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Chapter 1

Introduction and outline

The goal of this seminar is to explain the applications of cellular Ek-algebras to
homological stability, through the concrete example of mapping class groups. In this
first lecture, we will state the main results and explain the strategy as well as outline
the remaining lectures. Recommended additional is the introduction of [GKRW18a] and
Sections 1 and 2 of [GKRW19].

1.1 The statement

For a smooth surface Σg,1 of genus g with one boundary component, we let Diff∂(Σg,1)
denote the topological group of diffeomorphisms of Σg,1 fixing a neighborhood of the
boundary pointwise. All of its path components are contractible [Gra73], so the map

Diff∂(Σg,1) −→ π0(Diff∂(Σg,1)) (1.1)

is a homotopy equivalence. The right side is the group of isotopy classes of diffeomorphisms
fixing a neighborhood of the boundary pointwise.

Definition 1.1.1. The mapping class group Γg,1 is given by π0(Diff∂(Σg,1)).

Since (1.1) is a homotopy equivalence, the classifying space BΓg,1 classifies manifold
bundles with fiber Σg,1 and trivialised boundary bundle, which we will refer to as surface
bundles in this lecture. This bijection is given as follows: for nice enough X, pulling
back a universal surface bundle over BΓg,1 to X induces a bijection between the set
[X,BΓg,1] of homotopy classes of maps X → BΓg,1 and the set of isomorphism classes of
such surface bundles over X. As a consequence, understanding the cohomology groups
H∗(BΓg,1;k) amounts to understanding the characteristic classes of surface bundles. By
the universal coefficient theorem, we can equivalently try to understand the homology
groups.
Question 1.1.2. What are the homology groups of mapping class groups?

When attempting to answer this question, it is advantageous to let g go to ∞. This
may seem counter-intuitive but it is the underlying idea of stability phenomena. Fixing
once and for all a standard surface Σ1,1 ⊂ [0, 1]3 as in Fig. 1.1, the surface Σg,1 can be
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2 Chapter 1 Introduction and outline

Σ1,1 Σ2,1

Figure 1.1: The standard surface Σ1,1, and the surface Σg,1 for g = 2 obtained from two copies of
Σ1,1.

obtained as the union
⋃g−1
j=0(Σ1,1 +j ·~e1). In particular, there is an inclusion Σg−1,1 ⊂ Σg,1

and any isotopy class of diffeomorphism of Σg−1,1 fixing a neighborhood of the boundary
pointwise can be extended by the identity to such a diffeomorphism of Σg,1. This yields
a homomorphism Γg−1,1 → Γg,1 and hence a map on classifying spaces

σ : BΓg−1,1 −→ BΓg,1,

called the stabilisation map. The Harer stability theorem say that this map is an
isomorphism in a range tending to ∞ with g:

Theorem 1.1.3 (Homological stability for mapping class groups). The map

σ∗ : Hd(BΓg−1,1;Z) −→ Hd(BΓg,1;Z)

is a surjection for d ≤ 2g−1
3 and an isomorphism for d ≤ 2g−4

3 .

Remark 1.1.4. This result goes back to Harer [Har85] with improvements by Ivanov
[Iva93], Boldsen [Bol12], and Randal-Williams [RW16] (see [Wah13] for an exposition,
and [HV17] for a more “standard” proof along the lines of [RWW17] but with a worse
range). The above statement is Theorem B (i) of [GKRW19]; the range it gives is optimal.

To visualise Theorem 1.1.3, one should draw the homology groups of mapping class
groups as a grid, with Hd(BΓg,1;Z) in the (g, d)-entry so that stabilisation increases
the first coordinate. Then the above homological stability result says that below a
line of slope 2

3 the entries are independent of g. In this stable range, the values are
equal to the stable homology colimg→∞Hd(BΓg,1;Z) given by Madsen–Weiss theorem
as Hd(Ω∞0 MTSO(2);Z) [MW07]. In particular, rationally the stable cohomology is the
free graded-commutative algebra on the Miller–Morita–Mumford classes.

Question 1.1.5. What are the homology groups outside the stable range?

The main result discussed in this seminar is the existence of a metastable range above
the stable range, in which it is not the case that the relative groups Hd(BΓg,1, BΓg−1,1;Z)
vanish but there are maps between them that are isomorphisms [GKRW19, Theorem A].
Here the precise statement:
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Theorem 1.1.6 (Secondary homological stability for mapping class groups). There are
maps

ϕ∗ : Hd−2(BΓg−3,1, BΓg−4,1;Z) −→ Hd(BΓg,1, BΓg−1,1;Z)

which are surjections for d ≤ 3g−1
4 and isomorphisms for d ≤ 3g−5

4 .

Remark 1.1.7. This formulation is precise; the maps ϕ are not unique (see Lemma 13.1.2
and the remark following it).

The crucial observation is that 3
4 > 2

3 , so this is a statement about possibly non-
zero groups. Rationally, the ranges can be improved to surjections for d ≤ 4g−1

5 and
isomrphisms for d ≤ 4g−6

5 . Fig. 1.2 reproduces a figure from [GKRW19]: the orange
region is the metastable range, below it you find in blue the stable range, and the region
above it remains mysterious.

d = 2g−1
3

d = 4g−1
5
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Figure 1.2: A summary of the low-degree low-genus rational homology of Γg,1 and the stabilisation
maps. We have colored the stable range, the metastable range, and dashed the currently unknown
remaining unstable homology.

Remark 1.1.8. The homology groups for low g are obtained by (algebro-)geometric
methods or computer calculations (see Section 6.4 of [GKRW19] for references); see
Chapter 6 for some examples using geometric techniques.

Example 1.1.9. Secondary homological stability is barely visible in Fig. 1.2: the stabilisa-
tion maps into H2k(BΓ3k,1;Q) are not surjections because the relative homology groups
always have rank 1.
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It remains an open question to determine the secondary stable homology groups

colim
k→∞

Hd+2k(BΓg+3k,1, BΓg+3k−1,1;Z).

1.2 The strategy

Let us now explain the strategy for proving Theorem 1.1.6 (we will obtain Theo-
rem 1.1.3 along the way), simultaneously giving the outline of the upcoming lectures.

1.2.1 Operads, algebras, and indecomposables

The crucial observation is that the disjoint union
⊔
g≥1BΓg,1 comes equipped with

an additional algebraic structure. This structure is of a homotopy-theoretic nature, and
encoded by the little 2-cubes operad. That is,

⊔
g≥1BΓg,1 is an E2-algebra. Let us explain

this statement in more detail.

Operads and algebras

Many of the technical foundations of our arguments will go through for an arbitrary
operad (or even a monad) on a symmetric monoidal category C. Recall that an operad O
in symmetric monoidal category C is a collection {O(n)}n≥0 of objects O(n) in C with an
action of the symmetric group Sn, together with a unit map 1→ O(1), and composition
maps

O(n)⊗O(i1)⊗ · · · ⊗ O(in) −→ O(i1 + . . .+ in)

which are equivariant, associative, and unital. You should think of O(n) as a space of
n-ary operations. This is clear when we consider the definition of an O-algebra in C; it is
an object A of C with action maps

O(n)⊗A⊗n −→ A

which are equivariant, associative, and unital. This can be found in Sections 2, 3, and 4
of [GKRW18a].

Cellular algebras and indecomposables

The strategy will for proving Theorem 1.1.6 is to give a “homotopical presentation”
of
⊔
g≥1BΓg,1 in a category of algebras over the little k-cubes operad.

More generally, for an operad O, such a presentation of an O-algebra A is given by a
weak equivalence to A from a cellular algebra; this is an O-algebra obtained by iterated
pushouts on free O-algebras on inclusions of the form Sk−1 ↪→ Dk. Even better are
CW-algebras, which come a specified skeletal filtration. We will explain the theory of
CW approximation for a general operad O, but it proceeds among the same lines as
CW approximation of 1-connected topological spaces. One attaches O-cells to obtain
increasingly accurate approximations. To understand which O-cells are needed, the
crucial input is a Hurewicz theorem and the appropriate replacement of homology in its
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statement: this is the homology of the derived O-indecomposables. This can be found in
Sections 3, 8, and 11 of [GKRW18a].

There will be two lectures about this topic:
· Monday: Indecomposables I – indecomposables of Ek-algebras in simplicial sets

(Chapter 2).

· Tuesday: Indecomposables II – indecomposables in other categories (Chapter 5).

1.2.2 Ek-algebras and their properties

Let us now return to the study of mapping class groups.

The Ek-operad and Ek-algebras

The point has come to define, for k ≥ 1, the (non-unitary) little k-cubes operad Ck,
which is an operad in spaces. We will often refer to it as “the” Ek-operad, but it is but
one of many weakly equivalent choices; you may have seen the little k-discs instead. We
will similarly refer to a Ck-algebra as an Ek-algebra.

Definition 1.2.1. Let Embrect(
⊔
n I

k, Ik) denote the space of n-tuples of rectilinear
embeddings Ik → Ik (that is, compositions of scaling and translation) whose interiors
are disjoint. Then the little k-cubes operad Ck has space of n-ary operations given by

Ck(n) :=
{
∅ if n = 0,
Embrect(

⊔
n I

k, Ik) if n > 0.

The symmetric group Sn acts on Ck(n) by permuting the cubes, the unit ∗ → Ck(1) picks
out the identity, and the composition maps are induced by composition of rectilinear
embeddings.

See Fig. 1.3 and Fig. 1.4 for examples in the case k = 2.

e1

e2

e3

∈ C2(3)

Figure 1.3: An element of C2(3).
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e1 e2

C2(2)× C2(1)× C2(3)

∈
∈ C2(4)

Figure 1.4: An example of composition in C2. We have left out the labels on the inner cubes for
readability.

In the following definition, we can work in the category of spaces or more generally
any category with a suitable copowering over spaces (the structure on C that allows you
to define the product of a space with an object of C).

Definition 1.2.2. A (non-unital) Ek-algebra is an algebra over the operad Ck.

Example 1.2.3 (Iterated loop spaces). The prototypical examples of Ek-algebras in spaces
are iterated loop spaces. Let ΩkX be the space of maps of pairs (Ik, ∂Ik)→ (X,x0). The
action maps

Ck(n)× (ΩkX)n −→ ΩkX

are given by “inserting” the jth map fj into the image of the jth cube and extending
to the remainder of the domain by the constant map with value x0. See Fig. 1.5 for an
example in the case k = 2. The recognition principle says that any Ek-algebra Y in spaces
with π0(Y ) a group (under the multiplication induced by the Ek-algebra structure), is
weakly equivalent as an Ek-algebra to a k-fold loop space [May72].

Example 1.2.4 (Moduli spaces of manifolds). Let us consider the space of unparametrised
compact submanifolds of [0, 1]k×R∞ which coincide with [0, 1]k×{0} with ∂[0, 1]k×R∞,
topologised as in [GRW10]. If we require they are diffeomorphic relative to the boundary
(and up to smoothing corners) to one of a fixed collection of compact pairwise non-
diffeomorphic manifolds M1,M2, . . ., we obtain a modelM for

⊔
iBDiff∂(Mi). (To prove

this, we may assume we have a single manifold M and observe that the space E of
parametrised compact submanifolds diffeomorphic to M is a contractible space with free
properly discontinuous action of Diff∂(M) and M is the quotient E/Diff∂(M).)
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x0

f2

f1

f3

∈ Ω2X

Figure 1.5: The result of combining three elements f1, f2, f3 ∈ Ω2X with an element of C2(3).

If the collection M1,M2, . . . is closed under boundary connected sum, the space M is
an Ek-algebra. The action maps

Ck(n)×Mn −→M

are given by “inserting” the jth submanifold Wj into the image of the jth cube times
R∞ and extending to the remainder of [0, 1]k × R∞ by [0, 1]k × {0}.

In particular, we may take k = 2 and the collection of manifolds Σ1,1,Σ2,1, . . . and
get an E2-algebra structure on

M'
⊔
g≥1

BDiff∂(Σg,1) '
⊔
g≥1

BΓg,1.

Later, in Chapter 9 we will give a more algebraic construction of this E2-algebra structure,
using the fact that the mapping class groups Γg,1 are the automorphism groups in a
certain braided-monoidal groupoid MCG; classifying spaces of braided monoidal categories
are always E2-algebras.

This appears in Section 12 of [GKRW18a].

Special properties of the Ek-operad

Ek-algebras have two properties that distinguish the theory of CW-approximation
for Ek-algebras from that for O-algebras:

(1) We understand very well the homology of the free Ek-algebras which are the
building blocks of CW approximations. Indeed, a theorem of F. Cohen describes it
in terms of certain homology operations [CLM76]. This makes computations for
cellular or CW Ek-algebras particularly tractable.

(2) There are alternative methods for computing Ek-indecomposables. Indeed, they are
given by a k-fold iterated bar construction,which is particularly tractable for the
examples we are interested in. As this terminology indicates, it can be computed
iteratively. This appears in Sections 13, 14 and 16 of [GKRW18a].
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There will be two lectures about this topic:
· Tuesday: Ek-algebras I – homology of free Ek-algebras (Chapter 4).

· Wednesday: Ek-algebras II – the iterated bar construction (Chapter 7).

1.2.3 Generic homological stability

The techniques which prove Theorem 1.1.6 are applicable to many examples, and
before proving that result, we give a criterion for an Ek-algebra to have homological
stability; this will yield Theorem 1.1.3 as an example.

This “generic homological stability result” applies to E2-algebras which arise from
braided-monoidal groupoids G satisfying some mild conditions. In this case, one can
understand the bar construction which computes the E1-indecomposables in terms of
certain combinatorial objects—the E1-splitting complexes—and then understand the
E2-indecomposables by the iterative procedure mentioned above. If the connectivity of E1-
splitting complexes increases sufficiently fast, then our knowledge of CW approximation
and the homology of free Ek-algebras can be used to prove that one can read off
homological stability from a few low degree homology groups. This appears in Sections
17 and 18 of [GKRW18a].

There will be three lectures about this topic:
· Wednesday: Generic homological stability I – bounded symmetric powers (Chap-

ter 8).

· Wednesday: Generic homological stability II – E2-algebras from braided monoidal
groupoids (Chapter 9)

· Thursday: Generic homological stability III – a generic homological stability result
(Chapter 10).

1.2.4 Facts about mapping class groups

To apply the generic homological stability to the E2-algebra
⊔
g≥1BΓg,1, obtain

Theorem 1.1.3, and make the improvements necessary to prove Theorem 1.1.6, we will
need some input.

The first is the connectivity of the E1-splitting complexes, which is an argument
about arc complexes. The second is knowledge of the homology groups Hd(BΓg,1;Z) for
low d and g. Both are provided by classical techniques, but since they are the fuel for the
machine developed in the other lectures we explain how you prove them. This appears in
Sections 3 and 4 of [GKRW19].

There will be two lectures about this topic:
· Monday: Facts about mapping class groups I – arc complexes (Chapter 3).

· Tuesday: Facts about mapping class groups II – low-degree homology (Chapter 6).
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1.2.5 Secondary homological stability for mapping class groups

Once we have set up the machinery and provided as input the relevant facts about
mapping class groups, we can prove Theorem 1.1.6. We first do so with rational coefficients,
because it is then significantly easier to construct the maps ϕ∗ in the statement of this
theorem. After that we shall explain how to address the difficulties which arise when
working with integer coefficients. The argument are essentially elaborations of the generic
homological stability result. This appears in Section 5 of [GKRW19].

There will be two lectures about this topic:
· Thursday: Secondary homological stability I – rational argument (Chapter 11).
· Friday: Secondary homological stability II – integral argument (Chapter 13)

1.2.6 Outlook

Finally, we look at other results which can be obtained using similar techniques, in
particular for general linear groups [GKRW18b, GKRW20]. We will also discuss open
problems.

There will be two lectures about this topic:
· Thursday: Outlook I: General linear groups (Chapter 12).
· Friday: Outlook II.



Chapter 2

Indecomposables I: Ek-algebras in simplicial sets

2.1 Summary/recollection

In Chapter 1 we defined the little k-cubes operad Ck, whose nth space Ck(n) consists
of ordered n-tuples of rectilinear embeddings Ik → Ik whose interiors are disjoint. Let
us take the singular simplicial set of the spaces Ck(n) to turn them into simplicial sets,
yielding an operad in the category sSets of simplicial sets which we will denote by the
same letter Ck.

Similarly, we defined an Ek algebra (in the category sSets) to be a simplicial set A
together with maps

Ck(n)×An → A, (2.1)

for each n ∈ Z≥1, satisfying some properties including invariance under the evident action
of the symmetric group Sn on the domain. We also saw two types of examples: the k-fold
loop space of a based space (or rather the singular simplicial set thereof), and examples
based on moduli spaces of manifolds.

A good way to encode the data (2.1) and the properties it is required to satisfy, is
to encode it as A being an algebra for a monad. This is a monoid in the category of
functors sSets→ sSets. Indeed, the operad Ck gives rise to a functor

Ek : sSets −→ sSets

defined by

Ek(X) =
∞∐
n=1

(Ck(n)×Xn)/Sn, (2.2)

where the symmetric group Sn acts on Xn by permuting factors, and on Ck(n) by
permuting the embeddings Ik → Ik. As mentioned in Chapter 1, composition of
embeddings Ik → Ik gives rise to maps

Ck(n)× Ck(i1)× · · · × Ck(in) −→ Ck(i1 + · · ·+ ik)

which in turn induce maps µ : Ek(Ek(X)) → Ek(X) that are natural in the simplicial
set X. There is also a natural injection 1: X → Ek(X) as the n = 1 summand in (2.2).

10



2.2 Free algebras and cell attachments 11

The endofunctor Ek and the natural transformations µ and 1 forms a monad on sSets,
expressing an associativity and unitality property of the natural transformations µ and 1.

The data of the maps (2.1) is equivalent to a single map µ : Ek(A)→ A. Given such a
map there are two ways to construct a map of simplicial sets Ek(Ek(A))→ Ek(A), either
by applying the functor Ek to the map µ : Ek(A)→ A, or by the natural transformation
Ek ◦ Ek ⇒ Ek. The required properties can be expressed concisely as these two maps
Ek(Ek(A))→ Ek(A) becoming equal after composing with Ek(A)→ A. (Actually there
is a further property about the unit.)

2.2 Free algebras and cell attachments

Ek-algebras form a category in an evident way, which we denote by AlgEk(sSets) and
forgetting the Ek-algebra structure gives a forgetful functor

AlgEk(sSets) −→ sSets
(A,µ) 7−→ A

which admits a left adjoint free Ek algebra functor that we denote FEk . Explicitly,
FEk(X) has underlying simplicial set Ek(X), equipped with Ek-algebra structure given
by the map Ek(Ek(X))→ Ek(X) mentioned above.

A somewhat important example is the free Ek-algebra on a point, whose underlying
simplicial set is

Ek(point) =
∞⊔
n=1
Ck(n)/Sn '

∞⊔
n=1

Confn(Rk).

Here, Confn(Rk) denotes the unordered configuration space of n points in Rk, and the
homotopy equivalence uses that rectilinear embeddings Ik → Ik are determined by their
centers of mass, up to contractible data.

Let us choose a triangulation of the d-dimensional disk Dd, and use the same notation
Dd for the corresponding simplicial set, and ∂Dd ⊂ Dd for the simplicial set corresponding
to the triangulation of the boundary. Suppose (A,µ) ∈ AlgEk(sSets) and we are given a
map of simplicial sets

e : ∂Dd −→ A.

To this data we can associate the diagram

FEk(Dd)←− FEk(∂Dd) −→ (A,µ)

of Ek-algebras, using that FEk is left adjoint to the forgetful functor. By standard
methods one shows that the category of Ek-algebras has all colimits—that is, it is
cocomplete—so we may define a new Ek-algebra as the pushout

FEk(∂Dd) (A,µ)

FEk(Dd) A ∪Eke Dd,

e
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in AlgEk(sSets). We call this the Ek-algebra obtained by attaching an Ek-cell to (A,µ)
along e. There is a universal property for maps out of this new Ek-algebra; we leave it
to the reader to formulate it.

More informally, the cell attachment can be described in two steps: first form the
pushout Dd ← ∂Dd → A in simplicial sets, which is a “partially defined Ek-algebra” in
the sense that points in A can be multiplied in the required ways, but products involving
simplices of Dd \∂Dd are undefined. The Ek-cell attachment is the result of freely adding
new simplices to this partially defined Ek-algebra for each undefined operation.

2.3 Indecomposables (non-derived)

One point of view on indecomposables is that they are trying to answer the answer
the following question:
Question 2.3.1. If we know that an Ek-algebra (A,µ) is free, can we find out what it is
free on?

It turns out that this is possible, at least up to adding a basepoint. More precisely,
we will define a functor QEk fitting in the diagram

sSets AlgEk(sSets)

sSets∗

FEk

+ QEk
(2.3)

where sSets∗ denotes the category of pointed simplicial sets, and “+” is the functor that
adds a disjoint basepoint.

It is in fact not difficult to define a functor with this property. We will do this, and
discuss some of its formal properties. This will only become useful after we discuss how
to derive these functors, though.

2.3.1 Definition and behavior on free Ek algebras

We define the decomposables subspace of an Ek-algebra (A,µA) as the image of the
natural map

∞⊔
n=2

(Ck(n)×An)/Sn −→ A.

Notice that we omitted the subspace Ck(1) × A ⊂ Ek(A) in the domain. In the paper
we use a more elaborate notation, but in this lecture I will write Dec(A,µ) ⊂ A for the
decomposables of (A,µ).

In other words, A comes with multiplication maps (2.1), and the decomposables
subspace is the union of their images over n ≥ 2.
Example 2.3.2. Let (A,µ) = FEk(X) be a free Ek-algebra on a simplicial set X. Then

A =
∞⊔
n=1

(Ck(n)×Xn)/Sn,
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and by inspecting how the Ek-structure on A works, we see that

Dec(A,µ) =
∞⊔
n=2

(Ck(n)×Xn)/Sn.

As a consequence,

A

Dec(A,µ) = FEk(X)
Dec(FEk(X))

∼= (Ck(1)×X)+, (2.4)

where as usual the subscript denotes a disjoint basepoint.

This almost answers the question! Forming quotient by Dec(A,µ) gave us back what
(A,µ) was free on, except for the basepoint and except for the factor of Ck(1).

In fact Ck(1) is contractible so it does not matter very much that it appeared in (2.4),
but aesthetic reasons we get rid of it in the following way. The contractible space Ck(1)
has a natural monoid structure given by composition of embeddings, and as part of the
structure map µ : Ek(A)→ A we have an action of Ck(1) on A. It is easy to verify that
this action preserves the subset Dec(A,µ) ⊂ A, so the following is well defined.

Definition 2.3.3. For (A,µ) ∈ AlgEk(sSets), the indecomposables are defined as the
orbit space

QEk(A,µ) = ( A

Dec(A,µ))/Ck(1).

Comparing with the calculation (2.4), we get

QEk(FEk(X)) = (Ck(1)×X)+/Ck(1) ∼= X+,

fulfilling the desired (2.3) up to natural isomorphism of pointed simplicial sets.

2.3.2 A right adjoint

Rather than trying to be an “inverse functor” to FEk , indecomposables is often
presented as left adjoint to another functor, sometimes known as square-zero extension
(in our paper we call this the trivial Ek-algebra structure). For any simplicial set X there
is a “trivial” way to define an Ek structure on X+, namely

Ck(n)× (X+)n → X+

sends (α, x) 7→ x for n = 1 and (α, x1, . . . , xn) 7→ + for all n > 1. We will not make
much use of this “trivial Ek-algebra” functor, other than point out that its existence
implies that QEk preserves all colimits.

2.3.3 Behavior under cell attachments

What happens when one applies QEk to an Ek-cell attachment?
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Lemma 2.3.4. Let e : ∂Dd → A be as above. Then there is a pushout square of simplicial
sets

∂Dd QEk(A,µ)

Dd QEk(A ∪Eke Dd).

Therefore, (A,µ) 7→ |QEk(A,µ)| takes Ek cell attachments to ordinary cell attachments
(as in usual CW complexes, for instance).

Proof. We have already explained that QEk admits a right adjoint, so it preserves all
colimits and in particular pushouts. Combine this with the calculation of indecomposables
of free Ek-algebras.

We want to iterate Ek-cell attachments.

Definition 2.3.5. An Ek-algebra is cellular, if it is isomorphic to a (possibly transfinite)
iteration of cell attachments. That is, given an ordinal κ and Ek-algebras Ai for i ≤ κ
such that A0 is the initial Ek-algebra, Ai+1 is obtained from Ai by a cell attachment as
above, and Ai = colimj<iAj when i ≤ κ is a limit ordinal, then Aκ is cellular.

The main use of indecomposables in our papers is to answer questions of the form:
given A, how many cell attachments of each dimension d is necessary for building a
cellular Ek-algebra A′ with an Ek map A′ → A which is a weak equivalence. In order to
answer that, we need the derived indecomposables, which I’ll define in my next talk.

Using underived indecomposables we can answer a different, and admittedly artificial,
question: if we know that A is cellular (not just up to homotopy) and built using finitely
many cells of each dimension, what can we say about how many cells were used? Indeed,
A 7→ |QEk(A)| takes each Ek cell attachment to an ordinary cell attachment, as explained
above. Therefore, H̃d(QEk(A)) is a finitely generated abelian group, and we see that
there must be at least

rank(H̃d(QEk(A)))

many cell attachments of dimension d.

2.4 Derived indecomposables

The above definitions of Ek-algebra, indecomposables, cell attachments, etc., are not
really useful notions without introducing some homotopy theory. The most important
notion is:

Definition 2.4.1. A map f : A → B in AlgEk(sSets) is a weak equivalence if the
underlying map in sSets is a weak equivalence.

The indecomposables behave well with respect to this notion of weak equivalence, in
the following sense:
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Lemma 2.4.2. Let f : A→ A′ be a weak equivalence in AlgEk(sSets) and assume both
A and A′ are cellular. Then the induced map

QEk(f) : QEk(A)→ QEk(A′)
is also a weak equivalence.

Lemma 2.4.3. Let A ∈ AlgEk(sSets). Then
· There exists a cellular approximation A′ → A.
· For any two cellular approximations A′ → A and A′′ → A, there exists a cellular

approximation A′′′ → A and a zig-zag A′ → A′′′ ← A′′ over A.

About proofs. In fact it is better to prove slightly more than what is stated, namely to
construct a model category structure on AlgEk(sSets) in which weak equivalences and
fibrations are detected on underlying simplicial sets. Cellular objects are cofibrant in
this model structure. The functor QEk : AlgEk(sSets)→ sSets∗ is a left Quillen functor.
The previous lemmas then follow from standard model category theory. We do not plan
to say more about that in the lectures, because either you’ve seen it before; or this is
not the right moment to learn it. In the latter case, it hopefully suffices to take the
statements of the lemmas on faith for now.

Using these lemmas we see that for any A ∈ AlgEk(sSets), the homotopy type of
QEk(A′) for a cellular approximation A′ → A is independent of the choice of cellular
approximation. This homotopy type is the derived indecomposables

QEkL (A) ' QEk(A′) for any cellular approximation A′ → A. (2.5)

Remark 2.4.4. In fact the equivalence (2.5) is essentially the definition of QEkL , except
that we have not explained how to make QEkL into a functor. This is again standard
methods from model categories: there is a functorial way to factor the unique map
∅ → A ∈ AlgEk(sSets) as a cofibration ∅→ A′ followed by an acyclic fibration A′ → A,
and any such choice leads to a functor QEkL satisfying (2.5).

Corollary 2.4.5. Assume that A ∈ AlgEk(sSets) admits a cellular approximation A′ → A
which has only finitely many cells in each dimension. Then A′ must have at least

rank(H̃d(QEkL (A)))
many cells of dimension d.

In the paper, we write
HEk
d (A) = H̃d(QEkL (A))

and call it Ek-homology. The rank of the Ek-homology groups therefore gives a lower
bound for the number of cell attachments necessary for a cellular approximation. To
make use of this lower bound, we must

· Find an effective way to calculate, or at least estimate QEkL (A) for the A’s that we
are interested in. (This is the content of Chapter 7).

· Ideally, find criteria for when the lower bound can be realized. (This is not quite
realistic for the Ek-algebras in sSets, but will be quite realistic when passing to
other categories, as we discuss in Chapter 5.)



Chapter 3

Facts about mapping class groups I: arc
complexes

This is the first of two chapters that provide the eventual input about mapping class
group that is needed to prove Theorem 1.1.3 and Theorem 1.1.6.

3.1 Statements

Recall the standard surface Σg,1 =
⋃g−1
j=0(Σ1,1 + j · ~e1) and choose two distinguished

points b0, b1 ∈ ∂Σg,1 on its boundary.

Definition 3.1.1. Let S(Σg,1, b0, b1)p denote the set of (p+ 1)-tuples ([s0], . . . , [sp]) of
isotopy classes of arcs in Σg,1 from b0 to b1, such that there are representatives s0, . . . , sp
of these isotopy classes

(i) which are disjoint except for their endpoints,
(ii) whose order s0, . . . , sp agrees with the clockwise order of the si at b0,
(iii) such that each si splits Σg,1 into two subsurfaces both having strictly positive genus,

and the region between each pair si and si+1 also has strictly positive genus.
These form the p-simplices of a semi-simplicial set S(Σg,1, b0, b1)•, with i-th face map
given by forgetting the isotopy class [si].

Remark 3.1.2. It is always worrying when one imposes conditions on representatives
of equivalence classes. Fortunately, by a theorem of Gramain [Gra73, Théorème 5] the
space of arcs on a surface in a given isotopy class is contractible: the same then follows
for tuples of arcs disjoint except at the endpoints, which shows that these conditions do
not actually depend on the choice of representatives.

The goal of this lecture is to give an idea of [GKRW19, Theorem 3.4]:

Theorem 3.1.3. |S(Σg,1, b0, b1)•| is (g − 3)-connected.

This semi-simplicial set is clearly (g − 2)-dimensional, as the largest number of arcs
there can be is (g − 1), splitting the surface into g pieces of genus 1 each. It follows that
it is homotopy equivalent to a wedge of (g − 2)-spheres.

16
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There is a long history of the study of (simplicial complexes or) semi-simplicial
sets of (curves or) arcs on surfaces, and they come in many flavours. Typically one
considers systems of (curves or) arcs which do not separate the surface, making our
example a bit unusual (though it is analogous to the curve complex studied in [Loo13]
and indeed the connectivity is identical). One can usually show that such complexes are
“highly-connected” (typically that they are either g−c

2 - or (g− c)-connected for some small
constant c) but, while there are some general principles, these arguments are usually ad
hoc, long, and difficult. In [GKRW19] we deduced the Theorem from the connectivity of
a different arc complex, of “ordered nonseparating arcs” whose connectivity had already
been established (see [Wah13, Section 4] for a detailed account). Unfortunately this
makes the overall argument rather involved, so I will instead explain the same strategy
in a simpler situation.

3.2 A nerve theorem

Let X and P be posets, and

F : Pop −→ {downward closed subposets of X, inclusions}

be a map of posets: we think of the poset as indexing a cover of |X|, and want to
understand the relationship between the homotopy types |P| and |X|. There are many
results of this flavour: Borsuk’s Nerve Theorem [Bor48], Quillen’s Poset Fibre Lemma
[Qui78], and generalisations [vdKL11].

We let X<x and P<p denote the under-posets as usual, and set Px := {p ∈ Pop s.t. x ∈
F (p)}.

Theorem 3.2.1 (Nerve Theorem). Suppose that X has no infinite descending chains
and P has no infinite ascending chains. Then there is a zig-zag

|X| φ←−? ψ−→ |P|

where the map φ is minx∈X(conn(|X<x|) + conn(|Px|) + 3)-connected and the map ψ is
minp∈P(conn(|P<p|) + conn(|F (p)|) + 3)-connected.
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3.3 Arcs for punctures

Consider the surface Σn
0,1, that is the disc with n punctures, with distinguished points

b0, b1 ∈ ∂Σn
0,1 on its boundary.

Definition 3.3.1. Let S(Σn
0,1, b0, b1)p denote the set of (p+ 1)-tuples ([s0], . . . , [sp]) of

isotopy classes of arcs in Σn
0,1 from b0 to b1, such that there are representatives s0, . . . , sp

of these isotopy classes
(i) which are disjoint except for their endpoints,
(ii) whose order s0, . . . , sp agrees with the clockwise order of the si at b0,
(iii) such that each si splits Σn

0,1 into two subsurfaces both having strictly positive
number of punctures, and the region between each pair si and si+1 also has strictly
positive number of punctures.

These form the p-simplices of a semi-simplicial set S(Σn
0,1, b0, b1)•, with i-th face map

given by forgetting the isotopy class [si]. It is the nerve of a poset S(Σn
0,1, b0, b1).

Definition 3.3.2. Let b1/2 be a further distinguished point on the boundary, and let
A(Σn

0,1, b1/2) be the simplicial complex with vertices the isotopy classes [a] of arcs in Σn
0,1

from b1/2 to one of the punctures, and where a collection [a0], . . . , [ap] of distinct vertices
spans a p-simplex if they go to distinct punctures and there are representatives that are
disjoint except at their endpoints.

Theorem 3.3.3 (Hatcher–Wahl [HW10]). A(Σn
0,1, b1/2) is (n− 2)-connected.

Using this we prove:

Theorem 3.3.4. |S(Σn
0,1, b0, b1)•| is (n− 3)-connected.

Proof. We proceed by strong induction on n: if n = 2 then it is indeed non-empty, i.e.
(−1)-connected; if n < 2 there is nothing to show.

We will consider the (n− 2)-skeleton A(Σn
0,1, b1/2)(n−2), consisting of those systems of

arcs which do not reach every puncture. Let P := simp(A(Σn
0,1, b1/2)(n−2)) be the poset

of simplices of this skeleton, and consider the map

F : simp(A(Σn
0,1, b1/2)(n−2))op −→ {downward closed subposets of S(Σn

0,1, b0, b1)}
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with F ([a0, . . . , ap]) given by the subposet of those isotopy classes of separating arcs from
b0 to b1 which can be represented disjointly from the ai. We try to apply the Nerve
Theorem with |S(Σh

0,1, b0, b1)| ←?→ |simp(A(Σn
0,1, b1/2)(n−2))|.

If s ∈ S(Σn
0,1, b0, b1) has h punctures to its left and (n− h) to its right, then

S(Σn
0,1, b0, b1)<s = S(Σh

0,1, b0, b1)

which by induction (as h, n− h < n) is (h− 3)-connected, and

simp(A(Σn
0,1, b1/2)(n−2))s = simp(A(Σn−h

0,1 , b1/2))

which is (n− h− 2)-connected by Hatcher–Wahl’s theorem. This shows that the map
|S(Σn

0,1, b0, b1)| ←? is (n− 2)-connected.
On the other hand if a = [a0, . . . , ap] ∈ simp(A(Σn

0,1, b1/2)(n−2)) then the poset
simp(A(Σn

0,1, b1/2))<a is the face poset of ∂∆p−1 so is (p− 3)-connected. As we only took
the (n− 2)-skeleton, we must have p+ 1 < n, and it follows that the poset F (a) has a
top element, given by the arc which follows the boundary of the surface and the ai, so
F (a) is contractible. Thus the map ?→ |simp(A(Σn

0,1, b1/2)(n−2))| = |A(Σn
0,1, b1/2)(n−2)|

is an equivalence. The latter is (n− 3)-connected by Hatcher–Wahl’s theorem.
Combining these shows that |S(Σn

0,1, b0, b1)| is (n− 3)-connected as required.

3.4 Addendum: proof of the nerve theorem

We proceed by forming the homotopy colimit hocolimPop |F |, concretely given by the
coequaliser ⊔

p≥q∈P
|P≤q| × |F (p)|

⊔
p∈P
|P≤p| × |F (p)| hocolimPop |F |

of the two natural maps. There are maps

|X| φ←− hocolimPop |F |
ψ−→ hocolimPop ∗ = |P|

induced by |X| ← |F (p)| → ∗, and we try to estimate their connectivities. Using the
assumptions, define the height and depth as

h(x) = max{r ∈ N s.t. there is a chain x = x0 > x1 > · · · > xr ∈ X}
d(p) = max{r ∈ N s.t. there is a chain p = p0 < p1 < · · · < pr ∈ P}.

Filtering |P| and hocolimPop |F | by d(−), there are cocartesian squares

⊔
d(p)=d

|P<p| × |F (p)| (hocolimPop |F |)≥d+1 ⊔
d(p)=d

|P<p| |P|≥d+1

⊔
d(p)=d

|P≤p| × |F (p)| (hocolimPop |F |)≥d
⊔

d(p)=d
|P≤p| |P|≥d.
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The squares
|P<p| × |F (p)| |P<p|

|P≤p| × |F (p)| |P≤p|

are (conn(|P<p|) + conn(|F (p)|) + 3)-cocartesian1, and it then follows by standard ma-
nipulations with cubes that the map ψ is

min
p∈P

(conn(|P<p|) + conn(|F (p)|) + 3)-connected.

Similarly, filtering |X| and hocolimPop |F | by h(−), there are cocartesian squares

⊔
h(x)=h

hocolimp∈Px |F (p)<x| (hocolimPop |F |)≤h−1 ⊔
h(x)=h

|X<x| |X|≤h−1

⊔
h(x)=h

hocolimp∈Px |F (p)≤x| (hocolimPop |F |)≤h
⊔

h(x)=h
|X≤x| |X|≤h.

For p ∈ Px the poset F (p)≤x has a top element so is contractible, and hence hocolimp∈Px |F (p)≤x| '
|Px|. As the posets F (p) are downwards closed, if x ∈ F (p) then F (p)<x = X<x, and so
hocolimp∈Px |F (p)<x| ' |Px| × |X<x|. Thus the squares

hocolimp∈Px |F (p)<x| |X<x|

hocolimp∈Px |F (p)≤x| |X≤x|

are (conn(|X<x|) + conn(|Px|) + 3)-cocartesian, and it then follows by standard manipu-
lations with cubes that the map φ is

min
x∈X

(conn(|X<x|) + conn(|Px|) + 3)-connected.

1The homotopy pushout is the join |P<p| ∗ |F (p)| which is (conn(|P<p|) + conn(|F (p)|) + 2)-connected,
but furthermore |P≤p| ' ∗ and so the map |P<p|∗|F (p)| → ∗ is (conn(|P<p|)+conn(|F (p)|)+3)-connected.
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Ek-algebras I: The homology of free Ek-algebras

The purpose of this lecture is to give a description of the homology of free Ek-algebras
in sSetN (i.e. spaces with an additional grading) which is sufficiently detailed for use in
the proof of the generic homological stability theorem and that of Theorem 1.1.6.

4.1 Additional remarks on Ek-algebras

4.1.1 Unital Ek-algebras

Previously, we have considered (non-unital) Ek-algebras, which are by definition the
algebras over the operad Ck given as in Definition 1.2.1. These Ek-algebras do not come
with a specified unit. For the sake of describing the homology of free Ek-algebras it is
more convenient to add this in; we are more used to free graded-commutative algebras
with unit than without. This is done by replacing Ck by the following operad:

Definition 4.1.1. The unital little k-cubes operad C+
k has as space of n-ary operations

given by
C+
k (n) := Embrect(tnIk, Ik)

for all n ≥ 0. The symmetric group Sn acts on Ck(n) by permuting the cubes, the unit
∗ → Ck(1) picks out the identity, and the composition maps are given by composition of
rectilinear embeddings.

Definition 4.1.2. A unital Ek-algebra (also called a E+
k -algebra) is an algebra over the

operad C+
k .

Example 4.1.3. The map C+
k (n)⊗R⊗n → R for n = 0 yields a map 1→ R specifying

a unit for the Ek-algebra structure. It turns out that there is not much of a difference
between units for Ek-algebras as a structure (as in our case) and as a property; this is
the content of [Lur, Theorem 5.4.4.5].

Any Ek-algebra R can be unitalised to an E+
k -algebra R+ by formally adding in a

unit; this is a functor

AlgEk(C) −→ AlgE+
k

(C)

R 7−→ R+

21
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left adjoint to the forgetful functor. On underlying objects, we have UE
+
k R+ = 1tUEkR.

4.1.2 Additional gradings

For the remainder of this lecture we will work in the category sSetN. Here N is
the symmetric monoidal groupoid with objects given by the non-negative integers, only
identity morphisms, and monoidal structure given by addition; sSetN is then the category
of functors N→ sSet with symmetric monoidal structure given by Day convolution:

(X ⊗ Y )(g) =
⊔

g1+g2=g
X(g1)×X(g2).

In this case working with functors is a tool to keep track of an additional “genus” grading,
so we denote the objects of N by g. (Functor categories are also useful in certain
constructions, as we will see when we construct E2-algebras from braided monoidal
groupoids in Chapter 9.)
Example 4.1.4. The assignment g 7→ BΓg,1 refines

⊔
g≥0BΓg,1 to a functor N→ sSet.

Remark 4.1.5. There is no additional work in replacing sSet with another sufficiently
nice category (sModk and Sp are good choices) or N with another symmetric monoidal
groupoid G. Both will appear later in this seminar.

4.2 Free Ek-algebras

4.2.1 The free-forgetful adjunction

Let us recall a notion from Chapter 2. For an operad O in simplicial sets, let
AlgO(sSetN) denote the category of O-algebras in sSetN. Taking the underlying objects
yields a forgetful functor UO : AlgO(sSetN) −→ sSetN with left adjoint given by the free
O-algebra functor

FO : sSetN −→ AlgO(sSetN).

Recalling that UOFO is the underlying functor of the monad O associated to O, we see
that

UOFO(X) = O(X) =
⊔
n≥0
O(n)×Sn X

⊗n.

4.2.2 Specialising to the Ek-operad

Let us now take O = C+
k , the unital little k-cubes operad of Definition 4.1.1; we get a

functor
FE

+
k : sSetN −→ AlgE+

k
(sSetN)

and a formula of the underlying objects of its image. We will often denote FE
+
k (X) by

E+
k (X) for brevity and E+

k (X) for its underlying object.
Remark 4.2.1. By comparing the right adjoints, one sees that E+

k (X) ∼= Ek(X)+.
There is a more geometric description of free unital Ek-algebras in terms of configu-

ration spaces, generalising a remark in Chapter 2. Let us write İ := int(I) = (0, 1).
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Definition 4.2.2. Let Confn(İk) be the configuration space of n ordered points, given
by

Confn(İk) := {(x1, . . . , xn) | xi 6= xj if i 6= j} ⊂ (İk)n.

There is a map E+
k (n)→ Confn(İk) which records the centers of the n cubes; this is

a Sn-equivariant homotopy equivalence. Since the action of Sn is free on both terms,
we get an induced weak equivalence

E+
k (X) =

⊔
n≥0

E+
k (n)×Sn X

⊗n −→
⊔
n≥0

Confn(İk)×Sn X
⊗n =: Conf(İk;X) (4.1)

in sSetN. You can think of the right side as configuration spaces of unordered points in
Rk (as İk is of course homeomorphic to Rk) with labels in X.

Example 4.2.3. For k = 2 and X = ∗, the right side is the disjoint union over n of the
configuration spaces of n unordered points in İ2; this is homotopy equivalent to the
classifying space of the nth braid group.

The left side of (4.1), being the underlying objects of a free E+
k -algebra, comes with

an E+
k -algebra structure and so the right side, given by inserting configuration of labeled

points into the cubes (see Fig. 4.1). Using these, the map is a weak equivalence of
E+
k -algebras in sSetN.

e1 e2 •
x1

•
x2

•
x3

C2(2)× (Conf1(İ2)×X)× (Conf2(İ2)×S2 X
⊗2)

∈

•
x1 •

x2

•
x3

∈ Conf3(İ2)×S3 X
⊗3

Figure 4.1: An example of E2-algebra structure on
⊔

n≥0 Confn(İk)×Sn
X⊗n.
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4.3 The homology of free Ek-algebras

We will now study the homology of free E+
k -algebras for k ≥ 2. An object R ∈ sSetN

has bigraded homology groups with coefficients in a commutative ring k:

Hg,d(X;k) := Hd(X(g);k).

If X is a unital Ek-algebra RAlgE+
k

(sSetN), then the E+
k -algebra structure endows its

homology groups with certain operations. These arise evaluating the map induced on
homology by

C∗(Ck(n);k)⊗Sn C∗(R;k)⊗n '−→ C∗(Ck(n)×Sn R⊗n;k) −→ C∗(R;k) (4.2)

on certain elements of the domain. By the work of F. Cohen, we have a complete
understanding of these operations when k is a field Q or F` with ` prime.

4.3.1 The product and Browder bracket

The easiest operations arise from the case n = 2 (that is, binary operations), and are
constructed in the same manner for all k. We start by precomposing the map induced
on homology by (1.1) with the external product on homology to get

(θ2)∗ : H∗(Ck(2);k)⊗H∗,∗(R;k)⊗2 −→ H∗,∗(R;k),

where H∗ is shorthand for H0,∗. Letting two small cubes circle each other describes a
homotopy equivalence

Sk−1 ∼−→ Ck(2)
and thus we have two distinguished generators u0 ∈ H0(Ck(2);Q) and uk−1 ∈ Hk−1(Ck(2);k)
from which we derive a pair of homology operations.

Definition 4.3.1.
(i) The product

− · − : Hg1,d1(R;k)⊗Hg2,d2(R;k) −→ Hg1+g2,d1+d2(R;k)

is given by θ∗(u0 ⊗−⊗−).
(ii) The Browder bracket

[−,−] : Hg1,d1(R;k)⊗Hg2,d2(R;k) −→ Hg1+g2,d1+d2+k−1(R;k)

is given by (−1)(k−1)d+1θ∗(uk−1 ⊗−⊗−).

Remark 4.3.2. The sign on the Browder bracket is hard to justify, but makes the relations
more palatable (or does it?).

More generally, we can consider the maps

(θn)∗ : H∗(Ck(n);k)⊗Sn H∗,∗(R;k)⊗n −→ H∗,∗(R;k),

which exhibit H∗,∗(R;k) as an algebra over the homology operad H∗(Ck;k). We can in
particular understand some properties of these operations by studying this homology
operad, resulting in relations satisfied by the product and Browder bracket.
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Example 4.3.3. The product is linear in both entries, unital, associative, and graded-
commutative. For example, associativity follows from the fact that Ck(3) is path-
connected.
Example 4.3.4. The Browder bracket is linear in both entries, symmetric up to a sign,
and satisfies the Jacobi relation up to a sign. As an example, let us prove symmetry and
determine the exact sign. For xi ∈ Hgi,di(R;k) with i = 1, 2, we have

θ∗(uk−1 ⊗ x1 ⊗ x2) = (−1)k+d1d2θ∗(uk−1 ⊗ x2 ⊗ x1).

where one part of the sign comes from the involution on Sk−1 and the other from the
Koszul sign rule upon switching x1 and x2. We leave it to the reader to insert the signs
in the definition of the Browder bracket.
Example 4.3.5. The bracket acts a derivation of the product up to a sign.

4.3.2 The Dyer–Lashof operations

When k is such that the the external product maps

H∗(Ck(n);k)⊗Sn H∗,∗(R;k)⊗n −→ H∗,∗(Ck(n)×Sn R⊗n;k)

are always isomorphisms, the previous section tells the complete story. But this is only
the case if k is a field of characteristic 0, e.g. k = Q.

When k = F` for a prime `, one can construct further operations that do not arise
from an application of the map induced by the E+

k -algebra structure to an element in
the image of the external product.
Example 4.3.6. Let’s try to understand this for the term Ck(2) ×S2 (Si)×2 in E+

k (Si),
working with coefficients in F2 and taking k ≥ 2. Are there elements in its homology
that do not arise by applying products and Browder brackets to the class [Si]⊗ [Si]?

To understand this, we replace it with a labeled configuration space. Consider the
Serre spectral sequence in F2-homology for the fibration sequence

Si × Si −→ Conf2(İk)×S2 (Si)×2 −→ Conf2(İk)/S2 ' RP k−1.

Its E2-page has three non-zero rows, given by Hp(RP k;F2) for q = 0, Hp(Sk−1;F2) for
q = i (observe that Hi(Si × Si;F2) is F2[C2] as a representation of π1(RP k) = C2), and
Hp(RP k−1;F2) for q = 2i. Of these, only the terms on the 0th and (k − 1)st column can
be in the image of the external product map. (However, the class in (p, q) = (k − 1, 2i)
turns out not to be; a full rotation of two of the same class around each around is twice
a half rotation.)

In this example, the crucial elements are those on the top row: there are k of these,
obtained by combining the F2-homology of BC2 in a range (note RP k → BC2 is k-
connected) with the square of the fundamental class [Si] of Si. In general, a similar
construction replacing this fundamental class by a chain representing a homology class
of R yields Araki–Kudo–Dyer–Lashof operations

Qs : Hg,d(R;F2) −→ H2g,d+s(R : F2)
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where s must satisfy d ≤ s ≤ d + k − 1 [KA56, DL62]. For s = d, this is—as the
example suggests– equal to squaring using the product, while for s = d+ k − 1 this is
called top operation and denoted ζ because it satisfies slightly different relations than
the other Araki–Kudo–Dyer–Lashof operations. One may think of these operations as
higher operations derived from the square, not unlike the Steenrod squares [May70].

For odd primes `, the story is similar with Ck(`) replacing Ck(2) and we get higher
operations derived from the `th power map. These are the Dyer–Lashof operations

Qs : Hg,d(R;F`) −→ H`g,d+2s(`−1)(R : F`)
βQs : Hg,d(R;F`) −→ H`g,d+2s(`−1)−1(R : F`)

where s must satisfy d ≤ 2s ≤ d + k − 1. Once more, for 2s = d the map Qs is the
`th power map and for 2s = d + k − 1 these are called the top operations ζ and ξ
respectively. As the notation suggests, for E+

k -algebras in spaces βQs is obtained by
applying the Bockstein to Qs but this is neither true by definition nor true in general
(e.g. for E+

k -algebras in chain complexes).
The (Araki–Kudo)–Dyer–Lashof and top operations satisfy a variety of relations,

both amongst themselves and with the product and bracket. We will not give them here
(see [GKRW18a, Chapter 16]), as we will not require the details but only easily stated
qualitative consequences.

Notation 4.3.7. If we need to stress the prime ` in the Dyer–Lashof operations, we
write Qs` or βQs` .

4.3.3 F. Cohen’s theorem

The previous section explains that H∗,∗(R;k) comes with a generous amount of
operations with k = Q or F`. In particular, when R is a free E+

k -algebra E+
k (X) the

identity of the operad C+
k provides a canonical map

X −→ E+
k (X) =

⊔
n≥0
C+
k (n)×Sn X

⊗n

and thus an induced map H∗,∗(X;k) → H∗,∗(E+
k (X);k). We can apply homology

operations to its image, and informally F. Cohen’s theorem says that all homology classes
are obtained in this manner. It is proven in [CLM76] (but see [Wel82] and [GKRW18a,
Chapter 16] for corrections).

Rational case

If k = Q, then we have only described the product and the Browder bracket. The
relations among these make H∗,∗(R;Q) into a so-called (k − 1)-Poisson algebra. Let
Poisk−1(V ) denote the free (k − 1)-Poisson algebra on a bigraded Q-vector space V (one
homological grading and one “genus grading”); this is obtained by iteratively taking
products and Browder brackets starting with V , and enforcing all relations that hold
among these in the homology of any E+

k -algebra. The relations are such that we can
write everything as a linear combination of products of brackets. However, for the sake
of consistent notion we will write Wk−1(V ) := Poisk−1(V ).
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Theorem 4.3.8 (F. Cohen). The map

Wk−1(H∗,∗(X;Q)) −→ H∗,∗(E+
k (X);Q)

is an isomorphism.

Finite field case

If k = F`, then in addition to the product and Browder bracket we have the (Araki–
Kudo)–Dyer–Lashof and top operations. The relations among these make H∗,∗(R;F`)
into a so-called Wk−1-algebra. Let Wk−1(V ) denote the free Wk−1-algebra on a bigraded
F`-vector space V ; this is obtained by iteratively applying products, Browder brackets,
(Araki–Kudo)–Dyer–Lashof operations and top operations starting with V , and enforcing
all relations among these. The relations are such that we can write everything as linear
combinations of products of Dyer–Lashof operations applied to brackets.

Theorem 4.3.9 (F. Cohen). The map

Wk−1(H∗,∗(X;F`)) −→ H∗,∗(E+
k (X);F`)

is an isomorphism.

Remark 4.3.10. It may be helpful to remind you that what Wk−1(−) means depends
on the field we are using as coefficients. Hence this is a different theorem, even though
it looks identical to the previous one. In terms of qualitative behavior, you should
distinguish between the three cases Q, F2, and F` for ` odd.

4.4 Iterated mapping cones of Ek-algebras

That you might expect Ek-algebra structure to be related to homological stability
and secondary homological stability, is justified by these phenomena being present in
the homology of free Ek-algebras. We will work this out in an example. We will then
explain a technique that allows us to phrase these homological stability properties in a
more robust manner.

4.4.1 An example

Let us look at the homology with F2-coefficients of the free E+
2 -algebra E+

2 (D1,0σ).
This uses the following notation:

Notation 4.4.1. For X ∈ sSet we let Xg ∈ sSetN denote X placed in “genus” grading g.

In particular, D1,0 is the point D0 placed in “genus” grading 1. Recall that the
relations allow you to rewrite every generator as one where the brackets occur before all
other operations; but [σ, σ] = 0 (for ` = 2 this is in fact one of the relations). Thus we
get that the F2-homology of E+

2 (D1,0σ) is a free graded-commutative bigraded algebra
on iterated Araki–Kudo–Dyer–Lashof operations on σ. The general formula is that

H∗,∗(E+
2 (D1,0σ);F2) ∼= F2[QIσ | I admissible],
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where I runs over sequences (s1, . . . , sr) with 2sj ≥ sj−1,
∑r
j=2(2sj − sj−1) > 0 and

sr = 1, and we write the top operations as a Araki–Kudo–Dyer–Lashof operation. But
this simplifies quite a bit: all I are of the form (s1, . . . , sk+1) = (2k, 2k−1, . . . , 1) and in
this case QIσ = Qs1 · · ·Qsk+1σ has bidegree (2k+1, 2k+1−1). This is proven by induction:
if I is admissible then so is any subsequence from the right, and on an class of degree
2k+1 − 1 we can only apply Q2k+1−1 and Q2k+1 but the former is a square. (The reader
might want to compare this to cohomology computations of braid groups as [Fuk70].)

The upshot is Fig. 4.2. This lists the generators in each bidegree. Taking the
free graded-commutative algebra on these generators, one observes that all elements
in bidegree d < g

2 are multiples of σ—homological stability—and once we quotient out
the submodule generated by σ all elements in bidegree d < 2g

3 are multiples of Q1σ—
secondary homological stability. We can quotient out the submodule generated by Q1σ
and observe tertiary homological stability, etc.
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Figure 4.2: The generators of the bigraded F2-algebra H∗,∗(E+
2 (D1,0σ);F2). The first index is

the horizontal axis, the second index the vertical axis. The stable range is shaded blue, the
metastable range orange.

4.4.2 Iterated mapping cones and adapters

In the previous example, we took the various quotients after taking homology. This
is usually a bad idea, and we would rather take a quotient before taking homology.

To do so, we observe that taking the quotient of an associative algebra A by an
ideal generated by an element x has the following universal property. Consider A as
an A−A-bimodule. The element x ∈ A produces by adjunction a map x · − : A→ A of
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A-modules, and we can form the pushout

A A

0 A/(x).

x·−

Mimicking this homotopy-theoretically for an E+
k -algebra R for k ≥ 1, we switch

to working in sModNk instead of sSetN; this is pointed so there is a zero object 0, and is
harmless because we intend to take homology anyway. Consider R as a R−R-bimodule,
or if you prefer you can rectify R to an associative algebra R first. Let Sh,k denote the
pointed (k − 1)-sphere Sk in “genus” grading h. A map f : ∂Sh,k → R corresponding to
an element of Hk(R(h)) (if we are working with simplicial k-algebras a homotopy class is
the same as a homology class of the corresponding chain complex under Dold–Kan, and
we prefer the latter notaton). This produces by adjunction a map f · − : Sh,k ⊗R → R
of R-modules and we can form the homotopy pushout

R ⊗ Sh,k R

0 R/(f).

f ·−

By construction, there is a long exact sequence

· · · −→ Hg,d(R) f ·−−→ Hg+h,d+k(R) −→ Hg+h,d+k(R/(f)) −→ · · ·

so whether f · − is a surjection or isomorphism in a range can be deduced by studying
R/(f).

The difficulty with this construction is that it can not be iterated, because we “use
up” one of the module structures each time we take a quotient. This can be resolved for
k ≥ 2: R admits as many commuting R-module structures as you would like. Explicitly,
this may be achieved by the device of an adapter, analogously to using Moore loops
to construct rectify an E+

1 -algebra to an associative algebra. The construction of an
adapter uses the geometry of the k-dimensional cube with k ≥ 2 to produce three or
more commuting R-module structures; Fig. 4.3 should give you an impression of how to
get three such structures.

We may then take iterated cofibers to our heart’s content, writing

R/(f1, f2, · · · ) := ((R/(f1))/(f2))/ · · · ).
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Figure 4.3: Heuristically, the result of using simultaneously an “upper left” R-module structure
and a right R-module structure in an adapter.



Chapter 5

Indecomposables II: Indecomposables in other
categories

In this lecture we discuss some generalizations of the setup from the first lecture.
First we replace simplicial sets by simplicial modules over a ring, and how to transport
definitions to that setting. Then we discuss how to do something similar in functor
categories, which is the setting we really need for applications.

In [GKRW18a] we take an axiomatic approach to these different “settings”: write a
list of axioms, prove theorems based on those axioms, and then observe that simplicial
sets, simplicial modules, and functor categories satisfy the axioms. In the lectures we
will take the opposite approach, presenting the main ideas in a slightly simplified setting
before generalizing. Hopefully that will help keeping new concepts apart somewhat.

5.1 Simplicial modules

Let k be a commutative ring (typically: Z or a field) and let sModk be the category
of simplicial k-modules. Given X,Y ∈ sModk we define X⊗Y ∈ sModk to be the tensor
product over k (in each simplicial degree). Given a simplicial set K we let k[K] ∈ sModbk
be the free simplicial k-module on K. Using this we define a functor

Ek : sModk −→ sModk

X 7−→
∞⊔
n=1

(k[Ck(n)]⊗X⊗n)/Sn.

Clarification: we have written
∐

for the coproduct in the category sModk, which more
explicitly is the direct sum. Likewise, the quotient by the action of Sn should be formed
in the category sModk, which more explicitly means passing to coinvariants.

As in sSets, the operad structure on Ck again gives the functor Ek : sModk → sModk
the structure of a monad, and we define AlgEk(sModk) to be the category of algebras
for this monad. We again have a free functor

FEk : sModk −→ AlgEn(sModk)

left adjoint to the forgetful functor in the other direction. Using this, we define cell
attachments A ∪Eke Dd for A ∈ AlgEk(sModk), along an attaching map e : ∂Dd → A of

31
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underlying simplicial sets, as the pushout

FEk(k[∂Dd]) A

FEk(k[Dd]) A ∪Eke Dd

e

in the category AlgEk(sModk).
Using this, we define cellular algebras and derived indecomposables as indecompos-

ables of a cellular approximation, as we did for Ek-algebras in simplicial sets: first define
underived indecomposables of A ∈ AlgEk(sModk) as the cokernel of

⊔∞
n=2(k[Ck(n)] ⊗

A⊗n)/Sn → A, then derived indecomposables is indecomposables of a cellular approxi-
mation.

5.1.1 Linearization

The functor K 7→ k[K] from sSets to sModk is symmetric monoidal (and left adjoint
and compatible with the copowering over simplicial sets). Therefore, an Ek-algebra
structure on A ∈ sSets gives rise to an Ek-algebra structure on k[A] ∈ sModk. This is
compatible with indecomposables, in the sense that the diagram

AlgEk(sSets) AlgEk(sModk)

sSets∗ sModk

QEk QEk

commutes up to natural isomorphism. Here the bottom horizontal map denotes free
k-module relative to the basepoint. The proof is purely formal, using nothing but colimits
commuting with other colimits...

For A ∈ AlgEk(sSets) we shall often be interested in the homology of the underlying
simplicial set (e.g. for proving homological stability). Since the homology of X ∈ sSets is
the homotopy of k[X] (or equivalently, the homology of the chain complex associated to
the simplicial abelian group k[X]), we have not lost too much information by passing
from A to k[A].

5.2 A Hurewicz theorem and a Whitehead theorem

The indecomposables of A ∈ AlgEk(sModk) are defined as the quotient of A ∈ sModk
by something. In particular, there is a canonical quotient map

A −→ QEk(A).

For a cellular approximation A′ → A there is therefore a zig-zag

A
'←− A′ → QEk(A′) ' QEkL (A),
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inducing a well defined map on homotopy groups

πd(A)→ πd(QEkL (A)) = HEk
d (A).

By passing to mapping cones, there is also a relative version of this “Hurewicz map” for
a morphism f : A→ B in AlgEk(sModk)

The main result about this map is the following “Hurewicz theorem” which we will
use but not prove in these lectures (similar results obtained by Basterra–Mandell and
Harper–Hess; recent results of Heuts give sharp conditions under which generalizations
of “indecomposables detect weak equivalences” hold):

Theorem 5.2.1. Let A,A ∈ AlgEk(sModk) satisfy1 π0(A) = 0 = π0(A). Let f : A→ B
be morphism, and assume the underlying map of simplicial sets is n-connective, i.e. that
πi(B,A) = 0 for i < n. Then the map

πn(B,A)→ πn(QEkL (B), QEkL (A))

is an isomorphism.

Here we define πn(A′, A) as the homotopy2 group of the mapping cone of f in sModk.

Corollary 5.2.2. Let f : A → A′ be as in the previous theorem, and assume that
πi(QEkL (A′), QEkL (A)) = 0 for i < n. Then πi(A′, A) = 0 for i < n. In particular, f is a
weak equivalence if and only if QEkL (f) is a weak equivalence, under this assumption.

5.3 Minimal cell structures in simplicial modules

For Ek-algebras in simplicial sets, we discussed how homology of relative indecompos-
ables give a lower bound on the numbers of d-cells needed in a cellular approximation.
For Ek-algebras in simplicial modules over a field k, the same argument applies, showing
that any cellular approximation A′ → A must have at least

dimk(πd(QEkL (A))) = dimkH
Ek(A)

many cells of dimension d. Sometimes this bound is optimal:

Proposition 5.3.1. Let k be a field and let A ∈ AlgEk(sModk) have π0(A) = 0. Assume
that A′ ∈ AlgEk(sModk) is cellular, is built using precisely dimkH

Ek
d (A) many cells of

dimension d for d < n and no cells of dimension ≥ n, and that there is given a map
A′ → A inducing an isomorphism in HEk

d for d < n.
Then there exists a cellular A′′ ∈ AlgEk(sModk) obtained by attaching precisely

dimk(HEk
n (A)) many d-cells to A′ and no other cells, and a morphism A′′ → A inducing

an isomorphism in HEk
d for d ≤ n.

1Recall that we work with Ek-algebras which don’t have “units”
2In the paper we write this as Hn(A′, A), thinking of it as relative homology of the chain complexes

associated to A′ and A.
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By induction, there exists a cellular approximationA′ → A with precisely dimkH
Ek
d (A)

many d-cells for all d.

About proof. The idea is to choose a basis for the k-vector space

πn(A,A′)
∼=−→ HEk

n (A,A′)
∼=←− HEk

n (A).

Here the first isomorphism is the Hurewicz theorem above, and the second follows from
the long exact sequence of (A′, A) in Ek-homology.

Then we represent each basis element by a map of simplicial sets (∆n, ∂∆n)→ (A′, A).
Such a map is precisely the data needed for attaching a cell to A′ and extending the map to
A. If A′′ → A is the result of attaching these cells, one then checks that HEk

d (A′′, A) = 0
for d ≤ n + 1 because the cells precisely kill a basis for HEk

n+1(A′, A). The result then
follows from long exact sequences.

5.4 Functor categories

In this section we discuss how the categories sSets and sModk may be replaced by
functor categories, for example

sModG
k = functors G→ sModk.

We have a (k-linearized) Yoneda embedding

Gop → sModG
k

g 7→ k[G(g,−)]
(5.1)

as well as
sSets→ sModG

k

K 7→ k[K × G(1G,−)],
(5.2)

where 1G ∈ G is the monoidal unit.
If G is given a monoidal structure ⊕, there is an essentially unique monoidal structure

⊗ on sModG
k

making (5.1) into a monoidal functor, and such that ⊗ preserves colimits
in each variable separately. This is the Day convolution, given explicitly by the formula

(X ⊗ Y )(g) = colimg1⊕g2→gX(g1)⊗k Y (g2), (5.3)

where the colimit is over the category whose objects are triples (g1, g2, f) consisting of
g1, g2 ∈ G and a map g1 ⊕ g2 → g. Similarly when G is braided monoidal or symmetric
monoidal.

A simple example which is relevant to us is G = N, the category whose objects are
the non-negative integers, and which has only identity morphisms. In this case the
formula spells out to (X ⊗ Y )(n) = X(n)⊗ Y (0)q · · · qX(0)⊗ Y (n). In this case we
are essentially just “keeping track of an extra grading”. (Clarification: q denotes the
coproduct in sModk, i.e. the direct sum.)
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Using (5.3) and (5.2), we define a functor Ek : sModG
k
→ sModG

k
as

Ek(X) =
∞∐
n=1

(k[Ck(n)× G(1,−)]⊗X⊗n)/Sn. (5.4)

As before, composition of embeddings Ik → Ik gives this functor Ek the structure of a
monad, and we define Ek-algebras in sModG

k
as algebras for this monad: i.e., functors

A : G→ sModk equipped with a map µ : Ek(A)→ A satisfying some condition. We will
write

AlgEk(sModG
k)

for the category of Ek-algebras in sModG
k

.
Remark 5.4.1. The formula (5.4) only makes sense in the symmetric monoidal case, since
otherwise we don’t have a well defined action of Sn on X⊗n. For k = 2 the formula can
be rewritten as

E2(X) =
∞∐
n=1

(k[C̃k(n)× G(1,−)]⊗X⊗n)/Bn,

where C̃k(n) denotes a certain universal cover, and Bn denotes the braid group. This
formula also makes sense when G is only braided monoidal, and defines a monad. Hence
E2 algebras in sModG

k
make sense in this case, which we shall use. (But E3 and higher

does not make sense.)
For example, if we are interested in homology of the mapping class groups Γg,1, we

study the object
(g 7→ k[NΓg,1]) ∈ sModN

k .

Finally, there is a notion attaching a cell to A ∈ AlgEk(sModG
k
), whose input is an

“attaching” map e : ∂Dd → A(g) for some g ∈ G and d ∈ N. The object G represents a
functor G(g,−) ∈ SetsG and the attaching map corresponds to a map

∂Dd × k[G(g,−)]→ A

in sModG
k

. Cell attachment along e is then defined as the pushout in AlgEk(sModG
k

)

FEk(∂Dd × k[G(g,−)]) A

FEk(Dd × k[G(g,−)]) A ∪Eke Dg,d,

e

In the paper, we write the object Dd × k[G(g,−)] as Dg,d, and similarly for ∂Dg,d. Thus
we see that each cell has a bidegree (g, d) ∈ G× N.

Indecomposables and derived indecomposables are defined by the same method as
before, and are functors

AlgEk(sModG
k)→ sModG

k,

and Ek homology is defined as

HEk
g,d(A) = πd(QEkL (A)(g)).
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For the same formal reasons as before, when k is a field, the dimension of this vector
space is a lower bound on the numbers of (g, d)-cells in a cellular approximation to A.

There is again a convenient criterion for when this may be realized:

Proposition 5.4.2. Assume G is a groupoid3, k is a field, and that π0(A(g)) = 0 when
g is invertible in the monoidal structure (i.e. that there exists g′ such that g ⊕ g′ is
isomorphic to the monoidal unit). Assume furthermore that there exists4 a function5

ω : G/iso→ N such that ω(g ⊕ g′) ≥ ω(g) + ω(g′) and such that ω(g) > 0 when g is not
invertible in the monoidal structure.

Then there exists a cellular A′ ∈ AlgEk(sModG
k
) built using precisely dimHEk

g,d(A)
many cells of dimension (g, d).

About proof. One first proves a Hurewicz theorem, asserting that

πd(A(g), B(g))→ HEk
g,d(A,B)

is an isomorphism if these groups vanish in “smaller” bidegrees (in a suitable ordering
on G× N). The proof then produces a cellular approximation inductively on bidegrees,
in each step using this Hurewicz theorem to produce attaching maps. The assumptions
about existence of ω ensure that this works.

5.5 Filtrations

As a special case of functor categories, we consider functors out of Z≤: the category
with objects n ∈ Z, a single morphism n → m if n ≤ m and none otherwise, with the
symmetric monoidal structure given by addition. Functors Z≤ → sModk are filtered
objects of sModk. Beware that we do not require n→ n+ 1 to go to an “injection”, as
one sometimes does when considering filtered objects. We also write Z= for the category
with only identity morphisms. Then we have two important functors

gr : sModZ≤
k
→ sModZ=

k

colim : sModZ≤
k
→ sModk.

The first is associated graded, which to X ∈ sModZ≤
k

associates

gr(X) : Z= → sModk
n 7→ X(n)/X(n− 1).

The second, denoted colim, simply takes colimit over Z≤. Both are compatible with the
symmetric monoidal structures given by Day convolution, and induce functors on algebra

3I don’t think this is completely essential
4In the paper we call the existence of such a functor ω that G is “Artinian”. It plays a role somewhat

similar to that of a discrete valuation on a local ring.
5In the paper we express this as a symmetric monoidal functor G→ N≤
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categories fitting into diagrams

AlgEk(sModZ≤
k

) AlgEk(sModZ=
k

)

sModZ≤
k

sModZ=
k
.

QEk

gr

QEk

gr

and
AlgEk(sModZ≤

k
) AlgEk(sModk)

sModZ≤
k

sModk.

QEk

colim

QEk

colim

We will use this in the following way: Given A ∈ AlgEk(sModk), we look for a
C ∈ AlgEk(sModZ≤

k
) and an X ∈ sModZ=

k
, and weak equivalences

colim(C) ' A
gr(C) ' FEk(X).

(5.5)

Indeed, this situation gives a spectral sequence whose E1-page is homotopy of the free
Ek-algebra gr(C), converging to homotopy of colim(C). This can be useful because the
homotopy of free Ek algebras is well understood. (Recall that homotopy of an object of
sModk is homology of the corresponding chain complex.)

The above discussion can6 be repeated with sModk replaced by sModG
k

and hence
sModZ≤

k
replaced by sModG×Z≤

k
. We then have the following result about when such a

“multiplicative filtration” of A with the minimal number of cells may be achieved.

Theorem 5.5.1. In the situation of Proposition 5.4.2, there exists a C ∈ AlgEk(sModG×Z≤
k

),
an X ∈ sModG×Z=

k
and weak equivalences (5.5), such that

dimk(πd(X(g, n))) =
{

dimk(HEk
g,d(A)) for d = n

0 otherwise.

About proof. We construct C by a filtered analogue of cell attachments. The main new
idea is to give Dd filtration d and ∂Dd ⊂ Dd filtration d − 1. That the disk and its
boundary have different filtration causes the attaching maps to be trivial in the associated
graded, which makes the associated graded free: it is obtained by iterated cell attachments
along trivial attaching maps.

That this is possible using the minimal number of cell attachments consistent with
the Ek-homology of A again uses a Hurewicz theorem, similar to what we discussed
before.

6in the actual lecture I’ll probably state this only for trivial G



Chapter 6

Facts about mapping class groups II: low-degree
homology

6.1 Statements

A lot is known about the homology groups Hd(Γg,1;Z) in low degrees or low genus,
due to the work of many people1, which in the range we will need can be summarised as
follows.

0

1

2

1

Z
2

Z
3

Z
4

ZZ
0

Z Z/10

Z/2 Z⊕ Z/2 Z

d/g

In this talk I want to give some idea of the following, a slight simplification of Lemma
3.6 of [GKRW19], which explains the information about the homology of mapping class
groups that we shall need. Write σ ∈ H0(Γ1,1;Z) for the generator, and I will explain
the rest of the notation along the way.

Theorem 6.1.1.
(i) H1(Γ1,1;Z) = Z{τ},

(ii) H1(Γ2,1;Z) = Z/10{στ},

(iii) H1(Γg,1;Z) = 0 for g ≥ 3,

(iv) H2(Γ1,1;Z) is zero,

(v) H2(Γ2,1;Z) is torsion,

(vi) H2(Γ3,1;Z)/Im(σ · −) = Z{λ},
1Abhau, Benson, Bödigheimer, Boes, F. Cohen, Ehrenfried, Godin, Harer, Hermann, Korkmaz,

Looijenga, Meyer, Morita, Mumford, Pitsch, Sakasai, Stipsicz, Tommasi, Wang, ...

38
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(vii) H2(Γ4,1;Z) = Z{σλ},
(viii) the extension

0 −→ H2(Γ3,1;Z)/Im(σ · −) −→ H2(Γ3,1,Γ2,1;Z) −→ H1(Γ2,1;Z) −→ 0

is isomorphic to

0 −→ Z{λ} λ7→10µ−−−−→ Z{µ} µ7→u·στ−−−−−→ Z/10{στ} −→ 0

for some unit u ∈ (Z/10)× (in fact u = 1, but we will not need this).

6.2 Presentations of mapping class groups.

The most basic diffeomorphism of an oriented surface is the (right-handed) Dehn
twist: the diffeomorphism of the cylinder relative to its boundary as shown below.

Any simple closed curve c on an oriented surface Σ has a neighbourhood oriented
diffeomorphic to the cylinder, and the (right-handed) Dehn twist along c is the (isotopy
class of) diffeomorphism τc obtained by implanting the Dehn twist in this neighbourhood.
If φ is another diffeomorphism, this description makes it clear that φτcφ−1 = τφ(c).

As the figure above shows, the best way of thinking about diffeomorphisms of surfaces
is to consider how they act on (curves and) arcs. The action of τc on an arc a ⊂ Σ is
simple: after putting these in general position, τc(a) is the arc obtained by following a
and taking a detour along c at each intersection point.

Lemma 6.2.1. The stabiliser of an isotopy class (with fixed endpoints) of arc [a] for the
Γ(Σ)-action is the subgroup Γ(Σ \ nbhd(a)) ≤ Γ(Σ).

This gives a method for proving identities in the mapping class group: to show that
a diffeomorphism φ is trivial act on some arc a, and show that φ(a) is isotopic to a; if so,
φ may be isotoped to fix a, then removing a reduces us to the analogous question on a
simpler surface; finally, use that the mapping class group of a disc is trival. The relations
below may all be proved using this method.

6.2.1 The braid relation.

If a and b are disjoint simple closed curves, then

[τa, τb] = τaτbτ
−1
a τ−1

b = ττa(b)τ
−1
b = e
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using that τa(b) = b because the support of the diffeomorphism τa is disjoint from b. If
instead a and b intersect at precisely one point then one can see τaτb(a) = b and so

τaτbτa = (τaτbτa(τaτb)−1)τaτb = ττaτb(a)τaτb = τbτaτb.

(These are completely analogous to the relations in the braid group, for elementary braids
which are (i) not adjacent and (ii) adjacent.)

6.2.2 The two-holed torus relation.

On the torus with two discs removed, let a, b, c, d, e be the simple closed curves
shown in in the left-hand figure above. Then

(τaτbτc)4 = τdτe.

The lantern relation. On a sphere with four discs removed, let d0, d1, d2, d3, d12, d13,
d23 be the simple closed curves shown in the right-hand figure above. Then

τd0τd1τd2τd3 = τd12τd13τd23 .

Theorem 6.2.2 (Wajnryb [Waj83]). The group Γg,1 is generated by the τxi and, for
g ≥ 2, τd. A complete set of relations is given by: the braid relations among these
generators; the two-holed torus relation for the curves x1, x2, x3; the lantern relation for
the curves x1, x3, x5.

Note that the two-holed torus and lantern relations for the indicated curves also
involve other curves which are not in the listed generators: they can however to be
expressed in terms of the generators, and Wajnryb does so explicitly.
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In particular, as there are diffeomorphisms sending any non-separating curve to any
other, all Wajnryb’s generators are conjugate, so the abelianisation of the mapping class
group is always cyclic, generated by any non-separating Dehn twist. More precisely, as the
two-holed torus relation imposes “12 non-separating Dehn twists = 2 non-separating Dehn
twists” and the lantern relation imposes “4 non-separating Dehn twists = 3 non-separating
Dehn twists” we have

H1(Γ1,1;Z) = Z
H1(Γ2,1;Z) = Z/10
H1(Γg,1;Z) = 0 for g ≥ 3

in all cases generated by any non-separating Dehn twist.

6.3 Second homology.

Wajnryb’s presentation shows that

Γ1,1 = 〈τx1 , τx2 | τx1τx2τx1 = τx2τx1τx2〉,

which is the Artin presentation of the braid group on 3 strands. Thus

BΓ1,1 ' (S1 ∨ S1) ∪τx1τx2τx1τ
−1
x2 τ

−1
x1 τ

−1
x2
D2 ∪ {cells of dimension ≥ 3}

whose cellular chains is
Z 0←− Z⊕ Z (1,−1)←− Z←− · · ·

giving H1(Γ1,1;Z) = Z (as we saw above), and H2(Γ1,1;Z) = 0.
More generally, recall that for a group G given by a presentation F/R, there is Hopf’s

formula H2(G;Z) = [F,F ]∩R
[F,R] for the second homology of G. Using this, Korkmaz–Stipsicz

[KS03] have shown that H2(Γg,1;Z) ∼= Z for g ≥ 4, that H2(Γ2,1;Z) = Z/2, and that
H2(Γ3,1;Z) is either2 Z or Z⊕ Z/2 with the Z/2 coming from H2(Γ2,1;Z) = Z/2 (in fact
the second case occurs).

Furthermore, it follows from their calculation that stabilisation gives

H2(Γ3,1;Z) epi−→ H2(Γ4,1;Z) ∼−→ H2(Γ5,1;Z) ∼−→ · · · .

Finally, using a similar presentation for Γg they show that for g ≥ 2 the map H1(Γg,1;Z)→
H1(Γg;Z) is iso and the map H2(Γg,1;Z)→ H2(Γg;Z) is epi, and is iso for g ≥ 4. (These
also follow from homological stability done classically [Bol12, RW16].)

6.3.1 The Hodge class and second cohomology.

The composition

BΓg,1 −→ BΓg −→ BSp2g(Z) −→ BSp2g(R) ' BU(g)

pulls back the first Chern class to a class λ1 ∈ H2(Γg,1;Z), known as the Hodge class.
By construction the stabilisation maps Γg−1,1 → Γg,1 pull back λ1 to λ1.

2Hopf’s formula is not an algorithm.
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Theorem 6.3.1. λ1 generates H2(Γg,1;Z) ∼= Z for all g ≥ 3.

Given this, there is a class λ ∈ H2(Γ3,1;Z)/torsion uniquely characterised by 〈λ1, λ〉 =
1, and H2(Γ4,1;Z) = Z{σλ}.

Proof sketch. By the calculations of the last section H2(Γg,1;Z) ∼= Z for all g ≥ 3,
and these groups are sent isomorphically to each other by stabilisation; furthermore,
H2(Γg;Z) ∼→ H2(Γg,1;Z) for g ≥ 4: thus it suffices to prove that λ1 generates H2(Γg;Z)
for g � 0, or in other words that stably it is not divisible by any prime.

For p = 2, consider the Riemannn surface obtained as a simply-branched double cover
of an elliptic curve branched at two points. It has genus 2 by Riemann–Hurwitz, and
the deck transformation gives an action of µ2 on Σ2, which is as shown in the left-hand
figure above. Then H1(Σ2;R), with its complex structure given by Poincaré duality and
a choice of inner product, is isomorphic to

L⊗0 ⊕ L⊗1,

where L is the standard C-representation of µ2 with c1(L) =: x. The first Chern class of
this representation is then x ∈ H∗(µ2;Z) = Z[x]/(2x) so is not zero.

For p odd, consider the Riemann surface C obtained as the simply-branched double
cover of CP1 branched over 0 and the pth roots of unity µp. It has genus p−1

2 by Riemann–
Hurwitz, and the action of µp on CP1 can be lifted to an action on C: topologically, this
is shown in the right-hand figure above. The vector space H1(C;R) with the complex
structure given by Poincaré duality can be identified with the space of holomorphic 1-
forms on C. The decomposition of this C-vector space into irreducible µp-representations
can be obtained from the fixed-point data (the “Eichler trace formula”, cf. see [FK92,
V.2]) and is

L⊗1 ⊕ L⊗2 ⊕ · · · ⊕ L⊗
p−1

2 ,

where L is the standard C-representation of µp with c1(L) =: x. The first Chern class is
then (

∑(p−1)/2
i=1 i)x = 1

2
p−1

2
p+1

2 x = −1
8x ∈ H

∗(µp;Z) = Z[x]/(px) which is not zero.
In both cases examples or arbitrarily large genus can be obtained by starting with

Riemann surfaces of higher genus: thus λ1 is stably not divisible by p.

6.3.2 Identifying the extension.

By the Universal Coefficient Theorem, describing the extension is the same as
describing the image of λ1 under

H2(Γ3,1;Z) = Z{λ1} −→ H2(Γ2,1;Z) ∼= Ext1
Z(Z/10{στ},Z).
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For the statement we have made it suffices to show that λ1 ∈ H2(Γ2,1;Z) ∼= Z/10 is not
divisible by 2 or 5.

Just as above, using H2(Γ2;Z) ∼→ H2(Γ2,1;Z) it suffices to show that λ1 ∈ H2(Γ2;Z)
is not divisible by 2 or 5. The actions of µ2 and µ5 on Σ2 from the proof above show
that it is not.



Chapter 7

Ek-algebras II: iterated bar constructions

Chapter 2 introduced the notion of the derived Ek-decomposables of (non-unital)
Ek-algebras in sSet, and Chapter 5 generalised this to other categories. In this lecture
we explain how these derived Ek-indecomposables can also be computed by an iterated
bar construction, and give some applications.

Remark 7.0.1. So as to be more agnostic about the homotopy-theoretic foundations than
in the paper, I will not be talking about cofibrancy conditions and derived functors; all
objects are implicitly replaced and all functors implicitly derived.

7.1 Iterated bar constructions

We will be similarly agnostic towards the category we are working in, but you should
keep in mind the examples sSet∗, sSetG

∗ , and sModG
k . The reason we want a pointed

category (i.e. the initial and terminal object coincide) will become clear momentarily.

7.1.1 Augmentations

The categories of Ek-algebras and E+
k -algebras are not equivalent, just like how

non-unital and unital commutative algebras are not.
This can be resolved by adding to the latter the data of an augmentation (at least if

the category is stable). Observe that 1 is canonically an E+
k -algebra, through the map

E+
k (1) → 1 which takes each Ck(n) to a point. An E+

k -algebra R receives a canonical
map 1 → R of E+

k -algebras, and an augmentation is a map ε : R → 1 of E+
k -algebras

such that the composition
1 −→ R −→ 1

is the identity.

Example 7.1.1. 1 is augmented by the identity.

Example 7.1.2. If C is pointed, then the unitalisation S+ of a non-unital Ek-algebra S
has a canonical augmentation given on underlying objects by

S+ ∼= S t 1 −→ 1

44
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where the map is the identity on 1 and the zero map on S (this only makes sense because
C is pointed).

The augmentation ideal I(R) is the fiber of ε, which is an Ek-algebra; we say that the
augmentation is split if the canonical map 1 t I(R)→ R is a weak equivalence; this is
always true if C is stable. It is also true for the canonical augmentation of a unitalisation.

7.1.2 The Ek-bar construction

We will work towards the Ek-bar construction by starting with associative algebras,
generalising to E1-algebras, and finishing with Ek-algebras.

The bar construction

Recall that a semisimplicial object is a functor out of ∆op
inj, where ∆inj ⊂ ∆ the

subcategory with the same objects but only injective morphisms. The homotopy theory
of semisimplicial objects is similar to that of simplicial objects, but it will spare us having
to define degeneracy maps; there are only face maps. The geometric realisation of such
objects is the usual coend, and is sometimes referred to as the thick geometric realisation.

Suppose that A is a unital strictly associative algebra with an augmentation ε : A→ 1.
Then we can form the semisimplicial object

[p] 7−→ Bp(A, ε) := A⊗p, (7.1)

where the ith face map uses the multiplication for 0 < i < p and the augmentation
followed by the unit isomorphism for i = 0, p: the augmentation is crucial for this
construction and the result will depend greatly on it.

Definition 7.1.3. The bar construction B(A, ε) is the geometric realisation of (7.1).

Example 7.1.4. Maybe the following diagram for B•(A, ε) is instructive:

1 A A⊗2 · · ·
ε

ε

ε

ε
µ

The E1-bar construction

If we are given an augmented E+
1 -algebra R, we can not directly perform the previous

construction as there is no canonical choice of a multiplication map making it into a
unital strictly associative algebra. This can be resolved by rectifying R to a unital strictly
associative algebra R (e.g. by a Moore loops construction) but it is better to modify the
construction to incorporate all operations of the E+

1 -operad.
To do so, let P(•) be the semisimplicial space given by

[p] 7−→ {(t0 < . . . < tp) ∈ (0, 1)p+1},

where the ith face map deletes ti. You should think of this as demarcating intervals in
[0, 1]. Then we can form a semisimplicial object

[p] 7−→ BE1
p (R, ε) := P(p)×Rp, (7.2)
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where the ith face map uses a rescaled version of the rectilinear embedding [ti−1, ti] t
[ti, ti+1] ↪→ [ti, ti+2], explicitly given by

I 3 t e17−→ ti−ti−1
ti+1−ti−1

t ∈ I and I 3 s e27−→ ti−ti−1
ti+1−ti−1

+ ti+1−ti
ti+1−ti−1

s ∈ I

to combine the ith and (i+ 1)st of the R terms using the E+
1 -algebra structure. The face

maps for i = 0, p are still given by the augmentation followed by the unit isomorphism.

Definition 7.1.5. The E1-bar construction BE1(R, ε) is the geometric realisation of
(7.2).

The Ek-bar construction

The Ek-bar construction for augmented E+
k -algebras is given by replacing the interval

with demarcated interval with a k-dimensional cube and a grid. Recall that a k-fold
semisimplicial object is a functor out of a k-fold product of ∆op

inj. We let P(•, . . . , •) be
the k-fold semisimplicial space given by

[p1, . . . , pk] 7−→ P(p1)× · · · × P(pk),

consisting of elements tji ∈ P(pj). The ith face map in the j direction deletes tji , see
Fig. 7.1.

0 t10 t11 1

1
t21

t20

0

d1
0

0 t10 1

1
t21

t20

0

Figure 7.1: The face map of d1
0 : P(1, 1)→ P(0, 1).

Then we can form the k-fold semisimplicial object

[p1, . . . , pk] 7−→ BEk
p (R, ε) := P(p1, . . . , pk)×Rp1···pk , (7.3)

One should think of this as a grid of hyperplanes in all k coordinates dividing Ik into little
cubes. All of those not touching ∂Ik are labeled by R—the inner cubes—the remaining
ones by 1—the outer cubes—see Fig. 7.2.

As in the E1-bar construction, the face maps either combine two R’s using rescaled
versions of the cubes or apply the augmentation and use the unit isomorphism. I will
spare you the details, which can be found in Section 13.1 of [GKRW18a].

Definition 7.1.6. The Ek-bar construction is the geometric realisation of (7.3).

Example 7.1.7. We have BEk(1, ε1) ' 1.
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1 1 1 1 1

1 R R R 1

1 R R R 1

1 R R R 1

1 1 1 1 1

0 t10 t11 t12 t13 1

1

t20

t21

t22

t23

0

Figure 7.2: An illustration of BE2
3,3(R, ε).

By definition, for any augmented E+
k -algebra there are canonical augmented E+

k -
algebra maps 1→ R → 1 whose composition is the identity. Thus the Ek-bar construction
of 1 is a retract of that for R. Moreover, if the augmentation is split, then there is a
splitting

BEk(R, ε) ' BEk(1, ε1) t B̃Ek(R, ε)

defining the right-most term, the reduced Ek-bar construction. In general this is the
cofiber of the map in from BEk(1, ε1).

Remark 7.1.8. In fact, that one can form the Ek-bar construction is so inherent to notion
of an Ek-algebra that one can define Ek-algebras in terms of the Ek-bar construction:
this is contained in [Hau18].

7.1.3 The Ek-bar construction computes derived Ek-indecomposables

Let us now restrict to the pointed setting, so that we have a canonical augmentation
εcan : R+ → 1 for any E+

k -algebra R+ that is obtained as the unitalisation of a Ek-
algebra R; this has augmentation ideal I(R+) = R and always satisfies R+ ' 1 ∨R.
We introduce the shorthand

B̃Ek(R) := B̃Ek(R+, εcan).

The following is proven in [GKRW19, Chapter 14], but was known before in various
forms (e.g. [BM11, Fra08, Fre11]).

Theorem 7.1.9. There is a zigzag of natural weak equivalences of functors AlgEk(C)→ C

B̃Ek(−) ' Sk ∧QEk(−).
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The proof proceeds along the following familiar lines: construct a zigzag of natural
transformations so that all of the intermediate functors commute with geometric reali-
sation, resolve the input by a geometric realistion of free Ek-algebras, and verify it by
hand for those. It is the last two steps I want to expand upon here.

The case of a free Ek-algebra

Recall that Ek(−) serves as shorthand for FEk(−).
Question 7.1.10. What is the functor Sk ∧QEk(Ek(−))?

It suffices to understand just the term QEk(Ek(−)) and to do so, we observe it is a
composition of two left adjoints and hence we can understand it through the composition
of the corresponding right adjoints. This composition of right adjoints is UEk(ZEk(−)),
which takes the underlying object of an object made into an Ek-algebra by endowing it
with trivial Ek-algebra structure; this is just the identity functor. Hence its left adjoint
QEk(Ek(−)) is the identity as well.
Question 7.1.11. What is the functor B̃Ek(Ek(−))?

Let us evaluate it on X+ ∈ sSet∗; the choice of category and the disjoint basepoint is
a simplification for exposition’s sake. The general case is similar in spirit but has some
additional technical details.

The unitalisation of Ek(X+) is E+
k (X+). We next recall from the lecture on the

homology of free Ek-algebras that there is a weak equivalence

E+
k (X+) −→

∨
n≥0

Confn(İk)+ ∧Sn X∧n+ = Conf(İk;X)+

of E+
k -algebras, and replace Ek(X+) by this labeled configuration space model. It

remains to indicate why BEk(Conf(İk;X)+) ' Sk ∧X. I will be brief as Chapter 8 will
give a similar proof in more detail (for bounded symmetric powers instead of labeled
configuration spaces, but note that unordered configuration spaces are just instances of
bounded symmetric powers).

To do so, we introduce a space Y of unordered configurations of distinct points in
Rk labeled by X modulo the subspace where at least one point lies outside the open
disc Ḋk

10 of radius 10. It may be helpful to observe that this still splits as a wedge; if a
particle leaves Ḋk

10 it does not just disappear but takes the entire configuration to the
basepoint. Define a k-fold semisimplicial pointed space

[p1, . . . , pk] 7−→ Bp1,...,pk

with Bp1,...,pk ⊂ P(p1, . . . , pk)+ ∧ Y consisting of those pairs of a grid and a configuration
so that the configuration avoids the grids. There is a semisimplicial map

Bp1,...,pk −→ Bp1,...,pk(Conf(İk;X)+)

given by the basepoint if any of the complement of the inner cubes contains a point and
recording the locations of the points in the inner squares otherwise. This is a levelwise
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weak equivalence by “pushing particles in outside the inner cubes out of the Ḋk
10” and

hence geometrically realises to a weak equivalence. Furthermore, forgetting all grids
yields a map

|B•,...,•|
∼−→ Y

which is a weak equivalence by a “microfibration argument”. Finally, we compute the
homotopy type of Y by a “scanning argument”: we zoom in on the origin, pushing the
particles out. There are three situations which can arise:

· If the configuration had more than one particle, this yields the basepoint.

· If it had no particles, this yields a copy of S0.

· It if had one particle, this yields a (Ik ×X)/(∂Ik ×X) = Sk ∧X+.
We conclude that

BEk(Conf(İk;X)+) ' S0 ∨ (Sk ∧X+)

and to obtain B
Ek(Conf(İk;X)+) we remove the first term.

Resolution by free Ek-algebras

To reduce the general case to that of free Ek-algebras, one uses the monadic bar
resolution. This is a trick that is often in many other settings as well, and it is the
homotopical version of the fact that every O-algebra A can be presented as a reflexive
coequaliser

FO(O(A)) FO(A) A,
O(act)

act

with reflection given by FO(unit). This reflexive coequaliser is the beginning of an
augmented simplicial object B•(FO,O, A) given by

[p] 7−→ Bp(FO,O, A) := FO(Op(A)),

which has the same colimit: the augmentation provides an isomorphism

colim
∆op

B•(FO,O, A)
∼=−→ A.

Definition 7.1.12. The monadic bar resolution of A is given by

hocolim
∆op

B•(FO,O, A),

which is just the geometric realisation of this simplicial object.

The augmentation provides a map hocolim∆op B•(FO,O, A) → A and an extra
degeneracy argument proves it is a weak equivalence.
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7.2 Bar spectral sequences

One virtue of the Ek-bar construction is that it leads to geometric or combinatorial
models for the derived Ek-indecomposables, at least if the Ek-algebra it is applied to is
of a geometric or combinatorial origin. The latter is the case for the E2-algebra built
from mapping class groups, which arises from a braided monoidal groupoid as explained
in Chapter 9.

A second virtue of the Ek-bar construction is that it is iterated. Let us also abbreviate
the unreduced Ek-bar construction BEk(R, εcan) to BEk(R). If R is an E+

k -algebra,
then for ` < k we have that BE`(R) is an E+

k−`-algebra and we have a natural weak
equivalence

BEk(R) ' BE`(BEk−`(R)).

In the case ` = k − 1, we get BE1(BEk−1(R)) where the first term is the geometric
realisation of a semisimplicial object. Forgoing a “genus” grading for a moment, we get a
geometric realisation spectral sequence

E1
pq = Hq(BE1

p (BEk−1(R));k) =⇒ Hp+q(BEk(R);k)

If k is a field F, the right term can be identified using the Künneth theorem and the
definition of the E1-bar construction as

H∗(BE1
p (BEk−1(R));F) ∼= H∗(BEk−1(R);F)⊗p.

The d1-differential is
∑p
i=0(−1)i(di)∗ so we see this is nothing but the bar complex for

computing Tor of F against F over H∗(BEk−1(R);F). That is, we have

E2
pq = TorH∗(B

Ek−1 (R);F)
p (F,F)q =⇒ Hp+q(BEk(R);F).

Remark 7.2.1. Of course, instead of taking k to be a field F, we could demand that the
homology of H∗(BEk−1(R);k) is a free k-module.

This spectral sequence has one very useful consequence. Adding back in a “genus”
grading, it can be used to transfer vanishing lines for Ek−1-homology to Ek-homology:

Theorem 7.2.2. Let R be an Ek-algebra in sSetN∗ and f a function N → Z such that
inf{f(g1) + f(g2) | g1 + g2 = g} ≥ f(g).1 Then if ` < k is such that HE`

g,d(R;k) = 0 for
d < f(g)− ` then HEk

g,d(R;k) = 0 for d < f(g)− k.

Remark 7.2.3. To see where the shifts in the statement come from, recall thatHEk
g,d(R;k) =

H̃g,d(QEk(R);k) = H̃g,d+k(BEk(R);k) using Theorem 7.1.9 and the suspension isomor-
phism.
Remark 7.2.4. There is also a result for transferring vanishing lines downwards, i.e. from
Ek-homology to Ek−1-homology. Its proof uses different techniques.

1More general, one takes here a abstract connectivity as in [GKRW18a]. Usually f will be an
affine-linear function.



Chapter 8

Generic homological stability I: Bounded
symmetric powers

8.1 Bounded symmetric powers

We will consider the following E2-algebra: configurations of points in İ2 which are
allowed to collide, but where ≤ k points may occupy the same position. More formally,
let Sym≤k(n) ⊂ (İ2)n/Sn be the subspace of the nth symmetric power consisting of
those unordered tuples [x1, x2, . . . , xn] where no (k + 1) xi’s are equal. Then

Sym≤k : N −→ Top

n 7−→
{

Sym≤k(n) n > 0,
∅ n = 0,

has the structure of a (nonunital) E2-algebra in N-graded spaces in an evident way:

8.2 Computing the E2-homology

The goal of this lecture is to calculate HE2
∗,∗(Sym≤k;Z), in order to give an idea of

how the tools developed so far may be applied.
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8.2.1 The pointed setting

By adding a disjoint basepoint to each Sym≤k(n) we may work in the category of
N-graded (nonunital) E2-algebras in Top∗. Let us do this without changing the notation
Sym≤k. In this case the unitalisation Sym+

≤k is given by Sym≤k(n)+ in every grading
n ≥ 0, and it has the canonical augmentation

ε : Sym+
≤k −→ 1 =

{
S0 when evaluated at 0
∗ otherwise

given by sending all Sym≤k(n) with n > 0 to the basepoint.

8.2.2 The E2 bar construction

By Theorem 7.1.9 there is a natural equivalence

S2 ∧QE2
L (Sym≤k) ' B̃E2(Sym+

≤k, ε)

relating the derived E2-indecomposables of Chapter 2 and the reduced E2-bar construction
of Chapter 7; furthermore, the reduced and unreduced bar constructions are related by

S0 ∨ B̃E2(Sym+
≤k, ε) ' B

E2(Sym+
≤k, ε).

It turns out that we can give a geometric description of the E2 bar construction
of Sym≤k: in fact this is often possible for configuration-like examples, by the same
argument as below which is often known as “scanning”. For other kinds of examples,
such as mapping class groups or general linear groups, it is usually not possible to give
such a geometric description and one must proceed differently.

Lemma 8.2.1. The space BE2(Sym+
≤k, ε)(n) is weakly equivalent to the space of configu-

rations of n points in R2 of multiplicity ≤ k, modulo the subspace of those where at least
one point lies outside the open disc Ḋ2

10 of radius 10.

Proof. Let X denote the pointed space described. Form an augmented bi-semi-simplicial
space X•,• → X as follows. The space Xp,q = X ∧ (0, 1)p+1+q+1

+ is given by tuples

(ξ; t10, t11, . . . , t1p; t20, t21, . . . , t2q)

with ξ ∈ X, 0 < t10 < t11 < . . . < t1p < 1, and 0 < t20 < t21 < . . . < t2q < 1 such that the
“walls” {t1i } × [0, 1] and [0, 1] × {t2i } are all disjoint from the points ξ. The face maps
forget the t1i and t2j ’s, and the augmentation forgets all of them.

The fibre of |X•,•| → X over ξ ∈ X is the product of the classifying spaces of the
topological posets (0, 1) \ proj1(ξ) and (0, 1) \ proj2(ξ), both of which are totally ordered
and nonempty and hence have contractible classifying spaces.1

1There is a bit more to say here, as a map having contractible fibres does not suffice for it to be a
weak equivalence. One also needs to know that the fibres fit together somewhat well, but in this case
they do: the map |X•,•| → X is easily seen to be a Serre microfibration, which suffices using “Michael
Weiss’ lemma” [Wei05, Lemma 2.2].
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On the other hand BE2(Sym+
≤k, ε)p,q(n) is given by 0 < t10 < t11 < . . . < t1p < 1, and

0 < t20 < t21 < . . . < t2q < 1, along with a labelling of each inner cube [t1i , t1i+1]× [t2j , t2j+1]
by an element of Sym≤k(ni,j), satisfying n =

∑
i,j ni,j . The face maps are given by

forgetting the t1i and t2j ’s, merging labels using the E2-algebra structure, and applying
the augmentation to any configurations which end up in an outer cube.

The difference between these two bi-semi-simplicial spaces is whether only the inner
cubes may contain configuration points or not. There is a map

Xp,q −→ BE2(Sym≤k)p,q(n)

given by sending (ξ; t1•; t2•) to the basepoint if any point of ξ lies outside the inner cubes,
and otherwise labelling each [t1i , t1i+1]× [t2j , t2j+1] with [t1i , t1i+1]× [t2j , t2j+1]∩ξ. This respects
the face maps in both directions, and is an equivalence because if (ξ; t1•; t2•) has some
point of ξ not in an inner cube then it can be canonically contracted to the basepoint by
pushing such a point outwards until it lies outside Ḋ2

10

Corollary 8.2.2. BE2(Sym+
≤k, ε)(n) ' ∗ if n > k.

Proof. If n > k then a configuration of n points of multiplicity ≤ k must consist of at
least two distinct points. All n points cannot therefore be at the origin, so scaling radially
outwards from the centre gives a canonical path from any configuration to one with a
point outside Ḋ2

10, i.e. to the basepoint.

Corollary 8.2.3. BE2(Sym+
≤k, ε)(n) ' S2n if n ≤ k.

Proof. If n ≤ k then the requirement that configurations have multiplicity ≤ k is
redundant, so this space is given by configurations of n points in R2 modulo those
where some point lies outside Ḋ2

10. Equivalently, it is given by the quotient of the nth
symmetric power of D2

10/∂D
2
10 by the subspace of those tuples having some point at

∂D2
10/∂D

2
10. Equivalently, identifying D2

10/∂D
2
10
∼= CP1 it is the quotient of (CP1)n/Sn

by (CP1)n−1/Sn−1, included by adding ∞ ∈ CP1 to the configuration.
The Fundamental Theorem of Algebra gives a homeomorphism

CPn
∼=−→ (CP1)n/Sn,



54 Chapter 8 Generic homological stability I: Bounded symmetric powers

by considering CPn as the projectivisation of the (n + 1)-dimensional vector space of
polynomials of degree n, and assigning to such a polynomial its unordered set of roots.
(As the polynomials are not required to be monic, some of their roots may be ∞.) Using
CPn/CPn−1 = S2n gives the claimed result.

Putting this together with S2 ∧QE2
L (Sym≤k) ' B̃E2(Sym+

≤k, ε) gives:

Theorem 8.2.4. We have

HE2
n,∗(Sym≤k;Z) =

{
Z ∗ = 2(n− 1) and n ≤ k,
0 otherwise.

It is interesting to think what this means from the point of view of E2-cells. The
E2-homology class in bidegree (0, 1) corresponds to forming the free E2-algebra on one
point σ, so it gives the configuration space of distinct points. In grading 2 this has a
nontrivial cycle given by interchanging two points, but as long as k ≥ 2 this cycle is null
in Sym≤k(2) by merging the points together: the E2-homology class in bidegree (2, 2) is
an E2-2-cell which trivialises this cycle.

8.3 Addendum: a more algebraic perspective

The only place we have used that we are working with specifically with the 2-
dimensional cube is Corollary 8.2.3, but the geometric argument there can be replaced
with the following algebraic argument which applies more generally.

For n ≤ k we have Sym≤k(n) ' ∗, because we can scale radially inwards to the centre,
until all n points collide: this is allowed as n ≤ k. Thus

Hn,∗(Sym+
≤k;Z) =

{
Z{σn}[0] n ≤ k,
? n > k.
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Using this, we can calculate Hn,∗(BE2(Sym+
≤k, ε);Z) for n ≤ k directly by iterating the

bar construction. Consider the two bar spectral sequences

IE2
n,s,t = Tor

H∗,∗(Sym+
≤k;Z)

s (Z,Z)n,t =⇒ Hn,s+t(BE1(Sym+
≤k, ε);Z)

IIE2
n,s,t = Tor

H∗,∗(BE1 (Sym+
≤k,ε);Z)

s (Z,Z)n,t =⇒ Hn,s+t(BE2(Sym+
≤k, ε);Z).

Step 1. We have
H∗,∗(Sym+

≤k;Z) = Z[σ]

in gradings ≤ k, so in this range of gradings we may work with the polynomial ring
instead. It is well-known that

TorZ[σ]
∗ (Z,Z)∗,∗ = ΛZ[sσ]

where sσ has tridegree (1, 1, 0), and so the first spectral sequence collapses in gradings
≤ k, giving

H∗,∗(BE1(Sym+
≤k, ε);Z) = ΛZ[sσ]

in gradings ≤ k, where sσ has bidegree (1, 1).

Step 2. It is also well-known that

TorΛZ[sσ]
∗ (Z,Z)∗,∗ = ΓZ[s2σ],

the free divided power algebra on a class s2σ of tridegree (1, 1, 1), and so the second
spectral sequence collapses in gradings ≤ k, giving

H∗,∗(BE2(Sym+
≤k, ε);Z) = ΓZ[s2σ]

in gradings ≤ k, where s2σ has bidegree (1, 2). Forgetting the multiplicative structure
(which has no meaning anyway), this is Z in bidegrees (r, 2r), and zero otherwise.

Putting this together with S0 ∨ (S2 ∧QE2
L (Sym≤k)) ' BE2(Sym+

≤k, ε) and Corollary
8.2.2 gives another proof of Theorem 8.2.4.

However, working with bounded symmetric powers of int(Id) instead of int(I2) we
still get BEd(Sym+

≤k, ε)(n) ' ∗ if n > k, and continuing to calculate with the bar spectral
sequences gives, although these spectral sequences no longer collapse, the vanishing range

Hn,∗(BEd(Sym+
≤k, ε);Z) = 0 for ∗ < 2(n− 1) + d and 0 < n ≤ k,

and so although we do not know the Ed-homology explicitly, we do get the vanishing
range

HEd
n,∗(Sym≤k;Z) = 0 for ∗ < 2(n− 1).
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Generic homological stability II: E2-algebras
from braided monoidal groupoids

9.1 Constructing E2-algebras

Let (G,⊕,1G) be a (small) braided monoidal groupoid and r : G→ N be a braided
monoidal functor. For an object x ∈ G, let Gx := G(x, x) be its group of automorphisms.
We wish to endow its classifying space

BG '
⊔

[x]∈π0(G)
BGx

with the structure of a unital N-graded E2-algebra.
To do so, we make some simplifying assumptions:

(i) that r(x) = 0 if and only if x ∼= 1G,
(ii) that G1G is trivial.

We then work in the category sSetG = Fun(G, sSet). As G is braided monoidal, the Day
convolution monoidal structure on sSetG is braided too, which gives enough structure to
construct the E2-monad E2(−) on this category, and hence to discuss E2-algebras in it.
We can form the object

∗>0 : G −→ sSet

x 7−→
{
∅ x ∼= 1G

∗ otherwise.

As ∅ is initial and ∗ is terminal, the endomorphism operad of ∗>0 is the terminal operad,
so ∗>0 is an algebra over any operad: in particular it is an E2-algebra. This is of course
very far from being cofibrant as an E2-algebra: the action of Gx on ∗ = ∗>0(x) will be
free only if Gx is trivial, so it will usually not even be cofibrant in sSetG. However, we
can take a cellular approximation T ∼→ ∗>0 in AlgE2(sSetG).

Now using the braided monoidal functor r : G→ N we can form the left Kan extension

R := r∗(T) ∈ AlgE2(sSetN),
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which will again be cellular. Unwrapping the definition of Kan extension, for n > 0 we
have

R(n) = colim x∈G
r(x)=n

T(x) ∼=
⊔

[x]∈π0(G)
r(x)=n

T(x)/Gx '
⊔

[x]∈π0(G)
r(x)=n

BGx,

where the last identification is because T(x) ' ∗ (as T ∼→ ∗>0) and because T(x) is
a cofibrant Gx-space (as T is cofibrant in AlgE2(sSetG) and so in particular cofibrant
in sSetG). This construction has therefore endowed the homotopy type BG with the
structure of a non-unital N-graded E2-algebra.
Remark 9.1.1. If G is symmetric monoidal, then we can make sense of the E∞-monad on
sSetG and repeat the above to get an N-graded E∞-algebra structure on BG.

9.2 Homological stability

Suppose for simplicity that G has objects N. To discuss k-homology of the groups Gx
we may as well linearise [−]k : sSet→ sModk and work with Rk ∈ AlgE2(sModNk) and its
unitalisation R+

k
, so that

H1,0(R+
k

) = H0(R+
k

(1)) = H0(BG1;k).

Let σ denote the canonical generator of this group. It gives a map σ : S1,0
k
→ R+

k
, which

with the E2-structure allows us to form

σ · − : S1,0
k
⊗R+

k

σ⊗Id−→ R+
k
⊗R+

k

·−→ R+
k
,

and we write R+
k
/σ for its homotopy cofibre in sModNk . Unwrapping the definitions, we

have
Hn,d(R+

k
/σ) ∼= Hd(Gn, Gn−1;k).

Thus proving (k-)homological stability for the groups Gn corresponds to proving a
vanishing range for the bigraded homology groups of R+

k
/σ.

9.3 Derived indecomposables.

The next thing I want to do is to obtain a “formula” for the derivedE1-indecomposables
of R. We have the formula

S0 ∨ S1 ∧QE1
L (R) ' BE1(R+

+, ε)

expressing these derived indecomposables in terms of the bar construction (after adding
a basepoint and unit and taking the canonical augmentation), and as r∗ : sSetG → sSetN
is symmetric monoidal and preserves colimits we can write the latter as r∗BE1(T+, ε).
Thus we may analyse BE1(T+

+, ε) ∈ sSetG
∗ .

To do so, we make a further simplifying assumption:
(iii) that −⊕− : Gx ×Gy → Gx⊕y is injective.
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Definition 9.3.1. For x ∈ G let the E1-splitting complex SE1
• (x) be the semi-simplicial

set having
SE1
p (x) = colim

x0,...,xp+1
r(xi)>0

G(x0 ⊕ · · · ⊕ xp+1, x),

with face maps given by using the monoidal structure to merge adjacent xi’s.

Example 9.3.2. If the objects of G are the natural numbers, then we can write this quite
concretely as

SE1
p (n) =

⊔
n0+···+np+1=n

ni>0

Gn
Gn0 ×Gn1 × · · · ×Gnp+1

,

where we use assumption (iii) to consider Gn0 ×Gn1 × · · · ×Gnp+1 as a subgroup of Gn.

Theorem 9.3.3. There is a Gx-equivariant homotopy equivalence

BE1(T+
+, ε)(x) ' Σ2|SE1

• (x)|.

Proof sketch. We have BE1
p (T+

+, ε) ' (T+
+)⊗p, so that

BE1
p (T+

+, ε)(x) ' colimx1,...,xp∈GG(x1 ⊕ · · · ⊕ xp, x)+ ∧T+(x1)+ ∧ · · · ∧T+(xp)+.

By assumption (iii) the group Gx1 × · · · ×Gxp acts freely on the set G(x1 ⊕ · · · ⊕ xp, x),
so as the T+(xi) are contractible it follows that

BE1
p (T+

+, ε)(x) ' colimx1,...,xp∈GG(x1 ⊕ · · · ⊕ xp, x)+,

a discrete set. Thus the semi-simplicial space BE1
• (T+

+, ε)(x) is levelwise equivalent to
a semi-simplicial set. It is not hard to identify this up to homotopy with the double
suspension of SE1

• (x), by recognising it as a double suspension and then removing
degenerate simplices.

Corollary 9.3.4. If H̃∗(|SE1
• (x)|;k) = 0 for ∗ < r(x) − 2, then HE2

n,d(R;k) = 0 for
d < n− 1

Proof. Forming the Kan extension, it follows that for n > 0 there is an equivalence

S1 ∧QE1
L (R)(n) '

∨
[x]∈π0(G)
r(x)=n

Σ2|SE1
• (x)|//Gx,

where the homotopy orbits are formed in sSet∗. Thus under the given assumption
HE1
n,d(R)(n) = Hd(QE1

L (R)(n)) = 0 for d < n − 1. The claim about E2-homology then
follows by “transferring vanishing lines up”, i.e. write BE2(R+

+, ε) as the bar construction
of BE1(R+

+, ε) and run the bar spectral sequence.
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Generic homological stability III: a generic
stability result

10.1 A generic homological stability theorem

The following is [GKRW18a, Theorem 18.2]. It concerns E2-algebras in simplicial k-
modules, so applies to Rk from Chapter 9, but could also be applied to other E2-algebras
which do not arise in that way (e.g. which do not arise by k-linearising an E2-algebra in
sSet).

Theorem 10.1.1. Let R be a non-unital E2-algebra in N-graded simplicial k-modules,
such that H∗,0(R+) = k[σ] with |σ| = (1, 0).

(i) If HE2
n,d(R) = 0 for d < n− 1, then Hn,d(R+/σ) = 0 for 2d ≤ n− 1.

(ii) If in addition σ · − : H1,1(R) → H2,1(R) is surjective, then Hn,d(R+/σ) = 0 for
3d ≤ 2n− 1.

Example 10.1.2. Let us return to the N-graded non-unital E2-algebra Sym≤k given by
bounded symmetric powers. We calculated HE2

n,d(Sym≤k;Z) outright, and saw that in
fact this vanishes for d < 2(n− 1), a much larger range than the theorem requires. In
addition

H2,1(Sym≤k;Z) = H1(Sym≤k(2);Z) =
{

0 if k ≥ 2
Z if k = 1.

So, as long as k ≥ 2 it follows that

Hd(Sym≤k(n),Sym≤k(n− 1);Z) = Hn,d(Sym+
≤k/σ;Z) = 0

for 3d ≤ 2n− 1.

Problem 10.1.3. The fact that the E2-homology in fact vanishes in a much larger range
than the Theorem requires suggests a better stability range is possible. Experiment with
the proof of the Theorem and see what improvements you can make.

Proof of Theorem 10.1.1 (i).
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Reduce to finitely-generated free algebras. From the estimate on homology we
may find a CW-approximation Z ∼→ R such that Z only has (n, d)-E2-cells with d ≥ n−1,
and has a single 0-dimensional cell σ, in bidegree (1, 0). The CW object comes with a
skeletal filtration, having associated graded the free E2-algebra on its cells,

gr(Z) = E2

(
S1,0,0
k
{σ} ⊕

⊕
α∈I

Snα,dα,dα
k

{α}
)

with dα > 0 and dα ≥ nα − 1. Neglecting the filtration degree this satisfies the same
hypotheses of R, and there is a spectral sequence

E1
n,p,q = Hn,p+q,p(E+

2

(
S1,0,0
k
{σ} ⊕

⊕
α∈I

Snα,dα,dα
k

)
/σ)⇒ Hn,p+q(R+/σ),

so it suffices to treat the free algebra. Writing the free algebra as the colimit over its
finitely-generated subalgebras (always including the generator σ), it suffices to suppose I
is finite.
Reduce to working over Z. We have

E+
2

(
S1,0
k
⊕
⊕
α∈I

Snα,dα
k

)
/σ = E+

2

(
S1,0
Z ⊕

⊕
α∈I

Snα,dαZ

)
/σ ⊗Z k. (10.1)

By the universal coefficient sequence it suffices to treat the case k = Z.
Reduce to working over F`. Let ` be a prime number. The universal coefficient
sequence for (10.1) with k = F`, writing R = E2

(
S1,0
Z ⊕

⊕
α∈I S

nα,dα
Z

)
, is

0 −→ Hn,d(R+/σ)⊗ F` −→ Hn,d(R+/σ ⊗ F`) −→ TorZ1 (Hn,d−1(R+/σ),F`) −→ 0.

As we know that the Hn,d(R+/σ) are all finitely-generated abelian groups, as we arranged
the indexing set I to be finite, to show it vanishes it suffices to show that Hn,d(R+/σ⊗F`)
does.
Do it. We have reduced to the case

R = E2

(
S1,0
F` {σ} ⊕

⊕
α∈I

Snα,dαF` {α}
)

with dα > 0 and dα ≥ nα − 1. By Cohen’s theorem we have a formula for the homology
of R: it is the free (graded) commutative algebra on a bigraded vector space L with
basis (certain) Dyer–Lashof operations applied to (certain) Lie words in {σ} ∪ I. Thus
the homology of R+/σ is the free (graded) commutative algebra on L/〈σ〉. What is left?

The bracket of two elements has slope larger than the smaller of the two slopes of
these elements, and the operations Qs` and βQs` both increase slope. Thus the smallest
slope of an element of L/〈σ〉 is 1

2 (realised by Q1
2(σ), [σ, σ], or by an α of bidegree (2, 1)).

But then the free (graded) commutative algebra on L/〈σ〉 vanishes in bidegrees (n, d)
with d

n <
1
2 , as required.
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Proof of Theorem 10.1.1 (ii). The difficulty with getting an improved range in the above
argument is that L/〈σ〉 does contain elements of slope 1

2 , namely Q1
2(σ), [σ, σ], or an α

of bidegree (2, 1). Apart from these three classes though, the rest of L/〈σ〉 consist of
classes of slope ≥ 2

3 . The strategy will be to
(a) show that the assumption means that we need no (2, 1)-cells,
(b) show that the assumption means that Q1

2(σ) and [σ, σ] are d1-boundaries in the
spectral sequence

E1
n,p,q = Hn,p+q,p(E+

2

(
S1,0,0
k
{σ} ⊕

⊕
α∈I

Snα,dα,dα
k

)
/σ)⇒ Hn,p+q(R+/σ),

and that everything left has slope ≥ 2
3 .

Together these imply the improved range. It is not necessary, but let us suppose for
simplicity that k = F`.
Claim. HE2

2,1(R) = 0.

Proof of claim. Using the map E2(S1,0
F` )→ R given by σ, form the diagram

H2,1(R) H2,1(R,E2(S1,0
F` )) H2,0(E2(S1,0

F` )) H2,0(R)

0 HE2
2,1(R) HE2

2,1(R,E2(S1,0
F` )) 0 0

0

∼

∼

∼

given by the map on long exact sequences induced by the Hurewicz map. The top row is as
indicated, as the two rightmost terms are F`{σ2}. Because we haveH∗,0(R,E2(S1,0

F` {σ})) =
0, it follows from the Hurewicz theorem for E2-homology that the second vertical map is
an isomorphism: thus, the first vertical map is surjective. But then the composition

H1,1(R) σ·−−→ H2,1(R) −→ HE2
2,1(R)
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is surjective, as the first map is by assumption, but also zero, as σ · − by definition gives
something decomposable.

We can therefore find a CW-approximation Z ∼→ R such that Z has no E2-(2, 1)-cells.
The skeletal filtration then has

gr(Z) = E2

(
S1,0,0
F` {σ} ⊕

⊕
α∈I

Snα,dα,dαF` {α}
)

with dα > 0, dα ≥ nα − 1, and (nα, dα) 6= (2, 1). Consider the spectral sequences

F 1
n,p,q Hn,p+q,p(E+

2

(
S1,0,0
F` {σ} ⊕

⊕
α∈I S

nα,dα,dα
F` {α}

)
) Hn,p+q(R+)

E1
n,p,q Hn,p+q,p(E+

2

(
S1,0,0
F` {σ} ⊕

⊕
α∈I S

nα,dα,dα
F` {α}

)
/σ) Hn,p+q(R+/σ).

As Z has no (2, 1)-cells, in total bidegree (2, 1) of F 1
∗,∗,∗ all classes are linear combina-

tions of σ · α for |α| = (1, 1), and

δ :=
{
Q1

2(σ) if ` = 2
[σ, σ] if ` is odd.

As we discussed in the last proof, F 1
∗,∗,∗ = Λ[L] with

L = 〈σ, δ〉 ⊕ 〈elements of slope ≥ 2
3〉.

On the other hand, as σ · − : H1,1(R)→ H2,1(R) is surjective by assumption we must
have δ = σ · x ∈ H2,1(R), for some x ∈ H1,1(R). As this spectral sequence converges to
H∗,∗(R+) it must have a differential of the form d1(ρ) = δ − σ · x.

Using E1
∗,∗,∗ = F 1

∗,∗,∗/(σ), we see that in total bidegree (2, 1) of E1
∗,∗,∗ there is only

δ ∈ E1
2,0,1, and that there is also a differential d1(ρ) = δ for a ρ ∈ E1

2,1,1.



10.1 A generic homological stability theorem 63

Using this we proceed similarly to the first case: filtering away all other parts of the
d1-differential, we get the associated graded

gr(E1
∗,∗,∗, d

1) = (Λ[δ, ρ], dρ = δ)⊗ (Λ[L/〈σ, δ, ρ〉], d = 0)

where the first term has homology F`[0, 0, 0], and the second has L/〈σ, δ, ρ〉 vanishing
in degrees (n, d) with d

n <
2
3 (δ is the class of lowest slope in L/〈σ〉, and all others have

slope ≥ 2
3). It follows that E2

∗,∗,∗ vanishes in this range of bidegrees, and so H∗,∗(R+/σ)
does too.
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Secondary homological stability for mapping
class groups I

In this first lecture about secondary homological stability for mapping class groups,
Theorem 1.1.6, we will give the proof with rational coefficients. Along the way we will
prove ordinary homological stability for mapping class groups, Theorem 1.1.3.

11.1 Homological stability for mapping class groups

We first prove homological stability for mapping class groups, by showing that it
satisfies the criteria for the generic homological stability explained in Chapter 10.

11.1.1 A braided monoidal groupoid of mapping class groups

Firstly, we need to construct an E2-algebra R ∈ AlgE2(sSetN) from a braided monoidal
groupoid such that for all g > 0 we have R(g) ' BΓg,1. In our case, we will use the
groupoid MCG has objects given by the natural numbers and morphisms

MCG(g, h) :=
{

Γg,1 if g = h,
∅ otherwise.

The monoidal structure ⊕ on MCG is given by addition on objects, and on morphisms
ϕ ∈ Γg,1 and ψ ∈ Γh,1 by ϕ ⊕ ψ = φ ∪ (ψ + g · e1) as a diffeomorphism Σg+h,1 =
Σg,1 ∪ (Σh,1 + g · e1). The braiding is given by the half right-handed Dehn twist. That
the homomorphism −⊕− : Γg,1 × Γh,1 → Γg+h,1 is injective is a classical result, boiling
down to the result of Gramain that spaces of arcs in a surface have contractible path
components.

Then R ∈ AlgE2(sSetN) is the derived pushforward of the canonical (non-unital)
E2-algebra ∗>0 in sSetMCG along the unique functor MCG → N that is the identity on
objects. By construct we have that

R(g) =
{
BΓg,1 if g > 0,
∅ if g = 0.

64
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In terms of this E2-algebra structure, the stabilisation map σ∗ : Hd(BΓg−1,1;Z) →
Hd(BΓg,1;Z) is the map Hd,g−1(R;Z)→ Hd,g(R;Z) induced by multiplication with your
favorite point σ ∈ R(1).
Example 11.1.1. This is weakly equivalent to the geometric model given in the introduc-
tion.

11.1.2 Applying the generic homological stability result

In Chapter 9, we learned that to prove the vanishing line HE2
g,d(R;Z) = 0 for d ≤ g−2

it suffices to prove that the semi-simplicial set—the E1-splitting complex SE1
• (g)—is

(g − 3)-connected:
[p] 7−→

⊔
g0+···+gp+1=g

Γg,1
Γg0,1 × · · · × Γgp+1,1

,

where each gi is positive. The ith face map is induced by the inclusion Γgi,1 × Γgi+1,1 →
Γgi+gi+1,1. We have already done this in Chapter 3:

Lemma 11.1.2. There is an isomorphism of semi-simplicial sets

SE1
• (g) ∼= S(Σg,1, b0, b1)•

and hence the left side is (g − 3)-connected.

Here S(Σg,1, b0, b1)• is the semi-simplicial set with p-simplices given by isotopy classes
of (p+ 1)-tuples of arcs from a point b0 ∈ ∂Σg,1 to b1 ∈ ∂Σg,1 that are (i) disjoint except
at endpoints, (ii) whose order agrees with the clockwise order at b0, (iii) the arcs split
the surface into p+ 2 regions of positive genus.

Proof sketch. Fix a decomposition g0 + · · ·+ gp+1 = g with gi positive, we get a decompo-
sition of Σg,1 into the standard pieces Σgi,1 and a preferred p-simplex of arcs connecting
b0 to b1. Then acting by Γg,1 on this collection yields a map Γg,1 → S(Σg,1, b0, b1)p
which is surjective onto the p-simplices whose regions have genus g0, . . . , gp+1, by the
classification of surfaces. The stabiliser of the preferred p-simplex is Γg0,1 × · · · × Γgp+1,1.
Varying over all sums gives a bijection

SE1
p (g) =

⊔
g0+···+gp+1=g

Γg,1
Γg0,1 × · · · × Γgp+1,1

∼=−→ S(Σg,1, b0, b1)p.

An inspection of these bijections shows that they commute with the face maps.

This gives condition (i) of Theorem 10.1.1. For condition (ii) of Theorem 10.1.1,
we need some input about the low-degree low-genus homology of mapping class groups,
going back to Chapter 6.

Lemma 11.1.3. The stabilisation map H1,1(R;Z)→ H2,1(R;Z) is surjective.

Proof. Equivalently, H1(BΓ1,1;Z)→ H1(BΓ2,1;Z) is surjective. By Theorem 6.1.1 (i) by
the left side is Z generated by τ (the image of the Dehn twist) and by Theorem 6.1.1 (ii)
the right side is Z/10 generated by στ .
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0

1

2

1
Zσ1

2
Zσ2

3
Zσ3

4
Zσ4Z1

0

Zτ Z/10στ

A Zλ⊕B Zσλ

d/g

Figure 11.1: Summary of Hg,d(RZ) as described in Theorem 6.1.1, where A and B are torsion
and B is the image of A under multiplication by σ. Empty entries are 0.

Having verified the conditions of Theorem 10.1.1, we conclude

Hg,d(R+/σ;Z) = 0 for 3d ≤ 2g − 1.

Here R+ is the unitalisation of R, and R+/σ is the cofiber of multiplication by σ, satis-
fying Hg,d(R+/σ;Z) = Hd(BΓg,1, BΓg−1,1;Z), the relative homology of the stabilisation
map. This is thus expressing that σ∗ : Hd(BΓg−1,1;Z)→ Hd(BΓg,1;Z) is a surjection for
d ≤ 2g−1

3 and an isomorphism for d ≤ 2g−4
3 . This was the statement of Theorem 1.1.3.

11.2 Rational secondary homological stability for mapping class groups

Our next goal is to prove rational secondary homological stability for mapping class
groups. Here the rational case is easier in at least two ways:

(i) it is easier to construct the secondary stability maps,
(ii) the computations in free E+

2 -algebras are simpler rationally since there are no
Dyer–Lashof operations.

We will thus study the Q-linearisation RQ of R (obtained by applying the functor
Q[−] : sSetN → sModNk) and apply a more refined version of the argument for the generic
homological stability result: instead of directly invoking CW-approximation for RQ, as we
did in the proof of Theorem 10.1.1, we will invoke the relative version for a map A→ RQ
in AlgE2(sModNQ), where A is a “small model” that contains all necessary low-degree
low-genus E2-cells. We will then prove by direct calculation the secondary homological
stability result for A, and next prove that it transfers to RQ.

Homological stability with rational coefficients concerns the vanishing of the homlogy
of R+

Q/σ, as its homology groups are the relative rational homology groups of the
stabilisation map. On this mapping cone, we can use an adapter to still produce a
multiplication-by-λ map, which gives a map

λ · − : Hg−3,d−2(R+
Q/σ) −→ Hg,d(R+

Q/σ).

It is this map that we will prove is an isomorphism or surjection in a range. Equivalently,
we may form the iterated mapping cone R+

Q/(σ, λ), and to get secondary homological
stability as stated in Theorem 1.1.6 we need to prove that

Hg,d(R+
Q/(σ, λ)) = 0 for 4d ≤ 3g − 1.
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Remark 11.2.1. Here “small model” does not mean that A→ RQ induces an isomorphism
on homology in low homological degree d, nor that it does so in low genus g; it only
does so when both g and d are low. Due to the vanishing line in E2-homology for R,
this is enough for it to “capture in a range the stability phenomena present in RQ.” In
particular, you can’t compute the stable homology of mapping class groups from A.

Construction of A

At this point we use crucially the computations of Chapter 6. Rationally, Fig. 11.1
summarising Theorem 6.1.1 simplifies to Fig. 11.2. From it, we obtain the following:

· A map S1,0
Q σ → RQ representing σ.

· A map S3,2
Q λ→ RQ representing λ.

These combine to a map E2(S1,0
Q σ ⊕ S3,2

Q λ)→ RQ in AlgE2(sModNQ) and since [σ, σ] = 0
in the target, picking a null-homotopy of the map S2,1

Q → RQ representing this Browder
bracket we get an extension of this map to

A := E2(S1,0
Q σ ⊕ S3,2

Q λ) ∪[σ,σ] D
2,2
Q ρ −→ RQ. (11.1)

Remark 11.2.2. A is essentially a (rationalised version of) the bounded symmetric power
Sym≤2 with additional free E2-cells on the generator λ. Does this E2-algebra have a
geometric interpretation in terms of moduli spaces?

0

1

2

1

Qσ1

2

Qσ2

3

Qσ3

4

Qσ4Q1
0

Qτ

Qλ Qσλ

d/g

Figure 11.2: Summary of Hg,d(RQ). Compare to Fig. 1.2.

Remark 11.2.3. Why did we not add in an E2-cell for τ? We could have as doing so, not
affect the estimate in the next lemma. I have kept it out to make the smaller model
even smaller. In general, a small model capturing stability phenomena up to slope λ only
needs to include the cells that appear in a minimal CW-approximation to R that have
bidegree (g, d) with d ≤ λg. That is, slope d

g is the crucial quantity.

Lemma 11.2.4. HE2
g,d(RQ,A) = 0 for 4d ≤ 3g − 1.

Proof. We use the long exact sequence of a pair to deal with the cases g ≥ 4:
· HE2

g,d(RQ) = 0 for d ≤ g − 2 by Section 11.1.2.

· HE2
g,d(A) = 0 except in bidegrees (g, d) = (1, 0), (3, 2), (2, 2), by construction; in

particular this vanishes for d ≤ g − 2.
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From the long exact sequence

· · · −→ HE2
g,d(A) −→ HE2

g,d(RQ) −→ HE2
g,d(RQ,A) −→ · · · ,

we conclude that HE2
g,d(RQ,A) = 0 for d ≤ g − 2. As long as g ≥ 4, this implies we can

have a non-zero class only if d ≥ g − 1 or equivalently 4d ≥ 4g − 4 ≥ 3g so get vanishing
if 4d ≤ 3g − 1.

For g ≤ 3, we build a slightly larger model

A′ := A := E2(S1,0
Q σ ⊕ S1,1

Q τ ⊕ S3,2
Q λ) ∪E2

[σ,σ] D
2,2
Q ρ1 ∪E2

στ D
2,2
Q ρ2,

which fits into a factorisation A → A′ → RQ. We next use the Hurewicz theorem
concerning the map

Hg,d(RQ,A′) −→ HE2
g,d(RQ,A′);

it is a little computation that A′ → RQ is an isomorphism on ordinary homology in
bidegrees (g, d) with g ≤ 3 and d ≤ 1 (this was the reason for adding in τ and ρ2) and
surjective with g ≤ 3 and d = 2, so the same is true on E2-homology. Finally, we use the
long exact sequence of triple

· · · −→ HE2
g,d(A

′,A) −→ HE2
g,d(RQ,A) −→ HE2

g,d(RQ,A′) −→ · · · ,

to deduce the result for HE2
g,d(RQ,A) with g ≤ 3.

Proof of secondary homological stability for A

We start by performing the same iterated mapping cone construction for A to obtain
A+/(σ, λ), which maps to R+

Q/(σ, λ). The corresponding secondary homological stability
result is true in this case:

Lemma 11.2.5. Hg,d(A+/(σ, λ)) for 4d ≤ 3g − 1.

Proof. Let n∗(−) denote an object made filtered by putting it in filtration degree n. We
can lift A to a filtered E2-algebra by taking

skA := E2(0∗S1,0
Q σ ⊕ 2∗S3,2

Q λ) ∪[σ,σ] 2∗D2,2
Q ρ,

that is, recognising it is a CW-algebra and consider its skeletal filtration. The associated
graded is simply a free E2-algebra

gr(skA) = E2(S1,0,0
Q σ ⊕ S3,2,2

Q λ⊕D2,2,2
Q ρ),

so we get a spectral sequence (we are unitalising because this simplifies the homology of
free E2-algebras)

E1
g,p,q = Hg,p+q,p

(
E2(S1,0,0

Q σ ⊕ S3,2,2
Q λ⊕D2,2,2

Q ρ)+) =⇒ Hg,p+q(A+)

with left side is the free graded-commutative algebra on all iterated bracketings of σ, λ,
and ρ. More explicitly, it is given by

E1
g,p,q = (Λ∗(L), d1)
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with Λ∗ denoting the free graded commutative algebra (using only homological grading for
the Koszul sign, and genus grading coming along for the ride), L is a graded vector space
of brackets of σ, λ, ρ. The d1-differential is a derivation and comes from the attaching
map of the cell ρ so satisfies d1(ρ) = [σ, σ]. It is a small computation that the only
generators of slope p+q

g < 3
4 are σ, λ, [σ, σ], ρ; as in the proof of Theorem 10.1.1 the crucial

observation is that a bracket has slope strictly larger than the smallest slope of its two
inputs.

The filtration skA of A induces a filtration skA+/(σ, λ) of A+/(σ, λ). This yields a
spectral sequence

F 1
g,p,q = Hg,p+q,p

(
E2(S1,0,0

Q σ ⊕ S3,2,2
Q λ⊕D2,2,2

Q ρ)+/(σ, λ)
)

=⇒ Hg,p+q(A+/(σ, λ)),

with left side more explicitly given by

F 1
g,p,q = (Λ∗(L/〈σ, λ〉), d1),

the free graded-commutative algebra on all iterated bracketings of σ, λ, and ρ, except σ
and λ. The map of spectral sequences

E1
∗,∗,∗ −→ F 1

∗,∗,∗

makes the latter into a module spectral sequence over the previous one, which determines
that the d1-differential still is a derivation satisfying d1(ρ) = [σ, σ]. You might be worried
about the understanding value of the differential on other bracketings, but this can be
filtered away as in proof of Theorem 10.1.1. The conclusion is that an upper bound of
the E2-page is given by homology of the complex

(Λ∗(ρ, [σ, σ]), d(ρ) = [σ, σ])⊗ (Λ∗(other generators), 0),

where explicitly the other generators is given by L/(σ, λ, [σ, σ], ρ). But this vanishes in
the range d

g <
3
4 as the left side will be Q in degree 0 after taking homology and the right

side vanishes in this range.

Let us investigate this proof a bit closer and observe that we may as well have added
more freely attached E2-cells of slope ≥ 3

4 . The proof goes through in the same manner;
there are just more “other generators.”

Proposition 11.2.6. If Ã is of the form A ∪E2 E2(
⊕

α S
gα,dα
Q ) with (gα, dα) satisfying

4dα ≥ 3gα, then Hg,d(Ã+/(σ, λ)) for 4d ≤ 3g − 1.

Proof of secondary homological stability for RQ

We will use Proposition 11.2.6 to prove that R+
Q/(σ, λ) has the same vanishing line as

A+/(σ, λ). Applying the CW-approximation theorem in combination with Lemma 11.2.4
we get a factorisation

A −→ B ∼−→ RQ,

where B is obtained by attaching only E2-cells in bidegrees (gα, dα) with 4dα ≥ 3gα.
Since the left map is a weak equivalence, to prove Theorem 1.1.6 with rational coefficients
it suffices to prove that B+/(σ, λ) has the desired vanishing range:
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Theorem 11.2.7. Hg,d(B+/(σ, λ)) = 0 for 4d ≤ 3g − 1.

Proof. Taking the filtration on B+/(σ, λ) induced by the skeletal filtration, we get a
spectral sequence

E1
g,p,q = Hg,p+q,p(A[0] ∪E2 E2(

⊕
α

Sgα,dα,dα)+/(σ, λ)) =⇒ Hp+q(B+/(σ, λ)).

But since upon forgetting the additional grading, we get A ∪E2 E2(
⊕

α S
gα,dα) which is

of the form required in Proposition 11.2.6, we know that the E1-page has the desired
vanishing line in Proposition 11.2.6.

This concludes the proof of Theorem 1.1.6 with rational coefficients. Next lecture we
will discuss the case of integer coefficients.
Remark 11.2.8. Here is a different take on the same argument: (11.1) is the beginning of
a CW-approximation of RQ, only containing the ≤ 2-dimensional cells; it satisfies the
induction hypothesis for ε = 2 in the proof of Theorem 11.21 of [GKRW18a]. Thus we
can extend it to a CW-approximation

A −→ B ∼−→ RQ,

where B is a CW-E2-algebra that has the same E2-cells as A and all further E2-cells of
bidegree (gα, dα) satisfying 4dα ≤ 3gα. Now take the filtration on B+/(σ, λ) induced by
the skeletal filtration and argue as in Lemma 11.2.5.
Remark 11.2.9. The argument in Section 5.2 of [GKRW19] is different than the one given
above; it replaces the proofs of the Proposition and the Theorem by an appeal to a
comparison result for relative E2-cells for A → RQ to relative A-module cells for RQ
made into an A-module through this map. This comparison result is Theorem 15.4 of
[GKRW18a].
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Outlook I: General linear groups

In analogy to the case of mapping class groups, we want to study the homology of
general linear groups of a field F, using an E∞ structure on

∞∐
n=1

BGLn(F).

This is the content of [GKRW18b, GKRW20], though we will be focusing on the latter.

12.1 An E∞-algebra of general linear groups

We fix once and for all a field F. We proceed as in Chapter 9, working in a category
sSetsG, where G has objects given by N and morphisms given by

G(n,m) =
{

GLn(F) if n = m,
∅ otherwise.

Then BG '
∐
n≥1BGLn(F), and the E∞ structure on this space corresponds to the

symmetric monoidal structure on G given by direct sum of vector spaces (G is a skeleton
of the groupoid of finite-dimensional F-vector spaces, and hence is equivalent to it) or
equivalently to block sum of square matrices.

As in Chapter 9, there is an object ∗>0 ∈ sSetsG taking the value ∅ at n = 0 and
a point ∗ at any n > 0. This has a unique E∞-structure in sSetsG equipped with
the Day convolution symmetric monoidal structure, and as in that chapter we obtain
T ∈ AlgE∞(sSetsG) as a cofibrant approximation. Writing r : G → N for the evident
functor, we then set R := r∗(T) ∈ AlgE∞(sSetsG). Then

R(n) ' BGLn(F).

12.2 E∞-homology

Then Ek-homology of T ∈ sSetsG will push forward to Ek-homology of R ∈ sSetsN,
so we may start by calculating the former. The interesting values of k seem to be
k = 1, 2,∞; our end-goal is to obtain the last of these.

71
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12.2.1 Splitting complexes

Moving to the pointed setting by adding basepoints (sSets,×)→ (sSets∗,∧) gives an
E∞-algebra object T+ ∈ sSetsG

∗ , and as in Chapter 9 its derived indecomposables may
be calculated for 0 6= n ∈ G as the bar construction of its unitalisation T+

+:

B(T+
+, εcan)(n) ' ΣQE1

L (T+)(n) ' Σ2SE1(n),

where εcan : T+
+ → 1 is the canonical augmentation. As in Theorem 9.3.3, SE1(n) is the

semi-simplicial set given by

SE1(n) = [p] 7→
⊔

n0+···+np+1=n
ni>0

GLn(F)
GLn0(F)× · · · ×GLnp+1(F) ,

and B(T+
+, εcan)(n) has a very similar looking description but without the outer terms

indexed by n0 and np+1.
Let us look at 0-simplices first: this is the GLn(F)-set

SE1
0 (n) =

n−1⊔
n0=1

GLn(F)
GLn0(F)×GLn−n0(F) ,

which can be identified with the set of pairs (P0, P1) of non-zero subspaces P0, P1 ⊂ Fn
such that P0 ⊕ P1 → Fn is an equivalence. (The equivariant bijection can be seen by
inspecting orbits and stabilizers.)

Similarly, p-simplices can be GLn(F)-equivariantly identified with tuples (P0, . . . , Pp+1)
of non-zero subspaces of Fn forming a direct sum decomposition. This semisimplicial
set can also be identified with the nerve of the poset with objects (P0, P1) and where
(P0, P1) ≤ (P ′0, P ′1) means P0 ⊂ P ′0 and P1 ⊃ P ′1. Notice the similarity with the arc
complex considered in Chapter 3 and Chapter 11: this was a poset of ways to cut a
surface into two non-trivial pieces, we have a poset of ways of cutting a vector space into
two non-trivial pieces.

This semi-simplicial set is closely related to the Tits building, which is the nerve of the
poset whose objects are non-trivial proper subspaces 0 ( P ( Fn, ordered by inclusion.
Writing T (n) for the nerve of this poset, we have an evident surjection

SE1(n) −→ T (n) (12.1)

induced by (P0, P1) 7→ P0.
It is a classical result that |T (n)| is (n−3)-connected, and hence homotopy equivalent

to a wedge of (n− 2)-spheres [Sol69]. The homology group

Stn := H̃n−2(T (n))

is an (infinite dimensional) representation of GLn(F), called the Steinberg module. The
Solomon–Tits theorem gives an explicit Z-basis for it by so-called apartments [Sol69].

The map (12.1) is evidently not a homeomorphism, since non-empty proper subspaces
have many different complements. It does not even induce an isomorphism on homology,
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but Charney proved that the complex SE1(n) is also (n − 3)-connected, so has the
homotopy type of a wedge of (n − 2)-spheres [Cha80]. It is sometimes called the split
building, and its H̃n−2 the split Steinberg module.

Using this, the situation is formally similar to the previous lectures about the E2-
algebra of mapping class groups, in that Charney’s connectivity implies

HE1
g,d(R) = 0 for d < g − 1,

where R ∈ sSetsN is (r∗T) ' (n 7→ BGLn(F)). We could therefore try to proceed in the
same way as for mapping class group, using the bar spectral sequences of Chapter 5 and
low-dimensional calculations of homology of general linear groups.

The rest of this talk is about the situation (or at least our knowledge of the situation)
being strictly better for general linear groups of infinite fields than for mapping class
groups. Hence from now on we assume that F is infinite. Firstly, we have isomorphisms

HE1
g,d(R) = Hd−(n−1)

(
BGLn(F); H̃n−2(SE1(n))

) ∼=−→ Hd−(n−1)(BGLn(F); Stn).

The first of these just uses that the suspension of n 7→ SE1(n) is the indecomposables in
sSetsG by Chapter 9, which pushes forward by left Kan extension to n 7→ (SE1(n))hGLn(F)
in sSetsN. The homology of this Borel construction is calculated by a spectral sequence
which gives the first isomorphism. The second isomorphism is more special: it uses a
trick due to Nesterenko and Suslin, which implies that even though the Tits building
and Charney’s split building are quite different, their homotopy orbits by GLn(F) have
the same homology. We will not elaborate on this Nesterenko–Suslin argument, but see
the original paper [NS89] or [GKRW20, Section 5.3].

We could now in principle try to use knowledge about the Steinberg module, for
example the basis given by Solomon–Tits, to calculate E1 homology as H∗(BGLn(F); Stn).
For instance, Lee and Szczarba computed that the coinvariants of the Steinberg module
vanish [LS76]. We will instead move on to E2 and E∞ homology.

12.2.2 E2 and E∞ homology

The E1 indecomposables of R ∈ sSetsN can be computed as the left Kan extension
of the indecomposables of T ∈ sSetsG. By Theorem 7.1.9 we have

S0 ∨ S1 ∧QE1
L (T) ' BE1(T+

+, εcan),

in the notation from Chapter 9. One of the +’s denotes that we passed to a pointed
setting (sSets,×) → (sSets∗,∧), the other denotes that we passed from non-unital to
unital Ek-algebras which we kept track of using the augmentation εcan. Similarly, by
Theorem 7.1.9 we also have that Ek indecomposables are computed by the iterated bar
construction

S0 ∨ Sk ∧QEkL (T) ' BEk(T+
+, εcan).

When spelling out the iterated bar construction, one gets a k-fold simplicial pointed set
of “k-dimensional splittings” of Fn.
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Let us say that a “splitting” of Fn consists of a finite pointed set X and a function
f : X → Sub(Fn); the target is the set of subspaces of Fn, with the property that the
natural map ⊕x∈Xf(x)→ Fn is an isomorphism. Let us write

S(X) = set of splittings f : X → Sub(Fn)
those with f(∗) 6= 0 .

This is also the set of splittings X \ {∗} → Sub(M) with an extra basepoint, but the
description above makes it clear that S is functorial in all maps of pointed finite sets.

A concise way of explaining what the k-fold simplicial set BEk(T+
+, ε) is, is as the

composition of S with

∆op × · · · ×∆op −→ Sets∗
([p1], · · · , [pk]) 7−→ S1

p1 ∧ · · · ∧ S
1
pk
,

where S1
• is the usual simplicial circle, with p+ 1 many p-simplices, one of which is the

basepoint. We denote this k-fold pointed simplicial set by D̃k(Fn), and have a pointed
homotopy equivalence

BEk(T+
+, ε)(n) ' D̃k(Fn).

The non-basepoint (p1, · · · , pk)-simplices of D̃k(Fn) are (p1 × · · · × pk)-tuples of
subspaces of Fn, forming a direct sum decomposition of Fn. Face maps in this bisimplicial
set either form direct sum decompositions with fewer summands by collecting some
summands into one; the “outer” face maps either forgets summands which happen to be
zero, or collapses to the base point.
Example 12.2.1. For k = 1, D̃1(Fn) is a double suspension of SE1(Fn) so is homotopy
equivalent to a wedge of n-spheres.

Let us denote by D1(Fn) the nerve of the poset of subspaces of Fn modulo those
p-simplices P0 ⊂ · · · ⊂ Pp where P0 6= 0 and Pp 6= Fn. There there is a map

D̃1(Fn) −→ D1(Fn)

of pointed simplicial sets given by sending a splitting to its flag of “partial sums.”
Recording the flags by summing along each of the k directions yields a map

D̃k(Fn) −→ D1(Fn) ∧ · · · ∧D1(Fn)

and we define Dk(Fn) as the image. The Nesterenko–Suslin argument generalises to yield
that

D̃k(Fn) −→ Dk(Fn)

becomes an equivalence on homotopy orbits by GLn(F) for all k. The case k = 2 has a
special property: in this case every two flags arise from a splitting, so the inclusion

D2(Fn) −→ D1(Fn) ∧D1(Fn)

is the identity. The right side is a wedge products of two pointed spaces that are
homotopy equivalent to wedges of n-spheres; hence it is homotopy equivalent to a wedge
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of 2n-spheres. Putting back in the double suspension on the right side of Theorem 7.1.9
we obtain [GKRW19, Theorem 6.5]:

HE2
n,d(R) = 0 for d < 2n− 2, and HE2

n,2n−2(R) = (Stn ⊗ Stn)GLn(F).

Thus is naturally leads to the question of the GLn(F)-coinvariants of the tensor square
of the Steinberg module.

By explicit argument using matrix manipulations, we proved that a natural pairing
on Stn induces an isomorphism [GKRW20, Theorem A]

(Stn ⊗ Stn)GLn(F)
∼=−→ Z.

This is interesting in its own right, proving that the Steinberg module is indecomposable
(i.e. not a direct sum of two non-zero Z[GLn(F)]-modules). It further implies that the
E2-homology vanishes below the line d = 2g − 2 and is given by Z’s on this line.

12.2.3 The maps
∐
BSn →

∐
BGLn → N

Our goal is to understand these Z’s on the line d = 2g − 2. Let us now consider the
maps between the following three non-unital E∞-algebras

∞⊔
n=1

BSn −→
∞⊔
n=1

BGLn(F) −→ N.

As outlined above, the middle one has HE2
n,2n−2 = Z and vanishing E2-homology below

that. As Chapter 8 explained, the same is true for N (which also has vanishing E2
homology above this line, but we shall not use this). Entirely analogous argument show
that this is also true for the first one, at least up to isomorphism

Let us now work in sSetsN, and write (cofibrant replacements of) these as

S −→ R −→ N.

Then it turns out that there are abstract isomorphisms

HE2
n,2n−2(S) ∼= HE2

n,2n−2(R) ∼= HE2
n,2n−2(N) ∼= Z,

and all three have HE2
n,d = 0 for d < 2n − 2. However, the natural maps are not all

isomorphisms. The easiest to show is that in rank n, the composition S→ N induces
multiplication by ±n!, and with more work we show that R → N induces an isomorphism
Z→ Z. Hence the first map also induces multiplication by ±n!.

By continuing applying bar constructions, one sees

HEk
n,2n−2(R) = HEk

n,2n−2(N) =


Z n = 1,
Z/pZ n = pk with p prime,
0 otherwise,

for k ≥ 3. In particular we see that although the connectivity of Ek homology went from
“slope 1” to “slope 2” by passing from k = 1 to k = 2, it does not get much better by
further increasing k. However, if we work rationally, the connectivity does improve by 1
in rank > 1 for k ≥ 3.



76 Chapter 12 Outlook I: General linear groups

12.2.4 E∞-homology

Rognes defined a filtration on the algebraic theory spectrum K(F) and showed that
the associated graded could be written as D(Fn)hGLn(Fn) for a certain “stable building”
D(Fn) that he defined [Rog92]. He also conjectured that this stable building should have
the homotopy type of a wedge of (2n− 2)-spheres. We prove that the homotopy orbits
by GLn(F) are as highly connected as Rognes’ conjecture would imply, which may be
sufficient for intended applications.

We have explained why the map HE∞
n,d (R) → HE∞

n,d (N) is an isomorphism for d ≤
2n− 2, including 2n− 2 where it may be non-zero. One may also show it is surjective for
d = 2n− 1, so that in relative homology we have

HE∞
n,d (N,R) = 0 for d < 2n.

These groups measure how one builds N from R by attaching E∞-cells. The first possibly
non-trivial groups

HE∞
n,2n(N,R)

look very interesting: for n = 1, it is F×, for n = 2 it is the so-called pre-Bloch group
which (up to 2-torsion) sits in an exact sequence

0 −→ µ(F)⊗2 −→ K ind
3 (F) −→ p(F) −→ Λ2

ZF× −→ K2(F) −→ 0,

where K ind
3 (F) is defined in terms of algebraic K-theory groups of F and Milnor K-theory

groups of F by the short exact sequence

0 −→ KM
3 (F) −→ K3(F) −→ K ind

3 (F) −→ 0.

0

1
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3

4
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6

7

0 1 2 3 4

F×

H2(F×;Z)

H3(F×;Z)

H4(F×;Z)

H5(F×;Z)

H6(F×;Z)

p(F)

?

?

?

?

?

d/n

Figure 12.1: The E∞-homology of the pair (N,RZ), which vanishes below the dotted line.
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See Fig. 12.1 for an overview of these relative E∞ homology groups. The groups
HE∞

3,6 (N,R) and higher are also functors of F, it seems interesting to understand the
nature of these functors.



Chapter 13

Secondary homological stability for mapping
class groups II

We now finally prove secondary homological stability for mapping class groups with
integer coefficients, Theorem 1.1.6. Our focus on this lecture will be to explain the
features that are qualitatively different in the case of integer coefficients in comparison
to that for rational coefficients as in Chapter 11.

13.1 The secondary stabilisation maps

The integral argument is supposed to be like the rational argument in Chapter 11, but
complicated by a more refined “small model” A for the Z-linearisation RZ ∈ AlgE2(sModNZ)
of R and the presence of Dyer–Lashof operations in addition to a product and Browder
bracket (after a reduction to field coefficients in Q and all F`). However, a significant
wrinkle is the construction of the secondary stability maps, which is not given by
multiplication-by-λ. This will have ramifications throughout the proof.

In the rational case, the map λ ·− : S3,2⊗R+
Q/σ → R+

Q/σ was obtained multiplication
by a class λ on R. Working over the integers, this is a bad idea. Firstly, it is ambiguous
because there may be (and in fact, is) non-zero torsion in H2(BΓ3,1;Z) so there may be
multiple choices of λ. Secondly, the theorem would be false with this definition. This is
because the map

λ · − : Z{1} = H0,0(R+
Z ) −→ H3,2(R+/σ) = Z[µ]

sends 1 to 10µ, so is not surjective (as it needs to be)!
A first thought is to multiply with µ instead of a choice of λ, but R+

Z /σ is not an
algebra anymore, but only a R+

Z -module, so this is not possible. However, it does tell
us that as long as we can live with coefficients in Z[ 1

10 ] rather than Z, we can multiply
with λ

10 , and accept that there may be multiple choices of λ
10 (in fact there will not be

because the torsion in H2(BΓ3,1;Z) is 2-torsion). The argument then goes through as in
the rational case, with a more refined A and Dyer–Lashof operations to worry about.

Problem 13.1.1. Work out the details of this secondary homological stability theorem
with coefficients in Z[ 1

10 ].

78
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However, we wanted to prove an integral result and hence need to construct our
secondary stabilisation maps in a different manner: by obstruction theory we will construct
a map of R+

Z -modules sending 1 to µ which does not arise from multiplication with an
element of R+

Z .

Lemma 13.1.2. There are maps of R+
Z -modules

ϕ : S3,2 ∧R+
Z /σ −→ R+

Z /σ

sending 1 to µ.

Proof. Recall that S3,2 ⊗R+
Z /σ fits in a cofiber sequence of R+

Z -modules

S3,2 ⊗ S1,0 ⊗R+
Z

id⊗(µ◦(σ⊗id)−−−−−−−−→ S3,2 ⊗R+
Z

id⊗quot−−−−−→ S3,2 ⊗R+
Z /σ.

To construct a map ϕ : S3,2 ⊗ R+
Z /σ −→ R+

Z /σ, it hence suffices to construct a map
φ : S3,2 ⊗R+

Z → R+
Z /σ of R+

Z -modules and check its precomposition with the left map is
null as a R+

Z -module map. This map φ is

S3,2 ⊗R+
Z

µ⊗R+
Z−−−−→ R+

Z /σ ⊗R+
Z

β−→ R+
Z ⊗R+

Z /σ
act−→ R+

Z /σ.

To verify it is null as R+
Z -module map, it suffices to verify its restriction φ ◦ (id⊗σ) given

by

S3,2 ⊗ S1,0 id⊗σ−−−→ S3,2 ⊗R+
Z

µ⊗R+
Z−−−−→ R+

Z /σ ⊗R+
Z

β−→ R+
Z ⊗R+

Z /σ
act−→ R+

Z /σ. (13.1)

is null as a map in sModNZ . This is an element of H4,2(R+
Z /σ) = H2(BΓ4,1, BΓ3,1;Z)

which vanishes by homological stability for mapping class groups, so it is indeed null-
homotopic.

Remark 13.1.3. As usual in obstruction theory, the choices of ϕ are a torsor for
H4,3(R+

Z /σ) = H3(BΓ4,1, BΓ3,1;Z), which is indeed a non-zero torsion group. Our proof
will show that any secondary stabilisation map constructed this way is an isomorphism
or surjection in a range.
Remark 13.1.4. This proof used a technique which is useful throughout topology: con-
structing maps by obstruction theory can often become easier by imposing more conditions
on the map you are trying to construct. Here this is done by requiring it is a R+

Z -module
map.

13.2 Integral secondary homological stability for mapping class groups

Fix a ϕ as in Lemma 13.1.2. To prove Theorem 1.1.6 with integer coefficients we
need to prove that its cofiber Cϕ, which fits into a cofiber sequence

S3,2 ∧R+
Z /σ

ϕ−→ R+
Z /σ −→ Cϕ,

has the property that Hg,d(Cϕ) = 0 for 4d ≤ 3g − 1. As in the rational case, this is
done by building a “small model” A → RZ, proving the result for A, and showing it
transfers to RZ. There will be some additional wrinkles due to the different nature of ϕ
in comparison to λ · −.
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Construction of A

Look once more to Fig. 11.1. We will also need that From it, we obtain the following:
· A map S1,0

Z σ → RZ representing σ.

· A map S1,1
Z τ → RZ representing τ .

These combine to a map E2(S1,0
Z σ ⊕ S1,1

Z τ) → RZ. Since we have relations 10στ = 0,
Q1

Z(σ) = mστ for some m ∈ Z/10 (in fact, m = 3 but we will not need this), and σ2τ = 0
in the target, picking null-homotopies we get an extension of this map to one with domain

A := E2(S1,0
Z σ ⊕ S1,1

Z τ) ∪E2
10στ D

2,2
Z ρ1 ∪Q1

Z(σ)−mστ D
2,2
Z ρ2 ∪E2

σ2τ D
3,2
Z ρ3.

The reason we do not see a free generator λ as before, is that its corresponding homology
class is obtained from ρ3 (10 times its attachment map vanishes, so ρ3 will give rise to a
rational class). We could also not avoid having τ as a generator, given that ρ3 is attached
along a multiple of it (so our model is more like the A′ of Lemma 11.2.4 than A).

Lemma 13.2.1. HE2
g,d(RZ,A) = 0 for 4d ≤ 3g − 1.

Proof sketch. As in Lemma 11.2.4 for the rational case, using the vanishing of E2-
homology by arc complexes to deal with g ≥ 4, and doing g ≤ 3 by the Hurewicz
theorem.

Proof of secondary homological stability for A

By construction, A satisfies that HE2
g,d(A) = 0 for d < g − 1 and that H1,1(A) →

H2,1(A) is surjective. Thus it has the same homological stability range as RZ and we
conclude that H4,2(A+/σ) = 0. This allows us to construct a map α : S3,2 ⊗A+/σ →
A+/σ and by picking the null-homotopy used in the construction of ϕ to arise from that
in the construction of α, we may assume that there is a homotopy-commutative diagram

S3,2 ⊗A+/σ A+/σ

S3,2 ⊗R+/σ R+/σ.

α

ϕ

Let Cα denote the cofiber of α.

Lemma 13.2.2. Hg,d(Cα) = 0 for 4d ≤ 3g − 1.

Proof. We intend to proceed as in Lemma 11.2.5, by endowing A with its skeletal filtration
to obtain skA ∈ AlgE2(sModN×Z≤Z ) and performing a computation in the spectral sequence
for the corresponding filtration on the mapping cone. Before we can do so, we need to
prove that α lifts to a filtered map on skA. In particular, we will need to show that it
lifts to a map

skα : S3,2,3 ⊗ skA+/σ −→ skA+/σ,
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where the sphere S3,2,3 has this trigrading so that it will eventually yields an element
whose d1 which can hit the lift of ρ3 in tridegree (3, 2, 2). We could take any S3,2,q for
q ≥ 3 but then we would need to consider higher differentials.

The idea is to use the same construction as for ϕ, but replace R+
Z with skA+ and S3,2

with S3,2,3. In particular, one reduces the construction to proving that the obstruction
class in H4,2,3(skA+/σ) analogous to (13.1) vanishes. In principle there could be an
obstruction here, but we know there is no such obstruction when we take the colimit, so
our strategy will be to reduce to this case. We first observe that H4,3,q(gr(skA+/σ)) = 0
when q ≥ 4; it suffices to verify this with coefficients in a field F given by Q pr F`. Then
we use F. Cohen formula’s for the homology of a free E+

k -algebra as well as the fact that
σ, τ, ρ1, ρ2, ρ3 have filtration degree equal to their homological degree and all operations
preserve the filtration degree and increase homological degree. By consideration of the
long exact sequence of a pair for each filtration step, we see that

H4,2,q(skA+
F /σ) −→ H4,2,q+1(skA+

F /σ)

is injective for q ≥ 3. Since the colimit vanishes, this proves that the obstruction group
vanishes and thus we can find our map skα.

Having done so, we can proceed with the proof. As in the generic homological stability
result, it suffices to prove the result after tensoring with Q or F`. Let us focus on the
latter, with ` odd ([GKRW19] of course contains the full argument). We consider spectral
sequences for the filtered object Cskα,F` . Since skα strictly increases filtration and taking
associated graded commutes with cofibers, we have

gr(Cskα,F`) ' (S0,0,0
F` ⊕ S3,3,3

F` ρ4)⊗ gr(skA+
F`/σ),

where ρ4 denoted the generator the right term in the cofiber sequence S3,2,3 → 0S3,3,3.
Hence the E1-page of the latter spectral sequence is given by

E1
g,p,q =

(
(S0,0,0

F` ⊕ S3,3,3
F` ρ4)⊗ S∗F`(L/〈σ〉), d

1)
where L is a graded vector space of Dyer–Lashof operations applied to bracketings of
σ, τ, ρ1, ρ2, ρ3. This is a module over the corresponding spectral sequence for the filtered
object skA+

F` , from which we deduce that the d1-differential satisfies d1([σ, σ]) = 0,
d1(ρ2) = −1

2 [σ, σ], d1(ρ4) = ρ, and is a derivation. Filtering away the remaining
differential, a short computation shows that non-zero class in its homology of lowest
slope (equal to 2`−1

2` ≥
5
6) is represented by [σ, σ] · ρ`−1

2 .

Once more, an inspection of the proof show that one may as well have added added
more freely attached E2-cells of slope ≥ 3

4 to A; we can still construct an α, lift it to the
skeletal filtration, and prove in the same manner as in the lemma that Hg,d(Cα) = 0 for
4d ≤ 3g − 1. Moreover, for the first two of these steps we do not even need the E2-cells
to be trivially attached.
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Proof of secondary homological stability for RZ

As in the rational case we use this to prove that Cϕ, the cofiber of the secondary
stabilisation map on R+

Z , has the same property. Applying the CW-approximation in
combination with Lemma 13.2.1 we get a factorisation in AlgE2(sModNZ)

A −→ B ∼−→ RZ

where B is obtained by attaching only E2-cells in bidegrees (gα, dα) with 4dα ≥ 3dα.
On B we can construct a secondary stabilisation map β and hence Cβ, and since the
right map is a weak equivalence it suffices to prove that Cβ has the desired vanishing
range. This is done as in the rational range by filtering away the attaching maps of the
attaching E2-cells to reduce to the case of A with freely attached E2-cells. As in the
proof of Lemma 13.2.2, there is a wrinkle in proving that β lifts to a filtered map, which
is handled in exactly the same manner. This completes the proof of Theorem 1.1.6 with
integer coefficients.
Remark 13.2.3. The argument in Section 5.3 of [GKRW19] is different than the one
given here. It rather follows the suggestion of Remark 11.2.8 of recognising A is the
beginning of a CW-approximation B → RZ, constructing a map β which lifts to the
skeletal filtration, and using the spectral sequence for the cofiber of β on skB+/σ.

13.3 Improving Theorem 1.1.6

There are two improvements which can be made to the secondary homological stability
theorem.

(1) It extends to certain local coefficient systems; those arising from the tensor powers of
H1(Σg,1;k). This is done in Section 5.5 of [GKRW19]. This improved homological
stability result can be improved with Tommasi’s computation for H∗(BΓ4;Q) to
obtain that H3(BΓ4,1;Q) = 0. This is done in Section 6.2 of [GKRW19].

(2) An upshot of (1) is that A → RQ is a better approximation than expected:
HE2
g,d(RQ,A) = 0 for 5d ≤ 4g − 1. Feeding this back into the rational secondary

homological stability argument improves its range from slope 3
4 to 4

5 . This is done
in Section 6.1 of [GKRW19].

Remark 13.3.1. What is needed for further improvements?
· A computation of H3(BΓ4,1;Z) would be the main input for improving the range

with integer coefficients rather than with rational coefficients.
· A computation of H4(BΓ4,1;Q) and H4(BΓ5,1;Q) would be the main input for

improving the range with rational coefficients from slope 4
5 to 5

6 .



Bibliography

[BM11] M. Basterra and M. A. Mandell, Homology of En ring spectra and iterated
THH, Algebr. Geom. Topol. 11 (2011), no. 2, 939–981. 47

[Bol12] S. K. Boldsen, Improved homological stability for the mapping class group
with integral or twisted coefficients, Math. Z. 270 (2012), no. 1-2, 297–329.
2, 41

[Bor48] K. Borsuk, On the imbedding of systems of compacta in simplicial complexes,
Fund. Math. 35 (1948), 217–234. 17

[Cha80] R. M. Charney, Homology stability for GLn of a Dedekind domain, Invent.
Math. 56 (1980), no. 1, 1–17. 73

[CLM76] F. R. Cohen, T. J. Lada, and J. P. May, The homology of iterated loop
spaces, Lecture Notes in Mathematics, Vol. 533, Springer-Verlag, Berlin-New
York, 1976. 7, 26

[DL62] E. Dyer and R. K. Lashof, Homology of iterated loop spaces, Amer. J. Math.
84 (1962), 35–88. 26

[FK92] H. M. Farkas and I. Kra, Riemann surfaces, second ed., Graduate Texts in
Mathematics, vol. 71, Springer-Verlag, New York, 1992. 42

[Fra08] J. Francis, Derived algebraic geometry over En-rings, Ph.D. thesis, Mas-
sachusetts Institute of Technology, 2008. 47

[Fre11] B. Fresse, Iterated bar complexes of E-infinity algebras and homology theo-
ries, Algebr. Geom. Topol. 11 (2011), no. 2, 747–838. 47

[Fuk70] D. B. Fuks, Cohomology of the braid group mod 2, Funkcional. Anal. i
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