4 j-2 n-1]\right)$ " \oplus " $\binom{$ something supported in }{$\left.* \in \cup_{r \geq 0} r(n-1)+1, r n-2\right]}$

Returning to the disc

The unstable Adams spectral sequence then shows
$\pi_{*}\left(B \operatorname{Tor}_{\partial}^{f r}\left(W_{g, 1}\right)\right) \otimes \mathbb{Q}=\left(\bigoplus_{j>n / 2} \mathbb{Q}[4 j-2 n-1]\right)$ " $\oplus "\binom{$ something supported in }{$\left.* \in \bigcup_{r \geq 0} \geq r(n-1)+1, r n-2\right]}$
In the Torelli version of the framed Weiss fibre sequence

$$
\operatorname{BDiff}_{\partial}^{f r}\left(D^{2 n}\right) \longrightarrow B \operatorname{Tor}_{\partial}^{f r}\left(W_{g, 1}\right) \longrightarrow B T o r E m b_{1 / 2 \partial}^{\cong} \cong \text {,fr }\left(W_{g, 1}\right)
$$

the first part, coming from X_{0}, provides the Weiss classes, and the second part, coming from $X_{1}(g)$, provides the lightly-shaded unknown region in the chart.

Returning to the disc

The unstable Adams spectral sequence then shows
$\pi_{*}\left(B \operatorname{Tor}_{\partial}^{f r}\left(W_{g, 1}\right)\right) \otimes \mathbb{Q}=\left(\bigoplus_{j>n / 2} \mathbb{Q}[4 j-2 n-1]\right)$ " $\oplus "\binom{$ something supported in }{$\left.* \in \bigcup_{r \geq 0} r(n-1)+1, r n-2\right]}$
In the Torelli version of the framed Weiss fibre sequence

$$
\operatorname{BDiff}_{\partial}^{f r}\left(D^{2 n}\right) \longrightarrow \text { BTor }_{\partial}^{f r}\left(W_{g, 1}\right) \longrightarrow B T o r E m b_{1 / 2 \lambda}^{\cong} \cong \text {,fr }\left(W_{g, 1}\right)
$$

the first part, coming from X_{0}, provides the Weiss classes, and the second part, coming from $X_{1}(g)$, provides the lightly-shaded unknown region in the chart.

In the next talk Alexander Kupers will explain the darkly-shaded unknown region, coming from analysing $\pi_{*}\left(B E m b_{1 / 2 \lambda}^{\cong, f r}\left(W_{g, 1}\right)\right) \otimes \mathbb{Q}$ via embedding calculus.

Questions?

