Diffeomorphisms of discs

Oscar Randal-Williams

University of Cambridge
 Estatis srentivy int Europeen Commission

LEVERHULME TRUST

Goal

$$
\begin{aligned}
\operatorname{Diff}_{\partial}\left(D^{d}\right) & =\left\{f: D^{d} \rightarrow D^{d} \left\lvert\, \begin{array}{r}
f \text { is a diffeomorphism which agrees } \\
\text { with the identity near } \partial D^{d}
\end{array}\right.\right\} \\
& \cong\left\{f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d} \mid f=\operatorname{Id}_{\mathbb{R}^{d}} \text { outside a compact set }\right\}
\end{aligned}
$$

Considered as a topological group: C^{∞}-topology.

Goal

$$
\begin{aligned}
\operatorname{Diff}_{\partial}\left(D^{d}\right) & =\left\{f: D^{d} \rightarrow D^{d} \left\lvert\, \begin{array}{r}
f \text { is a diffeomorphism which agrees } \\
\text { with the identity near } \partial D^{d}
\end{array}\right.\right\} \\
& \cong\left\{f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d} \mid f=\operatorname{Id}_{\mathbb{R}^{d}} \text { outside a compact set }\right\}
\end{aligned}
$$

Considered as a topological group: C^{∞}-topology.

$$
\operatorname{Diff}\left(S^{d}\right) \simeq O(d+1) \times \operatorname{Diff}_{\partial}\left(D^{d}\right)
$$

$\Rightarrow \operatorname{Diff}_{\partial}\left(D^{d}\right)$ measures how the full group of smooth symmetries of the d-sphere differs from the obvious linear symmetries.

Goal

$$
\begin{aligned}
\operatorname{Diff}_{\partial}\left(D^{d}\right) & =\left\{f: D^{d} \rightarrow D^{d} \left\lvert\, \begin{array}{r}
f \text { is a diffeomorphism which agrees } \\
\text { with the identity near } \partial D^{d}
\end{array}\right.\right\} \\
& \cong\left\{f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d} \mid f=\operatorname{Id}_{\mathbb{R}^{d}} \text { outside a compact set }\right\}
\end{aligned}
$$

Considered as a topological group: C^{∞}-topology.

$$
\operatorname{Diff}\left(S^{d}\right) \simeq O(d+1) \times \operatorname{Diff}_{\partial}\left(D^{d}\right)
$$

$\Rightarrow \operatorname{Diff}_{\partial}\left(D^{d}\right)$ measures how the full group of smooth symmetries of the d-sphere differs from the obvious linear symmetries.

$$
\begin{aligned}
& \operatorname{Diff}_{\partial}\left(D^{1}\right) \simeq * \\
& \operatorname{Diff}_{\partial}\left(D^{2}\right) \simeq * \quad[\text { Smale '59] } \\
& \operatorname{Diff}_{\partial}\left(D^{3}\right) \simeq * \quad[\text { Hatcher '83, Bamler-Kleiner '19] }
\end{aligned}
$$

Goal

$$
\begin{aligned}
\operatorname{Diff}_{\partial}\left(D^{d}\right) & =\left\{f: D^{d} \rightarrow D^{d} \left\lvert\, \begin{array}{r}
f \text { is a diffeomorphism which agrees } \\
\text { with the identity near } \partial D^{d}
\end{array}\right.\right\} \\
& \cong\left\{f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d} \mid f=\operatorname{Id}_{\mathbb{R}^{d}} \text { outside a compact set }\right\}
\end{aligned}
$$

Considered as a topological group: C^{∞}-topology.

$$
\operatorname{Diff}\left(S^{d}\right) \simeq O(d+1) \times \operatorname{Diff}_{\partial}\left(D^{d}\right)
$$

$\Rightarrow \operatorname{Diff}_{\partial}\left(D^{d}\right)$ measures how the full group of smooth symmetries of the d-sphere differs from the obvious linear symmetries.

$$
\begin{aligned}
& \operatorname{Diff}_{\partial}\left(D^{1}\right) \simeq * \\
& \operatorname{Diff}_{\partial}\left(D^{2}\right) \simeq * \quad[\text { Smale '59] } \\
& \operatorname{Diff}_{\partial}\left(D^{3}\right) \simeq * \quad[\text { Hatcher '83, Bamler-Kleiner '19] }
\end{aligned}
$$

These days we know that $\operatorname{Diff} \partial\left(D^{d}\right) \not 千 *$ for all $d \geq 4$.

Goal

$$
\begin{aligned}
\operatorname{Diff}_{\partial}\left(D^{d}\right) & =\left\{f: D^{d} \rightarrow D^{d} \left\lvert\, \begin{array}{r}
f \text { is a diffeomorphism which agrees } \\
\text { with the identity near } \partial D^{d}
\end{array}\right.\right\} \\
& \cong\left\{f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d} \mid f=\operatorname{Id}_{\mathbb{R}^{d}} \text { outside a compact set }\right\}
\end{aligned}
$$

Considered as a topological group: C^{∞}-topology.

$$
\operatorname{Diff}\left(S^{d}\right) \simeq O(d+1) \times \operatorname{Diff}_{\partial}\left(D^{d}\right)
$$

$\Rightarrow \operatorname{Diff}_{\partial}\left(D^{d}\right)$ measures how the full group of smooth symmetries of the d-sphere differs from the obvious linear symmetries.

$$
\begin{aligned}
& \operatorname{Diff}_{\partial}\left(D^{1}\right) \simeq * \\
& \operatorname{Diff}_{\partial}\left(D^{2}\right) \simeq * \quad[\text { Smale '59] } \\
& \operatorname{Diff}_{\partial}\left(D^{3}\right) \simeq * \quad[\text { Hatcher '83, Bamler-Kleiner '19] }
\end{aligned}
$$

These days we know that $\operatorname{Diff}_{\partial}\left(D^{d}\right) \not 千 *$ for all $d \geq 4$.
What is it then?

Goal

I want to explain recent progress towards understanding the rational homotopy type of the classifying space

$$
\operatorname{BDiff}_{\partial}\left(D^{d}\right) \simeq\left\{\begin{array}{c}
\text { Riemannian metrics on } D^{d} \\
\text { which are standard near } \partial D^{d}
\end{array}\right\} / \operatorname{Diff}_{\partial}\left(D^{d}\right)
$$

This encodes the homotopy type of $\operatorname{Diff}_{\partial}\left(D^{d}\right)$ as a group, rather than just as a space.

Goal

I want to explain recent progress towards understanding the rational homotopy type of the classifying space

$$
\operatorname{BDiff}_{\partial}\left(D^{d}\right) \simeq\left\{\begin{array}{c}
\text { Riemannian metrics on } D^{d} \\
\text { which are standard near } \partial D^{d}
\end{array}\right\} / \operatorname{Diff}_{\partial}\left(D^{d}\right)
$$

This encodes the homotopy type of $\operatorname{Diff}_{\partial}\left(D^{d}\right)$ as a group, rather than just as a space.

Everything new I will say represents collaborations with
Manuel Krannich and with Alexander Kupers

Four short stories

Homeomorphisms of \mathbb{R}^{d}

Smoothing theory says that for $d \neq 4$ we have

$$
\frac{\operatorname{Homeo}_{\partial}\left(D^{d}\right)}{\operatorname{Diff}_{\partial}\left(D^{d}\right)} \simeq \Omega_{0}^{d}\left(\frac{\operatorname{Homeo}\left(\mathbb{R}^{d}\right)}{\operatorname{Diff}\left(\mathbb{R}^{d}\right)}\right)
$$

Homeomorphisms of \mathbb{R}^{d}

Smoothing theory says that for $d \neq 4$ we have

$$
\frac{\operatorname{Homeo}_{\partial}\left(D^{d}\right)}{\operatorname{Diff}_{\partial}\left(D^{d}\right)} \simeq \Omega_{0}^{d}\left(\frac{\operatorname{Homeo}\left(\mathbb{R}^{d}\right)}{\operatorname{Diff}\left(\mathbb{R}^{d}\right)}\right)
$$

Linearising

$f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ a diffeomorphism, consider

$$
f_{t}(x)=\frac{f(t \cdot x)-f(0)}{t}+t \cdot f(0)
$$

$$
\text { for } t \in[0,1] \text {. }
$$

$$
\Rightarrow \operatorname{Diff}\left(\mathbb{R}^{d}\right) \simeq G L_{d}(\mathbb{R}) \simeq O(d)
$$

Homeomorphisms of \mathbb{R}^{d}

Smoothing theory says that for $d \neq 4$ we have

$$
\frac{\operatorname{Homeo}_{\partial}\left(D^{d}\right)}{\operatorname{Diff}_{\partial}\left(D^{d}\right)} \simeq \Omega_{0}^{d}\left(\frac{\operatorname{Homeo}\left(\mathbb{R}^{d}\right)}{\operatorname{Diff}\left(\mathbb{R}^{d}\right)}\right)
$$

Linearising

$f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ a diffeomorphism, consider
$f_{t}(x)=\frac{f(t \cdot x)-f(0)}{t}+t \cdot f(0)$
for $t \in[0,1]$.
$\Rightarrow \operatorname{Diff}\left(\mathbb{R}^{d}\right) \simeq G L_{d}(\mathbb{R}) \simeq O(d)$

Crushing

$f: D^{d} \rightarrow D^{d}$ a homeomorphism fixing ∂D^{d}, consider

$$
f_{t}(x)= \begin{cases}x & |x| \geq t \\ t \cdot f(x / t) & |x| \leq t\end{cases}
$$

$$
\begin{aligned}
& \text { for } t \in[0,1] . \\
& \quad \Rightarrow \operatorname{Homeo}_{\partial}\left(D^{d}\right) \simeq *
\end{aligned}
$$

Homeomorphisms of \mathbb{R}^{d}

Smoothing theory says that for $d \neq 4$ we have

$$
\frac{\operatorname{Homeo}_{\partial}\left(D^{d}\right)}{\operatorname{Diff}_{\partial}\left(D^{d}\right)} \simeq \Omega_{0}^{d}\left(\frac{\operatorname{Homeo}\left(\mathbb{R}^{d}\right)}{\operatorname{Diff}\left(\mathbb{R}^{d}\right)}\right)
$$

Linearising

$f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ a diffeomorphism, consider

$$
f_{t}(x)=\frac{f(t \cdot x)-f(0)}{t}+t \cdot f(0)
$$

for $t \in[0,1]$.

$$
\Rightarrow \operatorname{Diff}\left(\mathbb{R}^{d}\right) \simeq G L_{d}(\mathbb{R}) \simeq O(d)
$$

Crushing

$f: D^{d} \rightarrow D^{d}$ a homeomorphism fixing ∂D^{d}, consider

$$
f_{t}(x)= \begin{cases}x & |x| \geq t \\ t \cdot f(x / t) & |x| \leq t\end{cases}
$$

$$
\begin{aligned}
& \text { for } t \in[0,1] . \\
& \quad \Rightarrow \operatorname{Homeo}_{\partial}\left(D^{d}\right) \simeq *
\end{aligned}
$$

$$
\Rightarrow \quad \operatorname{BDiff}_{\partial}\left(D^{d}\right) \simeq \Omega_{0}^{d}\left(\frac{\text { Homeo }\left(\mathbb{R}^{d}\right)}{O(d)}\right) \text { for } d \neq 4
$$

Homeomorphisms of \mathbb{R}^{d}

Smoothing theory says that for $d \neq 4$ we have

$$
\frac{\operatorname{Homeo}_{\partial}\left(D^{d}\right)}{\operatorname{Diff}_{\partial}\left(D^{d}\right)} \simeq \Omega_{0}^{d}\left(\frac{\operatorname{Homeo}\left(\mathbb{R}^{d}\right)}{\operatorname{Diff}\left(\mathbb{R}^{d}\right)}\right)
$$

Linearising

$f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ a diffeomorphism, consider

$$
f_{t}(x)=\frac{f(t \cdot x)-f(0)}{t}+t \cdot f(0)
$$

for $t \in[0,1]$.

$$
\Rightarrow \operatorname{Diff}\left(\mathbb{R}^{d}\right) \simeq G L_{d}(\mathbb{R}) \simeq O(d)
$$

Crushing

$f: D^{d} \rightarrow D^{d}$ a homeomorphism fixing ∂D^{d}, consider

$$
f_{t}(x)= \begin{cases}x & |x| \geq t \\ t \cdot f(x / t) & |x| \leq t\end{cases}
$$

$$
\begin{aligned}
& \text { for } t \in[0,1] . \\
& \quad \Rightarrow \operatorname{Homeo}_{\partial}\left(D^{d}\right) \simeq *
\end{aligned}
$$

$$
\Rightarrow \quad \operatorname{BDiff}_{\partial}\left(D^{d}\right) \simeq \Omega_{0}^{d}\left(\frac{\text { Homeo }\left(\mathbb{R}^{d}\right)}{O(d)}\right) \text { for } d \neq 4
$$

\Rightarrow understanding $\operatorname{BDiff}_{\partial}\left(D^{d}\right) \sim$ understanding Homeo($\left.\mathbb{R}^{d}\right)$

Surgery and pseudoisotopy: Farrell and Hsiang

Classical strategy to study $\operatorname{Diff}_{\partial}(M)$:
homotopy theory + surgery theory + pseudoistopy theory

Surgery and pseudoisotopy: Farrell and Hsiang

Classical strategy to study $\operatorname{Diff}_{\partial}(M)$:
homotopy theory + surgery theory + pseudoistopy theory
Only valid in the "pseudoisotopy stable range":
this is at least degrees $* \lesssim \frac{\operatorname{dim}(M)}{3} \quad$ [Igusa '84]

Surgery and pseudoisotopy: Farrell and Hsiang

Classical strategy to study $\operatorname{Diff}_{\partial}(M)$:
homotopy theory + surgery theory + pseudoistopy theory
Only valid in the "pseudoisotopy stable range":
this is at least degrees $* \lesssim \frac{\operatorname{dim}(M)}{3} \quad$ [Igusa '84]
Theorem. [Farrell-Hsiang '78]

$$
\pi_{*}\left(\operatorname{BDiff}_{\partial}\left(D^{d}\right)\right)_{\mathbb{Q}}= \begin{cases}0 & d \text { even } \\ \mathbb{Q}[4] \oplus \mathbb{Q}[8] \oplus \mathbb{Q}[12] \oplus \cdots & d \text { odd }\end{cases}
$$

in the pseudoisotopy stable range (so certainly for $* \lesssim \frac{d}{3}$).

Surgery and pseudoisotopy: Farrell and Hsiang

Classical strategy to study $\operatorname{Diff} \partial(M)$:
homotopy theory + surgery theory + pseudoistopy theory
Only valid in the "pseudoisotopy stable range":
this is at least degrees $* \lesssim \frac{\operatorname{dim}(M)}{3} \quad$ [Igusa '84]
Theorem. [Farrell-Hsiang '78]

$$
\pi_{*}\left(\text { BDiff }_{\partial}\left(D^{d}\right)\right)_{\mathbb{Q}}= \begin{cases}0 & d \text { even } \\ \mathbb{Q}[4] \oplus \mathbb{Q}[8] \oplus \mathbb{Q}[12] \oplus \cdots & d \text { odd }\end{cases}
$$

in the pseudoisotopy stable range (so certainly for $* \lesssim \frac{d}{3}$).
Nontrivial classes come from the relation of pseudoisotopy to algebraic K-theory and Borel's ' 74 calculation

$$
K_{*}(\mathbb{Z})_{\mathbb{Q}}=\mathbb{Q}[0] \oplus \mathbb{Q}[5] \oplus \mathbb{Q}[9] \oplus \mathbb{Q}[13] \oplus \cdots
$$

Surgery and pseudoisotopy: Farrell and Hsiang

Classical strategy to study $\operatorname{Diff} \partial(M)$:
homotopy theory + surgery theory + pseudoistopy theory
Only valid in the "pseudoisotopy stable range":
this is at least degrees $* \lesssim \frac{\operatorname{dim}(M)}{3} \quad$ [Igusa '84]
Theorem. [Farrell-Hsiang '78]

$$
\pi_{*}\left(\text { BDiff }_{\partial}\left(D^{d}\right)\right)_{\mathbb{Q}}= \begin{cases}0 & d \text { even } \\ \mathbb{Q}[4] \oplus \mathbb{Q}[8] \oplus \mathbb{Q}[12] \oplus \cdots & d \text { odd }\end{cases}
$$

in the pseudoisotopy stable range (so certainly for $* \lesssim \frac{d}{3}$).
Nontrivial classes come from the relation of pseudoisotopy to algebraic K-theory and Borel's ' 74 calculation

$$
K_{*}(\mathbb{Z})_{\mathbb{Q}}=\mathbb{Q}^{+}[0] \oplus \mathbb{Q}^{-}[5] \oplus \mathbb{Q}^{-}[9] \oplus \mathbb{Q}^{-}[13] \oplus \cdots
$$

Configuration space integrals: Kontsevich, Watanabe

Kontsevich '92:
"Configuration space integrals" \rightsquigarrow classes in $H^{*}\left(B D i f f_{\partial}^{f r}\left(D^{d}\right) ; \mathbb{Q}\right)$
Organised in term of graph complexes.

Configuration space integrals: Kontsevich, Watanabe

Kontsevich '92:
"Configuration space integrals" \rightsquigarrow classes in $H^{*}\left(B\right.$ ifff $\left._{\partial}^{f r}\left(D^{d}\right) ; \mathbb{Q}\right)$
Organised in term of graph complexes.
Watanabe analysed this construction in detail in the extremal degrees corresponding to trivalent graphs.

Configuration space integrals: Kontsevich, Watanabe

Kontsevich '92:
"Configuration space integrals" \rightsquigarrow classes in $H^{*}\left(B D i f f_{\partial}^{f r}\left(D^{d}\right) ; \mathbb{Q}\right)$
Organised in term of graph complexes.
Watanabe analysed this construction in detail in the extremal degrees corresponding to trivalent graphs.

Theorem. [Watanabe '09, '18]
For d even, or d odd and $r>1$, there is a surjection

$$
\pi_{r \cdot(d-3)}\left(\text { BDiff }_{\partial}\left(D^{d}\right)\right)_{\mathbb{Q}} \longrightarrow \mathcal{A}_{r}^{(-1)^{d}}
$$

onto a certain vector space of trivalent graphs

Configuration space integrals: Kontsevich, Watanabe

Kontsevich '92:
"Configuration space integrals" \rightsquigarrow classes in $H^{*}\left(B D i f f_{\partial}^{f r}\left(D^{d}\right) ; \mathbb{Q}\right)$
Organised in term of graph complexes.
Watanabe analysed this construction in detail in the extremal degrees corresponding to trivalent graphs.
Theorem. [Watanabe '09, '18]
For d even, or d odd and $r>1$, there is a surjection

$$
\pi_{r \cdot(d-3)}\left(\text { BDiff }_{\partial}\left(D^{d}\right)\right)_{\mathbb{Q}} \longrightarrow \mathcal{A}_{r}^{(-1)^{d}}
$$

onto a certain vector space of dimension

$$
\begin{aligned}
& \operatorname{dim}\left(\mathcal{A}_{r}^{-}\right)=1,1,1,2,2,3,4,5,6,8,9, \ldots \\
& \operatorname{dim}\left(\mathcal{A}_{r}^{+}\right)=0,1,0,0,1,0,0,0,1, \ldots
\end{aligned}
$$

Configuration space integrals: Kontsevich, Watanabe

Kontsevich '92:
"Configuration space integrals" \rightsquigarrow classes in $H^{*}\left(B D i f f_{\partial}^{f r}\left(D^{d}\right) ; \mathbb{Q}\right)$
Organised in term of graph complexes.
Watanabe analysed this construction in detail in the extremal degrees corresponding to trivalent graphs.
Theorem. [Watanabe '09, '18]
For d even, or d odd and $r>1$, there is a surjection

$$
\pi_{r \cdot(d-3)}\left(\text { BDiff }_{\partial}\left(D^{d}\right)\right)_{\mathbb{Q}} \longrightarrow \mathcal{A}_{r}^{(-1)^{d}}
$$

onto a certain vector space of dimension

$$
\begin{aligned}
& \operatorname{dim}\left(\mathcal{A}_{r}^{-}\right)=1,1,1,2,2,3,4,5,6,8,9, \ldots \\
& \operatorname{dim}\left(\mathcal{A}_{r}^{+}\right)=0,1,0,0,1,0,0,0,1, \ldots
\end{aligned}
$$

$$
\Rightarrow \operatorname{BDiff}_{\partial}\left(D^{d}\right) \not 千 * \text { for all } d \geq 4 .
$$

Topological Pontrjagin classes: Weiss

Smoothing theory showed that $\operatorname{BDiff}_{\partial}\left(D^{d}\right)$ is closely related to

$$
\operatorname{Top}(d):=\operatorname{Homeo}\left(\mathbb{R}^{d}\right) .
$$

Topological Pontrjagin classes: Weiss

Smoothing theory showed that $\operatorname{BDiff}_{\partial}\left(D^{d}\right)$ is closely related to

$$
\operatorname{Top}(d):=\operatorname{Homeo}\left(\mathbb{R}^{d}\right) .
$$

Topological transversality [Kirby-Siebenmann '77]
\Rightarrow can define rational Pontrjagin classes $p_{i} \in H^{4 i}(B T o p(d) ; \mathbb{Q})$

Topological Pontrjagin classes: Weiss

Smoothing theory showed that $B_{D i f f}^{\partial}\left(D^{d}\right)$ is closely related to

$$
\operatorname{Top}(d):=\operatorname{Homeo}\left(\mathbb{R}^{d}\right) .
$$

Topological transversality [Kirby-Siebenmann '77]
\Rightarrow can define rational Pontrjagin classes $p_{i} \in H^{4 i}(B T o p(d) ; \mathbb{Q})$
In $H^{*}(B O(2 n) ; \mathbb{Q})$ the usual definition of Pontrjagin classes shows

$$
\begin{align*}
p_{n} & =e^{2} \\
p_{n+i} & =0 \text { for all } i>0
\end{align*}
$$

Topological Pontrjagin classes: Weiss

Smoothing theory showed that $B_{D i f f}^{\partial}\left(D^{d}\right)$ is closely related to

$$
\operatorname{Top}(d):=\operatorname{Homeo}\left(\mathbb{R}^{d}\right) .
$$

Topological transversality [Kirby-Siebenmann '77]
\Rightarrow can define rational Pontrjagin classes $p_{i} \in H^{4 i}(B T o p(d) ; \mathbb{Q})$
In $H^{*}(B O(2 n) ; \mathbb{Q})$ the usual definition of Pontrjagin classes shows

$$
\begin{align*}
p_{n} & =e^{2} \\
p_{n+i} & =0 \text { for all } i>0
\end{align*}
$$

Do these identities hold in $H^{*}(\operatorname{BTop}(2 n) ; \mathbb{Q})$?

Topological Pontrjagin classes: Weiss

Smoothing theory showed that $\operatorname{BDiff}_{\partial}\left(D^{d}\right)$ is closely related to

$$
\operatorname{Top}(d):=\operatorname{Homeo}\left(\mathbb{R}^{d}\right) .
$$

Topological transversality [Kirby-Siebenmann '77]
\Rightarrow can define rational Pontrjagin classes $p_{i} \in H^{4 i}(B T o p(d) ; \mathbb{Q})$
In $H^{*}(B O(2 n) ; \mathbb{Q})$ the usual definition of Pontrjagin classes shows

$$
\begin{align*}
p_{n} & =e^{2} \\
p_{n+i} & =0 \text { for all } i>0
\end{align*}
$$

Do these identities hold in $H^{*}(B T o p(2 n) ; \mathbb{Q})$?
Theorem. [Weiss '22]
For many n and $i \geq 0$ there exist

$$
w_{n, i} \in \pi_{4(n+i)}(B T o p(2 n))
$$

which pair nontrivially with $p_{n+i}(\Rightarrow(\dagger)$ false on BTop(2n)).

Topological Pontrjagin classes: Weiss

Smoothing theory showed that $\operatorname{BDiff}_{\partial}\left(D^{d}\right)$ is closely related to

$$
\operatorname{Top}(d):=\operatorname{Homeo}\left(\mathbb{R}^{d}\right) .
$$

Topological transversality [Kirby-Siebenmann '77]
\Rightarrow can define rational Pontrjagin classes $p_{i} \in H^{4 i}(B T o p(d) ; \mathbb{Q})$
In $H^{*}(B O(2 n) ; \mathbb{Q})$ the usual definition of Pontrjagin classes shows

$$
\begin{align*}
p_{n} & =e^{2} \\
p_{n+i} & =0 \text { for all } i>0
\end{align*}
$$

Do these identities hold in $H^{*}(\operatorname{BTop}(2 n) ; \mathbb{Q})$?
Theorem. [Weiss '22]
For many n and $i \geq 0$ there exist

$$
w_{n, i} \in \pi_{4(n+i)}(B T o p(2 n))
$$

which pair nontrivially with $p_{n+i}(\Rightarrow(\dagger)$ false on $\operatorname{BTop}(2 n))$.

$$
\Rightarrow \pi_{2 n-1+4 i}\left(\text { BDiff }_{\partial}\left(D^{2 n}\right)\right)_{\mathbb{Q}} \neq 0, \pi_{2 n-2+4 i}\left(\text { BDiff }_{\partial}\left(D^{2 n+1}\right)\right)_{\mathbb{Q}} \neq 0
$$

A pattern

A pattern: even-dimensional discs

Inspired by the details of Weiss' argument, Alexander Kupers and I began a programme to determine

$$
\pi_{*}\left(\text { BDiff }_{\partial}\left(D^{2 n}\right)\right)_{\mathbb{Q}}
$$

as completely as possible.

A pattern: even-dimensional discs

Inspired by the details of Weiss' argument, Alexander Kupers and I began a programme to determine

$$
\pi_{*}\left(\text { BDiff }_{\partial}\left(D^{2 n}\right)\right)_{\mathbb{Q}}
$$

as completely as possible.
Theorem. [Kupers-R-W '20 '21]
Let $2 n \geq 6$.
(i) If $i<2 n-1$ then $\pi_{i}\left(\operatorname{BDiff}_{\partial}\left(D^{2 n}\right)\right)_{\mathbb{Q}}$ vanishes, and
(ii) if $i \geq 2 n-1$ then π_{i} $\left.^{B_{D i f f}^{\partial}}\left(D^{2 n}\right)\right)_{\mathbb{Q}}$ is

$$
\begin{cases}\mathbb{Q} & \text { if } i \equiv 2 n-1 \bmod 4 \text { and } i \notin \bigcup_{r \geq 2}[2 r(n-2)-1,2 r(n-1)+1], \\ 0 & \text { if } i \not \equiv 2 n-1 \bmod 4 \text { and } i \notin \bigcup_{r \geq 2}[2 r(n-2)-1,2 r(n-1)+1],\end{cases}
$$

? otherwise.
The \mathbb{Q} 's are all Pontrjagin-Weiss classes.

A pattern: odd-dimensional discs

Using different techniques, Manuel Krannich and I investigated

$$
\pi_{*}\left(\operatorname{BDiff}_{\partial}\left(D^{2 n+1}\right)\right)_{\mathbb{Q}}
$$

outside of the pseudoisotopy stable range.

A pattern: odd-dimensional discs

Using different techniques, Manuel Krannich and I investigated

$$
\pi_{*}\left(\text { BDiff }_{\partial}\left(D^{2 n+1}\right)\right)_{\mathbb{Q}}
$$

outside of the pseudoisotopy stable range.
Theorem. [Krannich-R-W '21]
In degrees $i \leq 3 n-8$ we have

$$
\pi_{i}\left(B_{D i f f}^{\partial}\left(D^{2 n+1}\right)\right)_{\mathbb{Q}}=K_{i+1}(\mathbb{Z})_{\mathbb{Q}} \oplus \begin{cases}\mathbb{Q} & i \equiv 2 n-2 \quad \bmod 4, i \geq 2 n-2 \\ 0 & \text { else }\end{cases}
$$

The \mathbb{Q} 's are all Pontrjagin-Weiss classes.
The one of degree $2 n-2$ is also the simplest of Watanabe's classes, corresponding to the trivalent graph \prec.

Outline of the method

Many results in this flavour of geometric topology are relative: they describe the difference between

1. topological/smooth manifolds (smoothing)
2. homotopy equivalences/block diffeomorphisms (surgery)
3. block diffeomorphisms/diffeomorphisms (pseudoisotopy)

Outline of the method

Many results in this flavour of geometric topology are relative: they describe the difference between

1. topological/smooth manifolds (smoothing)
2. homotopy equivalences/block diffeomorphisms (surgery)
3. block diffeomorphisms/diffeomorphisms (pseudoisotopy)

Weiss introduced a powerful new kind of relativisation:
For M with $\partial M=S^{d-1}$ and $\frac{1}{2} \partial M:=D^{d-1} \subset S^{d-1}$ he showed there is a homotopy fibre sequence

$$
\operatorname{BDiff}_{\partial}\left(D^{d}\right) \longrightarrow \operatorname{BDiff}_{\partial}(M) \longrightarrow B E m b_{1 / 2 \partial}^{\simeq}(M)
$$

Outline of the method

Many results in this flavour of geometric topology are relative: they describe the difference between

1. topological/smooth manifolds (smoothing)
2. homotopy equivalences/block diffeomorphisms (surgery)
3. block diffeomorphisms/diffeomorphisms (pseudoisotopy)

Weiss introduced a powerful new kind of relativisation:
For M with $\partial M=S^{d-1}$ and $\frac{1}{2} \partial M:=D^{d-1} \subset S^{d-1}$ he showed there is a homotopy fibre sequence

$$
\operatorname{BDiff}_{\partial}\left(D^{d}\right) \longrightarrow \operatorname{BDiff}_{\partial}(M) \longrightarrow B E m b_{1 / 2 \partial}^{\simeq}(M)
$$

Here $E m b_{1 / 2 \lambda}^{\simeq}(M)$ is the space of selfembeddings of M which are the identity on $\frac{1}{2} \partial M$, but can send the rest of the boundary inside M.

Outline of the method

Many results in this flavour of geometric topology are relative: they describe the difference between

1. topological/smooth manifolds (smoothing)
2. homotopy equivalences/block diffeomorphisms (surgery)
3. block diffeomorphisms/diffeomorphisms (pseudoisotopy)

Weiss introduced a powerful new kind of relativisation:
For M with $\partial M=S^{d-1}$ and $\frac{1}{2} \partial M:=D^{d-1} \subset S^{d-1}$ he showed there is a homotopy fibre sequence

$$
\operatorname{BDiff}_{\partial}\left(D^{d}\right) \longrightarrow \operatorname{BDiff}_{\partial}(M) \longrightarrow B E m b_{1 / 2 \partial}^{\simeq}(M)
$$

Here $E m b_{1 / 2 \lambda}^{\simeq}(M)$ is the space of selfembeddings of M which are the identity on $\frac{1}{2} \partial M$, but can send the rest of the boundary inside M.

So can try to get at $\operatorname{BDiff}_{\partial}\left(D^{d}\right)$ by understanding the other two terms.

Outline of the method

For example, when $d=2 n$ can take

$$
W_{g, 1}:=D^{2 n} \# g\left(S^{n} \times S^{n}\right)
$$

for "arbitrarily large" g.

$$
\operatorname{BDiff}_{\partial}\left(D^{2 n}\right) \longrightarrow \operatorname{BDiff}_{\partial}\left(W_{g, 1}\right) \longrightarrow B E m b_{1 / 2 \lambda}^{\cong}\left(W_{g, 1}\right)
$$

Outline of the method

For example, when $d=2 n$ can take

$$
W_{g, 1}:=D^{2 n} \# g\left(S^{n} \times S^{n}\right)
$$

for "arbitrarily large" g.

$$
\operatorname{BDiff}_{\partial}\left(D^{2 n}\right) \longrightarrow \text { Diff }_{\partial}\left(W_{g, 1}\right) \longrightarrow B E m b_{1 / 2 \lambda}^{\simeq}\left(W_{g, 1}\right)
$$

1. $\lim _{g \rightarrow \infty} H^{*}\left(\operatorname{BDiff}_{\partial}\left(W_{g, 1}\right) ; \mathbb{Q}\right)$ is completely understood
[Madsen-Weiss $2 n=2$, Galatius-R-W $2 n \geq 4$]

Outline of the method

For example, when $d=2 n$ can take

$$
W_{g, 1}:=D^{2 n} \# g\left(S^{n} \times S^{n}\right)
$$

for "arbitrarily large" g.

$$
\operatorname{BDiff}_{\partial}\left(D^{2 n}\right) \longrightarrow \text { Diff }_{\partial}\left(W_{g, 1}\right) \longrightarrow B E m b_{1 / 2 \partial}^{\cong}\left(W_{g, 1}\right)
$$

1. $\lim _{g \rightarrow \infty} H^{*}\left(B_{\text {iff }}^{\partial}\left(W_{g, 1}\right) ; \mathbb{Q}\right)$ is completely understood
[Madsen-Weiss $2 n=2$, Galatius-R-W $2 n \geq 4$]
2. $\pi_{*}\left(B E m b b_{1 / 2 \lambda}^{\cong}\left(W_{g, 1}\right)\right)_{\mathbb{Q}}$ accessed by "embedding calculus" for $2 n \geq 6$
[Goodwillie, Klein, Weiss]

Outline of the method

For example, when $d=2 n$ can take

$$
W_{g, 1}:=D^{2 n} \# g\left(S^{n} \times S^{n}\right)
$$

for "arbitrarily large" g.

$$
\operatorname{BDiff}_{\partial}\left(D^{2 n}\right) \longrightarrow \text { Diff }_{\partial}\left(W_{g, 1}\right) \longrightarrow B E m b_{1 / 2 \lambda}^{\simeq}\left(W_{g, 1}\right)
$$

1. $\lim _{g \rightarrow \infty} H^{*}\left(B_{\text {iff }}^{\partial}\left(W_{g, 1}\right) ; \mathbb{Q}\right)$ is completely understood
[Madsen-Weiss $2 n=2$, Galatius-R-W $2 n \geq 4$]
2. $\pi_{*}\left(B E m b_{1 / 2 \lambda}^{\cong}\left(W_{g, 1}\right)\right)_{\mathbb{Q}}$ accessed by "embedding calculus" for $2 n \geq 6$ [Goodwillie, Klein, Weiss]

But: 1. is about (co)homology, and 2. is about homotopy.

Outline of the method

For example, when $d=2 n$ can take

$$
W_{g, 1}:=D^{2 n} \# g\left(S^{n} \times S^{n}\right)
$$

for "arbitrarily large" g.

$$
\operatorname{BDiff}_{\partial}\left(D^{2 n}\right) \longrightarrow \operatorname{Biff}_{\partial}\left(W_{g, 1}\right) \longrightarrow B E m b_{1 / 2 \partial}^{\cong}\left(W_{g, 1}\right)
$$

1. $\lim _{g \rightarrow \infty} H^{*}\left(B_{\text {iff }}^{\partial}\left(W_{g, 1}\right) ; \mathbb{Q}\right)$ is completely understood
[Madsen-Weiss $2 n=2$, Galatius-R-W $2 n \geq 4$]
2. $\pi_{*}\left(B E m b b_{1 / 2 \lambda}^{\cong}\left(W_{g, 1}\right)\right)_{\mathbb{Q}}$ accessed by "embedding calculus" for $2 n \geq 6$ [Goodwillie, Klein, Weiss]

But: 1. is about (co)homology, and 2. is about homotopy.
And: embedding calculus is not so easy.

Outline of the method

For example, when $d=2 n$ can take

$$
W_{g, 1}:=D^{2 n} \# g\left(S^{n} \times S^{n}\right)
$$

for "arbitrarily large" g.

$$
\operatorname{BDiff}_{\partial}\left(D^{2 n}\right) \longrightarrow \text { Diff }_{\partial}\left(W_{g, 1}\right) \longrightarrow B E m b_{1 / 2 \lambda}^{\simeq}\left(W_{g, 1}\right)
$$

1. $\lim _{g \rightarrow \infty} H^{*}\left(B_{\text {iff }}^{\partial}\left(W_{g, 1}\right) ; \mathbb{Q}\right)$ is completely understood
[Madsen-Weiss $2 n=2$, Galatius-R-W $2 n \geq 4$]
2. $\pi_{*}\left(B E m b_{1 / 2 \lambda}^{\cong}\left(W_{g, 1}\right)\right)_{\mathbb{Q}}$ accessed by "embedding calculus" for $2 n \geq 6$ [Goodwillie, Klein, Weiss]

But: 1. is about (co)homology, and 2. is about homotopy.
And: embedding calculus is not so easy.
The two results deal with these difficulties in very different ways.

A proposal

Proposal

The "band" picture suggests
$\pi_{*}\left(\text { BDiff }_{\partial}\left(D^{d}\right)\right)_{\mathbb{Q}}$ is a superposition of phenomena happening on different "wavelengths"

Proposal

The "band" picture suggests
$\pi_{*}\left(B \operatorname{Diff}_{\partial}\left(D^{d}\right)\right)_{\mathbb{Q}}$ is a superposition of
phenomena happening on different "wavelengths"

The kinds of phenomena that occur depend only on the parity of d, but the r th phenomenon contributes to degrees around $r \cdot d$.

Proposal

The "band" picture suggests
$\pi_{*}\left(B \operatorname{Diff}_{\partial}\left(D^{d}\right)\right)_{\mathbb{Q}}$ is a superposition of
phenomena happening on different "wavelengths"

The kinds of phenomena that occur depend only on the parity of d, but the r th phenomenon contributes to degrees around $r \cdot d$.

There is a mechanism from homotopy theory that could explain this:
Weiss' Orthogonal Calculus

Proposal

The "band" picture suggests

$$
\begin{aligned}
& \pi_{*}\left(\mathrm{BDiff}_{\partial}\left(D^{d}\right)\right)_{\mathbb{Q}} \text { is a superposition of } \\
& \text { phenomena happening on different "wavelengths" }
\end{aligned}
$$

The kinds of phenomena that occur depend only on the parity of d, but the r th phenomenon contributes to degrees around $r \cdot d$.

There is a mechanism from homotopy theory that could explain this:

Weiss' Orthogonal Calculus

For this we look at $\operatorname{BTop}\left(\mathbb{R}^{d}\right)=B \operatorname{Homeo}\left(\mathbb{R}^{d}\right)$ instead of $B D i f f\left(D^{d}\right)$.

Proposal

The "band" picture suggests
$\pi_{*}\left(B \operatorname{Diff}_{\partial}\left(D^{d}\right)\right)_{\mathbb{Q}}$ is a superposition of
phenomena happening on different "wavelengths"

The kinds of phenomena that occur depend only on the parity of d, but the r th phenomenon contributes to degrees around $r \cdot d$.

There is a mechanism from homotopy theory that could explain this:

Weiss' Orthogonal Calculus

For this we look at $\operatorname{BTop}\left(\mathbb{R}^{d}\right)=B H o m e o\left(\mathbb{R}^{d}\right)$ instead of $B D i f f ~\left(D^{d}\right)$.
The proposal is to consider all BTop $\left(\mathbb{R}^{d}\right)$ at once, as the functor

$$
\begin{aligned}
\text { Bt: } \begin{aligned}
\left.\begin{array}{c}
\text { category of finite-dimensional } \\
\text { inner product spaces }
\end{array}\right\} & \longrightarrow\left\{\begin{array}{c}
\text { category of based } \\
\text { topological spaces }
\end{array}\right\} \\
V & \longmapsto B T o p(V)
\end{aligned}
\end{aligned}
$$

Orthogonal calculus

Orthogonal calculus considers continuous functors

$$
F:\left\{\begin{array}{c}
\text { category of finite-dimensional } \\
\text { inner product spaces }
\end{array}\right\} \longrightarrow\left\{\begin{array}{c}
\text { category of based } \\
\text { topological spaces }
\end{array}\right\}
$$

as though they were functions, and develops a notion of Taylor expansions for them.

Orthogonal calculus

Orthogonal calculus considers continuous functors

$$
F:\left\{\begin{array}{c}
\text { category of finite-dimensional } \\
\text { inner product spaces }
\end{array}\right\} \longrightarrow\left\{\begin{array}{c}
\text { category of based } \\
\text { topological spaces }
\end{array}\right\}
$$

as though they were functions, and develops a notion of Taylor expansions for them.
Notion of derivative $F^{(1)}(V):=$ fibre $(F(V) \rightarrow F(V \oplus \mathbb{R}))$ of such a functor, and hence of being polynomial of degree $\leq r$.

Orthogonal calculus

Orthogonal calculus considers continuous functors

$$
F:\left\{\begin{array}{c}
\text { category of finite-dimensional } \\
\text { inner product spaces }
\end{array}\right\} \longrightarrow\left\{\begin{array}{c}
\text { category of based } \\
\text { topological spaces }
\end{array}\right\}
$$

as though they were functions, and develops a notion of Taylor expansions for them.
Notion of derivative $F^{(1)}(V):=\operatorname{fibre}(F(V) \rightarrow F(V \oplus \mathbb{R}))$ of such a functor, and hence of being polynomial of degree $\leq r$.
Any functor F has a best approximation $\mathrm{F} \rightarrow T_{r} \mathrm{~F}$ by a polynomial functor of degree $\leq r$, assembling to a "Taylor tower".

Orthogonal calculus

Orthogonal calculus considers continuous functors

$$
F:\left\{\begin{array}{c}
\text { category of finite-dimensional } \\
\text { inner product spaces }
\end{array}\right\} \longrightarrow\left\{\begin{array}{c}
\text { category of based } \\
\text { topological spaces }
\end{array}\right\}
$$

as though they were functions, and develops a notion of Taylor expansions for them.
Notion of derivative $F^{(1)}(V):=$ fibre $(F(V) \rightarrow F(V \oplus \mathbb{R}))$ of such a functor, and hence of being polynomial of degree $\leq r$.
Any functor F has a best approximation $\mathrm{F} \rightarrow T_{r} \mathrm{~F}$ by a polynomial functor of degree $\leq r$, assembling to a "Taylor tower".

Homogeneous polynomials hofib $\left(T_{r} \mathrm{~F} \rightarrow T_{r-1} \mathrm{~F}\right)$ have a very particular structure: they are

$$
V \longmapsto \Omega^{\infty}\left(\Theta F^{(r)} \wedge_{O(r)}\left(\mathbb{R}^{r} \otimes V\right)^{+}\right)
$$

for an $O(r)$-spectrum $\Theta F^{(r)}$, the r th derivative.

Orthogonal calculus for $V \mapsto B t(V)=B T o p(V)$

(o) $T_{0} \mathrm{Bt}(V)=\underset{n \rightarrow \infty}{\operatorname{colim}} B T o p\left(V \oplus \mathbb{R}^{n}\right) \simeq B T o p$

$$
\pi_{*}(\text { BTop })_{\mathbb{Q}}=\mathbb{Q}[4] \oplus \mathbb{Q}[8] \oplus \mathbb{Q}[12] \oplus \cdots
$$

Orthogonal calculus for $V \mapsto \operatorname{Bt}(V)=B T o p(V)$

(o) $T_{0} \operatorname{Bt}(V)=\underset{n \rightarrow \infty}{\operatorname{colim}} B T o p\left(V \oplus \mathbb{R}^{n}\right) \simeq B T o p$

$$
\pi_{*}(\text { BTop })_{\mathbb{Q}}=\mathbb{Q}[4] \oplus \mathbb{Q}[8] \oplus \mathbb{Q}[12] \oplus \cdots
$$

(1) The first derivative was identified by Waldhausen '81:

$$
\Theta \mathrm{Bt}^{(1)} \simeq K(\mathbb{S}),
$$

the algebraic K-theory of the sphere spectrum; have $K(\mathbb{S})_{\mathbb{Q}} \xrightarrow{\sim} K(\mathbb{Z})_{\mathbb{Q}}$.

Orthogonal calculus for $V \mapsto \mathrm{Bt}(V)=B \operatorname{Top}(V)$

(o) $T_{0} \operatorname{Bt}(V)=\underset{n \rightarrow \infty}{\operatorname{colim}} B T o p\left(V \oplus \mathbb{R}^{n}\right) \simeq B T o p$

$$
\pi_{*}(\text { BTop })_{\mathbb{Q}}=\mathbb{Q}[4] \oplus \mathbb{Q}[8] \oplus \mathbb{Q}[12] \oplus \cdots
$$

(1) The first derivative was identified by Waldhausen '81:

$$
\Theta \mathrm{Bt}^{(1)} \simeq K(\mathbb{S}),
$$

the algebraic K-theory of the sphere spectrum; have $K(\mathbb{S})_{\mathbb{Q}} \xrightarrow{\sim} K(\mathbb{Z})_{\mathbb{Q}}$.
(2) Krannich-R-W '21:

$$
\Theta \mathrm{Bt}^{(2)} \simeq_{\mathbb{Q}} \operatorname{map}\left(S_{+}^{1}, \mathbb{S}^{-1}\right)
$$

Simpler than the zeroth and first derivatives: finitely many nonzero rational homotopy groups.

Orthogonal calculus for $V \mapsto \operatorname{Bt}(V)=B T o p(V)$

(o) $T_{0} \operatorname{Bt}(V)=\underset{n \rightarrow \infty}{\operatorname{colim}} B T o p\left(V \oplus \mathbb{R}^{n}\right) \simeq B T o p$

$$
\pi_{*}(\text { BTop })_{\mathbb{Q}}=\mathbb{Q}[4] \oplus \mathbb{Q}[8] \oplus \mathbb{Q}[12] \oplus \cdots
$$

(1) The first derivative was identified by Waldhausen '81:

$$
\Theta \mathrm{Bt}^{(1)} \simeq K(\mathbb{S}),
$$

the algebraic K-theory of the sphere spectrum; have $K(\mathbb{S})_{\mathbb{Q}} \xrightarrow{\sim} K(\mathbb{Z})_{\mathbb{Q}}$.
(2) Krannich-R-W '21:

$$
\Theta \mathrm{Bt}^{(2)} \simeq_{\mathbb{Q}} \operatorname{map}\left(S_{+}^{1}, \mathbb{S}^{-1}\right)
$$

Simpler than the zeroth and first derivatives: finitely many nonzero rational homotopy groups.

The "band" pattern in $\pi_{*}\left(\operatorname{BDiff}_{\partial}\left(D^{2 n}\right)\right)_{\mathbb{Q}}$ suggests that this is the case for all the higher derivatives too.

How to describe them?

Higher derivatives

The connection to configuration space integrals suggests studying Top (d) by its action on the spaces of finite configurations of distinct points in \mathbb{R}^{d}.

Higher derivatives

The connection to configuration space integrals suggests studying Top (d) by its action on the spaces of finite configurations of distinct points in \mathbb{R}^{d}.

Not individually: should also remember how configurations can degenerate by points colliding.

This can be packaged into the little d-discs operad E_{d}

Higher derivatives

The connection to configuration space integrals suggests studying Top (d) by its action on the spaces of finite configurations of distinct points in \mathbb{R}^{d}.

Not individually: should also remember how configurations can degenerate by points colliding.

This can be packaged into the little d-discs operad E_{d} :

$$
\operatorname{BTop}(d) \longrightarrow \operatorname{BhAut}\left(E_{d}\right)
$$

Higher derivatives

The connection to configuration space integrals suggests studying Top (d) by its action on the spaces of finite configurations of distinct points in \mathbb{R}^{d}.
Not individually: should also remember how configurations can degenerate by points colliding.

This can be packaged into the little d-discs operad E_{d} :

$$
\operatorname{BTop}(d) \longrightarrow \operatorname{BhAut}\left(E_{d}\right)
$$

Fresse-Turchin-Willwacher '17 have determined $\pi_{*}\left(\operatorname{BhAut}\left(E_{d}^{\mathbb{Q}}\right)\right)$ in terms of graph cohomology:

Higher derivatives

The connection to configuration space integrals suggests studying Top (d) by its action on the spaces of finite configurations of distinct points in \mathbb{R}^{d}.

Not individually: should also remember how configurations can degenerate by points colliding.

This can be packaged into the little d-discs operad E_{d} :

$$
\operatorname{BTop}(d) \longrightarrow \operatorname{BhAut}\left(E_{d}\right)
$$

Fresse-Turchin-Willwacher '17 have determined $\pi_{*}\left(\operatorname{BhAut}\left(E_{d}^{\mathbb{Q}}\right)\right)$ in terms of graph cohomology:

- band pattern for each parity of d

Higher derivatives

The connection to configuration space integrals suggests studying Top (d) by its action on the spaces of finite configurations of distinct points in \mathbb{R}^{d}.

Not individually: should also remember how configurations can degenerate by points colliding.

This can be packaged into the little d-discs operad E_{d} :

$$
\operatorname{BTop}(d) \longrightarrow \operatorname{BhAut}\left(E_{d}\right)
$$

Fresse-Turchin-Willwacher '17 have determined $\pi_{*}\left(\operatorname{BhAut}\left(E_{d}^{\mathbb{Q}}\right)\right)$ in terms of graph cohomology:

- band pattern for each parity of d
- "zeroth derivative" is trivial (rather than $\pi_{*}(\text { BTop })_{\mathbb{Q}}$)

Higher derivatives

The connection to configuration space integrals suggests studying Top (d) by its action on the spaces of finite configurations of distinct points in \mathbb{R}^{d}.

Not individually: should also remember how configurations can degenerate by points colliding.

This can be packaged into the little d-discs operad E_{d} :

$$
\operatorname{BTop}(d) \longrightarrow \operatorname{BhAut}\left(E_{d}\right)
$$

Fresse-Turchin-Willwacher ' 17 have determined $\pi_{*}\left(\operatorname{BhAut}\left(E_{d}^{\mathbb{Q}}\right)\right)$ in terms of graph cohomology:

- band pattern for each parity of d
- "zeroth derivative" is trivial (rather than $\pi_{*}(\text { BTop })_{\mathbb{Q}}$)
- "first derivative" is $\mathrm{HC}_{*}^{-}(\mathbb{Z})_{\mathbb{Q}}\left(\right.$ rather than $\left.K_{*}(\mathbb{Z})_{\mathbb{Q}}\right)$

Higher derivatives

The connection to configuration space integrals suggests studying Top (d) by its action on the spaces of finite configurations of distinct points in \mathbb{R}^{d}.

Not individually: should also remember how configurations can degenerate by points colliding.

This can be packaged into the little d-discs operad E_{d} :

$$
\operatorname{BTop}(d) \longrightarrow \operatorname{BhAut}\left(E_{d}\right)
$$

Fresse-Turchin-Willwacher ' 17 have determined $\pi_{*}\left(\operatorname{BhAut}\left(E_{d}^{\mathbb{Q}}\right)\right)$ in terms of graph cohomology:

- band pattern for each parity of d
- "zeroth derivative" is trivial (rather than $\pi_{*}(\text { BTop })_{\mathbb{Q}}$)
- "first derivative" is $\mathrm{HC}_{*}^{-}(\mathbb{Z})_{\mathbb{Q}}$ (rather than $\left.K_{*}(\mathbb{Z})_{\mathbb{Q}}\right)$
- "higher derivatives" have finitely-many nonzero rational homotopy groups

A proposal

Defining $\operatorname{Ba}(V):=\operatorname{BhAut}\left(E_{V}^{\mathbb{Q}}\right)$, it seems plausible that the higher derivatives of Bt and Ba are rationally equivalent.

This is indeed the case on second derivatives. [Krannich-R-W '21]

A proposal

Defining $\operatorname{Ba}(V):=\operatorname{BhAut}\left(E_{V}^{\mathbb{Q}}\right)$, it seems plausible that the higher derivatives of $B t$ and $B a$ are rationally equivalent.

This is indeed the case on second derivatives. [Krannich-R-W '21]
Proposal. Is the square

rationally homotopy cartesian for large enough d ?

A proposal

Defining $\operatorname{Ba}(V):=\operatorname{BhAut}\left(E_{V}^{\mathbb{Q}}\right)$, it seems plausible that the higher derivatives of Bt and Ba are rationally equivalent.

This is indeed the case on second derivatives. [Krannich-R-W '21]
Proposal. Is the square

rationally homotopy cartesian for large enough d ?
This would be a remarkable relationship between homeomorphisms of Euclidean space, algebraic K- and L-theory, cyclic homology, and graph cohomology.

