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Which moduli spaces?



Moduli spaces of Riemann surfaces

For g ≥ 2,

Mg =
{genus g Riemann surfaces}

isomorphism

Earle–Eells ’69:

Mg = {complex structures on Σg}//Di� +
(Σg)

=
{complex structures on Σg}

Di� +
(Σg)id

//
Di� +

(Σg)

Di� +
(Σg)id

=: (Teichmüller space)//(mapping class group Γg)

{complex structures on Σg} and Teichmüller space are contractible
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Moduli spaces of Riemann surfaces

Reminder on classifying spaces
G (topological) group

BG = {any contractible free G-space}/G “classifying space of G”

G discrete
BG = K(G, 1) Eilenberg–Mac Lane space, recover G as π1(BG, ∗)
H∗(BG) = Hgroup

∗ (G)

G topological
recover G up to homotopy as ΩBG = map∗(S1,BG)

Mg ' BΓg ' BDi� +
(Σg)Mg ' BΓg ' BDi� +
(Σg)

algebraic geometry

combinatorial group theory

di�erential topology
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Examples of moduli spaces

Anything which is likeMg, BΓg, or BDi� +
(Σg) is a moduli space.

LikeMg:

• Ag moduli spaces of principally polarized abelian varieties
• Confn(Rk) unordered configuration spaces
• HurG

n Hurwitz spaces

Like BΓg:

• BSn symmetric groups
• Bβn braid groups
• BGLn(R) general linear groups
• BSp2n(R) symplectic groups
• BAut(Fn) automorphism groups of free groups

Like BDi� +
(Σg):

• BDi� (W) di�eomorphism groups
• BhAut(W) homotopy automorphism groups 3



Moduli spaces of smooth manifolds

For W a closed manifold, the space of embeddings

Emb(W,R∞)

has a free Di� (W)-action by precomposition, and is contractible.

Take the specific geometric model

BDi� (W) = Emb(W,R∞)/Di� (W)

=
{

X ⊂ R∞ | X is a smooth submanifold
which is di�eomorphic to W

}
the “moduli space of submanifolds of R∞ di�eomorphic to W”.
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Why cohomology?

A moduli spaceM is anything which classifies some kind of families:

map(B,M) = {families of (...) over B}

Then

H∗(M) = {characteristic classes of such families}
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Homological stability



Stabilisation

Sn−1 → Sn: σ 7−→ σ t Idn

GLn−1(R)→ GLn(R): A 7−→ A⊕ IdR =

[
A 0
0 1

]
Aut(Fn−1)→ Aut(Fn) : f 7−→ f ∗ IdZ

For mapping class groups form the variant Γg,1 =
Di� (Σg,1)

Di� (Σg,1)id
, where

Di� (Σg,1) is di�eomorphisms
which are the identity near the
boundary.

Σg,1
· · ·

Then boundary connect-sum with Σ1,1 gives

ϕ · · · ϕ IdΣ1,1
· · ·7−→

Γg−1,1 −→ Γg,1
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Homological stability

Many sequences of groups G0 → G1 → G2 → G3 → · · · satisfy

Generic homological stability theorem. For a divergent function f

Hd(Gn−1)→ Hd(Gn) is an
{

epimorphism for d ≤ f (n),
isomorphism for d < f (n).

Equivalently, Hd(Gn,Gn−1) = 0 for d ≤ f (n).

• Sn (Nakaoka ’60)
• GLn(R) (Quillen, Maazen ’79, Charney ’80, van der Kallen ’80, ...)
• Sp2n(R), On,n(R) (Vogtmann ’81, Charney ’87, ...)
• Aut(Fn) (Hatcher–Vogtmann ’98, ...)
• Γg,1 (Harer ’85, Ivanov ’91, Boldsen ’12, R-W ’16)

specifically Hd(Γg,1, Γg−1,1) = 0 for d ≤ 2g− 2
3 .

Closing the boundary Γg,1 → Γg is also a homology isomorphism
in a stable range, so Hd(Mg) ∼= Hd(Γg,1) stably.
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Proof overview

Idea of Quillen: find simplicial object

Xn(0) Xn(1) Xn(2) · · ·

with Gn-action, such that

(i) stabilisers of simplices are smaller groups in the family,
(ii) Xn is a good approximation to a point: it is highly connected,

(iii) Xn/Gn is not too complicated.

By (ii) Xn//Gn is a good approximation to BGn; by (i) it is constructed
from BGi with i < n, and by (iii) the recipe for this construction is not
too complicated.

Axiomatised (Wahl–R-W ’17), but verifying (ii)—which was always the
most di�cult—must still be done by hand.

It always depends on the specifics of the groups Gn, though there
are some general principles.
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Example: symmetric groups

For Sn use the complex of injective words:

Xn(p) :=
{

words a0a1 · · · ap in {1, 2, . . . , n} where
each letter occurs at most once

}
,

where the ith face of a simplex is given by removing the ith letter.

Theorem (Farmer ’79, Björner–Wachs ’83, Kerz ’04, R-W ’13, Bestvina
’14, Gan ’17)
Xn is (n− 2)-connected.
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Generalisation of the strategy

Strategy can be reinterpreted as a “partial nonabelian resolution”

BGn Xn(0)//Gn Xn(1)//Gn Xn(2)//Gn · · ·

where each Xn(p)//Gn is a coproduct of BGi’s with i < n.

This “resolution” point of view applies to many further examples,
such as Confn(Rk) or BDi� (W).

Theorem (Galatius–R-W ’18)
For 2n ≥ 6 and W a simply-connected 2n-manifold with ∂W 6= ∅ have

Hd(BDi� (W#gSn × Sn),BDi� (W#g−1Sn × Sn)) = 0 for d ≤ g− 2
2 .

Variants: virtually poly-Z fundamental group (Friedrich), for
stabilisation by Sp × Sq etc. (Perlmutter), for homeomorphism
groups (Kupers), for Di� as a discrete group (Nariman).
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Stable cohomology



Stable (co)homology

Complementary to the stability problem is the determination of the
limiting homology.

These two problems are unrelated at the level of techniques, and
also logically.

Philosophy for approaching the limiting homology comes from the
foundations of algebraic K-theory.
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Group-completion

Combine moduli spaces into a monoid:∐
n≥0

BSn
disjoint union of

finite sets
∐

n≥0
BGLn(R) direct sum of

R-modules∐
n≥0

Confn(Rk) disjoint union of
configurations

∐
g≥0

BΓg,1
boundary connect-

sum of surfaces

Recall for a topological group G have G ' ΩBG.

Can also form classifying space BM of a topological monoid M, and
ΩBM is its homotopy theoretic group-completion.

How does this relate to “inverting elements of M”?

Group-completion theorem.
If M is a homotopy commutative monoid then

H∗(M)[π0(M)−1] = H∗(ΩBM).

e.g. M =
∐

n≥0
Xn with Xn connected then colim

n→∞
H∗(Xn) = H∗(Ω0BM).

Fundamentally a homological result. 12



Some group-completions

Theorem (Barratt–Priddy ’72, Quillen, Segal ’73, May ’72)

ΩB

∐
n≥0

Confn(Rk)

 ' ΩkSk = map∗(Sk, Sk)

ΩB

∐
n≥0

BSn

 ' Ω∞S = colim
k→∞

ΩkSk

(Similarity because BSn = Emb({1, 2, . . . ,n},R∞)/Sn = Confn(R∞))

Cannot generally expect to identify a group-completion:
Definition (Quillen ’72)

ΩB

∐
n≥0

BGLn(R)

 =: K(R), algebraic K-theory

13



The Madsen–Weiss theorem

Theorem (Madsen–Weiss ’07)

ΩB

∐
g≥0

BΓg,1

 ' Ω∞MTSO(2)

Easy to calculate with Q-coe�cients:

lim
g→∞

H∗(Γg,1;Q) = H∗(Ω∞0 MTSO(2);Q) = Q[κ1, κ2, κ3, . . .], |κi| = 2i

(Also known with Fp-coe�cients (Galatius ’04), more complicated.)

⇒ Mumford’s ’83 conjecture that H∗(Mg;Q) = Q[κ1, κ2, . . .] stably.
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The Madsen–Weiss theorem

There are now several further proofs of the Madsen–Weiss theorem

• Galatius–Madsen–Tillmann–Weiss ’09
• Galatius–R-W ’10
• Eliashberg–Galatius–Mishachev ’11

All proofs are from the point of view of di�erential topology, and
begin with the replacement BΓg,1 ' BDi� (Σg,1) and the specific
geometric model

BDi� (W) = {X ⊂ R∞ | X is a smooth submanifold
which is di�eomorphic to W}

and its analogue for manifolds with boundary.

The most well-developed method of proof (GMTW and GR-W) builds

on the remarkable theorem of Tillmann ’97 relating ΩB

(∐
g≥0

BΓg,1

)
with the cobordism categories from TCFT.
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Proof overview (GR-W)

• Consider space of “long surfaces”: surfaces inside R× [0, 1]∞

which can move to ±∞. This is a model for BCob2.

• (GMTW theorem) Show this is Ω∞−1MTSO(2), “h-principle”.
• Geometric model for B

(∐
g≥0 BΓg,1

)
as subspace of special

long surfaces.

• Show that an arbitrary family of long surfaces can be deformed
into a family of special ones, “parameterised surgery”. 16



Further examples

The argument scheme just described was introduced by Galatius to
study the stable homology of moduli spaces of graphs in R∞, which
model BAut(Fn).

Theorem (Galatius ’11)
lim

n→∞
H∗(Aut(Fn)) = H∗(Ω∞0 S)

Corollary
Sn → Aut(Fn) is a (co)homology isomorphism in a stable range
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Further examples

Galatius–R-W: analogue of the Madsen–Weiss theorem for any
manifold of dimension 2n with respect to stabilisation by Sn × Sn,
i.e. a homotopy theoretic formula for

lim
g→∞

H∗(BDi� (W#gSn × Sn)).

The general formulation is quite complicated.

Special case: For W = D2n have

lim
g→∞

H∗(BDi� (D2n#gSn × Sn)) = H∗(Ω∞0 MTθn)

∼=Q Q[κc | c ∈ B]

where B is the basis of monomials of Q[e,pn−1,pn−2, . . . ,pd n+1
4 e] of

degree > 2n (where |e| = 2n, |pi| = 4i).
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Beyond stable homology



Secondary homological stability

Homological stability for mapping class groups said

Hd(Γg,1, Γg−1,1) = 0 for d ≤ 2g− 2
3 .

Theorem (Galatius–Kupers–R-W ’19)
There are maps

ϕ∗ : Hd−2(Γg−3,1, Γg−4,1) −→ Hd(Γg,1, Γg−1,1)

which are epimorphisms for d ≤ 3g−1
4 and isomorphisms for

d ≤ 3g−5
4 .

“The failure of homological stability is itself stable.”

Furthermore, with Q-coe�cients these maps are epimorphisms for
d ≤ 4g−1

5 and isomorphisms for d ≤ 4g−6
5 .
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Figure 1: Hd(Γg,1, Γg−1,1;Q); ? means unknown, ? means not zero

Non-zero groups: use results of Faber, Kontsevich, Morita.
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Proof overview

Uses a new paradigm for understanding families of moduli spaces

S. Galatius, A. Kupers, O. R-W, Cellular Ek-algebras (arXiv:1805.07184)

based on methods from abstract homotopy theory.

Take seriously the idea that things such as

R :=
∐
g≥0

BΓg,1

are algebraic objects, and try to understand a “presentation”.

Homotopical, so “higher algebraic”: Ek-algebras.
e.g. R is an N-graded E2-algebra.

(Even defining the secondary stabilisation map requires this.)

In homotopy theory

“generators” and “relations” = cells

so: analyse cell structure of R as a N-graded E2-algebra. 21



Proof overview

Step 1. Reverse engineer E2-cell structure of R in low degrees from
calculations of Hg,d(R) = Hd(Γg,1), giving a skeleton C.

0

1

2

1

Z
2

Z
3

Z
4

Z
5

Z
6

ZZ
0

Z Z/10

Z/2 Z⊕ Z/2 Z Z Z

d/g

Many calculations available: Abhau, Benson, Bödigheimer, Boes,
F. Cohen, Ehrenfried, Godin, Harer, Hermann, Korkmaz, Looijenga,
Meyer, Morita, Mumford, Pitsch, Sakasai, Stipsicz, Tommasi, Wang, ...

The skeleton C has 5 cells. Can formulate (secondary) homological
stability for C, and prove it essentially by direct calculation.
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Proof overview

Step 2. Show R = C ∪ {E2-(g,d)-cells with d ≥ g− 1 and d ≥ 3}.

Lowest slope cell added to C is then a (4, 3)-cell; easy to see that
this cannot break (secondary) stability in degrees d < 3g

4 .

To estimate cells, use a homology theory for Ek-algebras,

“Ek-homology” = “derived indecomposables”
= “topological Quillen homology”

which detects Ek-cell structures.

Theorem (Galatius–Kupers–R-W ’19)
HE2

g,d(R) = 0 for d < g− 1.

Comes down to proving connectivity of certain simplicial complexes
of arcs on surfaces, but di�erent to those in classical proofs of
homological stability.

23



Further examples

This Ek-cellular perspective can be applied to many examples.

The vanishing line for Ek-homology (Step 2) holds for

•
∐

n≥0
BGLn(R) for R a field or Dedekind domain (Charney)

•
∐

n≥0
BSp2n(Z) (Looijenga–van der Kallen)

•
∐

n≥0
BAut(Fn) (Hatcher–Vogtmann)

By itself such a vanishing line implies ordinary homological stability
(with slope 1

2 ).

To get more out one must investigate the Ek-cell structure in low
degrees: phenomena here will propagate. For example
Theorem (Galatius–Kupers–R-W ’19)
If q = pr 6= 2, then Hd(GLn(Fq);Fp) = 0 for 0 < d < n + r(p− 1)− 2.

If q = 2, then Hd(GLn(F2);F2) = 0 for 0 < d < 2n
3 − 1.
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Questions?
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