Cohomology of moduli spaces

Oscar Randal-Williams

LEVERHULME
TRUST

Which moduli spaces?

Moduli spaces of Riemann surfaces

For $g \geq 2$,

$$
\mathcal{M}_{g}=\frac{\{\text { genus } g \text { Riemann surfaces }\}}{\text { isomorphism }}
$$

Earle-Eells '69:

$$
\begin{aligned}
\mathcal{M}_{g} & =\left\{\text { complex structures on } \Sigma_{g}\right\} / / \text { Diff }^{+}\left(\Sigma_{g}\right) \\
& =\frac{\left\{\text { complex structures on } \Sigma_{g}\right\}}{\text { Diff }^{+}\left(\Sigma_{g}\right)_{i d}} / / \frac{\text { Diff }^{+}\left(\Sigma_{g}\right)}{\text { Diff }^{+}\left(\Sigma_{g}\right)_{i d}} \\
& =:(\text { Teichmüller space }) / /\left(\text { mapping class group } \Gamma_{g}\right)
\end{aligned}
$$

\{complex structures on $\left.\Sigma_{g}\right\}$ and Teichmüller space are contractible

Moduli spaces of Riemann surfaces

Reminder on classifying spaces
G (topological) group
$B G=\{$ any contractible free G-space $\} / G \quad$ "classifying space of $G "$
G discrete

```
    BG = K(G,1) Eilenberg-Mac Lane space, recover G as }\mp@subsup{\pi}{1}{}(BG,*
    H*}(BG)=\mp@subsup{H}{*}{\mathrm{ group }}(G
```

G topological recover G up to homotopy as $\Omega B G=\operatorname{map}_{*}\left(S^{1}, B G\right)$ combinatorial group theory

$$
\mathcal{M}_{g} \simeq B \Gamma_{g} \simeq B \operatorname{Diff}^{+}\left(\Sigma_{g}\right)
$$

algebraic geometry
differential topology

Examples of moduli spaces

Anything which is like $\mathcal{M}_{g}, B \Gamma_{g}$, or B Diff $^{+}\left(\Sigma_{g}\right)$ is a moduli space.
Like \mathcal{M}_{g} :

- \mathcal{A}_{g} moduli spaces of principally polarized abelian varieties
- $\operatorname{Conf}_{n}\left(\mathbb{R}^{k}\right)$ unordered configuration spaces
- Hur ${ }_{n}^{G}$ Hurwitz spaces

Like $B \Gamma_{g}$:

- $B S_{n}$ symmetric groups
- $B \beta_{n}$ braid groups
- $B G L_{n}(R)$ general linear groups
- $B S p_{2 n}(R)$ symplectic groups
- $\operatorname{BAut}\left(F_{n}\right)$ automorphism groups of free groups

Like BDiff ${ }^{+}\left(\Sigma_{g}\right)$:

- BDiff(W) diffeomorphism groups
- BhAut(W) homotopy automorphism groups

Moduli spaces of smooth manifolds

For W a closed manifold, the space of embeddings

$$
\operatorname{Emb}\left(W, \mathbb{R}^{\infty}\right)
$$

has a free $\operatorname{Diff}(W)$-action by precomposition, and is contractible.
Take the specific geometric model

$$
\begin{aligned}
\operatorname{BDiff}(W) & =E m b\left(W, \mathbb{R}^{\infty}\right) / \operatorname{Diff}(W) \\
& =\left\{x \subset \mathbb{R}^{\infty} \left\lvert\, \begin{array}{|l|}
X \text { is a s smoth submanifold } \\
\text { which is difteomorphic to } W
\end{array}\right.\right\}
\end{aligned}
$$

the "moduli space of submanifolds of \mathbb{R}^{∞} diffeomorphic to W ".

Why cohomology?

A moduli space \mathcal{M} is anything which classifies some kind of families:

$$
\operatorname{map}(B, \mathcal{M})=\{\text { families of }(\ldots) \text { over } B\}
$$

Then
$H^{*}(\mathcal{M})=\{$ characteristic classes of such families $\}$

Homological stability

Stabilisation

$S_{n-1} \rightarrow S_{n}:$
$\sigma \longmapsto \sigma \sqcup I d_{n}$
$G L_{n-1}(R) \rightarrow G L_{n}(R): \quad A \longmapsto A \oplus I d_{R}=\left[\begin{array}{ll}A & 0 \\ 0 & 1\end{array}\right]$
$\operatorname{Aut}\left(F_{n-1}\right) \rightarrow \operatorname{Aut}\left(F_{n}\right): \quad f \longmapsto f * I d_{\mathbb{Z}}$
For mapping class groups form the variant $\Gamma_{g, 1}=\frac{\operatorname{Diff}\left(\Sigma_{g, 1}\right)}{\operatorname{Diff}\left(\Sigma_{g, 1}\right)_{i d}}$, where $\operatorname{Diff}\left(\Sigma_{g, 1}\right)$ is diffeomorphisms which are the identity near the boundary.

Then boundary connect-sum with $\Sigma_{1,1}$ gives

Homological stability

Many sequences of groups $G_{\circ} \rightarrow G_{1} \rightarrow G_{2} \rightarrow G_{3} \rightarrow \cdots$ satisfy
Generic homological stability theorem. For a divergent function f

$$
H_{d}\left(G_{n-1}\right) \rightarrow H_{d}\left(G_{n}\right) \text { is an }\left\{\begin{array}{l}
\text { epimorphism for } d \leq f(n), \\
\text { isomorphism for } d<f(n) .
\end{array}\right.
$$

Equivalently, $H_{d}\left(G_{n}, G_{n-1}\right)=0$ for $d \leq f(n)$.

- S_{n}
(Nakaoka '6o)
- $G L_{n}(R)$ (Quillen, Maazen '79, Charney '80, van der Kallen '80, ...)
- $\operatorname{Sp}_{2 n}(R), O_{n, n}(R)$
- $\operatorname{Aut}\left(F_{n}\right)$
- 「 ${ }_{g, 1}$
(Harer '85, Ivanov '91, Boldsen '12, R-W '16)

$$
\text { specifically } H_{d}\left(\Gamma_{g, 1}, \Gamma_{g-1,1}\right)=\text { o for } d \leq \frac{2 g-2}{3} \text {. }
$$

Closing the boundary $\Gamma_{g, 1} \rightarrow \Gamma_{g}$ is also a homology isomorphism in a stable range, so $H_{d}\left(\mathcal{M}_{g}\right) \cong H_{d}\left(\Gamma_{g, 1}\right)$ stably.

Proof overview

Idea of Quillen: find simplicial object

$$
X_{n}(0) \leftleftarrows X_{n}(1) \leftleftarrows X_{n}(2) \leftleftarrows \ldots
$$

with G_{n}-action, such that
(i) stabilisers of simplices are smaller groups in the family,
(ii) X_{n} is a good approximation to a point: it is highly connected,
(iii) X_{n} / G_{n} is not too complicated.

By (ii) $X_{n} / / G_{n}$ is a good approximation to $B G_{n}$; by (i) it is constructed from $B G_{i}$ with $i<n$, and by (iii) the recipe for this construction is not too complicated.
Axiomatised (Wahl-R-W '17), but verifying (ii)-which was always the most difficult-must still be done by hand.

It always depends on the specifics of the groups G_{n}, though there are some general principles.

Example: symmetric groups

For S_{n} use the complex of injective words:

$$
X_{n}(p):=\left\{\begin{array}{c}
\text { words } a_{0} a_{1} \ldots a_{p} \text { in }\{1,2, \ldots, n\} \text { where } \\
\text { each letter occurs at most once }
\end{array}\right\}
$$

where the ith face of a simplex is given by removing the i th letter.

Theorem (Farmer '79, Björner-Wachs '83, Kerz '04, R-W '13, Bestvina '14, Gan '17)
X_{n} is ($n-2$)-connected.

Generalisation of the strategy

Strategy can be reinterpreted as a "partial nonabelian resolution"

$$
B G_{n} \longleftarrow X_{n}(0) / / G_{n} \longleftarrow X_{n}(1) / / G_{n} \leftleftarrows X_{n}(2) / / G_{n} \leftleftarrows \leftleftarrows \ldots
$$

where each $X_{n}(p) / / G_{n}$ is a coproduct of $B G_{i}$'s with $i<n$.
This "resolution" point of view applies to many further examples, such as $\operatorname{Conf}_{n}\left(\mathbb{R}^{k}\right)$ or BDiff(W).

Theorem (Galatius-R-W '18)

For $2 n \geq 6$ and W a simply-connected $2 n$-manifold with $\partial W \neq \varnothing$ have

$$
H_{d}\left(B \operatorname{Diff}\left(W \#^{g} S^{n} \times S^{n}\right), B \operatorname{Diff}\left(W \#^{g-1} S^{n} \times S^{n}\right)\right)=\text { o for } d \leq \frac{g-2}{2} .
$$

Variants: virtually poly- \mathbb{Z} fundamental group (Friedrich), for stabilisation by $S^{p} \times S^{q}$ etc. (Perlmutter), for homeomorphism groups (Kupers), for Diff as a discrete group (Nariman).

Stable cohomology

Stable (co)homology

Complementary to the stability problem is the determination of the limiting homology.

These two problems are unrelated at the level of techniques, and also logically.

Philosophy for approaching the limiting homology comes from the foundations of algebraic K-theory.

Group-completion

Combine moduli spaces into a monoid:
$\coprod_{n \geq 0} B S_{n}$
$\coprod_{n \geq 0}^{\coprod} \operatorname{Conf}_{n}\left(\mathbb{R}^{k}\right)$
disjoint union of
finite sets

direct sum of R-modules
boundary connectsum of surfaces

Recall for a topological group G have $G \simeq \Omega B G$.
Can also form classifying space $B M$ of a topological monoid M, and $\Omega B M$ is its homotopy theoretic group-completion.

How does this relate to "inverting elements of M "?
Group-completion theorem.
If M is a homotopy commutative monoid then

$$
H_{*}(M)\left[\pi_{\circ}(M)^{-1}\right]=H_{*}(\Omega B M) .
$$

e.g. $M=\coprod_{n \geq 0} X_{n}$ with X_{n} connected then $\underset{n \rightarrow \infty}{\operatorname{colim}} H_{*}\left(X_{n}\right)=H_{*}\left(\Omega_{0} B M\right)$.

Fundamentally a homological result.

Some group-completions

Theorem (Barratt-Priddy '72, Quillen, Segal '73, May '72)

$$
\begin{aligned}
\Omega B\left(\coprod_{n \geq 0} \operatorname{Conf}_{n}\left(\mathbb{R}^{k}\right)\right) & \simeq \Omega^{k} S^{k}=\operatorname{map}_{*}\left(S^{k}, S^{k}\right) \\
\Omega B\left(\coprod_{n \geq 0} B S_{n}\right) & \simeq \Omega^{\infty} S=\operatorname{colim}_{k \rightarrow \infty} \Omega^{k} S^{k}
\end{aligned}
$$

(Similarity because $B S_{n}=\operatorname{Emb}\left(\{1,2, \ldots, n\}, \mathbb{R}^{\infty}\right) / S_{n}=\operatorname{Conf}_{n}\left(\mathbb{R}^{\infty}\right)$)
Cannot generally expect to identify a group-completion:
Definition (Quillen '72)

$$
\Omega B\left(\coprod_{n \geq 0} B G L_{n}(R)\right)=: K(R) \text {, algebraic } K \text {-theory }
$$

The Madsen-Weiss theorem

Theorem (Madsen-Weiss '07)

$$
\Omega B\left(\coprod_{g \geq 0} B \Gamma_{g, 1}\right) \simeq \Omega^{\infty} \mathbf{M T S O}(\mathbf{2})
$$

Easy to calculate with \mathbb{Q}-coefficients:

$$
\lim _{g \rightarrow \infty} H^{*}\left(\Gamma_{g, 1} ; \mathbb{Q}\right)=H^{*}\left(\Omega_{0}^{\infty} \mathbf{M T S O}(\mathbf{2}) ; \mathbb{Q}\right)=\mathbb{Q}\left[\kappa_{1}, \kappa_{2}, \kappa_{3}, \ldots\right], \quad\left|\kappa_{i}\right|=2 i
$$

(Also known with \mathbb{F}_{p}-coefficients (Galatius 'O4), more complicated.)
\Rightarrow Mumford's ' 83 conjecture that $H^{*}\left(\mathcal{M}_{g} ; \mathbb{Q}\right)=\mathbb{Q}\left[\kappa_{1}, \kappa_{2}, \ldots\right]$ stably.

The Madsen-Weiss theorem

There are now several further proofs of the Madsen-Weiss theorem

- Galatius-Madsen-Tillmann-Weiss '09
- Galatius-R-W '10
- Eliashberg-Galatius-Mishachev '11

All proofs are from the point of view of differential topology, and begin with the replacement $B \Gamma_{g, 1} \simeq \operatorname{BDiff}\left(\Sigma_{g, 1}\right)$ and the specific geometric model

$$
B \operatorname{Diff}(W)=\left\{X \subset \mathbb{R}^{\infty} \left\lvert\, \begin{array}{l}
X \text { is a smoth submanifold } \\
\text { which is diffeomorphic to } W
\end{array}\right.\right\}
$$

and its analogue for manifolds with boundary.
The most well-developed method of proof (GMTW and GR-W) builds on the remarkable theorem of Tillmann '97 relating $\Omega B\left(\underset{g \geq 0}{\amalg} B \Gamma_{g, 1}\right)$ with the cobordism categories from TCFT.

Proof overview (GR-W)

- Consider space of "long surfaces": surfaces inside $\mathbb{R} \times[0,1]^{\infty}$ which can move to $\pm \infty$. This is a model for BCob_{2}.

- (GMTW theorem) Show this is $\Omega^{\infty-1}$ MTSO(2), " h-principle".
- Geometric model for $B\left(\coprod_{g \geq 0} B \Gamma_{g, 1}\right)$ as subspace of special long surfaces.

- Show that an arbitrary family of long surfaces can be deformed into a family of special ones, "parameterised surgery".

Further examples

The argument scheme just described was introduced by Galatius to study the stable homology of moduli spaces of graphs in \mathbb{R}^{∞}, which model BAut $\left(F_{n}\right)$.

Theorem (Galatius '11)

$$
\lim _{n \rightarrow \infty} H^{*}\left(\operatorname{Aut}\left(F_{n}\right)\right)=H^{*}\left(\Omega_{0}^{\infty} \mathbf{S}\right)
$$

Corollary

$S_{n} \rightarrow \operatorname{Aut}\left(F_{n}\right)$ is a (co)homology isomorphism in a stable range

Further examples

Galatius-R-W: analogue of the Madsen-Weiss theorem for any manifold of dimension $2 n$ with respect to stabilisation by $S^{n} \times S^{n}$, i.e. a homotopy theoretic formula for

$$
\lim _{g \rightarrow \infty} H^{*}\left(B \operatorname{Diff}\left(W \#^{g} S^{n} \times S^{n}\right)\right)
$$

The general formulation is quite complicated.
Special case: For $W=D^{2 n}$ have

$$
\begin{aligned}
\lim _{g \rightarrow \infty} H^{*}\left(B D i f f\left(D^{2 n} \#^{g} S^{n} \times S^{n}\right)\right) & =H^{*}\left(\Omega_{0}^{\infty} \mathbf{M T} \theta_{\mathbf{n}}\right) \\
& \cong_{\mathbb{Q}} \mathbb{Q}\left[\kappa_{c} \mid c \in \mathcal{B}\right]
\end{aligned}
$$

where \mathcal{B} is the basis of monomials of $\mathbb{Q}\left[e, p_{n-1}, p_{n-2}, \ldots, p_{\left[\frac{n+1}{4}\right]}\right]$ of degree $>2 n$ (where $\left.|e|=2 n,\left|p_{i}\right|=4 i\right)$.

Beyond stable homology

Secondary homological stability

Homological stability for mapping class groups said

$$
H_{d}\left(\Gamma_{g, 1}, \Gamma_{g-1,1}\right)=\text { o for } d \leq \frac{2 g-2}{3} .
$$

Theorem (Galatius-Kupers-R-W '19)

There are maps

$$
\varphi_{*}: H_{d-2}\left(\Gamma_{g-3,1}, \Gamma_{g-4,1}\right) \longrightarrow H_{d}\left(\Gamma_{g, 1}, \Gamma_{g-1,1}\right)
$$

which are epimorphisms for $d \leq \frac{3 g-1}{4}$ and isomorphisms for $d \leq \frac{3 g-5}{4}$.
"The failure of homological stability is itself stable."

Furthermore, with \mathbb{Q}-coefficients these maps are epimorphisms for $d \leq \frac{4 g-1}{5}$ and isomorphisms for $d \leq \frac{4 g-6}{5}$.

Chart

Figure 1: $H_{d}\left(\Gamma_{g, 1}, \Gamma_{g-1,1} ; \mathbb{Q}\right)$; ? means unknown, ? means not zero Non-zero groups: use results of Faber, Kontsevich, Morita.

Proof overview

Uses a new paradigm for understanding families of moduli spaces
S. Galatius, A. Kupers, O. R-W, Cellular Ek-algebras (arXiv:1805.07184)
based on methods from abstract homotopy theory.
Take seriously the idea that things such as

$$
\mathbf{R}:=\coprod_{g \geq 0} B \Gamma_{g, 1}
$$

are algebraic objects, and try to understand a "presentation". Homotopical, so "higher algebraic": E_{k}-algebras.
e.g. \mathbf{R} is an \mathbb{N}-graded E_{2}-algebra.
(Even defining the secondary stabilisation map requires this.)
In homotopy theory
"generators" and "relations" = cells
so: analyse cell structure of \mathbf{R} as a \mathbb{N}-graded E_{2}-algebra.

Proof overview

Step 1. Reverse engineer E_{2}-cell structure of \mathbf{R} in low degrees from calculations of $H_{g, d}(\mathbf{R})=H_{d}\left(\Gamma_{g, 1}\right)$, giving a skeleton \mathbf{C}.

Many calculations available: Abhau, Benson, Bödigheimer, Boes, F. Cohen, Ehrenfried, Godin, Harer, Hermann, Korkmaz, Looijenga, Meyer, Morita, Mumford, Pitsch, Sakasai, Stipsicz, Tommasi, Wang, ...

The skeleton \mathbf{C} has 5 cells. Can formulate (secondary) homological stability for \mathbf{C}, and prove it essentially by direct calculation.

Proof overview

Step 2. Show $\mathbf{R}=\mathbf{C} \cup\left\{E_{2}-(g, d)\right.$-cells with $d \geq g-1$ and $\left.d \geq 3\right\}$. Lowest slope cell added to \mathbf{C} is then a (4,3)-cell; easy to see that this cannot break (secondary) stability in degrees $d<\frac{39}{4}$.

To estimate cells, use a homology theory for E_{k}-algebras,

$$
\begin{aligned}
\text { "E } E_{k} \text {-homology" } & =\text { "derived indecomposables" } \\
& =\text { "topological Quillen homology" }
\end{aligned}
$$

which detects E_{k}-cell structures.

Theorem (Galatius-Kupers-R-W '19)

$H_{g, d}^{\mathrm{E}_{2}}(\mathbf{R})=0$ for $d<g-1$.
Comes down to proving connectivity of certain simplicial complexes of arcs on surfaces, but different to those in classical proofs of homological stability.

Further examples

This E_{k}-cellular perspective can be applied to many examples.
The vanishing line for E_{k}-homology (Step 2) holds for

- $\coprod_{n \geq 0} B G L_{n}(R)$ for R a field or Dedekind domain
- $\coprod_{n \geq 0} B S p_{2 n}(\mathbb{Z})$
(Looijenga-van der Kallen)
- $\coprod_{n \geq 0} \operatorname{BAut}\left(F_{n}\right)$
(Hatcher-Vogtmann)
By itself such a vanishing line implies ordinary homological stability (with slope $\frac{1}{2}$).
To get more out one must investigate the E_{k}-cell structure in low degrees: phenomena here will propagate. For example

Theorem (Galatius-Kupers-R-W '19)
If $q=p^{r} \neq 2$, then $H_{d}\left(G L_{n}\left(\mathbb{F}_{q}\right) ; \mathbb{F}_{p}\right)=$ ofor $0<d<n+r(p-1)-2$.
If $q=2$, then $H_{d}\left(G L_{n}\left(\mathbb{F}_{2}\right) ; \mathbb{F}_{2}\right)=0$ for $0<d<\frac{2 n}{3}-1$.

Questions?

