ERRATUM TO: ON THE COHOMOLOGY OF TORELLI GROUPS

ALEXANDER KUPERS AND OSCAR RANDAL-WILLIAMS

Abstract

We resolve several mistakes surrounding the application of the results of the paper to the classical case $2 n=2$.

An overstatement. The statement "and is a monomorphism in degree $N+1$, for all large enough g " in Theorem 4.1 of [KRW20] is not justified by the given proof, and should be removed. The corresponding statement should then be removed from Theorem B.

This means that in Theorem 8.1 only the calculation of $H^{2}\left(B \operatorname{Tor}\left(W_{g}, D^{2}\right) ; \mathbb{Q}\right)^{\text {alg }}$ can be obtained by employing Johnson's theorem that $H^{1}\left(B \operatorname{Tor}\left(W_{g}, D^{2}\right) ; \mathbb{Q}\right)$ is finitedimensional for $g \geq 3$. However, Theorem 8.1 can be rescued and even strengthened by applying the recent theorem of Minahan [Min23] that $H^{2}\left(B \operatorname{Tor}\left(W_{g}, D^{2}\right) ; \mathbb{Q}\right)$ is finite-dimensional for $g \geq 51$: using this, the equality

$$
\begin{aligned}
H^{3}\left(B \operatorname{Tor}\left(W_{g}, D^{2}\right) ; \mathbb{Q}\right)^{\mathrm{alg}}=V_{1} & +V_{2,1}+3 V_{1^{3}}+2 V_{2^{2}, 1}+3 V_{2,1^{3}}+V_{3,2,1^{2}} \\
& +2 V_{2^{3}, 1}+V_{3,2^{3}}+4 V_{1^{5}}+2 V_{2^{2}, 1^{3}}+V_{3^{2}, 1^{3}} \\
& +2 V_{2,1^{5}}+V_{2^{3}, 1^{3}}+2 V_{1^{7}}+V_{2^{2}, 1^{5}}+V_{1^{9}}
\end{aligned}
$$

holds for all $g \gg 0$.
An expansion. Erik Lindell has pointed out that the last paragraph of the proof of Theorem 4.1 of [KRW20] is too brief. There we apply Proposition 2.16 with $B=H^{i}\left(B \operatorname{Tor}\left(W_{g}, D^{2 n}\right) ; \mathbb{Q}\right)$ and $i \leq N$, but have only assumed that these are finite-dimensional for $i<N$ and the statement of Proposition 2.16 asks for B to be a finite-dimensional G-representation. Nonetheless the conclusion is valid, by the following discussion.

Consider the setting of Proposition 2.16 but with B an arbitrary G-representation, and let $B^{\text {alg }} \leq B$ denote its maximal algebraic subrepresentation, i.e. the union of its algebraic subrepresentations. The induced map $\left[K \otimes B^{\text {alg }}\right]^{G} \rightarrow[K \otimes B]^{G}$ is then an isomorphism. As A is assumed to have finite length and $\phi^{\mathrm{Br}_{2 g}}: i_{*}(A) \rightarrow$ $\left[K \otimes B^{\mathrm{alg}}\right]^{G}$ is assumed to be an isomorphism, it follows that $\left[H(g)^{\otimes S} \otimes B^{\text {alg }}\right]^{G}$ is finite-dimensional for every finite set S, and hence that $\operatorname{Hom}_{G}\left(V_{\lambda}, B^{\text {alg }}\right)$ is finitedimensional for each irreducible algebraic G-representation V_{λ}. The evaluation map

$$
\bigoplus_{\substack{\text { irreducible algebraic } \\ G \text {-representations } V_{\lambda}}}^{V_{\lambda} \otimes \operatorname{Hom}_{G}\left(V_{\lambda}, B^{\text {alg }}\right) \longrightarrow B^{\text {alg }}}
$$

is tautologically surjective, and there are finitely-many irreducibles, so $B^{\text {alg }}$ is in fact finite-dimensional. One may now proceed with the proof of Proposition 2.16 as written.

A typo. On pp. 75-76 of [KRW20] (p. 52 of the arXiv version) we mistranscribed the computer-calculated Poincaré series for $H^{*}\left(B \operatorname{Tor}^{+}\left(W_{g}, *\right) ; \mathbb{Q}\right)^{\text {alg }}$ and $H^{*}\left(B \operatorname{Tor}^{+}\left(W_{g}\right) ; \mathbb{Q}\right)^{\text {alg }}$. In both cases the term $2 s_{\left\langle 2^{3}, 1^{3}\right\rangle}$ should instead be $s_{\left\langle 2^{3}, 1^{3}\right\rangle}$.

This now makes Remark 8.2 irrelevant: there is nothing to explain, as our expression now agrees with Sakasai's computation in [Sak05] (with the V_{1} term present). Using Minahan's theorem as described above, this calculation completely describes $H^{3}\left(B \operatorname{Tor}\left(W_{g}, *\right) ; \mathbb{Q}\right)^{\text {alg }}$ and $H^{3}\left(B \operatorname{Tor}\left(W_{g}\right) ; \mathbb{Q}\right)^{\text {alg }}$.
Relation to Sakasai's result. On pp. 76-77 of [KRW20] (pp. 52-53 of the arXiv version) we described how to settle the ambiguity in Sakasai's paper [Sak05], but the argument given is fallacious. Even assuming Minahan's theorem, so that our calculations in degree 3 are valid, the image of the composition

$$
\Lambda^{3}\left(V_{1^{3}}\right) \xrightarrow{\tau^{*}} H^{3}\left(B \operatorname{Tor}^{+}\left(W_{g}\right) ; \mathbb{Q}\right) \longrightarrow H^{3}\left(B \operatorname{Tor}\left(W_{g}, D^{2}\right) ; \mathbb{Q}\right)
$$

after applying $\left[-\otimes V_{1}\right]^{\mathrm{Sp}_{2 g}(\mathbb{Z})}$ is not the subspace of those elements which can be represented by trivalent graphs with one leg, three internal vertices, and no loops as claimed, but is instead something more complicated: see [RW23, Section 3.4].

Nonetheless the conclusion is correct, as follows. With the correction indicated above our expression for $H^{3}\left(B \operatorname{Tor}\left(W_{g}\right) ; \mathbb{Q}\right)^{\text {alg }}$ agrees with Sakasai's expression for $\tau^{*}\left(\Lambda^{3}\left(V_{1^{3}}\right)\right)$ with the V_{1}-term present, so showing that it should be present in Sakasai's paper is equivalent to showing that the $V_{1} \leq H^{3}\left(B \operatorname{Tor}\left(W_{g}\right) ; \mathbb{Q}\right)^{\text {alg }}$ lies in the subspace spanned by products of degree-1 cohomology classes. It follows from Minahan's theorem and Theorem A, the discussion after it, and Section 5.2 of [RW23] that in fact all of $H^{3}\left(B \operatorname{Tor}\left(W_{g}\right) ; \mathbb{Q}\right)^{\text {alg }}$ is spanned by products of degree-1 classes (in the language of that paper, this is equivalent to the fact that $\mathcal{G r a p h}_{g}(S)$ is spanned by trivalent graphs with all labels equal to 1 , for any finite set S). Thus indeed the V_{1}-term should be present in Sakasai's result, and therefore $\kappa_{e^{3}}-(2-2 g) e^{2} \neq 0 \in H^{4}\left(B \operatorname{Tor}\left(W_{g}, *\right) ; \mathbb{Q}\right)$ holds.

The argument given for Corollary 8.3 is correct, again invoking Minahan's theorem.

References

[KRW20] A. Kupers and O. Randal-Williams, On the cohomology of Torelli groups, Forum of Mathematics, Pi 8 (2020), e7.
[Min23] D. Minahan, The second rational homology of the Torelli group is finitely generated, https://arxiv.org/abs/2307.07082, 2023.
[RW23] O. Randal-Williams, On the cohomology of Torelli groups. II, Int. Math. Res. Not. IMRN, to appear. https://arxiv.org/abs/2301.01062, 2023.
[Sak05] T. Sakasai, The Johnson homomorphism and the third rational cohomology group of the Torelli group, Topology Appl. 148 (2005), no. 1-3, 83-111.

Email address: a.kupers@utoronto.ca
Department of Computer and Mathematical Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada

Email address: o.randal-williams@dpmms.cam.ac.uk
Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB3 0WB, UK

