A REMARK ON THE HOMOLOGY OF TEMPERLEY–LIEB ALGEBRAS

OSCAR RANDAL-WILLIAMS

Write TL_n for the universal Temperley–Lieb algebra, defined over the polynomial ring $\mathbb{Z}[a]$ with parameter $a \in \mathbb{Z}[a]$. If R is a commutative ring and $a \in R$ is an element then there is a homomorphism $\mathbb{Z}[a] \to R$ and $\operatorname{TL}_n(R, a) = \operatorname{TL}_n \otimes_{\mathbb{Z}[a]} R$.

In [BH20] Boyd and Hepworth study the (co)homology of the algebras $TL_n(R, a)$ under various assumptions on the element $a \in R$, specifically either

(i) a is a unit in R, or

(ii) $a = v + v^{-1}$ for some unit v in R.

In this note I will explain how a universal-coefficient-type result with respect to the ring R can slightly strengthen their results.

1. Base change

The *R*-module $TL_n(R, a)$ is finitely-generated and free, so it is in particular *R*-flat. Thus for any $p \ge 0$

$$\Gamma L_n(R,a)^{\otimes_R p+1} = T L_n(R,a) \otimes_R T L_n(R,a)^{\otimes_R p}$$

is a flat left $TL_n(R, a)$ -module, and so the bar resolution $B_*(TL_n(R, a), TL_n(R, a), \mathbb{1})$ formed in the category of *R*-modules, i.e. having

 $B_p(\mathrm{TL}_n(R,a),\mathrm{TL}_n(R,a),\mathbb{1}) = \mathrm{TL}_n(R,a) \otimes_R \mathrm{TL}_n(R,a)^{\otimes_R p} \otimes_R \mathbb{1}$

is a resolution by flat left $\text{TL}_n(R, a)$ -modules. Thus we may calculate $\text{Tor}_*^{\text{TL}_n(R, a)}(\mathbb{1}, \mathbb{1})$ using the bar complex $B_*(\mathbb{1}, \text{TL}_n(R, a), \mathbb{1})$ formed in the category of *R*-modules. This is a complex of finitely-generated free *R*-modules.

If $R \to S$ is a ring homomorphism sending $a \in R$ to $b \in S$, then $TL_n(S, b) = TL_n(R, a) \otimes_R S$. It follows that

$$B_*(\mathbb{1}, \mathrm{TL}_n(S, b), \mathbb{1}) = B_*(\mathbb{1}, \mathrm{TL}_n(R, a), \mathbb{1}) \otimes_R S,$$

and as $B_*(\mathbb{1}, \mathrm{TL}_n(R, a), \mathbb{1})$ is a bounded below complex of free and hence flat *R*-modules there is a Base Change Spectral Sequence [Wei94, Theorem 5.6.4]

(BCSS)
$$E_{p,q}^2 = \operatorname{Tor}_p^R(\operatorname{Tor}_q^{\operatorname{TL}_n(R,a)}(\mathbbm{1},\mathbbm{1}),S) \Rightarrow \operatorname{Tor}_{p+q}^{\operatorname{TL}_n(S,b)}(\mathbbm{1},\mathbbm{1}).$$

In particular, if $R \to S$ is flat then this collapses to

$$\operatorname{For}_*^{\operatorname{TL}_n(R,a)}(1,1) \otimes_R S \xrightarrow{\sim} \operatorname{Tor}_*^{\operatorname{TL}_n(S,b)}(1,1).$$

If in addition $R \to S$ is faithful, then faithfully flat descent shows that

(FFD)
$$\operatorname{Tor}_{*}^{\operatorname{TL}_{n}(R,a)}(\mathbb{1},\mathbb{1}) \longrightarrow \operatorname{Tor}_{*}^{\operatorname{TL}_{n}(S,b)}(\mathbb{1},\mathbb{1}) \Longrightarrow \operatorname{Tor}_{*}^{\operatorname{TL}_{n}(S\otimes_{R}S,b)}(\mathbb{1},\mathbb{1})$$

is an equaliser, where the parallel maps are induced by $s \mapsto 1 \otimes s, s \otimes 1 : S \to S \otimes_R S$, and we write $b = b \otimes 1 = 1 \otimes b \in S \otimes_R S$.

OSCAR RANDAL-WILLIAMS

2. Theorem B'

The main thing I have to offer is the following strengthening of [BH20, Theorem B], which removes the assumption that $a = v + v^{-1}$.

Theorem B'. For any commutative ring R and any $a \in R$ we have

$$\operatorname{Tor}_{d}^{\operatorname{TL}_{n}(R,a)}(\mathbb{1},\mathbb{1})=0$$

for $1 \le d \le n-2$ if n is even, and for $1 \le d \le n-1$ if n is odd.

Proof. Consider the *R*-algebra $S := R[v]/(v^2 - a \cdot v + 1)$. In the ring *S* we have $(a - v) \cdot v = 1$ so *v* is a unit with inverse $v^{-1} = a - v$, and so $a = v + v^{-1}$. Now as an *R*-module *S* is free on the basis $\{1, v\}$, so the morphism $R \to S$ is faithfully flat. By (FFD) there is an equaliser diagram

by (FFD) there is an equaliser diagram

$$\operatorname{Tor}_{d}^{\operatorname{TL}_{n}(R,a)}(\mathbb{1},\mathbb{1}) \longrightarrow \operatorname{Tor}_{d}^{\operatorname{TL}_{n}(S,a)}(\mathbb{1},\mathbb{1}) \Longrightarrow \operatorname{Tor}_{d}^{\operatorname{TL}_{n}(S\otimes_{R}S,a)}(\mathbb{1},\mathbb{1})$$

and as $a = v + v^{-1} \in S$ it follows from [BH20, Theorem B] that the middle term vanishes for the claimed range of values of d, so the left-hand term does too.

Remark 2.1. Alternatively, to avoid using faithfully flat descent directly one can argue that as $R \to S$ is flat we have

$$\operatorname{Tor}_{d}^{\operatorname{TL}_{n}(R,a)}(\mathbb{1},\mathbb{1})\otimes_{R}S\cong\operatorname{Tor}_{d}^{\operatorname{TL}_{n}(S,a)}(\mathbb{1},\mathbb{1}),$$

as $a = v + v^{-1} \in S$ it follows from [BH20, Theorem B] that this vanishes for the claimed range of values of d, and that as $R \to S$ is faithful it follows that $\operatorname{Tor}_{d}^{\operatorname{TL}_{n}(R,a)}(\mathbb{1},\mathbb{1})$ vanishes for such d too.

3. Calculations in the universal case

In this section I explain what can be said about $\operatorname{Tor}_{d}^{\operatorname{TL}_{n}}(1,1)$ using the base change ideas of Section 1.

Lemma 3.1. For each d > 0 the groups $\operatorname{Tor}_{d}^{\operatorname{TL}_{n}}(\mathbb{1}, \mathbb{1})$ are finitely-generated \mathbb{Z} -modules, and are (a)-torsion.

Proof. The bar complex $B_*(1, \mathrm{TL}_n, 1)$ is a chain complex of finitely-generated $\mathbb{Z}[a]$ -modules, and as this ring is noetherian it follows that the homology of this complex is degreewise a finitely-generated $\mathbb{Z}[a]$ -module.

As the morphism $\mathbb{Z}[a] \to \mathbb{Z}[a, a^{-1}]$ is flat we have

$$\operatorname{For}_{d}^{\operatorname{TL}_{n}}(\mathbb{1},\mathbb{1})\otimes_{\mathbb{Z}[a]}\mathbb{Z}[a,a^{-1}]\cong\operatorname{Tor}_{d}^{\operatorname{TL}_{n}(\mathbb{Z}[a,a^{-1}],a)}(\mathbb{1},\mathbb{1}),$$

and by [BH20, Theorem A] these groups vanish, so each of the finitely-many $\mathbb{Z}[a]$ -module generators of $\operatorname{Tor}_{d}^{\operatorname{TL}_{n}}(\mathbb{1},\mathbb{1})$ are (a)-torsion, so these are finitely-generated as \mathbb{Z} -modules.

Filtering the ring $\mathbb{Z}[a]$ by powers of the ideal (a) gives an associated filtration of $\mathrm{TL}_n = \mathrm{TL}_n(\mathbb{Z}[a], a)$, having $\mathrm{gr}(\mathrm{TL}_n(\mathbb{Z}[a], a)) = \mathrm{TL}_n(\mathbb{Z}[a], 0)$. As the morphism $\mathbb{Z} \to \mathbb{Z}[a]$ is flat this gives a spectral sequence

(3.1)
$$E_{p,*}^{1} = \operatorname{Tor}_{p}^{\operatorname{TL}_{n}(\mathbb{Z},0)}(\mathbb{1},\mathbb{1}) \otimes_{\mathbb{Z}} \mathbb{Z}[a] \Rightarrow \operatorname{Tor}_{p}^{\operatorname{TL}_{n}}(\mathbb{1},\mathbb{1}),$$

which converges strongly as the $\mathbb{Z}[a]$ -modules $\operatorname{Tor}^{\operatorname{TL}_n}(1, 1)$ are *a priori* known to be (*a*)-complete by the above lemma.

Let us investigate the groups $\operatorname{Tor}_*^{\operatorname{TL}_n(\mathbb{Z},0)}(1,1)$. By (BCSS) applied to $\mathbb{Z} \to \mathbb{F}_p$ there is a long exact sequence

 $\cdots \operatorname{Tor}_{q}^{\operatorname{TL}_{n}(\mathbb{Z},0)}(\mathbb{1},\mathbb{1}) \xrightarrow{p} \operatorname{Tor}_{q}^{\operatorname{TL}_{n}(\mathbb{Z},0)}(\mathbb{1},\mathbb{1}) \longrightarrow \operatorname{Tor}_{q}^{\operatorname{TL}_{n}(\mathbb{F}_{p},0)}(\mathbb{1},\mathbb{1}) \xrightarrow{\partial} \operatorname{Tor}_{q-1}^{\operatorname{TL}_{n}(\mathbb{Z},0)}(\mathbb{1},\mathbb{1}) \cdots,$ which we can consider as a Bockstein sequence.

Let $\mathbb{F}_p(i)$ denote the splitting field of the polynomial $x^2 + 1$ over \mathbb{F}_p (so $\mathbb{F}_2(i) =$ \mathbb{F}_2). Certainly this is \mathbb{F}_p -flat, so (BCSS) gives

$$\operatorname{Tor}_{d}^{\operatorname{TL}_{n}(\mathbb{F}_{p},0)}(\mathbb{1},\mathbb{1})\otimes_{\mathbb{F}_{p}}\mathbb{F}_{p}(i)\cong\operatorname{Tor}_{d}^{\operatorname{TL}_{n}(\mathbb{F}_{p}(i),0)}(\mathbb{1},\mathbb{1}).$$

As we have $0 = i + i^{-1} \in \mathbb{F}_p(i)$, it is a consequence of [BH20, Theorem D] that $\operatorname{Tor}_{d}^{\operatorname{TL}_{n}(\mathbb{F}_{p}(i),0)}(\mathbb{1},\mathbb{1}) = 0$ for all d > 0 if n = 2k + 1 and p does not divide any binomial coefficient $\binom{k}{r}$. By the base change isomorphism above, $\operatorname{Tor}_{d}^{\operatorname{TL}_{n}(\mathbb{F}_{p},0)}(\mathbb{1},\mathbb{1})$ vanishes under the same conditions, and so under these conditions multiplication by p acts invertibly on $\operatorname{Tor}_{d}^{\operatorname{TL}_{n}(\mathbb{Z},0)}(1,1)$.

As the $\operatorname{Tor}_{d}^{\operatorname{TL}_{n}(\mathbb{Z},0)}(1,1)$ are finitely-generated abelian groups and there exists a prime number p not dividing any $\binom{k}{r}$, it follows that these abelian groups are in fact finite, and furthermore that the primes dividing their order are factors of $\prod_{r=1}^{k} {k \choose r}$. In particular it follows that

$$\begin{aligned} \operatorname{Tor}_{d}^{\operatorname{TL}_{3}(\mathbb{Z},0)}(\mathbb{1},\mathbb{1}) &= 0\\ \operatorname{Tor}_{d}^{\operatorname{TL}_{5}(\mathbb{Z},0)}(\mathbb{1},\mathbb{1})[\frac{1}{2}] &= 0\\ \operatorname{Tor}_{d}^{\operatorname{TL}_{7}(\mathbb{Z},0)}(\mathbb{1},\mathbb{1})[\frac{1}{3}] &= 0\\ \operatorname{Tor}_{d}^{\operatorname{TL}_{9}(\mathbb{Z},0)}(\mathbb{1},\mathbb{1})[\frac{1}{2\cdot3}] &= 0\\ \operatorname{Tor}_{d}^{\operatorname{TL}_{11}(\mathbb{Z},0)}(\mathbb{1},\mathbb{1})[\frac{1}{2\cdot5}] &= 0 \end{aligned}$$

and so on, for d > 0. By running the spectral sequence (3.1) the same holds for $\operatorname{Tor}_{d}^{\operatorname{TL}_{2k+1}}(1,1)$, and by running (BCSS) for $\mathbb{Z}[a] \to R$ the same holds for $\operatorname{Tor}_{d}^{\operatorname{TL}_{2k+1}(R,a)}(1,1)$ for any commutative ring R and element $a \in R$. In particular

- (i) $\operatorname{Tor}_{d}^{\operatorname{TL}_{3}(R,a)}(\mathbb{1},\mathbb{1}) = 0$ for all d > 0 and all (R,a), and more generally (ii) if $\prod_{r=1}^{k} {k \choose r}$ is a unit in R then $\operatorname{Tor}_{d}^{\operatorname{TL}_{2k+1}(R,a)}(\mathbb{1},\mathbb{1}) = 0$ for all d > 0.

The latter in particular applies to the classical case $R = \mathbb{C}$.

This also extends Lemma 3.1 by:

Corollary 3.2. For each d > 0 and odd n the groups $\operatorname{Tor}_{d}^{\operatorname{TL}_{n}}(1, 1)$ are finite abelian groups, and are (a)-torsion.

References

- [BH20] Rachael Boyd and Richard Hepworth, On the homology of the Temperley-Lieb algebras, arXiv:2006.04256, 2020.
- [Wei94] Charles A. Weibel, An introduction to homological algebra, Cambridge Studies in Advanced Mathematics, vol. 38, Cambridge University Press, Cambridge, 1994. MR 1269324 Email address: o.randal-williams@dpmms.cam.ac.uk

CENTRE FOR MATHEMATICAL SCIENCES, WILBERFORCE ROAD, CAMBRIDGE CB3 0WB, UK