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Goal

Diff∂(Dd) =
{
f : Dd → Dd

∣∣∣ f is a diffeomorphism which agrees
with the identity near ∂Dd

}
∼=

{
f : Rd → Rd

∣∣∣ f = IdRd outside a compact set
}

Considered as a topological group: C∞-topology.

Diff (Sd) ≃ O(d+ 1)× Diff∂(Dd)
⇒ Diff∂(Dd) measures how the full group of smooth symmetries of
the d-sphere differs from the obvious linear symmetries.

Diff∂(D1) ≃ ∗
Diff∂(D2) ≃ ∗ [Smale ’59]
Diff∂(D3) ≃ ∗ [Hatcher ’83, Bamler–Kleiner ’19]

These days we know that Diff∂(Dd) ̸≃ ∗ for all d ≥ 4.

What is it then?
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Goal

I want to explain recent progress towards understanding the
rational homotopy type of the classifying space

BDiff∂(Dd) ≃
{

Riemannian metrics on Dd
which are standard near ∂Dd

}
/Diff∂(Dd).

This encodes the homotopy type of Diff∂(Dd) as a group, rather than
just as a space.

Everything new I will say represents collaborations with

Manuel Krannich and with Alexander Kupers
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Four short stories



Homeomorphisms of Rd

Smoothing theory says that for d ̸= 4 we have
Homeo∂(Dd)
Diff∂(Dd)

≃ Ωd
0

(
Homeo(Rd)

Diff (Rd)

)

Linearising
f : Rd → Rd a diffeomorphism,
consider

ft(x) =
f (t · x)− f (0)

t
+ t · f (0)

for t ∈ [0, 1].

⇒ Diff (Rd) ≃ GLd(R) ≃ O(d)

Crushing
f : Dd → Dd a homeomorphism
fixing ∂Dd, consider

ft(x) =

{
x |x| ≥ t
t · f (x/t) |x| ≤ t

for t ∈ [0, 1].

⇒ Homeo∂(Dd) ≃ ∗

⇒ BDiff∂(Dd) ≃ Ωd
0

(
Homeo(Rd)

O(d)

)
for d ̸= 4

⇒ understanding BDiff∂(Dd) ∼ understanding Homeo(Rd)
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Surgery and pseudoisotopy: Farrell and Hsiang

Classical strategy to study Diff∂(M):

homotopy theory + surgery theory + pseudoistopy theory

Only valid in the “pseudoisotopy stable range”:

this is at least degrees ∗ ≲ dim(M)
3 [Igusa ’84]

Theorem. [Farrell–Hsiang ’78]

π∗(BDiff∂(Dd))Q =

{
0 d even
Q[4]⊕Q[8]⊕Q[12]⊕ · · · d odd

in the pseudoisotopy stable range (so certainly for ∗ ≲ d
3 ).

Nontrivial classes come from the relation of pseudoisotopy to
algebraic K-theory and Borel’s ’74 calculation

K∗(Z)Q = Q+[0]⊕Q−[5]⊕Q−[9]⊕Q−[13]⊕ · · ·

4
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Configuration space integrals: Kontsevich, Watanabe

Kontsevich ’92:

“Configuration space integrals”⇝ classes in H∗(BDiff fr
∂ (Dd);Q)

Organised in term of graph complexes.

Watanabe analysed this construction in detail in the extremal
degrees corresponding to trivalent graphs.

Theorem. [Watanabe ’09, ’18]

For d even, or d odd and r > 1, there is a surjection

πr·(d−3)(BDiff∂(Dd))Q −→ A(−1)d
r

onto a certain vector space of dimension

dim(A−
r ) = 1, 1, 1, 2, 2, 3, 4, 5, 6, 8, 9, . . .

dim(A+
r ) = 0, 1,0,0, 1,0,0,0, 1, . . .

⇒ BDiff∂(Dd) ̸≃ ∗ for all d ≥ 4.
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Topological Pontrjagin classes: Weiss

Smoothing theory showed that BDiff∂(Dd) is closely related to

Top(d) := Homeo(Rd).

Topological transversality [Kirby–Siebenmann ’77]

⇒ can define rational Pontrjagin classes pi ∈ H4i(BTop(d);Q)

In H∗(BO(2n);Q) the usual definition of Pontrjagin classes shows
pn = e2

pn+i = 0 for all i > 0
(†)

Do these identities hold in H∗(BTop(2n);Q)?

Theorem. [Weiss ’22]
For many n and i ≥ 0 there exist

wn,i ∈ π4(n+i)(BTop(2n))

which pair nontrivially with pn+i (⇒ (†) false on BTop(2n)).

⇒ π2n−1+4i(BDiff∂(D2n))Q ̸= 0, π2n−2+4i(BDiff∂(D2n+1))Q ̸= 0
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A pattern



A pattern: even-dimensional discs

Inspired by the details of Weiss’ argument, Alexander Kupers and I
began a programme to determine

π∗(BDiff∂(D2n))Q

as completely as possible.

Theorem. [Kupers–R-W ’20 ’21]

Let 2n ≥ 6.

(i) If i < 2n− 1 then πi(BDiff∂(D2n))Q vanishes, and
(ii) if i ≥ 2n− 1 then πi(BDiff∂(D2n))Q is

Q if i ≡ 2n−1 mod 4 and i /∈
⋃
r≥2

[2r(n−2)− 1, 2r(n−1) + 1],

0 if i ̸≡ 2n−1 mod 4 and i /∈
⋃
r≥2

[2r(n−2)− 1, 2r(n−1) + 1],

? otherwise.

The Q’s are all Pontrjagin–Weiss classes.
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π∗(BDiff∂(D2n))⊗Q

= Q{Pontrjagin–Weiss class}

1 = Watanabe classes

= uncertainty, but • survives

= uncertainty, • may not survive



A pattern: odd-dimensional discs

Using different techniques, Manuel Krannich and I investigated

π∗(BDiff∂(D2n+1))Q

outside of the pseudoisotopy stable range.

Theorem. [Krannich–R-W ’21]

In degrees i ≤ 3n− 8 we have

πi(BDiff∂(D2n+1))Q = Ki+1(Z)Q ⊕

{
Q i ≡ 2n− 2 mod 4, i ≥ 2n− 2
0 else

The Q’s are all Pontrjagin–Weiss classes.

The one of degree 2n− 2 is also the simplest of Watanabe’s classes,
corresponding to the trivalent graph .
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Outline of the method

Many results in this flavour of geometric topology are relative: they
describe the difference between

1. topological/smooth manifolds (smoothing)
2. homotopy equivalences/block diffeomorphisms (surgery)
3. block diffeomorphisms/diffeomorphisms (pseudoisotopy)

Weiss introduced a powerful new kind of relativisation:

For M with ∂M = Sd−1 and 1
2∂M := Dd−1 ⊂ Sd−1 he showed there is a

homotopy fibre sequence

BDiff∂(Dd) −→ BDiff∂(M) −→ BEmb∼=1/2∂(M)

Here Emb∼=1/2∂(M) is the space of self-
embeddings of M which are the identity
on 1

2∂M, but can send the rest of the
boundary inside M.
So can try to get at BDiff∂(Dd) by understanding the other two terms.
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Outline of the method

For example, when d = 2n can take

Wg,1 := D2n#g(Sn × Sn)

for “arbitrarily large” g.

BDiff∂(D2n) −→ BDiff∂(Wg,1) −→ BEmb∼=1/2∂(Wg,1)

1. lim
g→∞

H∗(BDiff∂(Wg,1);Q) is completely understood

[Madsen–Weiss 2n = 2, Galatius–R-W 2n ≥ 4]

2. π∗(BEmb
∼=
1/2∂(Wg,1))Q accessed by “embedding calculus” for 2n ≥ 6

[Goodwillie, Klein, Weiss]

But: 1. is about (co)homology, and 2. is about homotopy.

And: embedding calculus is not so easy.

The two results deal with these difficulties in very different ways.

10
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A proposal



Proposal

The “band” picture suggests

π∗(BDiff∂(Dd))Q is a superposition of
phenomena happening on different “wavelengths”

The kinds of phenomena that occur depend only on the parity of d,
but the rth phenomenon contributes to degrees around r · d.

There is a mechanism from homotopy theory that could explain this:

Weiss’ Orthogonal Calculus

For this we look at BTop(Rd) = BHomeo(Rd) instead of BDiff∂(Dd).

The proposal is to consider all BTop(Rd) at once, as the functor

Bt :
{

category of finite-dimensional
inner product spaces

}
−→

{
category of based
topological spaces

}
V 7−→ BTop(V)
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Orthogonal calculus

Orthogonal calculus considers continuous functors

F :
{

category of finite-dimensional
inner product spaces

}
−→

{
category of based
topological spaces

}
as though they were functions, and develops a notion of Taylor
expansions for them.

Notion of derivative F(1)(V) := fibre(F(V) → F(V ⊕ R)) of such a
functor, and hence of being polynomial of degree ≤ r.

Any functor F has a best approximation F → TrF by a polynomial
functor of degree ≤ r, assembling to a “Taylor tower”.

...

T2F

T1F

F T0F

Homogeneous polynomials hofib(TrF → Tr−1F)
have a very particular structure: they are

V 7−→ Ω∞(ΘF(r) ∧O(r) (Rr ⊗ V)+)

for an O(r)-spectrum ΘF(r), the rth derivative.
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Orthogonal calculus for V 7→ Bt(V) = BTop(V)

(0) T0Bt(V) = colim
n→∞

BTop(V ⊕ Rn) ≃ BTop

π∗(BTop)Q = Q[4]⊕Q[8]⊕Q[12]⊕ · · ·

(1) The first derivative was identified by Waldhausen ’81:

ΘBt(1) ≃ K(S),

the algebraic K-theory of the sphere spectrum; have K(S)Q ∼→ K(Z)Q.

(2) Krannich–R-W ’21:

ΘBt(2) ≃Q map(S1
+,S−1).

Simpler than the zeroth and first derivatives: finitely many nonzero
rational homotopy groups.

The “band” pattern in π∗(BDiff∂(D2n))Q suggests that this is the case
for all the higher derivatives too.

How to describe them?
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Higher derivatives

The connection to configuration space integrals suggests studying
Top(d) by its action on the spaces of finite configurations of distinct
points in Rd.

Not individually: should also remember how configurations can
degenerate by points colliding.

This can be packaged into the little d-discs operad Ed:

BTop(d) −→ BhAut(Ed)

Fresse–Turchin–Willwacher ’17 have determined π∗(BhAut(EQd )) in
terms of graph cohomology:

• band pattern for each parity of d
• “zeroth derivative” is trivial (rather than π∗(BTop)Q)
• “first derivative” is HC−∗ (Z)Q (rather than K∗(Z)Q)
• “higher derivatives” have finitely-many nonzero rational

homotopy groups
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A proposal

Defining Ba(V) := BhAut(EQV ), it seems plausible that the higher
derivatives of Bt and Ba are rationally equivalent.

This is indeed the case on second derivatives. [Krannich–R-W ’21]

Proposal. Is the square

BTop(d) Bt(Rd) T1Bt(Rd)

BhAut(EQd ) Ba(Rd) T1Ba(Rd).

rationally homotopy cartesian for large enough d?

This would be a remarkable relationship between homeomorphisms
of Euclidean space, algebraic K- and L-theory, cyclic homology, and
graph cohomology.
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