Infinite loop spaces and positive scalar curvature

Oscar Randal-Williams
University of Cambridge

September 9, 2013
joint work with Boris Botvinnik and Johannes Ebert

Positive scalar curvature

For a Riemannian manifold (M, g) of dimension d, the scalar curvature is a function $s: M \rightarrow \mathbb{R}$ whose value at a point $p \in M$ may be described by

$$
\frac{\operatorname{vol} B_{r}(p, M)}{\operatorname{vol} B_{r}\left(0, \mathbb{R}^{d}\right)}=1-\frac{s(p)}{6(d+2)} r^{2}+O\left(r^{4}\right)
$$

Thus the metric g has positive scalar curvature (psc) if every small enough geodesic ball has smaller volume than a euclidean ball of the same radius.

If (M, g) is equipped with a Spin structure \mathfrak{s}, then it has a (real) spinor bundle $\mathscr{\$}_{M} \rightarrow M$ and an Atiyah-Singer-Dirac operator \mathscr{D}_{g} operating on $H=L^{2}\left(M ; \$_{M}\right)$. This has an index

$$
\operatorname{ind}\left(\mathscr{P}_{g}\right) \in K O^{-d}(*)
$$

Theorem (Lichnerowicz, Hitchin)

If g is psc then the operator \mathscr{D}_{g} is invertible, and so $\operatorname{ind}\left(\mathscr{D}_{g}\right)=0$.

Positive scalar curvature

The index $\operatorname{ind}\left(\mathscr{D}_{g}\right)$ is in fact independent of the metric g : it is the image of the spin cobordism class [M, \mathfrak{s}] under the Atiyah-Bott-Shapiro orientation

$$
\alpha: \Omega_{d}^{\mathrm{Spin}} \longrightarrow K O^{-d}(*)=K O_{d}(*)
$$

Thus the above theorem gives a topological obstruction to admitting a psc metric.

In the early 90 's, Stolz showed, using work of Gromov-Lawson, Schoen-Yau, and others, that for a simply-connected Spin manifold of dimension $d \geq 5$, this is the only obstruction to admitting a psc metric.

I would like to address a somewhat different question.
Suppose M does admit a psc metric: what is the (algebraic) topology of the space $\mathcal{R}^{+}(M)$ of all psc metrics on M ?

The index difference

The first results on this question are due to Hitchin, essentially via the following construction. Let M^{d} be a Spin manifold.

which gives a map

$$
H\left(g_{0}\right): \mathcal{R}^{+}(M) \longrightarrow \Omega^{d+1}(\mathbb{Z} \times B O)
$$

(depending on a choice of $g_{0} \in \mathcal{R}^{+}(M)$). By considering the composition

$$
\operatorname{Diff}(M) \xrightarrow{\varphi \mapsto \varphi^{*} g_{0}} \mathcal{R}^{+}(M) \xrightarrow{H\left(g_{0}\right)} \Omega^{d+1}(\mathbb{Z} \times B O)
$$

Hitchin showed that $\pi_{0}\left(H\left(g_{0}\right)\right)$ can be non-trivial, and hence that $\mathcal{R}^{+}(M)$ can be disconnected.

Computational results, I

The coarsest of our computational results is the following.

Theorem (Botvinnik-Ebert-R-W)

For every Spin manifold (M, \mathfrak{s}) of dimension $d \geq 6$ with a choice of psc metric g_{0}, the map

$$
\pi_{k}\left(\mathcal{R}^{+}(M)\right) \longrightarrow \pi_{k+d+1}(\mathbb{Z} \times B O)= \begin{cases}\mathbb{Z} & k+d+1 \equiv 0,4(8) \\ \mathbb{Z} / 2 & k+d+1 \equiv 1,2(8) \\ 0 & \text { else }\end{cases}
$$

induced by $\pi_{k}\left(H\left(g_{0}\right)\right)$ is non-zero whenever the target group is non-zero.
i.e. this map hits all the $\mathbb{Z} / 2$'s, and hits a nontrivial subgroup of all the Z's.

This result includes and extends those of Crowley-Schick (who prove surjectivity of this map for $d \geq 7$ and $k+d+1 \equiv 2(8)$) and those of Hanke-Schick-Steimle (who prove the mod torsion part of this theorem for $k \gg d$).

Cobordism invariance and multiplicative structures

Theorem (Chernysh, Walsh)

For an embedding $D^{k} \times N^{d-k} \hookrightarrow M$ with $k \geq 3$, and a standard metric on $D^{k} \times N^{d-k}$, the inclusion $\mathcal{R}^{+}\left(M, D^{k} \times N^{d-k}\right) \hookrightarrow \mathcal{R}^{+}(M)$ is a weak homotopy equivalence.
In particular, $\mathcal{R}^{+}\left(M, D^{d}\right) \hookrightarrow \mathcal{R}^{+}(M)$ is a weak homotopy equivalence.

$\mathcal{R}^{+}\left(S^{d}, D^{d}\right)$ an H-space $\quad \mathcal{R}^{+}\left(S^{d}, D^{d}\right)$ acts on $\mathcal{R}^{+}\left(M^{d}, D^{d}\right)$
This allows us to pass from results about S^{d} to results about all d-manifolds.

Computational results, II

Let $g \circ$ be the round metric on S^{d}, and $\mathcal{R}_{\circ}^{+}\left(S^{d}, D^{d}\right)$ be its path component. This is a (connected) H-space, and we may form its homotopical localisation $\mathcal{R}^{+}\left(S^{d}\right)_{(p)}$ at a prime p.

Theorem (Botvinnik-Ebert-R-W)

Let $d \geq 6$ and p be an odd prime. Then there is a map

$$
f: \Omega_{0}^{d+1}(\mathbb{Z} \times B O)_{(p)} \longrightarrow \mathcal{R}_{\circ}^{+}\left(S^{d}, D^{d}\right)_{(p)}
$$

such that $H\left(g_{\circ}\right)_{(p)} \circ f$ induces multiplication by $\operatorname{Num}\left(B_{n} / 2 n\right)$ times a p-local unit on $\pi_{4 n-d-1}$.

In particular, if p is a regular prime then $H\left(g_{\circ}\right)_{(p)}$ is a split epimorphism and so there is a splitting of spaces

$$
\mathcal{R}_{\circ}^{+}\left(S^{d}, D^{d}\right)_{(p)} \simeq \Omega_{0}^{d+1}(\mathbb{Z} \times B O)_{(p)} \times X
$$

There is also a result at the prime 2 , but it is more complicated to state.

Geometric results

These calculations are a consequence of a more geometric result. Let

$$
\theta^{n}: B O(2 n)\langle n\rangle \rightarrow B O(2 n)
$$

denote the n-connected cover, and $\theta^{*} \gamma$ the $2 n$-dimensional vector bundle classified by θ. There is a Thom spectrum $\mathbf{M T} \theta^{n}=\mathbf{T h}\left(-\theta^{*} \gamma\right)$ with associated infinite loop space $\Omega^{\infty} \mathbf{M T} \theta^{n}$.

Theorem (Botvinnik-Ebert-R-W)

There is a map

$$
\psi_{\mathrm{g}_{\circ}}: \Omega^{\infty+1} \mathbf{M T} \theta^{n} \longrightarrow \mathcal{R}^{+}\left(S^{2 n}\right)
$$

such that the composition

$$
H\left(g_{\circ}\right) \circ \psi_{g_{\circ}}: \Omega^{\infty+1} \mathbf{M T} \theta^{n} \longrightarrow \Omega^{2 n+1}(\mathbb{Z} \times B O)
$$

is the infinite loop map of the KO-theory Thom class of $\mathrm{MT} \theta^{n}$ (up to phantom maps).

The calculational results follow from this by pure (but involved) homotopy theory.

Words about the proof

(i) The parameterised Gromov-Lawson construction of Chernysh or Walsh shows that $\mathcal{R}^{+}(-)$is cobordism invariant for simply connected Spin manifolds. Hence we may replace $S^{2 n}$ by $W_{g}^{2 n}=\#^{g} S^{n} \times S^{n}$ for arbitrarily large g.
(ii) The Pontrjagin-Thom construction provides a map

$$
\alpha_{g}: B \operatorname{Diff}\left(W_{g}^{2 n}, D^{2 n}\right) \longrightarrow \Omega_{0}^{\infty} \mathbf{M T} \theta^{n}
$$

and in work with Søren Galatius I have proved that this is a homology equivalence in degrees $* \leq \frac{\mathrm{g}-4}{2}$.
(iii) The technical heart of the proof is showing that the action of the mapping class group $\pi_{0}\left(\operatorname{Diff}\left(W_{g}, D\right)\right)$ on $\mathcal{R}^{+}\left(W_{g}\right)$ in the homotopy category factors through an abelian group.
(iv) This means that the fibration sequence

$$
\mathcal{R}^{+}\left(W_{g}\right) \longrightarrow \mathcal{R}^{+}\left(W_{g}\right) / / \operatorname{Diff}\left(W_{g}, D\right) \longrightarrow B \operatorname{Diff}\left(W_{g}, D\right)
$$

is pulled back from a fibration over the + -construction $B \operatorname{Diff}\left(W_{g}, D\right)^{+}$, which homotopically approximates $\Omega_{0}^{\infty} \mathbf{M} \mathbf{T} \theta^{n}$ by my result with Galatius.
(v) Take the limit as $g \rightarrow \infty$ carefully.

Words about the index theory

There are some subtle points of index theory which need to be treated.

- Considering a 1-parameter family of psc metrics on S^{d} as a psc metric on $[0,1] \times S^{d}$, then closing off the ends, gives a map

$$
\Omega \mathcal{R}^{+}\left(S^{d}\right) \longrightarrow \mathcal{R}^{+}\left(S^{d+1}\right)
$$

(This is how we upgrade results about even spheres to all spheres.)

- As described earlier, there is an "action"

$$
\mathcal{R}^{+}\left(S^{d}, D^{d}\right) \times \mathcal{R}^{+}\left(M^{d}, D^{d}\right) \longrightarrow \mathcal{R}^{+}\left(M^{d}, D^{d}\right) .
$$

In both cases we would like the evident diagram involving the secondary index maps H to commute. There is an alternative definition of the secondary index with which it is easier to prove these results, but these definitions have been shown to be equivalent in
J. Ebert, The two definitions of the index difference, 2013, arXiv:1308.4998.

