Infinite loop spaces and positive scalar curvature

Oscar Randal-Williams

University of Cambridge

September 9, 2013

joint work with Boris Botvinnik and Johannes Ebert

Positive scalar curvature

For a Riemannian manifold (M,g) of dimension d, the scalar curvature is a function $s: M \to \mathbb{R}$ whose value at a point $p \in M$ may be described by

$$\frac{volB_r(p,M)}{volB_r(0,\mathbb{R}^d)} = 1 - \frac{s(p)}{6(d+2)}r^2 + O(r^4).$$

Thus the metric g has positive scalar curvature (psc) if every small enough geodesic ball has smaller volume than a euclidean ball of the same radius.

If (M,g) is equipped with a Spin structure \mathfrak{s} , then it has a (real) spinor bundle $\mathfrak{F}_M \to M$ and an Atiyah–Singer–Dirac operator \mathfrak{P}_g operating on $H = L^2(M; \mathfrak{F}_M)$. This has an index

$$\operatorname{ind}(\mathfrak{D}_g) \in KO^{-d}(*).$$

Theorem (Lichnerowicz, Hitchin)

If g is psc then the operator \mathcal{D}_g is invertible, and so $\operatorname{ind}(\mathcal{D}_g) = 0$.

Positive scalar curvature

The index $\operatorname{ind}(\mathfrak{P}_g)$ is in fact independent of the metric g: it is the image of the spin cobordism class $[M, \mathfrak{s}]$ under the Atiyah–Bott–Shapiro orientation

$$\alpha: \Omega_d^{\mathrm{Spin}} \longrightarrow \mathcal{K}O^{-d}(*) = \mathcal{K}O_d(*).$$

Thus the above theorem gives a topological obstruction to admitting a psc metric.

In the early 90's, Stolz showed, using work of Gromov–Lawson, Schoen–Yau, and others, that for a simply-connected Spin manifold of dimension $d \ge 5$, this is the *only* obstruction to admitting a psc metric.

I would like to address a somewhat different question.

Suppose *M* does admit a psc metric: what is the (algebraic) topology of the space $\mathcal{R}^+(M)$ of all psc metrics on *M*?

The index difference

The first results on this question are due to Hitchin, essentially via the following construction. Let M^d be a Spin manifold.

which gives a map

$$H(g_0): \mathcal{R}^+(M) \longrightarrow \Omega^{d+1}(\mathbb{Z} \times BO)$$

(depending on a choice of $g_0 \in \mathcal{R}^+(M)$). By considering the composition

$$\operatorname{Diff}(M) \stackrel{\varphi \mapsto \varphi^* g_0}{\longrightarrow} \mathcal{R}^+(M) \stackrel{H(g_0)}{\longrightarrow} \Omega^{d+1}(\mathbb{Z} \times BO)$$

Hitchin showed that $\pi_0(H(g_0))$ can be non-trivial, and hence that $\mathcal{R}^+(M)$ can be disconnected.

Computational results, I

The coarsest of our computational results is the following.

Theorem (Botvinnik–Ebert–R-W)

For every Spin manifold (M, \mathfrak{s}) of dimension $d \ge 6$ with a choice of psc metric g_0 , the map

$$\pi_k(\mathcal{R}^+(M)) \longrightarrow \pi_{k+d+1}(\mathbb{Z} \times BO) = \begin{cases} \mathbb{Z} & k+d+1 \equiv 0, 4 \ (8) \\ \mathbb{Z}/2 & k+d+1 \equiv 1, 2 \ (8) \\ 0 & else \end{cases}$$

induced by $\pi_k(H(g_0))$ is non-zero whenever the target group is non-zero.

i.e. this map hits all the $\mathbb{Z}/2\text{'s},$ and hits a nontrivial subgroup of all the $\mathbb{Z}\text{'s}.$

This result includes and extends those of Crowley–Schick (who prove surjectivity of this map for $d \ge 7$ and $k + d + 1 \equiv 2(8)$) and those of Hanke–Schick–Steimle (who prove the mod torsion part of this theorem for $k \gg d$).

Theorem (Chernysh, Walsh)

For an embedding $D^k \times N^{d-k} \hookrightarrow M$ with $k \ge 3$, and a standard metric on $D^k \times N^{d-k}$, the inclusion $\mathcal{R}^+(M, D^k \times N^{d-k}) \hookrightarrow \mathcal{R}^+(M)$ is a weak homotopy equivalence.

In particular, $\mathcal{R}^+(M, D^d) \hookrightarrow \mathcal{R}^+(M)$ is a weak homotopy equivalence.

 $\mathcal{R}^+(S^d, D^d)$ an *H*-space $\mathcal{R}^+(S^d, D^d)$ acts on $\mathcal{R}^+(M^d, D^d)$ This allows us to pass from results about S^d to results about all *d*-manifolds.

Computational results, II

Let g_{\circ} be the round metric on S^d , and $\mathcal{R}^+_{\circ}(S^d, D^d)$ be its path component. This is a (connected) *H*-space, and we may form its homotopical localisation $\mathcal{R}^+(S^d)_{(p)}$ at a prime *p*.

Theorem (Botvinnik–Ebert–R-W)

Let $d \ge 6$ and p be an odd prime. Then there is a map

$$f: \Omega^{d+1}_0(\mathbb{Z} imes BO)_{(p)} \longrightarrow \mathcal{R}^+_\circ(S^d, D^d)_{(p)}$$

such that $H(g_{\circ})_{(p)} \circ f$ induces multiplication by $Num(B_n/2n)$ times a *p*-local unit on π_{4n-d-1} .

In particular, if p is a regular prime then $H(g_{\circ})_{(p)}$ is a split epimorphism and so there is a splitting of spaces

$$\mathcal{R}^+_\circ(S^d,D^d)_{(p)}\simeq \Omega^{d+1}_0(\mathbb{Z} imes BO)_{(p)} imes X.$$

There is also a result at the prime 2, but it is more complicated to state.

These calculations are a consequence of a more geometric result. Let

 $\theta^n: BO(2n)\langle n \rangle \to BO(2n)$

denote the *n*-connected cover, and $\theta^*\gamma$ the 2*n*-dimensional vector bundle classified by θ . There is a Thom spectrum $\mathbf{MT}\theta^n = \mathbf{Th}(-\theta^*\gamma)$ with associated infinite loop space $\Omega^{\infty}\mathbf{MT}\theta^n$.

Theorem (Botvinnik–Ebert–R-W)

There is a map

$$\psi_{\mathsf{g}_{\circ}}: \Omega^{\infty+1}\mathsf{MT}\theta^{n} \longrightarrow \mathcal{R}^{+}(S^{2n})$$

such that the composition

$$H(g_{\circ}) \circ \psi_{g_{\circ}} : \Omega^{\infty+1} \mathbf{MT} \theta^{n} \longrightarrow \Omega^{2n+1}(\mathbb{Z} \times BO)$$

is the infinite loop map of the KO-theory Thom class of $\mathbf{MT}\theta^n$ (up to phantom maps).

The calculational results follow from this by pure (but involved) homotopy theory.

Words about the proof

(i) The parameterised Gromov-Lawson construction of Chernysh or Walsh shows that R⁺(-) is cobordism invariant for simply connected Spin manifolds. Hence we may replace S²ⁿ by W²ⁿ_g = #^gSⁿ × Sⁿ for arbitrarily large g.
(ii) The Pontrjagin-Thom construction provides a map

 $\alpha_g : BDiff(W_g^{2n}, D^{2n}) \longrightarrow \Omega_0^{\infty} \mathbf{MT} \theta^n$

and in work with Søren Galatius I have proved that this is a homology equivalence in degrees $* \leq \frac{g-4}{2}$.

- (iii) The technical heart of the proof is showing that the action of the mapping class group $\pi_0(\text{Diff}(W_g, D))$ on $\mathcal{R}^+(W_g)$ in the homotopy category factors through an abelian group.
- (iv) This means that the fibration sequence

 $\mathcal{R}^+(W_g) \longrightarrow \mathcal{R}^+(W_g) /\!\!/ \mathrm{Diff}(W_g, D) \longrightarrow B\mathrm{Diff}(W_g, D)$

is pulled back from a fibration over the +-construction $B\text{Diff}(W_g, D)^+$, which homotopically approximates $\Omega_0^\infty \mathbf{MT}\theta^n$ by my result with Galatius.

(v) Take the limit as $g \to \infty$ carefully.

Words about the index theory

There are some subtle points of index theory which need to be treated.

• Considering a 1-parameter family of psc metrics on S^d as a psc metric on $[0,1] \times S^d$, then closing off the ends, gives a map

$$\Omega \mathcal{R}^+(S^d) \longrightarrow \mathcal{R}^+(S^{d+1}).$$

(This is how we upgrade results about even spheres to all spheres.)As described earlier, there is an "action"

$$\mathcal{R}^+(S^d, D^d) \times \mathcal{R}^+(M^d, D^d) \longrightarrow \mathcal{R}^+(M^d, D^d).$$

In both cases we would like the evident diagram involving the secondary index maps H to commute. There is an alternative definition of the secondary index with which it is easier to prove these results, but these definitions have been shown to be equivalent in

J. Ebert, *The two definitions of the index difference*, 2013, arXiv:1308.4998.