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Chapter 1

Introduction and outline

The goal of this seminar is to explain the applications of cellular Ej-algebras to
homological stability, through the concrete example of mapping class groups. In this
first lecture, we will state the main results and explain the strategy as well as outline
the remaining lectures. Recommended additional is the introduction of [GKRW18a] and
Sections 1 and 2 of [GKRW19).

1.1 The statement

For a smooth surface ¥, ; of genus g with one boundary component, we let Diff5(¥, 1)
denote the topological group of diffeomorphisms of ¥, ; fixing a neighborhood of the
boundary pointwise. All of its path components are contractible [Gra73], so the map

Diff@(zgjl) — Wo(Diﬁa(Zg,l)) (11)

is a homotopy equivalence. The right side is the group of isotopy classes of diffeomorphisms
fixing a neighborhood of the boundary pointwise.

Definition 1.1.1. The mapping class group Iy is given by mo(Diff5(2X4,1)).

Since (1.1) is a homotopy equivalence, the classifying space BTy classifies manifold
bundles with fiber ¥, 1 and trivialised boundary bundle, which we will refer to as surface
bundles in this lecture. This bijection is given as follows: for nice enough X, pulling
back a universal surface bundle over BI'y; to X induces a bijection between the set
[X, BT'y 1] of homotopy classes of maps X — BTy and the set of isomorphism classes of
such surface bundles over X. As a consequence, understanding the cohomology groups
H*(BT'41; k) amounts to understanding the characteristic classes of surface bundles. By
the universal coefficient theorem, we can equivalently try to understand the homology
groups.

Question 1.1.2. What are the homology groups of mapping class groups?

When attempting to answer this question, it is advantageous to let g go to co. This
may seem counter-intuitive but it is the underlying idea of stability phenomena. Fixing
once and for all a standard surface ¥1; C [0, 1] as in Fig. 1.1, the surface X, can be

1
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Figure 1.1: The standard surface ¥, and the surface ¥, ; for g = 2 obtained from two copies of
2171 .

obtained as the union UJQ;(I)(EM +j-€1). In particular, there is an inclusion X411 C ¥4
and any isotopy class of diffeomorphism of ¥,_; ; fixing a neighborhood of the boundary
pointwise can be extended by the identity to such a diffeomorphism of ¥, ;. This yields
a homomorphism I'y_1 1 — I'y 1 and hence a map on classifying spaces

o Bl“g_Ll — BFgJ,

called the stabilisation map. The Harer stability theorem say that this map is an
isomorphism in a range tending to oo with g:

Theorem 1.1.3 (Homological stability for mapping class groups). The map

Oy . Hd(BFg_Ll;Z) — Hd<BFg’1;Z)

is a surjection for d < 293—_1 and an isomorphism for d <

294
.

Remark 1.1.4. This result goes back to Harer [Har85] with improvements by Ivanov

[Iva93], Boldsen [Boll12], and Randal-Williams [RW16] (see [Wah13] for an exposition,

and [HV17] for a more “standard” proof along the lines of [RWW17] but with a worse

range). The above statement is Theorem B (i) of [GKRW19]; the range it gives is optimal.

To visualise Theorem 1.1.3, one should draw the homology groups of mapping class
groups as a grid, with Hy(BT'g1;7Z) in the (g,d)-entry so that stabilisation increases
the first coordinate. Then the above homological stability result says that below a
line of slope % the entries are independent of g. In this stable range, the values are
equal to the stable homology colimy_,o Hq(BI'y1;7) given by Madsen—Weiss theorem
as Hg(QPMTSO(2);Z) [MWO0T]. In particular, rationally the stable cohomology is the

free graded-commutative algebra on the Miller—Morita—Mumford classes.
Question 1.1.5. What are the homology groups outside the stable range?

The main result discussed in this seminar is the existence of a metastable range above
the stable range, in which it is not the case that the relative groups Hy(BTl'y 1, Bl g_11;7Z)
vanish but there are maps between them that are isomorphisms [GKRW19, Theorem A].
Here the precise statement:
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Theorem 1.1.6 (Secondary homological stability for mapping class groups). There are
maps
¢ut Hy2(Bly—31,Blg_41;Z) — Hy(BTg1,Bly11;Z)

which are surjections for d < % and isomorphisms for d < 7394_5-

Remark 1.1.7. This formulation is precise; the maps ¢ are not unique (see Lemma 13.1.2
and the remark following it).

The crucial observation is that % > %, so this is a statement about possibly non-

4g9—1
5

zero groups. Rationally, the ranges can be improved to surjections for d < and

49—5_6. Fig. 1.2 reproduces a figure from [GKRW19]: the orange
region is the metastable range, below it you find in blue the stable range, and the region

above it remains mysterious.

isomrphisms for d <

o
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Figure 1.2: A summary of the low-degree low-genus rational homology of I'y 1 and the stabilisation
maps. We have colored the stable range, the metastable range, and dashed the currently unknown
remaining unstable homology.

Remark 1.1.8. The homology groups for low g are obtained by (algebro-)geometric
methods or computer calculations (see Section 6.4 of [GKRW19] for references); see
Chapter 6 for some examples using geometric techniques.

Ezxample 1.1.9. Secondary homological stability is barely visible in Fig. 1.2: the stabilisa-
tion maps into Ho,(BI'3y 1; Q) are not surjections because the relative homology groups
always have rank 1.



4 Chapter 1  Introduction and outline

It remains an open question to determine the secondary stable homology groups

colim Hg o1 (BT g43k,1, BT g3k-1,1; Z).
k—oco

1.2 The strategy

Let us now explain the strategy for proving Theorem 1.1.6 (we will obtain Theo-
rem 1.1.3 along the way), simultaneously giving the outline of the upcoming lectures.

1.2.1 Operads, algebras, and indecomposables

The crucial observation is that the disjoint union |_|921 BTy 1 comes equipped with
an additional algebraic structure. This structure is of a homotopy-theoretic nature, and
encoded by the little 2-cubes operad. That is, | |,~; Bl'y1 is an Es-algebra. Let us explain
this statement in more detail.

Operads and algebras

Many of the technical foundations of our arguments will go through for an arbitrary
operad (or even a monad) on a symmetric monoidal category C. Recall that an operad O
in symmetric monoidal category C is a collection {O(n)},>0 of objects O(n) in C with an
action of the symmetric group &, together with a unit map 1 — O(1), and composition
maps

O(n)®@0(i1) @ @ O(in) — Oiy + ... +1ip)

which are equivariant, associative, and unital. You should think of O(n) as a space of
n-ary operations. This is clear when we consider the definition of an O-algebra in C; it is
an object A of C with action maps

O(n) ® A®" — A

which are equivariant, associative, and unital. This can be found in Sections 2, 3, and 4
of [GKRW18a].

Cellular algebras and indecomposables

The strategy will for proving Theorem 1.1.6 is to give a “homotopical presentation”
of | J;>1 BT'g,1 in a category of algebras over the little k-cubes operad.

More generally, for an operad O, such a presentation of an O-algebra A is given by a
weak equivalence to A from a cellular algebra; this is an O-algebra obtained by iterated
pushouts on free O-algebras on inclusions of the form S*~! < D*. Even better are
CW-algebras, which come a specified skeletal filtration. We will explain the theory of
CW approximation for a general operad O, but it proceeds among the same lines as
CW approximation of 1-connected topological spaces. One attaches O-cells to obtain
increasingly accurate approximations. To understand which O-cells are needed, the
crucial input is a Hurewicz theorem and the appropriate replacement of homology in its
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statement: this is the homology of the derived O-indecomposables. This can be found in
Sections 3, 8, and 11 of [GKRW18a].

There will be two lectures about this topic:
- Monday: Indecomposables I — indecomposables of Ei-algebras in simplicial sets
(Chapter 2).

- Tuesday: Indecomposables II — indecomposables in other categories (Chapter 5).

1.2.2 Ej-algebras and their properties

Let us now return to the study of mapping class groups.

The Fi-operad and FE-algebras

The point has come to define, for k > 1, the (non-unitary) little k-cubes operad Cy,
which is an operad in spaces. We will often refer to it as “the” Ej-operad, but it is but
one of many weakly equivalent choices; you may have seen the little k-discs instead. We
will similarly refer to a Ci-algebra as an Ey-algebra.

Definition 1.2.1. Let Emb™ (||, I*, I*) denote the space of n-tuples of rectilinear
embeddings I* — I* (that is, compositions of scaling and translation) whose interiors
are disjoint. Then the little k-cubes operad Ci has space of n-ary operations given by

] if n =0,

C =
k() {Embrect(un %1% ifn > 0.

The symmetric group &,, acts on Cx(n) by permuting the cubes, the unit x* — Ci(1) picks
out the identity, and the composition maps are induced by composition of rectilinear
embeddings.

See Fig. 1.3 and Fig. 1.4 for examples in the case k = 2.

€2

€ C2(3)

€1

€3

Figure 1.3: An element of Cy(3).
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62(2) X Cg(l) X CQ(?))
Y

" |- i

€ Ca(4)

Hi

Figure 1.4: An example of composition in C5. We have left out the labels on the inner cubes for
readability.

In the following definition, we can work in the category of spaces or more generally
any category with a suitable copowering over spaces (the structure on C that allows you
to define the product of a space with an object of C).

Definition 1.2.2. A (non-unital) Ej-algebra is an algebra over the operad Cy.

Ezample 1.2.3 (Iterated loop spaces). The prototypical examples of Ej-algebras in spaces
are iterated loop spaces. Let QF X be the space of maps of pairs (I*,0IF) — (X, zg). The
action maps

Cr(n) x (QFX)" — QF X

are given by “inserting” the jth map f; into the image of the jth cube and extending
to the remainder of the domain by the constant map with value xg. See Fig. 1.5 for an
example in the case k = 2. The recognition principle says that any Ej-algebra Y in spaces
with 7(Y") a group (under the multiplication induced by the Ej-algebra structure), is
weakly equivalent as an Ej-algebra to a k-fold loop space [May72].

Ezample 1.2.4 (Moduli spaces of manifolds). Let us consider the space of unparametrised
compact submanifolds of [0, 1]* x R* which coincide with [0, 1]¥ x {0} with 9]0, 1]* x R>,
topologised as in [GRW10]. If we require they are diffeomorphic relative to the boundary
(and up to smoothing corners) to one of a fixed collection of compact pairwise non-
diffeomorphic manifolds Mi, Mo, . .., we obtain a model M for | |, BDiff(M;). (To prove
this, we may assume we have a single manifold M and observe that the space £ of
parametrised compact submanifolds diffeomorphic to M is a contractible space with free
properly discontinuous action of Diff5(M) and M is the quotient £/Diff5(M).)
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f3

fi c 02X

f2

ro “—-

Figure 1.5: The result of combining three elements fi, f2, f3 € 22X with an element of Ca(3).

If the collection My, Ms, ... is closed under boundary connected sum, the space M is
an FEj-algebra. The action maps

Cro(n) x M™ — M

are given by “inserting” the jth submanifold W; into the image of the jth cube times
R* and extending to the remainder of [0, 1]¥ x R* by [0, 1]¥ x {0}.

In particular, we may take £ = 2 and the collection of manifolds 3¢ 1,¥21,... and
get an Fs-algebra structure on

M ~ | | BDiff5(241) ~ | | Bly1.
g=>1 g=>1

Later, in Chapter 9 we will give a more algebraic construction of this Fs-algebra structure,
using the fact that the mapping class groups I'y; are the automorphism groups in a
certain braided-monoidal groupoid MCG; classifying spaces of braided monoidal categories
are always Fo-algebras.

This appears in Section 12 of [GKRW18a].

Special properties of the E-operad

Ej-algebras have two properties that distinguish the theory of CW-approximation
for Ey-algebras from that for O-algebras:

(1) We understand very well the homology of the free Ej-algebras which are the
building blocks of CW approximations. Indeed, a theorem of F. Cohen describes it
in terms of certain homology operations [CLM76]. This makes computations for
cellular or CW FEj-algebras particularly tractable.

(2) There are alternative methods for computing Ej-indecomposables. Indeed, they are
given by a k-fold iterated bar construction,which is particularly tractable for the
examples we are interested in. As this terminology indicates, it can be computed
iteratively. This appears in Sections 13, 14 and 16 of [GKRW18a].
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There will be two lectures about this topic:

- Tuesday: Fj-algebras I — homology of free Ej-algebras (Chapter 4).
- Wednesday: Ej-algebras II — the iterated bar construction (Chapter 7).

1.2.3 Generic homological stability

The techniques which prove Theorem 1.1.6 are applicable to many examples, and
before proving that result, we give a criterion for an Fj-algebra to have homological
stability; this will yield Theorem 1.1.3 as an example.

This “generic homological stability result” applies to Es-algebras which arise from
braided-monoidal groupoids G satisfying some mild conditions. In this case, one can
understand the bar construction which computes the Ej-indecomposables in terms of
certain combinatorial objects—the FE-splitting complexes—and then understand the
FEs-indecomposables by the iterative procedure mentioned above. If the connectivity of E;-
splitting complexes increases sufficiently fast, then our knowledge of CW approximation
and the homology of free Ej-algebras can be used to prove that one can read off

homological stability from a few low degree homology groups. This appears in Sections
17 and 18 of [GKRW18a).

There will be three lectures about this topic:

- Wednesday: Generic homological stability I — bounded symmetric powers (Chap-
ter 8).

- Wednesday: Generic homological stability IT — Es-algebras from braided monoidal
groupoids (Chapter 9)

- Thursday: Generic homological stability III — a generic homological stability result
(Chapter 10).

1.2.4 Facts about mapping class groups

To apply the generic homological stability to the Ey-algebra || > Bl'y1, obtain
Theorem 1.1.3, and make the improvements necessary to prove Theorem 1.1.6, we will
need some input.

The first is the connectivity of the Fj-splitting complexes, which is an argument
about arc complexes. The second is knowledge of the homology groups Hy(BI'y 1;7Z) for
low d and g. Both are provided by classical techniques, but since they are the fuel for the
machine developed in the other lectures we explain how you prove them. This appears in
Sections 3 and 4 of [GKRW19).

There will be two lectures about this topic:

- Monday: Facts about mapping class groups I — arc complexes (Chapter 3).
- Tuesday: Facts about mapping class groups II — low-degree homology (Chapter 6).
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1.2.5 Secondary homological stability for mapping class groups

Once we have set up the machinery and provided as input the relevant facts about
mapping class groups, we can prove Theorem 1.1.6. We first do so with rational coefficients,
because it is then significantly easier to construct the maps ¢, in the statement of this
theorem. After that we shall explain how to address the difficulties which arise when
working with integer coefficients. The argument are essentially elaborations of the generic
homological stability result. This appears in Section 5 of [GKRW19].

There will be two lectures about this topic:
- Thursday: Secondary homological stability I — rational argument (Chapter 11).

- Friday: Secondary homological stability II — integral argument (Chapter 13)

1.2.6 Outlook

Finally, we look at other results which can be obtained using similar techniques, in
particular for general linear groups [GKRW18b, GKRW20]. We will also discuss open
problems.

There will be two lectures about this topic:

- Thursday: Outlook I: General linear groups (Chapter 12).
- Friday: Outlook II.



Chapter 2

Indecomposables I: EF,-algebras in simplicial sets

2.1 Summary /recollection

In Chapter 1 we defined the little k-cubes operad C, whose nth space C(n) consists
of ordered n-tuples of rectilinear embeddings I* — I* whose interiors are disjoint. Let
us take the singular simplicial set of the spaces Cx(n) to turn them into simplicial sets,
yielding an operad in the category sSets of simplicial sets which we will denote by the
same letter Cg.

Similarly, we defined an Ej, algebra (in the category sSets) to be a simplicial set A
together with maps

Cr(n) x A™ — A, (2.1)

for each n € Z>1, satisfying some properties including invariance under the evident action
of the symmetric group S, on the domain. We also saw two types of examples: the k-fold
loop space of a based space (or rather the singular simplicial set thereof), and examples
based on moduli spaces of manifolds.

A good way to encode the data (2.1) and the properties it is required to satisfy, is
to encode it as A being an algebra for a monad. This is a monoid in the category of
functors sSets — sSets. Indeed, the operad Cj gives rise to a functor

Ej: sSets — sSets
defined by

Bo(X) = ﬁ (Cu(n) x X™)/S,, (2.2)
n=1

where the symmetric group S, acts on X" by permuting factors, and on Ci(n) by
permuting the embeddings I* — I*. As mentioned in Chapter 1, composition of
embeddings I¥ — I* gives rise to maps

C’k(n) X Ck(il) X oo X Ck(zn) — Ck(il —+ -+ Zk)

which in turn induce maps p: Ei(E(X)) — Er(X) that are natural in the simplicial
set X. There is also a natural injection 1: X — E(X) as the n = 1 summand in (2.2).

10
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The endofunctor Ej and the natural transformations p and 1 forms a monad on sSets,
expressing an associativity and unitality property of the natural transformations p and 1.

The data of the maps (2.1) is equivalent to a single map u: Ex(A) — A. Given such a
map there are two ways to construct a map of simplicial sets Fy(Fx(A)) — Ex(A), either
by applying the functor Ej to the map p: Ex(A) — A, or by the natural transformation
FEi o E;, = Ej. The required properties can be expressed concisely as these two maps
Ei(Ex(A)) — Ex(A) becoming equal after composing with Ei(A) — A. (Actually there
is a further property about the unit.)

2.2 Free algebras and cell attachments

FEj-algebras form a category in an evident way, which we denote by Algp, (sSets) and
forgetting the Ei-algebra structure gives a forgetful functor

Algp, (sSets) — sSets
(A, p) — A

which admits a left adjoint free Ej, algebra functor that we denote FFr. Explicitly,
FFPr(X) has underlying simplicial set Fy(X), equipped with Ej-algebra structure given
by the map Ei(E(X)) — Ei(X) mentioned above.

A somewhat important example is the free Ei-algebra on a point, whose underlying
simplicial set is

oo
(point) = |_| n)/Sy ~ |_| Conf, (R¥).

n=1 n=1
Here, Confn(]Rk) denotes the unordered configuration space of n points in R¥, and the
homotopy equivalence uses that rectilinear embeddings I¥ — I* are determined by their
centers of mass, up to contractible data.

Let us choose a triangulation of the d-dimensional disk D¢, and use the same notation

D? for the corresponding simplicial set, and D% C D¢ for the simplicial set corresponding
to the triangulation of the boundary. Suppose (4, u) € Algg, (sSets) and we are given a
map of simplicial sets

e: 9D — A.

To this data we can associate the diagram
FP (DY) «— FE*(0DY) — (A, p)

of Ej-algebras, using that FP* is left adjoint to the forgetful functor. By standard
methods one shows that the category of Fji-algebras has all colimits—that is, it is
cocomplete—so we may define a new FEj-algebra as the pushout

FE(ODY) —*— (A, p)

| |

FPy (DY) — AUBr DA,
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in Algg, (sSets). We call this the Ej-algebra obtained by attaching an Ey-cell to (4, )
along e. There is a universal property for maps out of this new Ej-algebra; we leave it
to the reader to formulate it.

More informally, the cell attachment can be described in two steps: first form the
pushout D? «+— 9D? — A in simplicial sets, which is a “partially defined Ej-algebra” in
the sense that points in A can be multiplied in the required ways, but products involving
simplices of D?\ 9D are undefined. The Ej-cell attachment is the result of freely adding
new simplices to this partially defined Ej-algebra for each undefined operation.

2.3 Indecomposables (non-derived)

One point of view on indecomposables is that they are trying to answer the answer
the following question:

Question 2.3.1. If we know that an Ej-algebra (A, ) is free, can we find out what it is
free on?

It turns out that this is possible, at least up to adding a basepoint. More precisely,
we will define a functor QF* fitting in the diagram

sSets 7%, Algp, (sSets)
lQEk (2.3)

sSets,

_l’_

where sSets, denotes the category of pointed simplicial sets, and “+” is the functor that
adds a disjoint basepoint.

It is in fact not difficult to define a functor with this property. We will do this, and
discuss some of its formal properties. This will only become useful after we discuss how
to derive these functors, though.

2.3.1 Definition and behavior on free F; algebras

We define the decomposables subspace of an Ej-algebra (A, p4) as the image of the

natural map
oo

| | (Ck(n) x A™) /S, — A.
n=2
Notice that we omitted the subspace Ci(1) x A C Ei(A) in the domain. In the paper
we use a more elaborate notation, but in this lecture I will write Dec(A, u) C A for the
decomposables of (A4, p).
In other words, A comes with multiplication maps (2.1), and the decomposables
subspace is the union of their images over n > 2.

Ezample 2.3.2. Let (A, ) = FF#*(X) be a free Ep-algebra on a simplicial set X. Then

o0

A= ](Cr(n) x X™)/Shn,
n=1
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and by inspecting how the Ejp-structure on A works, we see that

Dec(A, 1) = | | (Ck(n) x X™)/S,.
n=2
As a consequence,
A FEr(X)

Dec(A, 1) Dec(FE (X)) (Cr(1) x X) 4, (2.4)

where as usual the subscript denotes a disjoint basepoint.

This almost answers the question! Forming quotient by Dec(A, ) gave us back what
(A, 1) was free on, except for the basepoint and except for the factor of Cp(1).

In fact Ci(1) is contractible so it does not matter very much that it appeared in (2.4),
but aesthetic reasons we get rid of it in the following way. The contractible space Cx(1)
has a natural monoid structure given by composition of embeddings, and as part of the
structure map p : Ex(A) — A we have an action of Ci(1) on A. It is easy to verify that
this action preserves the subset Dec(A, i) C A, so the following is well defined.

Definition 2.3.3. For (A, ) € Algg, (sSets), the indecomposables are defined as the
orbit space

A
Ey, _
Comparing with the calculation (2.4), we get
QP (FP+(X)) = (Cu(1) x X) 1 /Ch(1) = X,

fulfilling the desired (2.3) up to natural isomorphism of pointed simplicial sets.

2.3.2 A right adjoint

Rather than trying to be an “inverse functor” to FF  indecomposables is often
presented as left adjoint to another functor, sometimes known as square-zero extension
(in our paper we call this the trivial Ey-algebra structure). For any simplicial set X there
is a “trivial” way to define an Ej structure on X, namely

Ce(n) x (X3)" — Xy

sends (a,x) + x for n = 1 and (o, x1,...,2,) — + for all n > 1. We will not make
much use of this “trivial Fy-algebra” functor, other than point out that its existence
implies that Q%% preserves all colimits.

2.3.3 Behavior under cell attachments

What happens when one applies Q% to an Ej-cell attachment?
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Lemma 2.3.4. Lete: 0D — A be as above. Then there is a pushout square of simplicial
sets

oDt ———— QPr(A,p)

| |

D¢ —— QFr(AUEr D).

Therefore, (A, ) — |QF* (A, 1)| takes Ey, cell attachments to ordinary cell attachments
(as in usual CW complezes, for instance).

Proof. We have already explained that QF* admits a right adjoint, so it preserves all
colimits and in particular pushouts. Combine this with the calculation of indecomposables
of free Ej-algebras. O

We want to iterate Ej-cell attachments.

Definition 2.3.5. An Fj-algebra is cellular, if it is isomorphic to a (possibly transfinite)
iteration of cell attachments. That is, given an ordinal x and Ej-algebras A; for i < &
such that Ay is the initial Fy-algebra, A;11 is obtained from A; by a cell attachment as
above, and A; = colim;;A; when ¢ < k is a limit ordinal, then A, is cellular.

The main use of indecomposables in our papers is to answer questions of the form:
given A, how many cell attachments of each dimension d is necessary for building a
cellular Ey-algebra A’ with an Ej, map A’ — A which is a weak equivalence. In order to
answer that, we need the derived indecomposables, which I’ll define in my next talk.

Using underived indecomposables we can answer a different, and admittedly artificial,
question: if we know that A is cellular (not just up to homotopy) and built using finitely
many cells of each dimension, what can we say about how many cells were used? Indeed,
A |QFr(A)] takes each Ej, cell attachment to an ordinary cell attachment, as explained
above. Therefore, Hy(QFx(A)) is a finitely generated abelian group, and we see that
there must be at least

rank(Hg(Q"* (A)))

many cell attachments of dimension d.

2.4 Derived indecomposables

The above definitions of Ej-algebra, indecomposables, cell attachments, etc., are not
really useful notions without introducing some homotopy theory. The most important
notion is:

Definition 2.4.1. A map f: A — B in Algg, (sSets) is a weak equivalence if the
underlying map in sSets is a weak equivalence.

The indecomposables behave well with respect to this notion of weak equivalence, in
the following sense:
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Lemma 2.4.2. Let f: A — A" be a weak equivalence in Algg, (sSets) and assume both
A and A’ are cellular. Then the induced map

QF(f): QPH(A) — QP (A)
is also a weak equivalence.

Lemma 2.4.3. Let A € Algg, (sSets). Then
- There exists a cellular approximation A" — A.

- For any two cellular approzimations A’ — A and A” — A, there exists a cellular
approzimation A" — A and a zig-zag A" — A" < A" over A.

About proofs. In fact it is better to prove slightly more than what is stated, namely to
construct a model category structure on Algp, (sSets) in which weak equivalences and
fibrations are detected on underlying simplicial sets. Cellular objects are cofibrant in
this model structure. The functor QF* : Algp, (sSets) — sSets, is a left Quillen functor.
The previous lemmas then follow from standard model category theory. We do not plan
to say more about that in the lectures, because either you’ve seen it before; or this is
not the right moment to learn it. In the latter case, it hopefully suffices to take the
statements of the lemmas on faith for now. O

Using these lemmas we see that for any A € Algp (sSets), the homotopy type of
QFr(A") for a cellular approximation A’ — A is independent of the choice of cellular
approximation. This homotopy type is the derived indecomposables

Pe(A) ~ QP*(A’) for any cellular approximation A’ — A. (2.5)
Remark 2.4.4. In fact the equivalence (2.5) is essentially the definition of ka, except
that we have not explained how to make ka into a functor. This is again standard
methods from model categories: there is a functorial way to factor the unique map
0 — A € Algg, (sSets) as a cofibration & — A’ followed by an acyclic fibration A" — A,

and any such choice leads to a functor Qf’“ satisfying (2.5).

Corollary 2.4.5. Assume that A € Algg, (sSets) admits a cellular approzvimation A" — A
which has only finitely many cells in each dimension. Then A" must have at least

rank(Ha(Q (4)))
many cells of dimension d. ]

In the paper, we write _
H*(4) = Ha(Qf*(4))

and call it Ey-homology. The rank of the Ej-homology groups therefore gives a lower
bound for the number of cell attachments necessary for a cellular approximation. To
make use of this lower bound, we must

- Find an effective way to calculate, or at least estimate ka (A) for the A’s that we

are interested in. (This is the content of Chapter 7).
- Ideally, find criteria for when the lower bound can be realized. (This is not quite

realistic for the Ejy-algebras in sSets, but will be quite realistic when passing to
other categories, as we discuss in Chapter 5.)



Chapter 3

Facts about mapping class groups I: arc
complexes

This is the first of two chapters that provide the eventual input about mapping class
group that is needed to prove Theorem 1.1.3 and Theorem 1.1.6.

3.1 Statements

Recall the standard surface ¥,1 = U?;S(EM + 7 -¢€1) and choose two distinguished
points by, b1 € 0¥41 on its boundary.

Definition 3.1.1. Let S(X, 1, by, b1), denote the set of (p+ 1)-tuples ([so], ..., [sp]) of
isotopy classes of arcs in X, 1 from by to b1, such that there are representatives so,..., s,
of these isotopy classes

(i) which are disjoint except for their endpoints,
(ii) whose order s, ..., s, agrees with the clockwise order of the s; at b,
(ili) such that each s; splits ¥ 1 into two subsurfaces both having strictly positive genus,
and the region between each pair s; and s;41 also has strictly positive genus.

These form the p-simplices of a semi-simplicial set S(341,bo,b1)e, with i-th face map
given by forgetting the isotopy class [s;].

Remark 3.1.2. 1t is always worrying when one imposes conditions on representatives
of equivalence classes. Fortunately, by a theorem of Gramain [Gra73, Théoréme 5] the
space of arcs on a surface in a given isotopy class is contractible: the same then follows
for tuples of arcs disjoint except at the endpoints, which shows that these conditions do
not actually depend on the choice of representatives.

The goal of this lecture is to give an idea of [GKRW19, Theorem 3.4]:
Theorem 3.1.3. |S(X,1,bo,b1)e| is (g — 3)-connected.

This semi-simplicial set is clearly (g — 2)-dimensional, as the largest number of arcs
there can be is (g — 1), splitting the surface into g pieces of genus 1 each. It follows that
it is homotopy equivalent to a wedge of (g — 2)-spheres.

16
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§) \e) n\e
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There is a long history of the study of (simplicial complexes or) semi-simplicial
sets of (curves or) arcs on surfaces, and they come in many flavours. Typically one
considers systems of (curves or) arcs which do not separate the surface, making our
example a bit unusual (though it is analogous to the curve complex studied in [Lool3]
and indeed the connectivity is identical). One can usually show that such complexes are
“highly-connected” (typically that they are either 45°- or (g — ¢)-connected for some small
constant ¢) but, while there are some general principles, these arguments are usually ad
hoc, long, and difficult. In [GKRW19] we deduced the Theorem from the connectivity of
a different arc complex, of “ordered nonseparating arcs” whose connectivity had already
been established (see [Wahl3, Section 4] for a detailed account). Unfortunately this
makes the overall argument rather involved, so I will instead explain the same strategy
in a simpler situation.

3.2 A nerve theorem

Let X and P be posets, and
F: P’ — {downward closed subposets of X, inclusions}

be a map of posets: we think of the poset as indexing a cover of |X|, and want to
understand the relationship between the homotopy types |P| and |X|. There are many
results of this flavour: Borsuk’s Nerve Theorem [Bor48], Quillen’s Poset Fibre Lemma
[Qui78], and generalisations [vdKL11].

We let X<, and P, denote the under-posets as usual, and set P, := {p € P? s.t. z €

F(p)}.

Theorem 3.2.1 (Nerve Theorem). Suppose that X has no infinite descending chains
and P has no infinite ascending chains. Then there is a zig-zag

IX| <27 25 |P|

where the map ¢ is mingex (conn(|X<y|) + conn(|Py|) + 3)-connected and the map 1) is
miny,ecp(conn(|P<p|) + conn(|F(p)|) + 3)-connected.
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3.3 Arcs for punctures

Consider the surface X ;, that is the disc with n punctures, with distinguished points
bo, b1 € 9%, on its boundary.

Definition 3.3.1. Let S(3{ 1, bo, b1), denote the set of (p + 1)-tuples ([so], ..., [sp]) of
isotopy classes of arcs in X, from by to by, such that there are representatives so, ..., s
of these isotopy classes

(i) which are disjoint except for their endpoints,
(ii) whose order sy, ..., s, agrees with the clockwise order of the s; at by,

(iii) such that each s; splits X, into two subsurfaces both having strictly positive
number of punctures, and the region between each pair s; and s;41 also has strictly
positive number of punctures.

These form the p-simplices of a semi-simplicial set S( 0.1> bos b1)e, with i-th face map
given by forgetting the isotopy class [s;]. It is the nerve of a poset S(X¢ 1, bo, b1)-

Definition 3.3.2. Let by be a further distinguished point on the boundary, and let
A(XG 1,b1/2) be the simplicial complex with vertices the isotopy classes [a] of arcs in ¥ ;
from by /o to one of the punctures, and where a collection [ao], . . ., [a,] of distinct vertices
spans a p-simplex if they go to distinct punctures and there are representatives that are
disjoint except at their endpoints.

Theorem 3.3.3 (Hatcher—Wahl [HW10]). A(Xg1,b1/2) is (n — 2)-connected.
Using this we prove:
Theorem 3.3.4. [S(X{ 1, bo,b1)e| s (n — 3)-connected.

Proof. We proceed by strong induction on n: if n = 2 then it is indeed non-empty, i.e.
(—1)-connected; if n < 2 there is nothing to show.

We will consider the (n — 2)-skeleton A(Xf ,, bl/g)(”_z), consisting of those systems of
arcs which do not reach every puncture. Let P := simp(A(X( 4, b1/2)(”_2)) be the poset
of simplices of this skeleton, and consider the map

F 2 simp(A(Xg 4, bl/g)("*z))(’p — {downward closed subposets of S(%q 1, bo, b1) }
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with F([ao,...,ap]) given by the subposet of those isotopy classes of separating arcs from
by to by which can be represented disjointly from the a;. We try to apply the Nerve
Theorem with [S(25 1, bo, b1)| <=2 — [simp(A(S5 1, by 2) "~ 2)].

If s € S(X3 1, bo, b1) has h punctures to its left and (n — h) to its right, then

S(Eala bOv b1)<5 - S(E{]L,l) b07 bl)
which by induction (as h,n —h < n) is (h — 3)-connected, and
simp(A(S§ 1, b1/2) ") = simp(A(S51", b1 /2))

which is (n — h — 2)-connected by Hatcher—Wahl’s theorem. This shows that the map
IS(36 15 bo, b1)| «=7 is (n — 2)-connected.

On the other hand if a = [ag,...,ap] € simp(A(E&l,bl/g)("_Q)) then the poset
simp(A(34 1, b1/2)) <q s the face poset of 9AP~! so is (p — 3)-connected. As we only took
the (n — 2)-skeleton, we must have p + 1 < n, and it follows that the poset F'(a) has a
top element, given by the arc which follows the boundary of the surface and the a;, so
F(a) is contractible. Thus the map ? — [simp(A(Xf 4, bl/Q)(”_Q))| = |A(ZE 1, b1/2)(”_2)\
is an equivalence. The latter is (n — 3)-connected by Hatcher—Wahl’s theorem.

Combining these shows that [S(37 1, bo, b1)| is (n — 3)-connected as required. O

3.4 Addendum: proof of the nerve theorem

We proceed by forming the homotopy colimit hocolimper |F'|, concretely given by the
coequaliser

I—l ’P§q’ x |F(p)‘ E— I_l ’PSp’ X ’F(p)\ I hOCOlimpop ‘F‘
p>q€P peP

of the two natural maps. There are maps
1X] & hocolimpop |F| N hocolimpop ¥ = |P|

induced by |X| < |F(p)| — *, and we try to estimate their connectivities. Using the
assumptions, define the height and depth as

h(x) = max{r € N s.t. there is a chain x = x9 > 21 > --- >z, € X}
d(p) = max{r € N s.t. there is a chain p=py <p; <--- < p, € P}.

Filtering |P| and hocolimper |F'| by d(—), there are cocartesian squares

L [P<p| x [F(p)| —— (hocolimpep [F[)=4*1 L [Pep| —— [P[24H
d(p)=d L d(p)=d L

LI P<plx [F(p)] —— (hocolimee | F[)= Ll [Pyl —— [P,
d(p)=d d(p)=d



20 Chapter 3  Facts about mapping class groups I: arc complexes

The squares
[P<pl X [F(p)| —— [Pyl

! l

IP<pl X [F(p)] —— [P<pl

are (conn(|P<,|) + conn(|F(p)|) + 3)-cocartesian', and it then follows by standard ma-
nipulations with cubes that the map v is

mig(conn(\P@\) + conn(|F'(p)|) + 3)-connected.
pE

Similarly, filtering |X| and hocolimpop |F'| by h(—), there are cocartesian squares

LI hocolimpep, |F(p)<z| — (hocolimpep | F|)Sh—1 U [Xeg| —— [X|ShE
h(xz)=h [ h(z)=h [
h(|7| hhocolimpepl |F(p)<z| — (hocolimpop |F|)=h h(l_)| h|X5x\ — [X|F

For p € P, the poset F'(p)<, has a top element so is contractible, and hence hocolim,cp, |F(p)<z| =~
|P;|. As the posets F'(p) are downwards closed, if x € F(p) then F(p)<, = X<z, and so
hocolimyep, |F(p)<z| > |Ps| X |[X<z|. Thus the squares

hocolimy,ep, |F(p)<z| —— X<zl

! !

hocolimpep, |F(p)<z| —— X<zl

are (conn(|X<z|) 4+ conn(|Pz|) + 3)-cocartesian, and it then follows by standard manipu-
lations with cubes that the map ¢ is

mi)r(l(conn(|X<m|) + conn(|P|) + 3)-connected.
Te

!The homotopy pushout is the join |P<,|* |F(p)| which is (conn(|P<,|) + conn(|F(p)|) + 2)-connected,
but furthermore |P<,| =~ * and so the map |P<p|*|F(p)| — * is (conn(|P<p|)+conn(|F(p)|)+3)-connected.



Chapter 4

E-algebras I: The homology of free Ej-algebras

The purpose of this lecture is to give a description of the homology of free Ej-algebras
in sSet! (i.e. spaces with an additional grading) which is sufficiently detailed for use in
the proof of the generic homological stability theorem and that of Theorem 1.1.6.

4.1 Additional remarks on Ej-algebras

4.1.1 Unital Fj-algebras

Previously, we have considered (non-unital) Ej-algebras, which are by definition the
algebras over the operad Ci given as in Definition 1.2.1. These Ej-algebras do not come
with a specified unit. For the sake of describing the homology of free Ej-algebras it is
more convenient to add this in; we are more used to free graded-commutative algebras
with unit than without. This is done by replacing Cr by the following operad:

Definition 4.1.1. The unital little k-cubes operad C,j has as space of n-ary operations
given by

CF(n) = Emb™* (L, 1%, 1¥)
for all n > 0. The symmetric group &,, acts on Cx(n) by permuting the cubes, the unit
« — Cr (1) picks out the identity, and the composition maps are given by composition of
rectilinear embeddings.

Definition 4.1.2. A unital Ey-algebra (also called a E;' -algebra) is an algebra over the
operad C,:r.

Ezample 4.1.3. The map C;f (n) @ R®" — R for n = 0 yields a map 1 — R specifying
a unit for the Fi-algebra structure. It turns out that there is not much of a difference
between units for Ej-algebras as a structure (as in our case) and as a property; this is
the content of [Lur, Theorem 5.4.4.5].

Any Ej-algebra R can be unitalised to an E,j -algebra R by formally adding in a
unit; this is a functor

Algg, (C) — AlgEk+ Q)
R— RT

21
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left adjoint to the forgetful functor. On underlying objects, we have UBIR* = TUUPFR.

4.1.2 Additional gradings

For the remainder of this lecture we will work in the category sSet". Here N is
the symmetric monoidal groupoid with objects given by the non-negative integers, only
identity morphisms, and monoidal structure given by addition; sSet" is then the category
of functors N — sSet with symmetric monoidal structure given by Day convolution:

(XeY)(9) =[] X(g)xX(g)
g1+g92=g

In this case working with functors is a tool to keep track of an additional “genus” grading,
so we denote the objects of N by g. (Functor categories are also useful in certain
constructions, as we will see when we construct FEs-algebras from braided monoidal
groupoids in Chapter 9.)

Ezample 4.1.4. The assignment g — BTy refines | |~ BT'g;1 to a functor N — sSet.

Remark 4.1.5. There is no additional work in replacing sSet with another sufficiently
nice category (sMody and Sp are good choices) or N with another symmetric monoidal
groupoid G. Both will appear later in this seminar.

4.2 Free Ej-algebras

4.2.1 The free-forgetful adjunction

Let us recall a notion from Chapter 2. For an operad O in simplicial sets, let
Algy (sSetN) denote the category of O-algebras in sSet". Taking the underlying objects
yields a forgetful functor U©: Algo(sSetN) — sSet with left adjoint given by the free
O-algebra functor

FO: sSet" — Algy,(sSet™).

Recalling that U9 F© is the underlying functor of the monad O associated to O, we see
that
U°FC(X)=0(X) = | | O(n) xg, X®".
n>0

4.2.2 Specialising to the Eji-operad

Let us now take O = C,‘:, the unital little k-cubes operad of Definition 4.1.1; we get a
functor .
FEr: sSeth — Alg+ (sSet™)
k

and a formula of the underlying objects of its image. We will often denote F' B (X) by
E/ (X) for brevity and E;f (X) for its underlying object.
Remark 4.2.1. By comparing the right adjoints, one sees that Eif (X) = E(X)™.

There is a more geometric description of free unital Fy-algebras in terms of configu-
ration spaces, generalising a remark in Chapter 2. Let us write I == int(I) = (0, 1).
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Definition 4.2.2. Let Confn(fk) be the configuration space of n ordered points, given
by

Conf,, (1) = {(x1,...,2n) | 7 # x; if i # j} < (IF)"

There is a map F; (n) — Conf,(I*) which records the centers of the n cubes; this is
a G,-equivariant homotopy equivalence. Since the action of &,, is free on both terms,
we get an induced weak equivalence

Ef (X)= || BEf (n) xg, X®" — | | Conf,(I*) xg, X®" = Conf(I*; X)  (4.1)

n>0 n>0

in sSet". You can think of the right side as configuration spaces of unordered points in
R* (as I* is of course homeomorphic to R¥) with labels in X.

Ezample 4.2.3. For k = 2 and X = x, the right side is the disjoint union over n of the
configuration spaces of n unordered points in I?; this is homotopy equivalent to the
classifying space of the nth braid group.

The left side of (4.1), being the underlying objects of a free E,j -algebra, comes with
an E,j—algebra structure and so the right side, given by inserting configuration of labeled
points into the cubes (see Fig. 4.1). Using these, the map is a weak equivalence of
E,j—algebras in sSet™.

Ca(2) x (Confy(I?) x X) x (Confy(1?) xg, X®?)

w
[
€1 x3
€2
° °
xr1 €2
* S COl’lfg(IQ) X &g X®3
° z3
1 ®
x2

Figure 4.1: An example of Es-algebra structure on I—anO Confn(fk) Xg, XOm
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4.3 The homology of free E)-algebras

We will now study the homology of free E,j—algebras for k > 2. An object R € sSet"
has bigraded homology groups with coefficients in a commutative ring k:

Hy (X5 k) = Hqy(X(g); k).

If X is a unital Ey-algebra RAIlg .+ (sSetN), then the E,j—algebra structure endows its
k

homology groups with certain operations. These arise evaluating the map induced on
homology by

Cy(Ce(n); k) @s, Cy(R; k)2 =5 C,(Ck(n) xs, R k) — CL(R; k) (4.2)

on certain elements of the domain. By the work of F. Cohen, we have a complete
understanding of these operations when k is a field Q or F, with ¢ prime.

4.3.1 The product and Browder bracket

The easiest operations arise from the case n = 2 (that is, binary operations), and are
constructed in the same manner for all k. We start by precomposing the map induced
on homology by (1.1) with the external product on homology to get

(02)+: Ho(Cr(2): k) ® Hyn(Ri k)% — H, o(Rs k),

where H, is shorthand for Hp .. Letting two small cubes circle each other describes a
homotopy equivalence
Sk 25 r(2)

and thus we have two distinguished generators ug € Ho(Cr(2); Q) and ug—1 € Hi—1(Cx(2); k)
from which we derive a pair of homology operations.

Definition 4.3.1.
(i) The product

- = Hg1,d1 (Rﬂ ]k) ® ng,dz (R7 ]k) — Hg1+g2,d1+d2 (R? ]k)
is given by 6, (up ® — ® —).
(ii) The Browder bracket
[_7 _] : Hgl,dl (R7 Ik) & ng,dg (R7 ]k) — Hgl+gz,d1+d2+k*1(R; Ik)
is given by (—1)k=Ddtlg (4, 1 @ — @ —).

Remark 4.3.2. The sign on the Browder bracket is hard to justify, but makes the relations
more palatable (or does it?).

More generally, we can consider the maps
(0n)s: Hi(Cr(n); k) ®s, Hix(R:k)®" — H, (R; k),

which exhibit H, .(R;k) as an algebra over the homology operad H,(Cy;k). We can in
particular understand some properties of these operations by studying this homology
operad, resulting in relations satisfied by the product and Browder bracket.
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Ezample 4.3.3. The product is linear in both entries, unital, associative, and graded-
commutative. For example, associativity follows from the fact that Ci(3) is path-
connected.

Ezample 4.3.4. The Browder bracket is linear in both entries, symmetric up to a sign,
and satisfies the Jacobi relation up to a sign. As an example, let us prove symmetry and
determine the exact sign. For x; € Hy, 4,(R; k) with i = 1,2, we have

O(up—1 @ x1 @ T2) = (—1)k+d1d29*(uk,1 ® xo @ T1).

where one part of the sign comes from the involution on S¥~1 and the other from the
Koszul sign rule upon switching x; and xo. We leave it to the reader to insert the signs
in the definition of the Browder bracket.

Ezxample 4.3.5. The bracket acts a derivation of the product up to a sign.

4.3.2 The Dyer—Lashof operations
When k is such that the the external product maps

H.(Cr(n); k) ®s, Hes(R;k)®" — H, .(Cr(n) xs, R®™"; k)

are always isomorphisms, the previous section tells the complete story. But this is only
the case if k is a field of characteristic 0, e.g. k = Q.

When k = F, for a prime £, one can construct further operations that do not arise
from an application of the map induced by the E,j—algebra structure to an element in
the image of the external product.

Ezample 4.3.6. Let’s try to understand this for the term Cy(2) xg, (57)*? in Ef (5%),
working with coefficients in Fo and taking & > 2. Are there elements in its homology
that do not arise by applying products and Browder brackets to the class [S?] ® [S]?

To understand this, we replace it with a labeled configuration space. Consider the
Serre spectral sequence in Fo-homology for the fibration sequence

St x §* — Confo(I*) x g, (89)*? — Confy(I*) /&y ~ RPFL.

Its E2-page has three non-zero rows, given by H,(RP¥;Fy) for ¢ = 0, H,(S*"1;Fy) for
q =i (observe that H;(S? x S%;Fy) is F3[Cs] as a representation of 7 (RP*) = Cs), and
H,(RP*=1,Fy) for ¢ = 2i. Of these, only the terms on the Oth and (k — 1)st column can
be in the image of the external product map. (However, the class in (p,q) = (k — 1, 27)
turns out not to be; a full rotation of two of the same class around each around is twice
a half rotation.)

In this example, the crucial elements are those on the top row: there are k of these,
obtained by combining the Fy-homology of BCy in a range (note RP* — BCjy is k-
connected) with the square of the fundamental class [S?] of S?. In general, a similar
construction replacing this fundamental class by a chain representing a homology class
of R yields Araki—-Kudo—Dyer—Lashof operations

QS: Hg,d(R;Fg) — H2g,d+s(R : Fg)
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where s must satisfy d < s < d+ k — 1 [KA56, DL62]. For s = d, this is—as the
example suggests— equal to squaring using the product, while for s = d + k — 1 this is
called top operation and denoted ( because it satisfies slightly different relations than
the other Araki-Kudo-Dyer—Lashof operations. One may think of these operations as
higher operations derived from the square, not unlike the Steenrod squares [May70].
For odd primes /¢, the story is similar with C(¢) replacing Cx(2) and we get higher
operations derived from the th power map. These are the Dyer—Lashof operations

Q% Hya(R;Fp) — Hyg qros—1)(R : Fo)
BQ%: Hyq(R;Fe) — Hyg gias0—1)—1(R : Fy)

where s must satisfy d < 2s < d+ k — 1. Once more, for 2s = d the map @Q° is the
lth power map and for 2s = d + k — 1 these are called the top operations ¢ and &
respectively. As the notation suggests, for E,j -algebras in spaces SQ° is obtained by
applying the Bockstein to Q° but this is neither true by definition nor true in general
(e.g. for E; -algebras in chain complexes).

The (Araki-Kudo)-Dyer—Lashof and top operations satisfy a variety of relations,
both amongst themselves and with the product and bracket. We will not give them here
(see [GKRW18a, Chapter 16]), as we will not require the details but only easily stated
qualitative consequences.

Notation 4.3.7. If we need to stress the prime ¢ in the Dyer—Lashof operations, we
write @} or SQj.

4.3.3 F. Cohen’s theorem

The previous section explains that H, .(R;k) comes with a generous amount of
operations with k = Q or F,. In particular, when R is a free E; -algebra E{ (X) the
identity of the operad C,": provides a canonical map

X — EfX)=|]¢f(n) xe, X&"
n>0

and thus an induced map H, .(X;k) — H**(Ek*(X),Ik) We can apply homology
operations to its image, and informally F. Cohen’s theorem says that all homology classes
are obtained in this manner. It is proven in [CLMT76] (but see [Wel82] and [GKRW18a,
Chapter 16] for corrections).

Rational case

If k = Q, then we have only described the product and the Browder bracket. The
relations among these make H, .(R;Q) into a so-called (k — 1)-Poisson algebra. Let
Poisy_1(V) denote the free (k — 1)-Poisson algebra on a bigraded Q-vector space V' (one
homological grading and one “genus grading”); this is obtained by iteratively taking
products and Browder brackets starting with V', and enforcing all relations that hold
among these in the homology of any E,j—algebra. The relations are such that we can
write everything as a linear combination of products of brackets. However, for the sake
of consistent notion we will write Wj,_1 (V') == Poisg_1(V).
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Theorem 4.3.8 (F. Cohen). The map
Wi—1(H. (X3 Q) — Hoo (B (X);:Q)

is an isomorphism.

Finite field case

If k = Fy, then in addition to the product and Browder bracket we have the (Araki—
Kudo)-Dyer-Lashof and top operations. The relations among these make H, .(R;Fy)
into a so-called Wy_1-algebra. Let Wi_1(V') denote the free Wj,_;-algebra on a bigraded
Fy-vector space V; this is obtained by iteratively applying products, Browder brackets,
(Araki-Kudo)-Dyer—Lashof operations and top operations starting with V', and enforcing
all relations among these. The relations are such that we can write everything as linear
combinations of products of Dyer—Lashof operations applied to brackets.

Theorem 4.3.9 (F. Cohen). The map
W1 (Hen (X;F)) — Ho (B (X); Fo)
is an isomorphism.

Remark 4.3.10. It may be helpful to remind you that what Wj_;(—) means depends
on the field we are using as coefficients. Hence this is a different theorem, even though
it looks identical to the previous one. In terms of qualitative behavior, you should
distinguish between the three cases Q, o, and F, for £ odd.

4.4 Iterated mapping cones of F,-algebras

That you might expect Ej-algebra structure to be related to homological stability
and secondary homological stability, is justified by these phenomena being present in
the homology of free Ej-algebras. We will work this out in an example. We will then
explain a technique that allows us to phrase these homological stability properties in a
more robust manner.

4.4.1 An example

Let us look at the homology with Fo-coefficients of the free E-algebra Ey (D'90).
This uses the following notation:

Notation 4.4.1. For X € sSet we let X9 € sSet" denote X placed in “genus” grading g.

In particular, D' is the point D" placed in “genus” grading 1. Recall that the
relations allow you to rewrite every generator as one where the brackets occur before all
other operations; but [o,0] = 0 (for ¢ = 2 this is in fact one of the relations). Thus we
get that the Fo-homology of E; (D*0) is a free graded-commutative bigraded algebra
on iterated Araki—-Kudo—Dyer—Lashof operations on o. The general formula is that

H, (B (DY00);Fy) 2 Fo[Q o | I admissible],
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where I runs over sequences (si,...,s;) with 2s; > sj_1, 327 9(2s; — sj—1) > 0 and
s = 1, and we write the top operations as a Araki-Kudo—Dyer—Lashof operation. But
this simplifies quite a bit: all I are of the form (si,...,sp+1) = (2¥,2¥71,... 1) and in
this case Q'o = Q*1 - - - Q**+1¢ has bidegree (251,281 _1). This is proven by induction:
if I is admissible then so is any subsequence from the right, and on an class of degree
2k+1 _ 1 we can only apply QQHl_l and QQHI but the former is a square. (The reader
might want to compare this to cohomology computations of braid groups as [Fuk70].)

The upshot is Fig. 4.2. This lists the generators in each bidegree. Taking the
free graded-commutative algebra on these generators, one observes that all elements
in bidegree d < § are multiples of o—homological stability—and once we quotient out
the submodule generated by o all elements in bidegree d < 2?9 are multiples of Qlo—
secondary homological stability. We can quotient out the submodule generated by Q'o
and observe tertiary homological stability, etc.

0 o
d/g 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Figure 4.2: The generators of the bigraded Fa-algebra H, .(Ey (D'0);Fy). The first index is
the horizontal axis, the second index the vertical axis. The stable range is shaded blue, the
metastable range orange.

4.4.2 Iterated mapping cones and adapters

In the previous example, we took the various quotients after taking homology. This
is usually a bad idea, and we would rather take a quotient before taking homology.

To do so, we observe that taking the quotient of an associative algebra A by an
ideal generated by an element x has the following universal property. Consider A as
an A—A-bimodule. The element x € A produces by adjunction a map z-—: A — A of
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A-modules, and we can form the pushout
A
0

Mimicking this homotopy-theoretically for an E;—algebra R for £ > 1, we switch
to working in sModE instead of sSet!; this is pointed so there is a zero object 0, and is
harmless because we intend to take homology anyway. Consider R as a R—R-bimodule,
or if you prefer you can rectify R to an associative algebra R first. Let S™* denote the
pointed (k — 1)-sphere S* in “genus” grading h. A map f: S"* — R corresponding to
an element of Hi(R(h)) (if we are working with simplicial k-algebras a homotopy class is
the same as a homology class of the corresponding chain complex under Dold—Kan, and
we prefer the latter notaton). This produces by adjunction a map f-—: S"* @ R - R
of R-modules and we can form the homotopy pushout

-
—

]

s Af(2).

Rosht 1= \ R

% |

— R/(f).
By construction, there is a long exact sequence

o Hya(R) L5 Hyp g (R) — Hyonasx(R/(F) — -+

so whether f - — is a surjection or isomorphism in a range can be deduced by studying
R/(f).

The difficulty with this construction is that it can not be iterated, because we “use
up” one of the module structures each time we take a quotient. This can be resolved for
k > 2: R admits as many commuting R-module structures as you would like. Explicitly,
this may be achieved by the device of an adapter, analogously to using Moore loops
to construct rectify an Ef -algebra to an associative algebra. The construction of an
adapter uses the geometry of the k-dimensional cube with &k > 2 to produce three or
more commuting R-module structures; Fig. 4.3 should give you an impression of how to
get three such structures.

We may then take iterated cofibers to our heart’s content, writing

R/(f1, fa, ) = (R/(f1))/(f2)/ )
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2 2
1 : 1

o] 1] o L
-1 0 -1 0

Figure 4.3: Heuristically, the result of using simultaneously an “upper left” R-module structure
and a right R-module structure in an adapter.



Chapter 5

Indecomposables 1I: Indecomposables in other
categories

In this lecture we discuss some generalizations of the setup from the first lecture.
First we replace simplicial sets by simplicial modules over a ring, and how to transport
definitions to that setting. Then we discuss how to do something similar in functor
categories, which is the setting we really need for applications.

In [GKRW18a] we take an axiomatic approach to these different “settings”: write a
list of axioms, prove theorems based on those axioms, and then observe that simplicial
sets, simplicial modules, and functor categories satisfy the axioms. In the lectures we
will take the opposite approach, presenting the main ideas in a slightly simplified setting
before generalizing. Hopefully that will help keeping new concepts apart somewhat.

5.1 Simplicial modules

Let k be a commutative ring (typically: Z or a field) and let sMody be the category
of simplicial k-modules. Given X,Y € sMody we define X ® Y € sMody to be the tensor
product over k (in each simplicial degree). Given a simplicial set K we let k[K] € sModpy
be the free simplicial k-module on K. Using this we define a functor

E;.: sMod;. — sModjy,

oo
X — |_| (k[Cr(n)] ® X®™)/S,.

n=1
Clarification: we have written ] for the coproduct in the category sMody, which more
explicitly is the direct sum. Likewise, the quotient by the action of S,, should be formed
in the category sMody, which more explicitly means passing to coinvariants.

As in sSets, the operad structure on Ci again gives the functor Fj: sMody — sMody,

the structure of a monad, and we define Algg, (sMody) to be the category of algebras
for this monad. We again have a free functor

FPr: sMody — Algp (sMody)

left adjoint to the forgetful functor in the other direction. Using this, we define cell
attachments A UPx D for A € Algp, (sMody), along an attaching map e: 0D — A of

31
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underlying simplicial sets, as the pushout

FFr(k[oD?)) —&— A

| |

FEPr(k[DY]) —— AUE D4

in the category Algp, (sMody).

Using this, we define cellular algebras and derived indecomposables as indecompos-
ables of a cellular approximation, as we did for Ej-algebras in simplicial sets: first define
underived indecomposables of A € Algp, (sMody) as the cokernel of | [72,(k[Ck(n)] ®
A®™) /S, — A, then derived indecomposables is indecomposables of a cellular approxi-
mation.

5.1.1 Linearization

The functor K — k[K] from sSets to sMody is symmetric monoidal (and left adjoint
and compatible with the copowering over simplicial sets). Therefore, an Ejy-algebra
structure on A € sSets gives rise to an Ej-algebra structure on k[A] € sMody. This is
compatible with indecomposables, in the sense that the diagram

Algp, (sSets) —— Algp, (sMody)

lQEk lQEk

sSets, ————  sMod,

commutes up to natural isomorphism. Here the bottom horizontal map denotes free
k-module relative to the basepoint. The proof is purely formal, using nothing but colimits
commuting with other colimits...

For A € Algpg, (sSets) we shall often be interested in the homology of the underlying
simplicial set (e.g. for proving homological stability). Since the homology of X € sSets is
the homotopy of k[X] (or equivalently, the homology of the chain complex associated to
the simplicial abelian group k[X]), we have not lost too much information by passing
from A to k[A].

5.2 A Hurewicz theorem and a Whitehead theorem

The indecomposables of A € Algg, (sMody) are defined as the quotient of A € sMody
by something. In particular, there is a canonical quotient map

A — QFr(A).
For a cellular approximation A" — A there is therefore a zig-zag

AE A QP (A ~ QP (A),
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inducing a well defined map on homotopy groups
By, _ 17k
ﬂd(A) — ﬂd(QL (A)) = Hd (A)

By passing to mapping cones, there is also a relative version of this “Hurewicz map” for
a morphism f: A — B in Algg (sMody)

The main result about this map is the following “Hurewicz theorem” which we will
use but not prove in these lectures (similar results obtained by Basterra—Mandell and
Harper—Hess; recent results of Heuts give sharp conditions under which generalizations
of “indecomposables detect weak equivalences” hold):

Theorem 5.2.1. Let A, A € Algg, (sMody) satisfy' mo(A) =0 =mo(A). Let f: A— B
be morphism, and assume the underlying map of simplicial sets is n-connective, i.e. that
mi(B,A) =0 for i <n. Then the map

is amn isomorphism.
Here we define 7, (A’, A) as the homotopy? group of the mapping cone of f in sMody.

Corollary 5.2.2. Let f : A — A’ be as in the previous theorem, and assume that
mi(QEF(A'), QE*(A)) = 0 for i < n. Then mi(A', A) =0 fori < n. In particular, f is a
weak equivalence if and only if ka (f) is a weak equivalence, under this assumption.

5.3 Minimal cell structures in simplicial modules

For Ej-algebras in simplicial sets, we discussed how homology of relative indecompos-
ables give a lower bound on the numbers of d-cells needed in a cellular approximation.
For Ej-algebras in simplicial modules over a field k, the same argument applies, showing
that any cellular approximation A" — A must have at least

dimy (m4(QF*(A))) = dimy HE*(A)
many cells of dimension d. Sometimes this bound is optimal:

Proposition 5.3.1. Let k be a field and let A € Algg, (sMody) have mo(A) = 0. Assume

that A" € Algp, (sMody) is cellular, is built using precisely dimy ka(A) many cells of
dimension d for d < n and no cells of dimension > n, and that there is given a map
A" — A inducing an isomorphism in Hf’“ ford <mn.

Then there exists a cellular A” € AlgEk(sModk) obtained by attaching precisely
dimy (HE*(A)) many d-cells to A’ and no other cells, and a morphism A" — A inducing
an isomorphism in HdE’C ford <n.

IRecall that we work with FEj-algebras which don’t have “units”
2In the paper we write this as H,(A’, A), thinking of it as relative homology of the chain complexes
associated to A’ and A.
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By induction, there exists a cellular approximation A" — A with precisely dimy H 5 *(A)
many d-cells for all d.

About proof. The idea is to choose a basis for the k-vector space

(a2

(A, A" S HPv (4, A') & HE(A).

Here the first isomorphism is the Hurewicz theorem above, and the second follows from
the long exact sequence of (A’, A) in Ex-homology.

Then we represent each basis element by a map of simplicial sets (A", dA™) — (A', A).
Such a map is precisely the data needed for attaching a cell to A’ and extending the map to
A. If A” — A is the result of attaching these cells, one then checks that Hf’“(A”, A)=0
for d < n + 1 because the cells precisely kill a basis for Hf ¥1(A’, A). The result then
follows from long exact sequences. O

5.4 Functor categories

In this section we discuss how the categories sSets and sMody may be replaced by
functor categories, for example

sMod$ = functors G — sMody.
We have a (k-linearized) Yoneda embedding

GP — sMod®

g K[G(g, -] 51)

as well as
sSets — sMod$

K — k[K x G(1g, —)], (52)

where 1g € G is the monoidal unit.

If G is given a monoidal structure &, there is an essentially unique monoidal structure
® on sMod® making (5.1) into a monoidal functor, and such that @ preserves colimits
in each variable separately. This is the Day convolution, given explicitly by the formula

(X ®Y)(g) = colimg, ag,—¢X (91) ®x Y (g2), (5.3)

where the colimit is over the category whose objects are triples (g1, g2, f) consisting of
g1,92 € G and a map g1 & ga — ¢g. Similarly when G is braided monoidal or symmetric
monoidal.

A simple example which is relevant to us is G = N, the category whose objects are
the non-negative integers, and which has only identity morphisms. In this case the
formula spells out to (X ® Y)(n) = X(n) @ Y(0)II---II X(0) ® Y(n). In this case we
are essentially just “keeping track of an extra grading”. (Clarification: II denotes the
coproduct in sMody, i.e. the direct sum.)
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Using (5.3) and (5.2), we define a functor Ej, : sMod® — sMod§ as
H ) x G(1, -)] ® X®™)/8S,. (5.4)

As before, composition of embeddings I¥ — I* gives this functor Ej the structure of a
monad, and we define Ej-algebras in sModﬁ as algebras for this monad: i.e., functors
A : G — sMody equipped with a map p : Fx(A) — A satisfying some condition. We will
write

Algp, (sMod)
for the category of Ei-algebras in sModﬁ.

Remark 5.4.1. The formula (5.4) only makes sense in the symmetric monoidal case, since
otherwise we don’t have a well defined action of S,, on X®™. For k = 2 the formula can
be rewritten as

/—\_/

ﬁ G(1L, )] @ X)/B,,

—_—

where C(n) denotes a certain universal cover, and B,, denotes the braid group. This
formula also makes sense when G is only braided monoidal, and defines a monad. Hence
E, algebras in sMod$ make sense in this case, which we shall use. (But E3 and higher
does not make sense.)

For example, if we are interested in homology of the mapping class groups I'y 1, we
study the object
(g k[NT,4]) € sMod}.

Finally, there is a notion attaching a cell to A € Alg Ek(sModﬁ), whose input is an
“attaching” map e : D% — A(g) for some g € G and d € N. The object G represents a
functor G(g,—) € Sets® and the attaching map corresponds to a map

oD% x k[G(g,—)] — A

in sModﬁ. Cell attachment along e is then defined as the pushout in Algp, (sMod]lC;‘)

FE (3D x k[G(g, —)]) ——— A

! |

FEL(D? x K[G(g, -)]) —— AU Do,

In the paper, we write the object D? x k[G(g, —)] as D9?, and similarly for D9¢. Thus
we see that each cell has a bidegree (g,d) € G x N.
Indecomposables and derived indecomposables are defined by the same method as
before, and are functors
AlgEk(sModRG{) — sMod?,

and Ej homology is defined as

HI%(A) = ma(QL*(A)(9))-
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For the same formal reasons as before, when k is a field, the dimension of this vector
space is a lower bound on the numbers of (g, d)-cells in a cellular approximation to A.
There is again a convenient criterion for when this may be realized:

Proposition 5.4.2. Assume G is a groupoid®, k is a field, and that mo(A(g)) = 0 when
g is invertible in the monoidal structure (i.e. that there exists ¢’ such that g ® ¢ is
isomorphic to the monoidal unit). Assume furthermore that there exists' a function’
w: G/iso = N such that w(g ® ¢') > w(g) + w(g') and such that w(g) > 0 when g is not
tnvertible in the monoidal structure.

Then there exists a cellular A" € Algp, (sMod®) built using precisely dim Hffl(A)
many cells of dimension (g,d).

About proof. One first proves a Hurewicz theorem, asserting that
ma(Al9), B(9)) — H, (A, B)

is an isomorphism if these groups vanish in “smaller” bidegrees (in a suitable ordering
on G x N). The proof then produces a cellular approximation inductively on bidegrees,
in each step using this Hurewicz theorem to produce attaching maps. The assumptions
about existence of w ensure that this works. O

5.5 Filtrations

As a special case of functor categories, we consider functors out of Z<: the category
with objects n € Z, a single morphism n — m if n < m and none otherwise, with the
symmetric monoidal structure given by addition. Functors Z< — sMody are filtered
objects of sMody. Beware that we do not require n — n + 1 to go to an “injection”, as
one sometimes does when considering filtered objects. We also write Z_ for the category
with only identity morphisms. Then we have two important functors

gr: sModiS — sMod%:
colim : sModiS — sMod.
The first is associated graded, which to X € sl\/[odiS associates

gr(X) : Z- — sMody
n— X(n)/X(n—1).

The second, denoted colim, simply takes colimit over Z<. Both are compatible with the
symmetric monoidal structures given by Day convolution, and induce functors on algebra

31 don’t think this is completely essential

“In the paper we call the existence of such a functor w that G is “Artinian”. It plays a role somewhat
similar to that of a discrete valuation on a local ring.

5In the paper we express this as a symmetric monoidal functor G — N<
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categories fitting into diagrams

Algp, (sMod]lZ{;S ) LN Algp, (sMod%z)

o o

Z r _
sMod; = ——2—— sMod%=.

and
Algp, (sMody=) <, Alg . (sMody,)

J{QE’C lQEk

Z .
sMod; = —colim o sMody.

We will use this in the following way: Given A € Algg, (sMody), we look for a
C e Algg, (sModiS) and an X € sMod2=, and weak equivalences

colim(C) ~ A

gr(C) ~ FE:(X). (5:5)

Indeed, this situation gives a spectral sequence whose E'-page is homotopy of the free

Ej-algebra gr(C'), converging to homotopy of colim(C'). This can be useful because the

homotopy of free Ej algebras is well understood. (Recall that homotopy of an object of
sMody, is homology of the corresponding chain complex.)

The above discussion can® be repeated with sMody replaced by sModﬁ and hence

sModiS replaced by sMod]EXZS. We then have the following result about when such a
“multiplicative filtration” of A with the minimal number of cells may be achieved.

Theorem 5.5.1. In the situation of Proposition 5./.2, there exists a C' € AlgEk(sModEXZS),

an X € sModﬁXZ: and weak equivalences (5.5), such that

i o ora=mn
dimk(ﬁd(x(g’n))):{dlmk(Hgvd(A)) for d

0 otherwise.

About proof. We construct C' by a filtered analogue of cell attachments. The main new
idea is to give DY filtration d and dD% c D? filtration d — 1. That the disk and its
boundary have different filtration causes the attaching maps to be trivial in the associated
graded, which makes the associated graded free: it is obtained by iterated cell attachments
along trivial attaching maps.

That this is possible using the minimal number of cell attachments consistent with
the Eji-homology of A again uses a Hurewicz theorem, similar to what we discussed
before. O

Sin the actual lecture I'll probably state this only for trivial G
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Facts about mapping class groups II: low-degree
homology

6.1 Statements

A lot is known about the homology groups H;(I'g1;Z) in low degrees or low genus,
due to the work of many people', which in the range we will need can be summarised as
follows.

2 Z)2 L&7)2 7

1 7 Z/10

—0 Z Z Z Z /R
d/g 0 1 2 3 4

In this talk I want to give some idea of the following, a slight simplification of Lemma
3.6 of [GKRW19], which explains the information about the homology of mapping class
groups that we shall need. Write o € Ho(I'11;Z) for the generator, and I will explain
the rest of the notation along the way.

Theorem 6.1.1.

(i) Hi(T11;2) = Z{1},

(i) Hi(T'21;Z) = Z/10{oT},
(iii) Hi(T'g1;Z) =0 for g > 3,

(iv) Ho(T'y1;Z) is zero,

(v) Ha(T'21;Z) is torsion,

(vi) Ha(T'31;Z)/Im(o - —) = Z{A},

! Abhau, Benson, Bédigheimer, Boes, F. Cohen, Ehrenfried, Godin, Harer, Hermann, Korkmaz,
Looijenga, Meyer, Morita, Mumford, Pitsch, Sakasai, Stipsicz, Tommasi, Wang, ...

38
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(vit) Ho(Ty1;Z) = Z{o A},

(viii) the extension
0 — Ho(I'31;Z)/Im(0 - —) — Ha(I'31,121;Z) — H1(I'21;Z) — 0
s isomorphic to
0 — Z{\} 221 700} 22T 7/10{07) — 0

for some unit w € (Z/10)* (in fact u =1, but we will not need this).

6.2 Presentations of mapping class groups.

The most basic diffeomorphism of an oriented surface is the (right-handed) Dehn
twist: the diffeomorphism of the cylinder relative to its boundary as shown below.

Any simple closed curve ¢ on an oriented surface 3 has a neighbourhood oriented
diffeomorphic to the cylinder, and the (right-handed) Dehn twist along c is the (isotopy
class of) diffeomorphism 7, obtained by implanting the Dehn twist in this neighbourhood.
If ¢ is another diffeomorphism, this description makes it clear that ¢r.¢~! = To(c)-

rialql' ’V"‘Jﬂl
—_—D

belm tuazt

As the figure above shows, the best way of thinking about diffeomorphisms of surfaces
is to consider how they act on (curves and) arcs. The action of 7. on an arc a C X is
simple: after putting these in general position, 7.(a) is the arc obtained by following a
and taking a detour along c at each intersection point.

Lemma 6.2.1. The stabiliser of an isotopy class (with fized endpoints) of arc [a] for the
['(X)-action is the subgroup T'(X \ nbhd(a)) < T'(X).

This gives a method for proving identities in the mapping class group: to show that
a diffeomorphism ¢ is trivial act on some arc a, and show that ¢(a) is isotopic to a; if so,
¢ may be isotoped to fix a, then removing a reduces us to the analogous question on a
simpler surface; finally, use that the mapping class group of a disc is trival. The relations
below may all be proved using this method.

6.2.1 The braid relation.

If a and b are disjoint simple closed curves, then

—1_-1 ~1
[Tar o] = TaToTy Ty = Trym)Ty =€
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using that 7,(b) = b because the support of the diffeomorphism 7, is disjoint from b. If
instead a and b intersect at precisely one point then one can see 7,7,(a) = b and so

—1
TaTTa = (TaT6Ta(TaTv) ™ )TaTo = Tryry(a)TaTs = ToTaTb-

(These are completely analogous to the relations in the braid group, for elementary braids
which are (i) not adjacent and (ii) adjacent.)

d

- e e -
P

e

6.2.2 The two-holed torus relation.

On the torus with two discs removed, let a, b, ¢, d, e be the simple closed curves
shown in in the left-hand figure above. Then

(TaTch)4 = T Te.

The lantern relation. On a sphere with four discs removed, let dy, di, do, d3, di2, di3,
dsz be the simple closed curves shown in the right-hand figure above. Then

TdoTd1TdoTds = Tdy2Td13Tdas -

Theorem 6.2.2 (Wajnryb [Waj83]). The group Iy is generated by the 7., and, for
g > 2, 7q. A complete set of relations is given by: the braid relations among these
generators; the two-holed torus relation for the curves x1, xo, x3; the lantern relation for
the curves x1, x3, x5. ]

Note that the two-holed torus and lantern relations for the indicated curves also
involve other curves which are not in the listed generators: they can however to be
expressed in terms of the generators, and Wajnryb does so explicitly.
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In particular, as there are diffeomorphisms sending any non-separating curve to any
other, all Wajnryb’s generators are conjugate, so the abelianisation of the mapping class
group is always cyclic, generated by any non-separating Dehn twist. More precisely, as the
two-holed torus relation imposes “12 non-separating Dehn twists = 2 non-separating Dehn
twists” and the lantern relation imposes “4 non-separating Dehn twists = 3 non-separating
Dehn twists” we have

Hl(FLl;Z) :Z
Hl(FQJ;Z) :Z/lo
H(I'y1;Z) =0 for g >3

in all cases generated by any non-separating Dehn twist.

6.3 Second homology.

Wajnryb’s presentation shows that

I‘1,1 = (Taclﬂ'xg ‘Tx17'x27'x1 = szTmeQ)?
which is the Artin presentation of the braid group on 3 strands. Thus

BTy~ (S'vShu _1_1 D*U {cells of dimension > 3}

1
Ty TegTey Teg Tey Tag

whose cellular chains is

(1,-1)

2 2027z ...

giving Hy(I'1 1;Z) = 7Z (as we saw above), and Hy(I'1,1;Z) = 0.
More generally, recall that for a group G given by a presentation F'/R, there is Hopf’s

formula Hs(G;Z) = UT[?QR for the second homology of G. Using this, Korkmaz—Stipsicz
[KS03] have shown that Hy(Ty1;7Z) = Z for g > 4, that Hy(T'21;Z) = 7Z/2, and that
Hy(T'31;7Z) is either” Z or Z @ Z /2 with the Z/2 coming from Hs(T21;Z) = Z/2 (in fact
the second case occurs).

Furthermore, it follows from their calculation that stabilisation gives

~

HQ(FgJ; Z) e_pi) HQ(F4’1;Z) L) HQ(P571; Z) —
Finally, using a similar presentation for I'y they show that for g > 2 the map Hy(I'g1;Z) —
H,(T'y;Z) is iso and the map Hy(I'g1;7Z) — H2(I'y;Z) is epi, and is iso for g > 4. (These
also follow from homological stability done classically [Boll12, RW16].)
6.3.1 The Hodge class and second cohomology.
The composition
BTy — BTy — BSpy,(Z) — BSpy,(R) ~ BU(g)

pulls back the first Chern class to a class \y € H*(T'y1;7Z), known as the Hodge class.
By construction the stabilisation maps I'y_1,1 — I'y 1 pull back A1 to A;.

2Hopf’s formula is not an algorithm.
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Theorem 6.3.1. \; generates H?(L'y1;7) = Z for all g > 3.

Given this, there is a class A € Ho(I'3 1;Z)/torsion uniquely characterised by (A1, \) =
1, and Ho(T'y1;Z) = Z{oA}.

Proof sketch. By the calculations of the last section H?(I'y1;Z) = Z for all g > 3,
and these groups are sent isomorphically to each other by stabilisation; furthermore,
H%*(Ty;Z) = H?*(Ty1;Z) for g > 4: thus it suffices to prove that \; generates H?(Ty; Z)
for g > 0, or in other words that stably it is not divisible by any prime.

For p = 2, consider the Riemannn surface obtained as a simply-branched double cover
of an elliptic curve branched at two points. It has genus 2 by Riemann—Hurwitz, and
the deck transformation gives an action of puo on 3, which is as shown in the left-hand
figure above. Then H!(X9;R), with its complex structure given by Poincaré duality and
a choice of inner product, is isomorphic to

L®0 @ L®1,

where L is the standard C-representation of us with ¢1(L) =: z. The first Chern class of
this representation is then x € H*(ug2;Z) = Z[z]/(2x) so is not zero.

For p odd, consider the Riemann surface C' obtained as the simply-branched double
cover of CP! branched over 0 and the pth roots of unity tp- It has genus % by Riemann—
Hurwitz, and the action of u, on CP! can be lifted to an action on C: topologically, this
is shown in the right-hand figure above. The vector space H'(C;R) with the complex
structure given by Poincaré duality can be identified with the space of holomorphic 1-
forms on C'. The decomposition of this C-vector space into irreducible j,-representations
can be obtained from the fixed-point data (the “Eichler trace formula”, cf. see [FK92,
V.2]) and is

—1
L®1@L®2@W@L®p7,
where L is the standard C-representation of p, with ¢;(L) =: z. The first Chern class is

then (21(1;—11)/2 i)r = %%T%lw = —%2 € H*(up; Z) = Z[z]/(px) which is not zero.

In both cases examples or arbitrarily large genus can be obtained by starting with
Riemann surfaces of higher genus: thus A; is stably not divisible by p. O
6.3.2 Identifying the extension.

By the Universal Coefficient Theorem, describing the extension is the same as
describing the image of A\; under

H*(T31;7Z) = Z{\1} — H?*(T21;Z) = Ext}(Z/10{o7}, Z).
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For the statement we have made it suffices to show that Ay € H?(T'2.1;Z) = Z/10 is not
divisible by 2 or 5.

Just as above, using H?(I'y;Z) = H?(T'2.1;Z) it suffices to show that \; € H?(T'; Z)
is not divisible by 2 or 5. The actions of ue and pus on X5 from the proof above show
that it is not.



Chapter 7

E-algebras II: iterated bar constructions

Chapter 2 introduced the notion of the derived Ej-decomposables of (non-unital)
FE-algebras in sSet, and Chapter 5 generalised this to other categories. In this lecture
we explain how these derived Fj-indecomposables can also be computed by an iterated
bar construction, and give some applications.

Remark 7.0.1. So as to be more agnostic about the homotopy-theoretic foundations than
in the paper, I will not be talking about cofibrancy conditions and derived functors; all
objects are implicitly replaced and all functors implicitly derived.

7.1 Iterated bar constructions

We will be similarly agnostic towards the category we are working in, but you should
keep in mind the examples sSet,, sSetf, and sModg. The reason we want a pointed
category (i.e. the initial and terminal object coincide) will become clear momentarily.

7.1.1 Augmentations

The categories of Fj-algebras and E;—algebras are not equivalent, just like how
non-unital and unital commutative algebras are not.

This can be resolved by adding to the latter the data of an augmentation (at least if
the category is stable). Observe that 1 is canonically an E,j—algebra, through the map
E/ (1) — 1 which takes each Cy(n) to a point. An E;-algebra R receives a canonical
map 1 — R of E,j—algebras, and an augmentation is a map ¢: R — 1 of E,j—algebras
such that the composition

1 —R—1

is the identity.
Ezample 7.1.1. 1 is augmented by the identity.

Ezxample 7.1.2. If C is pointed, then the unitalisation ST of a non-unital Ej-algebra S
has a canonical augmentation given on underlying objects by

StSul —1

44
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where the map is the identity on 1 and the zero map on S (this only makes sense because
C is pointed).

The augmentation ideal I(R) is the fiber of €, which is an Ej-algebra; we say that the
augmentation is split if the canonical map 1 U I(R) — R is a weak equivalence; this is
always true if C is stable. It is also true for the canonical augmentation of a unitalisation.

7.1.2 The Ej-bar construction

We will work towards the Ej-bar construction by starting with associative algebras,
generalising to Fi-algebras, and finishing with Ej-algebras.

The bar construction

Recall that a semisimplicial object is a functor out of AR, where Ajy; C A the
subcategory with the same objects but only injective morphisms. The homotopy theory
of semisimplicial objects is similar to that of simplicial objects, but it will spare us having
to define degeneracy maps; there are only face maps. The geometric realisation of such
objects is the usual coend, and is sometimes referred to as the thick geometric realisation.

Suppose that A is a unital strictly associative algebra with an augmentation e: A — 1.

Then we can form the semisimplicial object
[p] — Bp(A, ) = A%P, (7.1)

where the ith face map uses the multiplication for 0 < ¢ < p and the augmentation
followed by the unit isomorphism for ¢ = 0,p: the augmentation is crucial for this
construction and the result will depend greatly on it.

Definition 7.1.3. The bar construction B(A,¢) is the geometric realisation of (7.1).

Ezample 7.1.4. Maybe the following diagram for Be(A,€) is instructive:

€ <;

15— A Tn— A®2 &—— ...

— A3 ——
€ € i

The F;-bar construction

If we are given an augmented Ef -algebra R, we can not directly perform the previous
construction as there is no canonical choice of a multiplication map making it into a
unital strictly associative algebra. This can be resolved by rectifying R to a unital strictly
associative algebra R (e.g. by a Moore loops construction) but it is better to modify the
construction to incorporate all operations of the Ef’ -operad.

To do so, let P(e) be the semisimplicial space given by

[p] — {(to < ... < t,) € (0,1)PT1}

where the ¢th face map deletes ¢;. You should think of this as demarcating intervals in
[0,1]. Then we can form a semisimplicial object

[p] — Bfl(R, €) =P(p) x RP, (7.2)
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where the ith face map uses a rescaled version of the rectilinear embedding [t;—1,t;] L
[ti,tiv1] = [ti, ti2], explicitly given by

e ti—t;— e ti—t;— tit1—1;
It Bl v e and [3s/—y bzl 4 Ll li g
tit1—ti—1 tit1—ti—1 tit1—ti—1

to combine the ith and (i + 1)st of the R terms using the Ej -algebra structure. The face
maps for ¢ = 0, p are still given by the augmentation followed by the unit isomorphism.

Definition 7.1.5. The E;-bar construction BF1(R,¢€) is the geometric realisation of
(7.2).
The Ej-bar construction

The Ej-bar construction for augmented E,j—algebras is given by replacing the interval
with demarcated interval with a k-dimensional cube and a grid. Recall that a k-fold
semisimplicial object is a functor out of a k-fold product of A?Ilfj. We let P(e,..., o) be
the k-fold semisimplicial space given by

[p1,-- . oK) — P(p1) x -+ X P(px),

consisting of elements tg € P(p;). The ith face map in the j direction deletes tg, see
Fig. 7.1.

1 1
7 7
1
d
t3 0
0 0.
0 t(l) t 1 0 t(l) 1

Figure 7.1: The face map of dj: P(1,1) — P(0,1).
Then we can form the k-fold semisimplicial object
[P1y.. . DK — Bfk(R, €) == P(p1,...,pr) x RPY7Pk, (7.3)

One should think of this as a grid of hyperplanes in all k coordinates dividing I* into little
cubes. All of those not touching dI* are labeled by R—the inner cubes—the remaining
ones by 1—the outer cubes—see Fig. 7.2.

As in the Ej-bar construction, the face maps either combine two R’s using rescaled
versions of the cubes or apply the augmentation and use the unit isomorphism. I will
spare you the details, which can be found in Section 13.1 of [GKRW18a].

Definition 7.1.6. The Ej-bar construction is the geometric realisation of (7.3).

Ezample 7.1.7. We have BPx(1,¢;) ~ 1.
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1.

1| 1 1| 1|1
3

il R | R |R]| 1
3

Il R | R |R|1
t2

1

Il R | R |R|1
3

1| 1 1 |1 |1
O.

0t t ty oty 1

Figure 7.2: An illustration of BE{%(R7 €).

By definition, for any augmented E,j—algebra there are canonical augmented E,j—
algebra maps 1 — R — 1 whose composition is the identity. Thus the Ey-bar construction
of 1 is a retract of that for R. Moreover, if the augmentation is split, then there is a
splitting

BEr(R,€) ~ BP*(1,¢1) U BF*(R, )

defining the right-most term, the reduced Ey-bar construction. In general this is the
cofiber of the map in from Bk (1,¢;).

Remark 7.1.8. In fact, that one can form the Ej-bar construction is so inherent to notion
of an Fj-algebra that one can define Ejp-algebras in terms of the Fi-bar construction:
this is contained in [Haul8§].

7.1.3 The E;-bar construction computes derived EFi-indecomposables

Let us now restrict to the pointed setting, so that we have a canonical augmentation
€can: RT — 1 for any E;-algebra RT that is obtained as the unitalisation of a Ej-
algebra R; this has augmentation ideal I(R") = R and always satisfies RT ~ 1V R.
We introduce the shorthand

BP*(R) = BB (R™, ecan).-

The following is proven in [GKRW19, Chapter 14], but was known before in various
forms (e.g. [BM11, Fra08, Frell]).

Theorem 7.1.9. There is a zigzag of natural weak equivalences of functors Algg, (C) — C

B (=) = SF A QPH(—).
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The proof proceeds along the following familiar lines: construct a zigzag of natural
transformations so that all of the intermediate functors commute with geometric reali-
sation, resolve the input by a geometric realistion of free Ej-algebras, and verify it by
hand for those. It is the last two steps I want to expand upon here.

The case of a free E-algebra

Recall that Ej(—) serves as shorthand for F&%(—).
Question 7.1.10. What is the functor S* A QFx(Ey(—))?

It suffices to understand just the term Q¥*(E;(—)) and to do so, we observe it is a
composition of two left adjoints and hence we can understand it through the composition
of the corresponding right adjoints. This composition of right adjoints is U (ZF%(-)),
which takes the underlying object of an object made into an Ej-algebra by endowing it
with trivial Eg-algebra structure; this is just the identity functor. Hence its left adjoint
QF*(Ex(—)) is the identity as well.

Question 7.1.11. What is the functor B (E(—))?

Let us evaluate it on X € sSet,; the choice of category and the disjoint basepoint is
a simplification for exposition’s sake. The general case is similar in spirit but has some
additional technical details.

The unitalisation of Ex(X4) is EJ (X1). We next recall from the lecture on the
homology of free Ej-algebras that there is a weak equivalence

E{ (X4) — \/ Conf,(I%)4 Ae, X4 = Conf(1*; X)
n>0

of E,‘:—algebras, and replace Ex(X ) by this labeled configuration space model. It

remains to indicate why EEk(Conf (I*: X)4) ~ S¥ A X. T will be brief as Chapter 8 will
give a similar proof in more detail (for bounded symmetric powers instead of labeled
configuration spaces, but note that unordered configuration spaces are just instances of
bounded symmetric powers).

To do so, we introduce a space Y of unordered configurations of distinct points in
R* labeled by X modulo the subspace where at least one point lies outside the open
disc D’fo of radius 10. It may be helpful to observe that this still splits as a wedge; if a
particle leaves D{"O it does not just disappear but takes the entire configuration to the
basepoint. Define a k-fold semisimplicial pointed space

[pla ... 7p/€} — Bpl:--~7pk

with By, . p. C P(p1,...,pk)+ AY consisting of those pairs of a grid and a configuration
so that the configuration avoids the grids. There is a semisimplicial map

By, ..o = Bp1,...px (Conf(jk; X)4)

given by the basepoint if any of the complement of the inner cubes contains a point and
recording the locations of the points in the inner squares otherwise. This is a levelwise
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weak equivalence by “pushing particles in outside the inner cubes out of the leo” and
hence geometrically realises to a weak equivalence. Furthermore, forgetting all grids
yields a map

|Be,.ol — Y

which is a weak equivalence by a “microfibration argument”. Finally, we compute the
homotopy type of Y by a “scanning argument”: we zoom in on the origin, pushing the
particles out. There are three situations which can arise:

- If the configuration had more than one particle, this yields the basepoint.
. If it had no particles, this yields a copy of S°.
- Tt if had one particle, this yields a (I* x X)/(0I* x X) = S¥ A X .
We conclude that
BEx(Conf(I*; X)) ~ SOV (S* A X})

and to obtain B (Conf(I*; X)) we remove the first term.

Resolution by free Fj-algebras

To reduce the general case to that of free Ej-algebras, one uses the monadic bar
resolution. This is a trick that is often in many other settings as well, and it is the
homotopical version of the fact that every O-algebra A can be presented as a reflexive
coequaliser

O(act)
FO(0(4)) &= FO(A) — A,

act

with reflection given by F©(unit). This reflexive coequaliser is the beginning of an
augmented simplicial object Bo(F?, 0, A) given by

[p] — B,(F©,0,A4) = FO(OPr(A)),
which has the same colimit: the augmentation provides an isomorphism
colim B.(F°,0,4) =5 A.
Definition 7.1.12. The monadic bar resolution of A is given by
hog(glim B, (FO, 0, 4),
which is just the geometric realisation of this simplicial object.

The augmentation provides a map hocolimpoer Be(F©,0,A4) — A and an extra
degeneracy argument proves it is a weak equivalence.
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7.2 Bar spectral sequences

One virtue of the Ei-bar construction is that it leads to geometric or combinatorial
models for the derived Ej-indecomposables, at least if the Ej-algebra it is applied to is
of a geometric or combinatorial origin. The latter is the case for the Fs-algebra built
from mapping class groups, which arises from a braided monoidal groupoid as explained
in Chapter 9.

A second virtue of the Ep-bar construction is that it is iterated. Let us also abbreviate
the unreduced Ej-bar construction BP*(R, €can) to BP+(R). If R is an E, -algebra,
then for £ < k we have that B”¢(R) is an E,j_[algebra and we have a natural weak
equivalence

BE¥(R) ~ BPt(BFr—t(R)).

In the case £ = k — 1, we get BF1(BF*-1(R)) where the first term is the geometric
realisation of a semisimplicial object. Forgoing a “genus” grading for a moment, we get a
geometric realisation spectral sequence

Ezlnz = Hq(le;Jl (BEk*l(R)% k) = Hp-qu(BEk (R); k)

If k is a field F, the right term can be identified using the Kiinneth theorem and the
definition of the Fi-bar construction as

H.(BJ (B (R)):F) = H(B™ (R);F)°".

The d'-differential is 3°F_;(—1)%(d;)« so we see this is nothing but the bar complex for
computing Tor of F against F over H,(B¥+1(R);F). That is, we have

E2, = Torf- (B D) (F F), — H,(,(BP (R);F).

Remark 7.2.1. Of course, instead of taking k to be a field F, we could demand that the
homology of H,.(B¥*1(R);k) is a free k-module.

This spectral sequence has one very useful consequence. Adding back in a “genus’
grading, it can be used to transfer vanishing lines for Fj_i-homology to Er-homology:

)

Theorem 7.2.2. Let R be an Ej-algebra in sSet) and f a function N — Z such that
inf{f(g1) + f(92) | g1 + g2 = g} > f(g9).! Then if ¢ < k is such that H!fﬁl(R;lk) =0 for
d < f(g) — ¢ then H(R;k) =0 for d < f(g) — k.

Remark 7.2.3. To see where the shifts in the statement come from, recall that HgEg (R; k) =
.FNIg,d(QEk R); k) = fIg7d+k(BEk (R); k) using Theorem 7.1.9 and the suspension isomor-
phism.

Remark 7.2.4. There is also a result for transferring vanishing lines downwards, i.e. from
FE-homology to Ej_1-homology. Its proof uses different techniques.

!More general, one takes here a abstract connectivity as in [GKRW18a]. Usually f will be an
affine-linear function.



Chapter 8

Generic homological stability I: Bounded
symmetric powers

8.1 Bounded symmetric powers

We will consider the following Es-algebra: configurations of points in 12 which are
allowed to collide, but where < k points may occupy the same position. More formally,
let Sym,(n) C (I?)"/6&, be the subspace of the nth symmetric power consisting of
those unordered tuples [z1, 2, . .., x,] where no (k + 1) z;’s are equal. Then

Symcy: N — Top

. Symcg(n) n >0,
0 n =0,

has the structure of a (nonunital) Fs-algebra in N-graded spaces in an evident way:

8.2 Computing the E>-homology

The goal of this lecture is to calculate Hfﬁ (Symcy;Z), in order to give an idea of
how the tools developed so far may be applied.

51
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8.2.1 The pointed setting

By adding a disjoint basepoint to each Sym.j(n) we may work in the category of
N-graded (nonunital) Fs-algebras in Top,. Let us do this without changing the notation
Symc;. In this case the unitalisation Symik is given by Sym.j(n)4+ in every grading
n > 0, and it has the canonical augmentation -

n SO when evaluated at 0
€:SymZ, — 1= )
= * otherwise

given by sending all Sym_,(n) with n > 0 to the basepoint.

8.2.2 The E5 bar construction

By Theorem 7.1.9 there is a natural equivalence

S2 A QfQ(SymSk) ~ BEQ(Sym;k, €)

relating the derived Fs-indecomposables of Chapter 2 and the reduced Es-bar construction
of Chapter 7; furthermore, the reduced and unreduced bar constructions are related by

S°v B2(SymZ,, €) ~ B®(SymZ,, e).

It turns out that we can give a geometric description of the FEy bar construction
of Sym.,: in fact this is often possible for configuration-like examples, by the same
argument as below which is often known as “scanning”. For other kinds of examples,
such as mapping class groups or general linear groups, it is usually not possible to give
such a geometric description and one must proceed differently.

Lemma 8.2.1. The space BEQ(Symik, €)(n) is weakly equivalent to the space of configu-
rations of n points in R? of multzplzczty < k, modulo the subspace of those where at least
one point lies outside the open disc DlO of radius 10.

Proof. Let X denote the pointed space described. Form an augmented bi-semi-simplicial
space Xoo — X as follows. The space X, ; = X A (0, l)ﬁrJrlequl is given by tuples

(&5tgoths- - tpito . 12
with € € X, 0 <t} <t} < <t51)<1 and 0 < t§ < 17 < ... < t2 < 1 such that the
“walls” {t}} x [0, 1] and [0, ] {t:} are all disjoint from the pomts ¢. The face maps

forget the ¢} and t?’s, and the augmentation forgets all of them.

The fibre of | X, o] = X over £ € X is the product of the classifying spaces of the
topological posets (0,1) \ proj; () and (0, 1) \ projy(&), both of which are totally ordered
and nonempty and hence have contractible classifying spaces.!

IThere is a bit more to say here, as a map having contractible fibres does not suffice for it to be a
weak equivalence. One also needs to know that the fibres fit together somewhat well, but in this case
they do: the map |Xe,o] — X is easily seen to be a Serre microfibration, which suffices using “Michael
Weiss’ lemma” [Wei05, Lemma 2.2].
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i
>
S; s. o3
o)
S -
L/f
% | L

*0 +| T +r

On the other hand B2 (Sym¥,  €),4(n) is given by 0 < t§ <t < ... <t, <1, and
0 <t§ <t <...<t?<1,along with a labelling of each inner cube [t},t} ] X [t;, tj2~+1]
by an element of Symy(n;;), satisfying n = 3=, ;n; ;. The face maps are given by
forgetting the ¢! and t?’s, merging labels using the Fs-algebra structure, and applying
the augmentation to any configurations which end up in an outer cube.

The difference between these two bi-semi-simplicial spaces is whether only the inner

cubes may contain configuration points or not. There is a map

Xpqg — B (Symy)p,q(n)

given by sending (&;tl;t2) to the basepoint if any point of £ lies outside the inner cubes,

and otherwise labelling each [t}, ¢}, ] x [t?, t?H] with [t} ] 4] x [t?, t?H] N&. This respects
the face maps in both directions, and is an equivalence because if (£;t1;¢2) has some
point of £ not in an inner cube then it can be canonically contracted to the basepoint by

pushing such a point outwards until it lies outside D%o ]
Corollary 8.2.2. BEQ(Sym;k,e)(n) ~ % if n > k.

Proof. If n > k then a configuration of n points of multiplicity < k& must consist of at
least two distinct points. All n points cannot therefore be at the origin, so scaling radially
outwards from the centre gives a canonical path from any configuration to one with a
point outside D%O, i.e. to the basepoint. O

Corollary 8.2.3. BEQ(Sym;k,e)(n) ~ S ifn < k.

Proof. If n < k then the requirement that configurations have multiplicity < k is
redundant, so this space is given by configurations of n points in R? modulo those
where some point lies outside D%o- Equivalently, it is given by the quotient of the nth
symmetric power of D?,/0D%, by the subspace of those tuples having some point at
dD3,/0D3,. Equivalently, identifying D3,/0D%, = CP! it is the quotient of (CP!)"/&,,
by (CP')"~1/&,,_1, included by adding co € CP! to the configuration.

The Fundamental Theorem of Algebra gives a homeomorphism

~

CP" — (CPHY"/&,,
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by considering CP" as the projectivisation of the (n + 1)-dimensional vector space of
polynomials of degree n, and assigning to such a polynomial its unordered set of roots.
(As the polynomials are not required to be monic, some of their roots may be cc.) Using
CP"/CP"~! = 52" gives the claimed result. O

Putting this together with S§2 A sz (Symgy,) ~ BE2(Sme£k, €) gives:
Theorem 8.2.4. We have

Z x=2(n-—1)andn <k,

0 otherwise.

Hf,i(Symgk; Z) = {

14
o
20k ¢ /A
. Hn.Eo: (ga"‘ ‘—'k“’n) e
ot 7
“ T 1
2 T /A
_/P: t t —2n

\ 2 3 b o h h+

It is interesting to think what this means from the point of view of Fs-cells. The
Es-homology class in bidegree (0,1) corresponds to forming the free Ea-algebra on one
point o, so it gives the configuration space of distinct points. In grading 2 this has a
nontrivial cycle given by interchanging two points, but as long as k& > 2 this cycle is null
in Sym.(2) by merging the points together: the Es-homology class in bidegree (2,2) is
an Fy-2-cell which trivialises this cycle.

8.3 Addendum: a more algebraic perspective

The only place we have used that we are working with specifically with the 2-
dimensional cube is Corollary 8.2.3, but the geometric argument there can be replaced
with the following algebraic argument which applies more generally.

For n < k we have Sym_(n) ~ *, because we can scale radially inwards to the centre,
until all n points collide: this is allowed as n < k. Thus

Z{o"} 0] n <k,

+ . _
HnaSymgi®) = {? n> k.
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Using this, we can calculate H,, .(B®2(Sym?,,¢€);Z) for n < k directly by iterating the
bar construction. Consider the two bar spectral sequences
2 H. »(Sym%,;Z)
E; s+ = Tors =

TorH*’*(BEl (SymZ%,.€)i2)
S

(Z,Z)py = Hn,ert(BEl (Sym;k, €); Z)

I1 2 _
En,s,t -

(Z,Z)ny = Hn75+t(BE2(Sym;k, €);7Z).

Step 1. We have
H*,*(Sym;f; Z) = Zlo]

in gradings < k, so in this range of gradings we may work with the polynomial ring
instead. It is well-known that

Tor%[a}(Z, L)y = Ngso]

where so has tridegree (1,1,0), and so the first spectral sequence collapses in gradings
< k, giving
H,.(B" (SymZ,, €);Z) = Ag[so]

in gradings < k, where so has bidegree (1,1).
Step 2. It is also well-known that
Tort269)(z, 7)., . = Ty[s20],

the free divided power algebra on a class s20 of tridegree (1,1,1), and so the second
spectral sequence collapses in gradings < k, giving

H, .(B" (Sym;k, €);Z) = T'yz[s%0]

in gradings < k, where s?c has bidegree (1,2). Forgetting the multiplicative structure
(which has no meaning anyway), this is Z in bidegrees (r, 2r), and zero otherwise.

Putting this together with S° Vv (52 A Qf2 (Symcy)) =~ BEQ(Sym;k, €) and Corollary
8.2.2 gives another proof of Theorem 8.2.4.

However, working with bounded symmetric powers of int(/¢) instead of int(I?) we
still get BE4(Sym¥,,€)(n) ~ * if n > k, and continuing to calculate with the bar spectral
sequences gives, although these spectral sequences no longer collapse, the vanishing range

H,, (B (Sym?%, €);Z) = 0 for x <2(n—1)+dand 0 < n <k,

aIld SO althougll we dO I Ot k“()W llle Ed—ll()“l()]()gy eX[)I‘lCitly, we do et th . .
IELIlgE g e Va“]Sh]ng
L7:( ) Il<k)Z) - 0 fOI‘ x < z(n_ I)



Chapter 9

Generic homological stability 1I: Es-algebras
from braided monoidal groupoids

9.1 Constructing FE,-algebras

Let (G, @, 1g) be a (small) braided monoidal groupoid and r: G — N be a braided
monoidal functor. For an object x € G, let G, := G(x, z) be its group of automorphisms.
We wish to endow its classifying space

BG~ || BG,
[z]€mo(G)

with the structure of a unital N-graded Fs-algebra.
To do so, we make some simplifying assumptions:

(i) that r(z) = 0 if and only if z = 1g,

(ii) that Gy is trivial.
We then work in the category sSet® = Fun(G,sSet). As G is braided monoidal, the Day
convolution monoidal structure on sSet® is braided too, which gives enough structure to

construct the Ep-monad Es(—) on this category, and hence to discuss Fs-algebras in it.
We can form the object

*50: G —> sSet

g x=1g
l‘ .
* otherwise.

As @ is initial and * is terminal, the endomorphism operad of *. is the terminal operad,
SO *- is an algebra over any operad: in particular it is an Ej-algebra. This is of course
very far from being cofibrant as an Es-algebra: the action of G on % = % () will be
free only if G, is trivial, so it will usually not even be cofibrant in sSet®. However, we
can take a cellular approximation T = x. in Alg E2(sSetG).

Now using the braided monoidal functor r : G — N we can form the left Kan extension

R :=17.(T) € Algg, (sSet™),

56
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which will again be cellular. Unwrapping the definition of Kan extension, for n > 0 we
have
R(n) = colim ,eq T(z) = |_| T(z)/Gy ~ |_| BG,,
r(z)=n [z]€mo(G) [z]€mo(G)
r(z)=n r(z)=n
where the last identification is because T(z) ~ x (as T = %.,) and because T(z) is
a cofibrant Gz-space (as T is cofibrant in Algg, (sSet®) and so in particular cofibrant

in sSetG). This construction has therefore endowed the homotopy type BG with the
structure of a non-unital N-graded Fs-algebra.

Remark 9.1.1. If G is symmetric monoidal, then we can make sense of the E,,-monad on
sSet® and repeat the above to get an N-graded Eoo-algebra structure on BG.

9.2 Homological stability

Suppose for simplicity that G has objects N. To discuss k-homology of the groups G,
we may as well linearise [~ : sSet — sMody and work with Ry € Algp, (sMod}) and its
unitalisation R, so that

Hio(R) = Ho(Ry (1)) = Ho(BGy; k).

Let o denote the canonical generator of this group. It gives a map o : Si’o — Rf{r , which
with the Es-structure allows us to form

o-—: 5o R ZN RS @RS — Ry,

and we write Rf{r /o for its homotopy cofibre in sMode. Unwrapping the definitions, we
have
Hn,d(Rf{_/U) = Hd(Gn’ Gn-1; Ik)

Thus proving (k-)homological stability for the groups G, corresponds to proving a
vanishing range for the bigraded homology groups of Rﬂt Jo.

9.3 Derived indecomposables.

The next thing [ want to do is to obtain a “formula” for the derived E1-indecomposables
of R. We have the formula

SOV ST A QEN(R) ~ BEY(RT ¢)

expressing these derived indecomposables in terms of the bar construction (after adding
a basepoint and unit and taking the canonical augmentation), and as r, : sSet® — sSet!
is symmetric monoidal and preserves colimits we can write the latter as 7B (T ¢).
Thus we may analyse B”1(TT,¢) € sSetC.

To do so, we make a further simplifying assumption:

(iii) that — @& —: Gy x Gy = Gagy is injective.
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Definition 9.3.1. For = € G let the E-splitting complex SF'(x) be the semi-simplicial
set having
E .
(@) = peolim G20 & -~ & 2pi, 2),
r(z;)>0

with face maps given by using the monoidal structure to merge adjacent x;’s.

Ezxample 9.3.2. If the objects of G are the natural numbers, then we can write this quite
concretely as

E Gn
Sp'(n) = |—| Grg X Gy X - x Gy .|’
TLO+"‘+TLP+1:TL 0 ni np+1
n; >0

where we use assumption (iii) to consider Gy, X G, X -+ X G as a subgroup of Gj,.

Np+1

Theorem 9.3.3. There is a Gy -equivariant homotopy equivalence
BPY(TZL, €)(x) = X2[8, ().
Proof sketch. We have BI‘,EI(TI, €) ~ (T1)®P, so that
Bfl (TT,€)(z) ~ colimg, . 2,e6G(x1 @ - B xp,2) 4+ AT (1)1 Ao AT (2) 1.

By assumption (iii) the group Gy, x --- x G, acts freely on the set G(z1 @ --- © zp, ),
so as the T (z;) are contractible it follows that

Bfl (T, €)(x) ~ colimy, . 4,ccG(z1 ® -+ B xp, 7)1,

a discrete set. Thus the semi-simplicial space B (TT,€)(x) is levelwise equivalent to
a semi-simplicial set. It is not hard to identify this up to homotopy with the double
suspension of SZ1(z), by recognising it as a double suspension and then removing
degenerate simplices. O

Corollary 9.3.4. If H.(|SP (z);k) = 0 for « < r(x) — 2, then HnEfd(R; k) = 0 for
d<n-—1

Proof. Forming the Kan extension, it follows that for n > 0 there is an equivalence

S'AQLNR)(n) =\ TS0 (2)| /G
()

where the homotopy orbits are formed in sSet,. Thus under the given assumption
Hf}i(R)(n) = Hy( fl(R)(n)) =0 for d < n— 1. The claim about Es-homology then
follows by “transferring vanishing lines up”, i.e. write B¥2(RZ, €) as the bar construction
of BF1(R],€) and run the bar spectral sequence. O
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Generic homological stability III: a generic
stability result

10.1 A generic homological stability theorem

The following is [GKRW18a, Theorem 18.2]. It concerns Es-algebras in simplicial k-
modules, so applies to Ry from Chapter 9, but could also be applied to other Fs-algebras
which do not arise in that way (e.g. which do not arise by k-linearising an Fs-algebra in

sSet).

Theorem 10.1.1. Let R be a non-unital Fo-algebra in N-graded simplicial k-modules,
such that Hyo(RT) = k[o| with |o] = (1,0).
(i) If HY2(R) =0 for d <n — 1, then H, 4(R* /o) =0 for 2d < n — 1.
(ii) If in addition o - — : Hy 1(R) — Ha1(R) is surjective, then H, 4(R* /o) =0 for
3d <2n —1.

Ezample 10.1.2. Let us return to the N-graded non-unital Es-algebra Sym_; given by

bounded symmetric powers. We calculated Hf 2(Symcy; Z) outright, and saw that in
fact this vanishes for d < 2(n — 1), a much larger range than the theorem requires. In
addition

0 ifk>2

Ho 1 (S 7)) = Hi (S 2):Z) =
21(Symeyi 2) = Hi(Sym <y (2); 2) {Z if k=1,

So, as long as k > 2 it follows that
Hy(Symy(n), Symeg(n —1);Z) = Hmd(Sym;k/a; 7Z)=0
for 3d < 2n — 1.

Problem 10.1.3. The fact that the Es-homology in fact vanishes in a much larger range
than the Theorem requires suggests a better stability range is possible. Experiment with
the proof of the Theorem and see what improvements you can make.

Proof of Theorem 10.1.1 (7).

59
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Reduce to finitely-generated free algebras. From the estimate on homology we
may find a CW-approximation Z = R such that Z only has (n, d)-Es-cells with d > n—1,
and has a single O-dimensional cell o, in bidegree (1,0). The CW object comes with a
skeletal filtration, having associated graded the free Fo-algebra on its cells,

gr(Z) = By (Sﬁ;o’o{a} o S{za’d‘“da{a}>

acl

with d, > 0 and d, > no, — 1. Neglecting the filtration degree this satisfies the same
hypotheses of R, and there is a spectral sequence

1,0,0 arov,da
Eppq = Hnpiop(B (S]k {0} & P Sk ) [0) = Hppig(RT /o),
acl

so it suffices to treat the free algebra. Writing the free algebra as the colimit over its
finitely-generated subalgebras (always including the generator o), it suffices to suppose I
is finite.

Reduce to working over Z. We have

EJ (S}};O o Sga»da> Jo =EF (s;“ o sgavda> /o ®z k. (10.1)

ael ael

By the universal coefficient sequence it suffices to treat the case k = Z.

Reduce to working over F;. Let ¢ be a prime number. The universal coefficient
sequence for (10.1) with k = Fy, writing R = Eo (5’%’0 D DPoer Sga’d“), is

0— HyaRY/0)®Fy — H,g(RT /o @F) — Tor?(H, 41(RT/0),Fs) — 0.

As we know that the H, 4(R* /o) are all finitely-generated abelian groups, as we arranged
the indexing set I to be finite, to show it vanishes it suffices to show that H,, 4(R* /o ®F)
does.

Do it. We have reduced to the case

R =E, (S%;O{O'} oP ng’da{a}>
acl

with d, > 0 and d,, > no — 1. By Cohen’s theorem we have a formula for the homology
of R: it is the free (graded) commutative algebra on a bigraded vector space L with
basis (certain) Dyer—Lashof operations applied to (certain) Lie words in {o} U I. Thus
the homology of R* /o is the free (graded) commutative algebra on L/{(c). What is left?

The bracket of two elements has slope larger than the smaller of the two slopes of
these elements, and the operations @7 and Q) both increase slope. Thus the smallest
slope of an element of L/(c) is 3 (realised by Q3(c), [0, 0], or by an « of bidegree (2,1)).
But then the free (graded) commutative algebra on L/(o) vanishes in bidegrees (n,d)
with % < %, as required. O
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Qza'

o
1 2 3 W

Proof of Theorem 10.1.1 (ii). The difficulty with getting an improved range in the above
argument is that L/(c) does contain elements of slope 3, namely Q3(c), [0, 0], or an «
of bidegree (2,1). Apart from these three classes though, the rest of L/(o) consist of
classes of slope > % The strategy will be to

(a) show that the assumption means that we need no (2, 1)-cells,

(b) show that the assumption means that Q3(c) and [0, 0] are d'-boundaries in the
spectral sequence

1,0,0 ada,da
Enpg = Huprap(BS (S]k {o} e D s > /o) = Hppiq(RT /o),
a€cl

and that everything left has slope > %

Together these imply the improved range. It is not necessary, but let us suppose for
simplicity that k = .

Claim. H,3(R) = 0.

Proof of claim. Using the map EQ(S%;O) — R given by o, form the diagram

Hy1(R) —— Hy1(R,Ey(Sg")) —2— Hao(Ea(Sg))) —— Hao(R)

| - | l

0 —— Hy3(R) —~— H}3(R,Ex(Sg")) y 0 0

given by the map on long exact sequences induced by the Hurewicz map. The top row is as
indicated, as the two rightmost terms are Fy{o?}. Because we have H, (R, EQ(S];LO{O'})) =
0, it follows from the Hurewicz theorem for Es-homology that the second vertical map is
an isomorphism: thus, the first vertical map is surjective. But then the composition

Hy1(R) 25 Hyp(R) — Hff (R)
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is surjective, as the first map is by assumption, but also zero, as ¢ - — by definition gives
something decomposable. O

We can therefore find a CW-approximation Z — R such that Z has no E»-(2,1)-cells.
The skeletal filtration then has

gr(Z) = E; (s&;‘w{a} oD Sx?;’da’da{a})

ael

with do > 0, do > ng — 1, and (nq, dq) # (2,1). Consider the spectral sequences

————— navdocydoc

Fﬁ,p,q Hypigp(Es (S]%;O’O{U} ® Dacr S, {a}>) ——— Hup+q(RT)
— "y na,da,da

Eppa Hypqp(Eg (S]%ZO o} @ D oer Sy, {a}) /o) == Hppiq(RT/0).

As Z has no (2, 1)-cells, in total bidegree (2,1) of F*l,*’* all classes are linear combina-
tions of o - a for |a] = (1,1), and

5 Qi(o) ifl=2
" \lo,o] i £is odd.

As we discussed in the last proof, F}, , = A[L] with
L = (0,8) @ (elements of slope > 2).

On the other hand, as o - — : H11(R) — H21(R) is surjective by assumption we must
have 6 =0 -z € Hy1(R), for some x € Hy 1(R). As this spectral sequence converges to
H, .(R") it must have a differential of the form d'(p) =6 — o - x.

Using E; , , = F},./(0), we see that in total bidegree (2,1) of E}, , there is only

6 € Ej,, and that there is also a differential d'(p) = 4 for a p € E3 .
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Using this we proceed similarly to the first case: filtering away all other parts of the
d!-differential, we get the associated graded

gr(EL,...d") = (A5, pl.dp = 8) @ (A[L/ (0.6, p)]d = 0)

where the first term has homology F,[0,0, 0], and the second has L/(c,d, p) vanishing
in degrees (n,d) with % < 2 (6 is the class of lowest slope in L/(c), and all others have
slope > %) It follows that Ef** vanishes in this range of bidegrees, and so H, (R /o)
does too. O
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Secondary homological stability for mapping
class groups I

In this first lecture about secondary homological stability for mapping class groups,
Theorem 1.1.6, we will give the proof with rational coefficients. Along the way we will
prove ordinary homological stability for mapping class groups, Theorem 1.1.3.

11.1 Homological stability for mapping class groups

We first prove homological stability for mapping class groups, by showing that it
satisfies the criteria for the generic homological stability explained in Chapter 10.

11.1.1 A braided monoidal groupoid of mapping class groups

Firstly, we need to construct an Fy-algebra R € Algp, (sSet™) from a braided monoidal
groupoid such that for all g > 0 we have R(g) ~ BI'y ;. In our case, we will use the
groupoid MCG has objects given by the natural numbers and morphisms

MCG(g, h) = {Fg’l g =h,
1%} otherwise.

The monoidal structure @ on MCG is given by addition on objects, and on morphisms
pelygiand ¢ € T'p1 by o9 = ¢U (¢ + g-eq) as a diffeomorphism g5 =
¥g1U (Xp1 + ¢ -e1). The braiding is given by the half right-handed Dehn twist. That
the homomorphism — @ —: I'y1 x 'y, 1 — T'gyp 1 is injective is a classical result, boiling
down to the result of Gramain that spaces of arcs in a surface have contractible path
components.

Then R € Algp, (sSet") is the derived pushforward of the canonical (non-unital)
Es-algebra . in sSetMCC along the unique functor MCG — N that is the identity on
objects. By construct we have that

BFgJ if g >0,
1%} if g=0.

R(g) = {

64
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In terms of this Es-algebra structure, the stabilisation map o.: Hy(Bl'g—11;Z) —
Hg(BTl'y1;7Z) is the map Hy 4 1(R;Z) — Hy 4(R;7Z) induced by multiplication with your
favorite point o € R(1).

Ezxample 11.1.1. This is weakly equivalent to the geometric model given in the introduc-
tion.

11.1.2 Applying the generic homological stability result

In Chapter 9, we learned that to prove the vanishing line HgEfl(R; Z)=0ford<g-—2
it suffices to prove that the semi-simplicial set—the Ej-splitting complex SF1(g)—is
(g — 3)-connected:

W Lo

X oeee
go+-+gp+1=9 Tg0.1 x I

)
gp+171

where each g; is positive. The ith face map is induced by the inclusion I'y, 1 x I"
[y, 4+g::1,1- We have already done this in Chapter 3:

git1,1 7

Lemma 11.1.2. There is an isomorphism of semi-simplicial sets
S7H(9) = 5(1,b0,b1)e
and hence the left side is (g — 3)-connected.

Here S(X, 1, bo, b1)e is the semi-simplicial set with p-simplices given by isotopy classes
of (p+ 1)-tuples of arcs from a point by € 9541 to by € 0%, that are (i) disjoint except
at endpoints, (ii) whose order agrees with the clockwise order at by, (iii) the arcs split
the surface into p 4+ 2 regions of positive genus.

Proof sketch. Fix a decomposition go+---+ gp+1 = g with g; positive, we get a decompo-
sition of ¥, 1 into the standard pieces Xy, 1 and a preferred p-simplex of arcs connecting
bp to by. Then acting by I'y1 on this collection yields a map I'y; — S(Zgyl,bo,bl)p
which is surjective onto the p-simplices whose regions have genus go, ..., gp+1, by the
classification of surfaces. The stabiliser of the preferred p-simplex is I'gy 1 X --- x T’
Varying over all sums gives a bijection

p+1,1-

r ~

E 1 =

o= U T — 5(3g,1,b0,01)p-
go+-+gp+1=9 go,1 9p+171

An inspection of these bijections shows that they commute with the face maps. O

This gives condition (i) of Theorem 10.1.1. For condition (ii) of Theorem 10.1.1,
we need some input about the low-degree low-genus homology of mapping class groups,
going back to Chapter 6.

Lemma 11.1.3. The stabilisation map Hi1(R;7Z) — Ha1(R;Z) is surjective.

Proof. Equivalently, H,(BI'y 1;Z) — H;(BI'31;Z) is surjective. By Theorem 6.1.1 (i) by
the left side is Z generated by 7 (the image of the Dehn twist) and by Theorem 6.1.1 (ii)
the right side is Z/10 generated by o7. O
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2 A Z XD B Zo)

1 Zr - Z/100T

— 021 — Zo' — Zo* — Zo* — Zo* -
d/g 0 1 2 3 4

Figure 11.1: Summary of H,; q(Ryz) as described in Theorem 6.1.1, where A and B are torsion
and B is the image of A under multiplication by ¢. Empty entries are 0.

Having verified the conditions of Theorem 10.1.1, we conclude
H, (R /o;Z) =0 for 3d <2¢ — 1.

Here R is the unitalisation of R, and R* /o is the cofiber of multiplication by o, satis-
fying Hy o(R™/0o;Z) = Hq(BT g1, BT y_1,1;Z), the relative homology of the stabilisation
map. This is thus expressing that o,: Hy(BT'y—1,1;Z) — Hq(BTl'41;7Z) is a surjection for

d< % and an isomorphism for d < %. This was the statement of Theorem 1.1.3.

11.2 Rational secondary homological stability for mapping class groups

Our next goal is to prove rational secondary homological stability for mapping class
groups. Here the rational case is easier in at least two ways:

(i) it is easier to construct the secondary stability maps,

(ii) the computations in free Ej -algebras are simpler rationally since there are no
Dyer—Lashof operations.

We will thus study the Q-linearisation Rg of R (obtained by applying the functor
Q[-]: sSet — sModE) and apply a more refined version of the argument for the generic
homological stability result: instead of directly invoking CW-approximation for Rg, as we
did in the proof of Theorem 10.1.1, we will invoke the relative version for a map A — Rg
in Algg, (sModg), where A is a “small model” that contains all necessary low-degree
low-genus E-cells. We will then prove by direct calculation the secondary homological
stability result for A, and next prove that it transfers to Ryg.

Homological stability with rational coefficients concerns the vanishing of the homlogy
of Ra /o, as its homology groups are the relative rational homology groups of the
stabilisation map. On this mapping cone, we can use an adapter to still produce a
multiplication-by-\ map, which gives a map

A= Hg—3,d—2(R6/0') — Hg,d(Rﬁ/U)'

It is this map that we will prove is an isomorphism or surjection in a range. Equivalently,
we may form the iterated mapping cone R(E /(o,\), and to get secondary homological
stability as stated in Theorem 1.1.6 we need to prove that

Hya(RG/(0,0) =0 for 4d < 3g — 1.
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Remark 11.2.1. Here “small model” does not mean that A — Rg induces an isomorphism
on homology in low homological degree d, nor that it does so in low genus g; it only
does so when both g and d are low. Due to the vanishing line in Es-homology for R,
this is enough for it to “capture in a range the stability phenomena present in Rg.” In
particular, you can’t compute the stable homology of mapping class groups from A.

Construction of A

At this point we use crucially the computations of Chapter 6. Rationally, Fig. 11.1
summarising Theorem 6.1.1 simplifies to Fig. 11.2. From it, we obtain the following:

- A map S(a’oa — Rg representing o.
- A map S&’Q/\ — Rg representing \.
These combine to a map EQ(S(SOO' @ 3(352)\) — Rg in Algg, (sModg) and since [o,0] =0

in the target, picking a null-homotopy of the map Sé’l — Ry representing this Browder
bracket we get an extension of this map to

A= EQ(S(SOCT ©® 582)\) Ulo,0] DéQp — Rg. (11.1)

Remark 11.2.2. A is essentially a (rationalised version of) the bounded symmetric power
Symc, with additional free Es-cells on the generator A. Does this Fa-algebra have a
geometric interpretation in terms of moduli spaces?

2 QM- QoA
1 Qr

70(@1._.@01”,@0.2“@0.3_#@044
d/g 0 1 2 3 4

\
Figure 11.2: Summary of H, 4(Rg). Compare to Fig. 1.2.

Remark 11.2.3. Why did we not add in an Fs-cell for 77 We could have as doing so, not
affect the estimate in the next lemma. I have kept it out to make the smaller model
even smaller. In general, a small model capturing stability phenomena up to slope A only
needs to include the cells that appear in a minimal CW-approximation to R that have
bidegree (g, d) with d < A\g. That is, slope g is the crucial quantity.

Lemma 11.2.4. H%(Rg, A) =0 for 4d < 3g—1.

Proof. We use the long exact sequence of a pair to deal with the cases g > 4:
+ H%(Rg) =0 for d < g — 2 by Section 11.1.2.

. Hffj(A) = 0 except in bidegrees (g,d) = (1,0),(3,2),(2,2), by construction; in
particular this vanishes for d < g — 2.
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From the long exact sequence
E E E
e — Hgf}l(A) — Hg,fl(RQ) — Hg,fl(RQ’ A) —

we conclude that Hfg(R@, A)=0for d < g—2. As long as g > 4, this implies we can
have a non-zero class only if d > g — 1 or equivalently 4d > 4g — 4 > 3¢ so get vanishing
if 4d < 3g — 1.

For g < 3, we build a slightly larger model

A=A =Ey(Sy o @ Sg'T @ 557N Ul

[0,0]

22 By 22
Dy~ p1 U5z Dy’ p2,

T

which fits into a factorisation A — A’ — Rg. We next use the Hurewicz theorem
concerning the map
E
Hg7d(RQ, A,) — Hg,é(RQ, A,);

it is a little computation that A’ — Rg is an isomorphism on ordinary homology in
bidegrees (g,d) with ¢ < 3 and d <1 (this was the reason for adding in 7 and p3) and
surjective with g < 3 and d = 2, so the same is true on Es-homology. Finally, we use the
long exact sequence of triple

coo— HI2(A',A) — HP2(Rg, A) — H2(Rg,A) — -+,

to deduce the result for Hffl(RQ, A) with g < 3. O

Proof of secondary homological stability for A

We start by performing the same iterated mapping cone construction for A to obtain
A*/(o,)\), which maps to R&S /(o,A). The corresponding secondary homological stability
result is true in this case:

Lemma 11.2.5. H, 4(A"/(0,\)) for 4d < 3g — 1.

Proof. Let n,(—) denote an object made filtered by putting it in filtration degree n. We
can lift A to a filtered Es-algebra by taking

SkA. — EQ(O*S(SOO' D 2*S&2)\) U[J,O'] 2*D(32p7

that is, recognising it is a CW-algebra and consider its skeletal filtration. The associated
graded is simply a free Es-algebra

gr(skA) = EQ(%,O,OU @ 5(3,2,2)\ o D<2@’2’2p),

so we get a spectral sequence (we are unitalising because this simplifies the homology of
free Fo-algebras)

1,0,0 3,2,2 2,22
E;apﬂ = Hg,p‘f'q)p(EQ(SQ o® S@ AD DQ p)+) - Hg,p+q(A+)

with left side is the free graded-commutative algebra on all iterated bracketings of o, A,
and p. More explicitly, it is given by

Ej .= (A(L),d")

’p?q -
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with A* denoting the free graded commutative algebra (using only homological grading for
the Koszul sign, and genus grading coming along for the ride), L is a graded vector space
of brackets of o, \, p. The d'-differential is a derivation and comes from the attaching
map of the cell p so satisfies d'(p) = [0,0]. It is a small computation that the only
generators of slope % < % are o, \, [0, o], p; as in the proof of Theorem 10.1.1 the crucial
observation is that a bracket has slope strictly larger than the smallest slope of its two
inputs.

The filtration skA of A induces a filtration skA™*/(o,\) of A*/(o, \). This yields a
spectral sequence

1,0,0 3,2,2 22,2
F;,pg = Hyprqp(E2(Sg "0 ® Sy~ A @ Dy p) ) (0,0) = Hypiq(AT/(0,N)),

with left side more explicitly given by
Fypq= (N (L/{0,A),d"),

9:pa
the free graded-commutative algebra on all iterated bracketings of o, A, and p, except o
and A. The map of spectral sequences

E!Y  — F!

¥,k % * %, %

makes the latter into a module spectral sequence over the previous one, which determines
that the d'-differential still is a derivation satisfying d'(p) = [0, ¢]. You might be worried
about the understanding value of the differential on other bracketings, but this can be
filtered away as in proof of Theorem 10.1.1. The conclusion is that an upper bound of
the E%-page is given by homology of the complex

(A*(p, [o,0]),d(p) = [o,0]) @ (A*(other generators),0),

where explicitly the other generators is given by L/(o, A, [0, 0], p). But this vanishes in
the range g < % as the left side will be Q in degree 0 after taking homology and the right
side vanishes in this range. O

Let us investigate this proof a bit closer and observe that we may as well have added
more freely attached FEs-cells of slope > %. The proof goes through in the same manner;
there are just more “other generators.”

Proposition 11.2.6. If A is of the form A UP2 Eo(6,, Sé"’da) with (g, da) satisfying
4dy > 3ga, then Hyg(A"/(o,\)) for 4d < 3g — 1.

Proof of secondary homological stability for Rg

We will use Proposition 11.2.6 to prove that R6 /(o, A) has the same vanishing line as
At /(o,)\). Applying the CW-approximation theorem in combination with Lemma 11.2.4
we get a factorisation

A — B = Rg,

where B is obtained by attaching only Es-cells in bidegrees (gq,do) with 4d, > 3gq.
Since the left map is a weak equivalence, to prove Theorem 1.1.6 with rational coefficients
it suffices to prove that BT /(o, \) has the desired vanishing range:
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Theorem 11.2.7. H, 4(B*/(0, X)) =0 for 4d < 3¢ — 1.

Proof. Taking the filtration on B*/(o,\) induced by the skeletal filtration, we get a
spectral sequence
Bl o= Hyprap(Al0] UP2 By() S5 /(0 \)) = Hyiq(B*/(0,2).
«

P

But since upon forgetting the additional grading, we get A U2 Ey(@,, S9%) which is
of the form required in Proposition 11.2.6, we know that the E'-page has the desired
vanishing line in Proposition 11.2.6. O

This concludes the proof of Theorem 1.1.6 with rational coefficients. Next lecture we
will discuss the case of integer coefficients.

Remark 11.2.8. Here is a different take on the same argument: (11.1) is the beginning of
a CW-approximation of Rg, only containing the < 2-dimensional cells; it satisfies the
induction hypothesis for € = 2 in the proof of Theorem 11.21 of [GKRW18a]. Thus we
can extend it to a CW-approximation

A—)B%RQ,

where B is a CW-FE»s-algebra that has the same FEs-cells as A and all further Fo-cells of
bidegree (ga, dq) satisfying 4d, < 3g,. Now take the filtration on B*/(o, \) induced by
the skeletal filtration and argue as in Lemma 11.2.5.

Remark 11.2.9. The argument in Section 5.2 of [GKRW19] is different than the one given
above; it replaces the proofs of the Proposition and the Theorem by an appeal to a
comparison result for relative Ea-cells for A — R to relative A-module cells for Rg
made into an A-module through this map. This comparison result is Theorem 15.4 of

[GKRW18a].
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Outlook I: General linear groups

In analogy to the case of mapping class groups, we want to study the homology of
general linear groups of a field F, using an E, structure on

]O_O[ BGL,(F).

n=1

This is the content of [GKRW18b, GKRW20], though we will be focusing on the latter.

12.1 An E_-algebra of general linear groups

We fix once and for all a field F. We proceed as in Chapter 9, working in a category
sSets®, where G has objects given by N and morphisms given by

GL,(F) ifn=m,

o) otherwise.

G(n,m) = {

Then BG =~ [],~; BGL,(F), and the E structure on this space corresponds to the
symmetric monoidal structure on G given by direct sum of vector spaces (G is a skeleton
of the groupoid of finite-dimensional F-vector spaces, and hence is equivalent to it) or
equivalently to block sum of square matrices.

As in Chapter 9, there is an object x.( € sSets® taking the value @ at n = 0 and
a point % at any n > 0. This has a unique Es-structure in sSets® equipped with
the Day convolution symmetric monoidal structure, and as in that chapter we obtain
T € Algg__ (sSetSG) as a cofibrant approximation. Writing r: G — N for the evident
functor, we then set R := r(T) € Algg_ (5Sets®). Then

R(n) ~ BGL,(F).

12.2 E -homology

Then Ej-homology of T € sSets® will push forward to Ex-homology of R € sSets!,
so we may start by calculating the former. The interesting values of k£ seem to be
k =1,2,00; our end-goal is to obtain the last of these.

71
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12.2.1 Splitting complexes

Moving to the pointed setting by adding basepoints (sSets, x) — (sSets,, A) gives an
FE-algebra object T € sSetSS, and as in Chapter 9 its derived indecomposables may
be calculated for 0 # n € G as the bar construction of its unitalisation Ti:

BT, éean)(n) = QP (T )(n) = £25%1 (n),

where €cap : Ti — 1 is the canonical augmentation. As in Theorem 9.3.3, S¥1(n) is the
semi-simplicial set given by

GL,(F)
GLy (F) X - -+ X GLy,,,, (F)’

S (n) = [p] = L
no+-+np41=n
n; >0
and B(T7, €can)(n) has a very similar looking description but without the outer terms
indexed by ng and npy;.
Let us look at O-simplices first: this is the GLy,(IF)-set

) B n-l GLn(F)
S(;E (n) = |_| GLyy (F) X GLjy—p (F)’

no=1

which can be identified with the set of pairs (Fy, P;) of non-zero subspaces Py, P, C F"
such that Py @ P; — F” is an equivalence. (The equivariant bijection can be seen by
inspecting orbits and stabilizers.)

Similarly, p-simplices can be GL,, (IF)-equivariantly identified with tuples (Fy, ..., Pp+1)
of non-zero subspaces of F" forming a direct sum decomposition. This semisimplicial
set can also be identified with the nerve of the poset with objects (Py, P;) and where
(Py, P1) < (P}, P{) means Py C Py and P, D P|. Notice the similarity with the arc
complex considered in Chapter 3 and Chapter 11: this was a poset of ways to cut a
surface into two non-trivial pieces, we have a poset of ways of cutting a vector space into
two non-trivial pieces.

This semi-simplicial set is closely related to the Tits building, which is the nerve of the
poset whose objects are non-trivial proper subspaces 0 C P C F", ordered by inclusion.
Writing 7 (n) for the nerve of this poset, we have an evident surjection

SE (n) — T(n) (12.1)

induced by (Py, P1) — Fo.
It is a classical result that |7 (n)| is (n — 3)-connected, and hence homotopy equivalent
to a wedge of (n — 2)-spheres [Sol69]. The homology group

Sty := Hy,_o(T(n))

is an (infinite dimensional) representation of GLy,(F), called the Steinberg module. The

Solomon—Tits theorem gives an explicit Z-basis for it by so-called apartments [Sol69].
The map (12.1) is evidently not a homeomorphism, since non-empty proper subspaces

have many different complements. It does not even induce an isomorphism on homology,
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but Charney proved that the complex S1(n) is also (n — 3)-connected, so has the
homotopy type of a wedge of (n — 2)-spheres [Cha80]. It is sometimes called the split
building, and its H,_ the split Steinberg module.

Using this, the situation is formally similar to the previous lectures about the Fs-
algebra of mapping class groups, in that Charney’s connectivity implies

HPY(R)=0 ford<g-—1,

where R € sSets" is (7, T) ~ (n + BGL,(F)). We could therefore try to proceed in the
same way as for mapping class group, using the bar spectral sequences of Chapter 5 and
low-dimensional calculations of homology of general linear groups.

The rest of this talk is about the situation (or at least our knowledge of the situation)
being strictly better for general linear groups of infinite fields than for mapping class
groups. Hence from now on we assume that F is infinite. Firstly, we have isomorphisms

HPYR) = Hy_(n_1)(BGLn(F); Hy—2(S7 (n))) = Hy_(n1)(BGL,(F): Sty,).

The first of these just uses that the suspension of n — S¥1(n) is the indecomposables in
sSets® by Chapter 9, which pushes forward by left Kan extension to n — (S (n)) hGLn (F)
in sSets". The homology of this Borel construction is calculated by a spectral sequence
which gives the first isomorphism. The second isomorphism is more special: it uses a
trick due to Nesterenko and Suslin, which implies that even though the Tits building
and Charney’s split building are quite different, their homotopy orbits by GL,,(IF) have
the same homology. We will not elaborate on this Nesterenko—Suslin argument, but see
the original paper [NS89] or [GKRW20, Section 5.3].

We could now in principle try to use knowledge about the Steinberg module, for
example the basis given by Solomon-Tits, to calculate E; homology as H,(BGL,(F); St,).
For instance, Lee and Szczarba computed that the coinvariants of the Steinberg module
vanish [LS76]. We will instead move on to Eo and E, homology.

12.2.2 F5 and F,, homology

The E; indecomposables of R € sSets" can be computed as the left Kan extension
of the indecomposables of T € sSets®. By Theorem 7.1.9 we have

SOV ST A QFN(T) ~ BT, €can),

in the notation from Chapter 9. One of the +’s denotes that we passed to a pointed
setting (sSets, x) — (sSets,, A), the other denotes that we passed from non-unital to
unital Ej-algebras which we kept track of using the augmentation €.,,. Similarly, by
Theorem 7.1.9 we also have that Fj indecomposables are computed by the iterated bar
construction

SOV ¥ A QPF(T) =~ BEH(TL, ecan).

When spelling out the iterated bar construction, one gets a k-fold simplicial pointed set
of “k-dimensional splittings” of F™.
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Let us say that a “splitting” of F™ consists of a finite pointed set X and a function
f: X — Sub(F™); the target is the set of subspaces of F", with the property that the
natural map @yex f(z) — F" is an isomorphism. Let us write

_ set of splittings f : X — Sub(IF")
B those with f(x) #0

S(X)

This is also the set of splittings X \ {*} — Sub(M) with an extra basepoint, but the
description above makes it clear that S is functorial in all maps of pointed finite sets.

A concise way of explaining what the k-fold simplicial set BE’C(TI, €) is, is as the
composition of & with

A°P x ... x AP — Sets,

([pal,- -+, [pw]) '_)5;1 /\"'/\S;kv

where S! is the usual simplicial circle, with p 4+ 1 many p-simplices, one of which is the
basepoint. We denote this k-fold pointed simplicial set by D¥(F"), and have a pointed

homotopy equivalence N
BE: (T, €)(n) ~ DF(F™).

The non-basepoint (py,--- , pj)-simplices of DF(F") are (py X --- x py)-tuples of
subspaces of F", forming a direct sum decomposition of F"*. Face maps in this bisimplicial
set either form direct sum decompositions with fewer summands by collecting some
summands into one; the “outer” face maps either forgets summands which happen to be
zero, or collapses to the base point.

Ezample 12.2.1. For k = 1, D'(F") is a double suspension of S¥1(F") so is homotopy
equivalent to a wedge of n-spheres.

Let us denote by D!'(F") the nerve of the poset of subspaces of F” modulo those
p-simplices Py C --- C P, where Py # 0 and P, # F". There there is a map

DY(F") — D'(F™)

of pointed simplicial sets given by sending a splitting to its flag of “partial sums.”
Recording the flags by summing along each of the k directions yields a map

DF(F") — DY(F™) A --- A DYE™)

and we define D*(F™) as the image. The NesterenkoSuslin argument generalises to yield
that N
D*(F™) — DF(F™)

becomes an equivalence on homotopy orbits by GL,,(F) for all k. The case k = 2 has a
special property: in this case every two flags arise from a splitting, so the inclusion

D?*(F") — DY(F™) A DY(F™)

is the identity. The right side is a wedge products of two pointed spaces that are
homotopy equivalent to wedges of n-spheres; hence it is homotopy equivalent to a wedge
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of 2n-spheres. Putting back in the double suspension on the right side of Theorem 7.1.9
we obtain [GKRW19, Theorem 6.5]:

Hﬁg(R) =0 ford<2n—2,and HY3, 5(R) = (Stn ® Stn)ar, (k)

Thus is naturally leads to the question of the GL,,(FF)-coinvariants of the tensor square
of the Steinberg module.

By explicit argument using matrix manipulations, we proved that a natural pairing
on Sty induces an isomorphism [GKRW20, Theorem A]

(Stn & Stn)GLn(F) i 7.

This is interesting in its own right, proving that the Steinberg module is indecomposable
(i.e. not a direct sum of two non-zero Z[GL, (F)]-modules). It further implies that the
FEs-homology vanishes below the line d = 2g — 2 and is given by Z’s on this line.

12.2.3 The maps [[BS, — [[ BGL, - N

Our goal is to understand these Z’s on the line d = 2g — 2. Let us now consider the
maps between the following three non-unital F-algebras

| | BSw — | | BGLn(F) — N.

n=1 n=1

As outlined above, the middle one has IjTT;EfQTH2 = 7Z and vanishing F>-homology below
that. As Chapter 8 explained, the same is true for N (which also has vanishing FEs
homology above this line, but we shall not use this). Entirely analogous argument show
that this is also true for the first one, at least up to isomorphism

Let us now work in sSets", and write (cofibrant replacements of) these as
S— R — N.

Then it turns out that there are abstract isomorphisms

Hgan—Q(S) = HE:22n—2(R) = HE:%n—2(N) = Zv

n n

and all three have Hfz = 0 for d < 2n — 2. However, the natural maps are not all
isomorphisms. The easiest to show is that in rank n, the composition S — N induces
multiplication by +n!, and with more work we show that R — N induces an isomorphism
7Z — 7.. Hence the first map also induces multiplication by +n!.

By continuing applying bar constructions, one sees

Y/ n=1,
E E . .
H.%, 5(R) = H,.%, »,(N)=1{Z/pZ n=p" with p prime,
0 otherwise,

for k > 3. In particular we see that although the connectivity of Ej homology went from
“slope 1”7 to “slope 2” by passing from k = 1 to k = 2, it does not get much better by
further increasing k. However, if we work rationally, the connectivity does improve by 1
in rank > 1 for £ > 3.
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12.2.4 FE,-homology

Rognes defined a filtration on the algebraic theory spectrum K (F) and showed that
the associated graded could be written as D(F")qr,, ) for a certain “stable building”
D(F™) that he defined [Rog92]. He also conjectured that this stable building should have
the homotopy type of a wedge of (2n — 2)-spheres. We prove that the homotopy orbits
by GL,(F) are as highly connected as Rognes’ conjecture would imply, which may be
sufficient for intended applications.

We have explained why the map H 5 *(R) — HE %(N) is an isomorphism for d <
2n — 2, including 2n — 2 where it may be non-zero. One may also show it is surjective for
d = 2n — 1, so that in relative homology we have

HP%(N,R) =0 for d < 2n.

These groups measure how one builds N from R by attaching E.-cells. The first possibly
non-trivial groups
HEs (N, R)

n,2n

look very interesting: for n = 1, it is F*, for n = 2 it is the so-called pre-Bloch group
which (up to 2-torsion) sits in an exact sequence

0 — u(F)®? — KI'Y(F) — p(F) — AZF* — Ky(F) — 0,

where K"(F) is defined in terms of algebraic K-theory groups of F and Milnor K-theory
groups of F by the short exact sequence

0 — KM(F) — K3(F) — K"(F) — 0.

7 Hg(F*;7Z) ? ?
6 Hy(F*: 2) ? .7
5 Hy(F*;7Z) ? “
’ HyF:Z) - p(F)
5 Hy(F*; Z)
2 Fx
!
0
dfn 0 1 2 3 4

Figure 12.1: The F.-homology of the pair (N, Ry), which vanishes below the dotted line.
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See Fig. 12.1 for an overview of these relative F, homology groups. The groups
Hfg’ (N,R) and higher are also functors of F, it seems interesting to understand the
nature of these functors.
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Secondary homological stability for mapping
class groups 11

We now finally prove secondary homological stability for mapping class groups with
integer coefficients, Theorem 1.1.6. Our focus on this lecture will be to explain the
features that are qualitatively different in the case of integer coefficients in comparison
to that for rational coefficients as in Chapter 11.

13.1 The secondary stabilisation maps

The integral argument is supposed to be like the rational argument in Chapter 11, but
complicated by a more refined “small model” A for the Z-linearisation Rz, € Algpg, (sMod})
of R and the presence of Dyer—Lashof operations in addition to a product and Browder
bracket (after a reduction to field coefficients in Q and all F;). However, a significant
wrinkle is the construction of the secondary stability maps, which is not given by
multiplication-by-A. This will have ramifications throughout the proof.

In the rational case, the map \-—: S32 ®R6 Jo — R(éf /o was obtained multiplication
by a class A on R. Working over the integers, this is a bad idea. Firstly, it is ambiguous
because there may be (and in fact, is) non-zero torsion in Hy(BTI'31;Z) so there may be
multiple choices of A. Secondly, the theorem would be false with this definition. This is
because the map

A-—: Z{1} = Hoo(RS) — Ha(R™/0) = Zjy

sends 1 to 10u, so is not surjective (as it needs to be)!

A first thought is to multiply with p instead of a choice of A, but Rg /o is not an
algebra anymore, but only a Rg -module, so this is not possible. However, it does tell
us that as long as we can live with coefficients in Z[Tlo] rather than Z, we can multiply
with %0, and accept that there may be multiple choices of 1—’\0 (in fact there will not be
because the torsion in Hy(BTI'31;Z) is 2-torsion). The argument then goes through as in

the rational case, with a more refined A and Dyer—Lashof operations to worry about.

Problem 13.1.1. Work out the details of this secondary homological stability theorem
with coefficients in Z[5].

78
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However, we wanted to prove an integral result and hence need to construct our
secondary stabilisation maps in a different manner: by obstruction theory we will construct
a map of RZ -modules sending 1 to u which does not arise from multiplication with an
element of Rg.

Lemma 13.1.2. There are maps of R%—modules
p: S*?ARS Jo — RS /o
sending 1 to p.
Proof. Recall that $*? ® R} /o fits in a cofiber sequence of R} -modules
id o(o®id i
532 @ 510 @ Rf T Spolo®id), g3.2 R 20 632 9 RY /o

To construct a map ¢: S3? ® R%' o —> Rg /o, it hence suffices to construct a map
¢: 832 ® Rg — RZF /o of RZF -modules and check its precomposition with the left map is
null as a R'Z|r -module map. This map ¢ is

+“®Z

532 @ RS R} /o @R} 5 RE @RS Jo 25 R /o

To verify it is null as RZ -module map, it suffices to verify its restriction ¢ o (id ® o) given
by

§32 g §10 140, g32 o gt MO, R*/a R LRI @RI /o 25 RE /0. (13.1)

is null as a map in sMod}. This is an element of Hyo(R} /o) = Hy(BTy 1, BT31;Z)
which vanishes by homological stability for mapping class groups, so it is indeed null-
homotopic. O

Remark 13.1.3. As usual in obstruction theory, the choices of ¢ are a torsor for
Hy3(R} /o) = H3(BT4,1, BT31;7Z), which is indeed a non-zero torsion group. Our proof
will show that any secondary stabilisation map constructed this way is an isomorphism
or surjection in a range.

Remark 13.1.4. This proof used a technique which is useful throughout topology: con-
structing maps by obstruction theory can often become easier by imposing more conditions
on the map you are trying to construct. Here this is done by requiring it is a RZ“ -module
map.

13.2 Integral secondary homological stability for mapping class groups

Fix a ¢ as in Lemma 13.1.2. To prove Theorem 1.1.6 with integer coefficients we
need to prove that its cofiber C,, which fits into a cofiber sequence

S32ARS Jo 5 RS Jo — Cy,

has the property that H,4(C,) = 0 for 4d < 3g — 1. As in the rational case, this is
done by building a “small model” A — Ry, proving the result for A, and showing it
transfers to Ryz. There will be some additional wrinkles due to the different nature of ¢
in comparison to A - —
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Construction of A

Look once more to Fig. 11.1. We will also need that From it, we obtain the following:

- A map S%’Oa — Ry representing o.
- A map S%JT — Ry representing 7.

These combine to a map EQ(S%’OO' @ 5%717’) — Ry. Since we have relations 1007 = 0,
Q% (o) = moT for some m € Z/10 (in fact, m = 3 but we will not need this), and 0?7 = 0
in the target, picking null-homotopies we get an extension of this map to one with domain

1,0 1,1 E 2,2 2,2 By 13,2
A= Ez(SZ oD SZ 7—) UIOQO'T DZ P1 UQ%(O’)—’H’LO’T DZ P2 UUZQT DZ P3-

The reason we do not see a free generator A as before, is that its corresponding homology
class is obtained from p3 (10 times its attachment map vanishes, so ps will give rise to a
rational class). We could also not avoid having 7 as a generator, given that ps is attached
along a multiple of it (so our model is more like the A’ of Lemma 11.2.4 than A).

Lemma 13.2.1. H2(Rgz, A) =0 for 4d < 3g — 1.

Proof sketch. As in Lemma 11.2.4 for the rational case, using the vanishing of Fs-
homology by arc complexes to deal with ¢ > 4, and doing g < 3 by the Hurewicz
theorem. O

Proof of secondary homological stability for A

By construction, A satisfies that Hffl(A) =0 for d < g — 1 and that Hy(A) —
Hj1(A) is surjective. Thus it has the same homological stability range as Rz and we
conclude that Hy (A% /o) = 0. This allows us to construct a map a: S*?® AT /o —
A /o and by picking the null-homotopy used in the construction of ¢ to arise from that
in the construction of «, we may assume that there is a homotopy-commutative diagram

S32@ At /o —%— AT /o

! |

$32 @R /o —— Rt /0.
Let C, denote the cofiber of «.
Lemma 13.2.2. H,4(Cy) =0 for 4d < 3g — 1.

Proof. We intend to proceed as in Lemma 11.2.5, by endowing A with its skeletal filtration
to obtain skA € Algp, (sModSXZS) and performing a computation in the spectral sequence
for the corresponding filtration on the mapping cone. Before we can do so, we need to
prove that « lifts to a filtered map on skA. In particular, we will need to show that it
lifts to a map

ska: §%%3 @ skAT /o — skAT /o,
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where the sphere $323 has this trigrading so that it will eventually yields an element
whose d! which can hit the lift of p3 in tridegree (3,2,2). We could take any S%29 for
q > 3 but then we would need to consider higher differentials.

The idea is to use the same construction as for ¢, but replace R; with skAT and §32
with §%23. In particular, one reduces the construction to proving that the obstruction
class in Hy23(skA™ /o) analogous to (13.1) vanishes. In principle there could be an
obstruction here, but we know there is no such obstruction when we take the colimit, so
our strategy will be to reduce to this case. We first observe that Hy 3 ,(gr(skA™ /o)) =0
when ¢ > 4; it suffices to verify this with coefficients in a field F given by Q pr Fy,. Then
we use F. Cohen formula’s for the homology of a free E;—algebra as well as the fact that
o, T, p1, P2, p3 have filtration degree equal to their homological degree and all operations
preserve the filtration degree and increase homological degree. By consideration of the
long exact sequence of a pair for each filtration step, we see that

Hy,q(skAf /o) — Hyoq41(skAf /o)

is injective for ¢ > 3. Since the colimit vanishes, this proves that the obstruction group
vanishes and thus we can find our map ska.

Having done so, we can proceed with the proof. As in the generic homological stability
result, it suffices to prove the result after tensoring with Q or F,. Let us focus on the
latter, with £ odd ([GKRW19] of course contains the full argument). We consider spectral
sequences for the filtered object Cyxar,. Since ska strictly increases filtration and taking
associated graded commutes with cofibers, we have

g1(Caar,) = (Sp 0 @ Sp*%ps) @ gr(skAf /o),

where p4 denoted the generator the right term in the cofiber sequence $323 — 05333,
Hence the E'-page of the latter spectral sequence is given by

0,0,0 3,3,3
Eipq = (S5, @ S5, pa) © S, (L/ (), d")
where L is a graded vector space of Dyer—Lashof operations applied to bracketings of
0,7, P1, P2, p3- This is a module over the corresponding spectral sequence for the filtered
object skAfol, from which we deduce that the d!-differential satisfies d'([o,0]) = 0,

d'(p2) = —3lo,0], d'(pa) = p, and is a derivation. Filtering away the remaining
differential, a short computation shows that non-zero class in its homology of lowest
slope (equal to % > %) is represented by [0, o] - pgfl. O

Once more, an inspection of the proof show that one may as well have added added
more freely attached FEs-cells of slope > % to A; we can still construct an «, lift it to the
skeletal filtration, and prove in the same manner as in the lemma that H, 4(C,) = 0 for
4d < 3g — 1. Moreover, for the first two of these steps we do not even need the Fa-cells
to be trivially attached.
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Proof of secondary homological stability for Ry

As in the rational case we use this to prove that C,, the cofiber of the secondary
stabilisation map on Rg , has the same property. Applying the CW-approximation in
combination with Lemma 13.2.1 we get a factorisation in Algp, (sMod})

A—)BQRZ

where B is obtained by attaching only Fa-cells in bidegrees (gq,dn) with 4d, > 3d,.
On B we can construct a secondary stabilisation map 38 and hence Cg, and since the
right map is a weak equivalence it suffices to prove that Cz has the desired vanishing
range. This is done as in the rational range by filtering away the attaching maps of the
attaching Fs-cells to reduce to the case of A with freely attached FEo-cells. As in the
proof of Lemma 13.2.2, there is a wrinkle in proving that 3 lifts to a filtered map, which
is handled in exactly the same manner. This completes the proof of Theorem 1.1.6 with
integer coefficients.

Remark 13.2.3. The argument in Section 5.3 of [GKRW19] is different than the one
given here. It rather follows the suggestion of Remark 11.2.8 of recognising A is the
beginning of a CW-approximation B — Ry, constructing a map S which lifts to the
skeletal filtration, and using the spectral sequence for the cofiber of 3 on skB™ /o.

13.3 Improving Theorem 1.1.6

There are two improvements which can be made to the secondary homological stability
theorem.

(1) It extends to certain local coefficient systems; those arising from the tensor powers of
Hi(X4,1;k). This is done in Section 5.5 of [GKRW19]. This improved homological
stability result can be improved with Tommasi’s computation for H*(BT'4; Q) to
obtain that H3(BTl'41;Q) = 0. This is done in Section 6.2 of [GKRW19].

(2) An upshot of (1) is that A — Rg is a better approximation than expected:
Hffl(RQ, A) =0 for 5d < 49 — 1. Feeding this back into the rational secondary
homological stability argument improves its range from slope % to %. This is done
in Section 6.1 of [GKRW19].

Remark 13.3.1. What is needed for further improvements?
- A computation of H3(BI'4,1;Z) would be the main input for improving the range
with integer coefficients rather than with rational coefficients.

- A computation of Hy(BT'41;Q) and Hy(BT'51;Q) would be the main input for
improving the range with rational coefficients from slope % to %.
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