Cohomology of moduli spaces

Oscar Randal-Williams

LEVERHULME TRUST

Which moduli spaces?

Moduli spaces of Riemann surfaces

or
$$g \geq$$
 2, $\mathcal{M}_g = rac{\{ ext{genus } g ext{ Riemann surfaces}\}}{ ext{isomorphism}}$

Earle-Eells '69:

$$\mathcal{M}_{g} = \{ \text{complex structures on } \Sigma_{g} \} / / \text{Diff}^{+}(\Sigma_{g}) \\ = \frac{\{ \text{complex structures on } \Sigma_{g} \}}{\text{Diff}^{+}(\Sigma_{g})_{id}} / / \frac{\text{Diff}^{+}(\Sigma_{g})}{\text{Diff}^{+}(\Sigma_{g})_{id}} \\ =: (\text{Teichmüller space}) / / (\text{mapping class group } \Gamma_{g}) \}$$

{complex structures on Σ_g } and Teichmüller space are contractible

Reminder on classifying spaces *G* (topological) group

 $BG = \{any \text{ contractible free } G-space\}/G$ "classifying space of G"

G discrete

BG = K(G, 1) Eilenberg-Mac Lane space, recover G as $\pi_1(BG, *)$ $H_*(BG) = H_*^{group}(G)$

G topological

recover G up to homotopy as $\Omega BG = map_*(S^1, BG)$

combinatorial group theory

 $\mathcal{M}_g \simeq \mathsf{B}\Gamma_g \simeq \mathsf{BDiff}^+(\Sigma_g)$

algebraic geometry

differential topology

Examples of moduli spaces

Anything which is like \mathcal{M}_g , $B\Gamma_g$, or $BDiff^+(\Sigma_g)$ is a moduli space.

Like \mathcal{M}_g :

- \mathcal{A}_g moduli spaces of principally polarized abelian varieties
- $Conf_n(\mathbb{R}^k)$ unordered configuration spaces
- Hur^G_n Hurwitz spaces

Like BГg:

- BS_n symmetric groups
- $B\beta_n$ braid groups
- BGL_n(R) general linear groups
- BSp_{2n}(R) symplectic groups
- $BAut(F_n)$ automorphism groups of free groups

Like $BDiff^+(\Sigma_g)$:

- BDiff(W) diffeomorphism groups
- *BhAut(W)* homotopy automorphism groups

For W a closed manifold, the space of embeddings

 $Emb(W, \mathbb{R}^{\infty})$

has a free *Diff(W)*-action by precomposition, and is contractible. Take the specific geometric model

$$\begin{split} BDiff(W) &= Emb(W, \mathbb{R}^{\infty})/Diff(W) \\ &= \left\{ X \subset \mathbb{R}^{\infty} \mid \substack{X \text{ is a smooth submanifold} \\ \text{which is diffeomorphic to } W \right\} \end{split}$$

the "moduli space of submanifolds of \mathbb{R}^{∞} diffeomorphic to W".

A moduli space $\ensuremath{\mathcal{M}}$ is anything which classifies some kind of families:

 $map(B, M) = \{ families of (...) over B \}$

Then

 $H^*(\mathcal{M}) = \{$ characteristic classes of such families $\}$

Homological stability

Stabilisation

$$S_{n-1} \to S_n: \qquad \sigma \longmapsto \sigma \sqcup Id_n$$

$$GL_{n-1}(R) \to GL_n(R): \qquad A \longmapsto A \oplus Id_R = \begin{bmatrix} A & 0 \\ 0 & 1 \end{bmatrix}$$

 $\operatorname{Aut}(F_{n-1}) \to \operatorname{Aut}(F_n): \quad f \longmapsto f * \operatorname{Id}_{\mathbb{Z}}$

For mapping class groups form the variant $\Gamma_{g,1} = \frac{Diff(\Sigma_{g,1})}{Diff(\Sigma_{g,1})_{id}}$, where $Diff(\Sigma_{g,1})$ is diffeomorphisms which are the identity near the boundary.

Then boundary connect-sum with $\Sigma_{1,1}$ gives

Many sequences of groups $G_0 \to G_1 \to G_2 \to G_3 \to \cdots$ satisfy

Generic homological stability theorem. For a divergent function f

$$H_d(G_{n-1}) o H_d(G_n)$$
 is an $egin{cases}$ epimorphism for $d \leq f(n)$, isomorphism for $d < f(n)$.

Equivalently, $H_d(G_n, G_{n-1}) = 0$ for $d \leq f(n)$.

- S_n (Nakaoka '60)
- *GL_n(R)* (Quillen, Maazen '79, Charney '80, van der Kallen '80, …)
- *Sp*_{2n}(*R*), *O*_{n,n}(*R*) (Vogtmann '81, Charney '87, ...)
- Aut(F_n) (Hatcher–Vogtmann '98, ...)
- Γ_{g,1} (Harer '85, Ivanov '91, Boldsen '12, R-W '16)

specifically
$$H_d(\Gamma_{g,1},\Gamma_{g-1,1}) = 0$$
 for $d \leq \frac{2g-2}{3}$.

Closing the boundary $\Gamma_{g,1} \to \Gamma_g$ is also a homology isomorphism in a stable range, so $H_d(\mathcal{M}_g) \cong H_d(\Gamma_{g,1})$ stably.

Proof overview

Idea of Quillen: find simplicial object

$$X_n(0)$$
 $\qquad X_n(1)$ $\qquad X_n(2)$

with G_n -action, such that

(i) stabilisers of simplices are smaller groups in the family, (ii) X_n is a good approximation to a point: it is highly connected, (iii) X_n/G_n is not too complicated.

By (ii) $X_n /\!\!/ G_n$ is a good approximation to BG_n ; by (i) it is constructed from BG_i with i < n, and by (iii) the recipe for this construction is not too complicated.

Axiomatised (Wahl-R-W '17), but verifying (ii)—which was always the most difficult—must still be done by hand.

It always depends on the specifics of the groups G_n , though there are some general principles.

For S_n use the complex of injective words:

$$X_n(p) := \left\{ egin{array}{c} {
m words} \ a_0 a_1 \cdots a_p \ {
m in} \ \{1,2,\ldots,n\} \ {
m where} \ {
m each \ letter \ occurs \ at \ most \ once} \end{array}
ight\},$$

where the *i*th face of a simplex is given by removing the *i*th letter.

Theorem (Farmer '79, Björner–Wachs '83, Kerz '04, R-W '13, Bestvina '14, Gan '17) X_n is (n - 2)-connected. Strategy can be reinterpreted as a "partial nonabelian resolution"

$$BG_n \longleftarrow X_n(0)/\!/G_n \overleftarrow{\longrightarrow} X_n(1)/\!/G_n \overleftarrow{\longleftarrow} X_n(2)/\!/G_n \overleftarrow{\longleftarrow} \cdots$$

where each $X_n(p) / / G_n$ is a coproduct of BG_i 's with i < n.

This "resolution" point of view applies to many further examples, such as $Conf_n(\mathbb{R}^k)$ or BDiff(W).

Theorem (Galatius-R-W '18)

For $2n \ge 6$ and W a simply-connected 2n-manifold with $\partial W \neq \emptyset$ have

$$H_d(BDiff(W\#^gS^n \times S^n), BDiff(W\#^{g-1}S^n \times S^n)) = 0$$
 for $d \leq \frac{g-2}{2}$.

Variants: virtually poly- \mathbb{Z} fundamental group (Friedrich), for stabilisation by $S^p \times S^q$ etc. (Perlmutter), for homeomorphism groups (Kupers), for *Diff* as a discrete group (Nariman).

Stable cohomology

- Complementary to the stability problem is the determination of the limiting homology.
- These two problems are unrelated at the level of techniques, and also logically.
- Philosophy for approaching the limiting homology comes from the foundations of algebraic *K*-theory.

Group-completion

Combine moduli spaces into a monoid:

$\coprod_{n>0} BS_n$	disjoint union of finite sets	$\coprod_{n>0} BGL_n(R)$	direct sum of <i>R</i> -modules
$\coprod_{n\geq o}^{-} \mathit{Conf}_n(\mathbb{R}^k)$	disjoint union of configurations	$\coprod_{g\geq o}^{-}B\Gamma_{g,1}$	boundary connect- sum of surfaces

Recall for a topological group G have $G \simeq \Omega BG$.

Can also form classifying space BM of a topological monoid M, and ΩBM is its homotopy theoretic group-completion.

How does this relate to "inverting elements of M"?

Group-completion theorem.

If M is a homotopy commutative monoid then

 $H_*(M)[\pi_0(M)^{-1}] = H_*(\Omega BM).$

e.g. $M = \coprod_{n \ge 0} X_n$ with X_n connected then $\operatornamewithlimits{colim}_{n \to \infty} H_*(X_n) = H_*(\Omega_0 BM)$.

Fundamentally a homological result.

Some group-completions

Theorem (Barratt-Priddy '72, Quillen, Segal '73, May '72)

$$\Omega B\left(\prod_{n\geq 0} Conf_n(\mathbb{R}^k)\right) \simeq \Omega^k S^k = map_*(S^k, S^k)$$
$$\Omega B\left(\prod_{n\geq 0} BS_n\right) \simeq \Omega^\infty \mathbf{S} = \underset{k\to\infty}{\operatorname{colim}} \Omega^k S^k$$

(Similarity because $BS_n = Emb(\{1, 2, ..., n\}, \mathbb{R}^{\infty})/S_n = Conf_n(\mathbb{R}^{\infty})$)

Cannot generally expect to identify a group-completion:

Definition (Quillen '72)

$$\Omega B\left(\prod_{n\geq 0} BGL_n(R)\right) =: K(R), \text{ algebraic K-theory}$$

Theorem (Madsen–Weiss '07)
$$\Omega B\left(\coprod_{g\geq 0} B\Gamma_{g,1}\right) \simeq \Omega^{\infty} \mathsf{MTSO}(2)$$

Easy to calculate with \mathbb{Q} -coefficients:

$$\lim_{g\to\infty} H^*(\Gamma_{g,1};\mathbb{Q}) = H^*(\Omega_0^{\infty} \mathbf{MTSO}(\mathbf{2});\mathbb{Q}) = \mathbb{Q}[\kappa_1,\kappa_2,\kappa_3,\ldots], \quad |\kappa_i| = 2i$$

(Also known with \mathbb{F}_p -coefficients (Galatius '04), more complicated.)

 \Rightarrow Mumford's '83 conjecture that $H^*(\mathcal{M}_g; \mathbb{Q}) = \mathbb{Q}[\kappa_1, \kappa_2, \ldots]$ stably.

There are now several further proofs of the Madsen–Weiss theorem

- Galatius-Madsen-Tillmann-Weiss '09
- Galatius-R-W '10
- Eliashberg–Galatius–Mishachev '11

All proofs are from the point of view of differential topology, and begin with the replacement $B\Gamma_{g,1} \simeq BDiff(\Sigma_{g,1})$ and the specific geometric model

 $BDiff(W) = \{ X \subset \mathbb{R}^{\infty} \mid \stackrel{X \text{ is a smooth submanifold}}{\text{which is diffeomorphic to } W} \}$

and its analogue for manifolds with boundary.

The most well-developed method of proof (GMTW and GR-W) builds on the remarkable theorem of Tillmann '97 relating $\Omega B\left(\coprod_{g\geq 0} B\Gamma_{g,1}\right)$ with the cobordism categories from TCFT.

Proof overview (GR-W)

• Consider space of "long surfaces": surfaces inside $\mathbb{R} \times [0,1]^{\infty}$ which can move to $\pm \infty$. This is a model for $BCob_2$.

- (GMTW theorem) Show this is $\Omega^{\infty-1}$ **MTSO**(2), "*h*-principle".
- Geometric model for $B\left(\coprod_{g\geq 0} B\Gamma_{g,1}\right)$ as subspace of special long surfaces.

• Show that an arbitrary family of long surfaces can be deformed into a family of special ones, "parameterised surgery".

The argument scheme just described was introduced by Galatius to study the stable homology of moduli spaces of graphs in \mathbb{R}^{∞} , which model $BAut(F_n)$.

Theorem (Galatius '11)

$$\lim_{n\to\infty} H^*(\operatorname{Aut}(F_n)) = H^*(\Omega_0^\infty \mathbf{S})$$

Corollary $S_n \to Aut(F_n)$ is a (co)homology isomorphism in a stable range

Galatius–R-W: analogue of the Madsen–Weiss theorem for any manifold of dimension 2n with respect to stabilisation by $S^n \times S^n$, i.e. a homotopy theoretic formula for

 $\lim_{g\to\infty} H^*(BDiff(W\#^gS^n\times S^n)).$

The general formulation is quite complicated.

Special case: For $W = D^{2n}$ have

$$\lim_{g \to \infty} H^*(BDiff(D^{2n} \#^g S^n \times S^n)) = H^*(\Omega_0^{\infty} \mathbf{MT}\theta_{\mathbf{n}})$$
$$\cong_{\mathbb{Q}} \mathbb{Q}[\kappa_c \,|\, \mathbf{c} \in \mathcal{B}]$$

where \mathcal{B} is the basis of monomials of $\mathbb{Q}[e, p_{n-1}, p_{n-2}, \dots, p_{\lceil \frac{n+1}{4} \rceil}]$ of degree > 2n (where |e| = 2n, $|p_i| = 4i$).

Beyond stable homology

Secondary homological stability

Homological stability for mapping class groups said

$$H_d(\Gamma_{g,1},\Gamma_{g-1,1}) = 0 \text{ for } d \le \frac{2g-2}{3}$$

Theorem (Galatius–Kupers–R-W '19) There are maps

$$\varphi_* \colon H_{d-2}(\Gamma_{g-3,1},\Gamma_{g-4,1}) \longrightarrow H_d(\Gamma_{g,1},\Gamma_{g-1,1})$$

which are epimorphisms for $d \leq \frac{3g-1}{4}$ and isomorphisms for $d \leq \frac{3g-5}{4}.$

"The failure of homological stability is itself stable."

Furthermore, with \mathbb{Q} -coefficients these maps are epimorphisms for $d \leq \frac{4g-1}{5}$ and isomorphisms for $d \leq \frac{4g-6}{5}$.

Chart

Figure 1: $H_d(\Gamma_{g,1}, \Gamma_{g-1,1}; \mathbb{Q})$; ? means unknown, ? means not zero

Non-zero groups: use results of Faber, Kontsevich, Morita.

Uses a new paradigm for understanding families of moduli spaces S. Galatius, A. Kupers, O. R-W, *Cellular E_k-algebras* (arXiv:1805.07184) based on methods from abstract homotopy theory.

Take seriously the idea that things such as

$$\mathbf{R} := \coprod_{g \ge \mathbf{0}} B\Gamma_{g,1}$$

are algebraic objects, and try to understand a "presentation".

Homotopical, so "higher algebraic": E_k -algebras.

e.g. **R** is an \mathbb{N} -graded E_2 -algebra.

(Even *defining* the secondary stabilisation map requires this.)

In homotopy theory

```
"generators" and "relations" = cells
```

so: analyse cell structure of **R** as a \mathbb{N} -graded E_2 -algebra.

Proof overview

Step 1. Reverse engineer E_2 -cell structure of **R** in low degrees from calculations of $H_{g,d}(\mathbf{R}) = H_d(\Gamma_{g,1})$, giving a skeleton **C**.

Many calculations available: Abhau, Benson, Bödigheimer, Boes, F. Cohen, Ehrenfried, Godin, Harer, Hermann, Korkmaz, Looijenga, Meyer, Morita, Mumford, Pitsch, Sakasai, Stipsicz, Tommasi, Wang, ...

The skeleton **C** has 5 cells. Can formulate (secondary) homological stability for **C**, and prove it essentially by direct calculation.

Proof overview

Step 2. Show $\mathbf{R} = \mathbf{C} \cup \{E_2 - (g, d) \text{-cells with } d \ge g - 1 \text{ and } d \ge 3\}$.

Lowest slope cell added to **C** is then a (4, 3)-cell; easy to see that this cannot break (secondary) stability in degrees $d < \frac{3g}{4}$.

To estimate cells, use a homology theory for E_k -algebras,

"E_k-homology" = "derived indecomposables"
= "topological Quillen homology"

which detects E_k -cell structures.

Theorem (Galatius–Kupers–R-W '19) $H_{a,d}^{E_2}(\mathbf{R}) = 0$ for d < g - 1.

Comes down to proving connectivity of certain simplicial complexes of arcs on surfaces, but different to those in classical proofs of homological stability. This E_k -cellular perspective can be applied to many examples.

The vanishing line for E_k -homology (Step 2) holds for

- $\coprod_{n \ge 0} BGL_n(R)$ for R a field or Dedekind domain (Charney)
- $\coprod_{n\geq 0} BSp_{2n}(\mathbb{Z})$ (Looijenga-van der Kallen)
- $\coprod_{n \ge 0} BAut(F_n)$ (Hatcher–Vogtmann)

By itself such a vanishing line implies ordinary homological stability (with slope $\frac{1}{2}$).

To get more out one must investigate the E_k -cell structure in low degrees: phenomena here will propagate. For example

Theorem (Galatius–Kupers–R-W '19) If $q = p^r \neq 2$, then $H_d(GL_n(\mathbb{F}_q); \mathbb{F}_p) = 0$ for 0 < d < n + r(p - 1) - 2. If q = 2, then $H_d(GL_n(\mathbb{F}_2); \mathbb{F}_2) = 0$ for $0 < d < \frac{2n}{2} - 1$.

Questions?