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Abstract. — We compute the rational homology of all spaces of finite configurations

on spheres. Our tool is a bar spectral sequence which can be viewed as coming
from the notion of “topological chiral homology”, though we give a self-contained

construction of the spectral sequence.

1. Result

For a topological manifold M , let Cn(M) denote the space of n unordered distinct
points in M . The purpose of this short note is to give a proof of the following.

Theorem 1.1. — Suppose d ≥ 2 is even. Then

H̃∗(Cn(Sd);Q) =


Q in degree 2d− 1 n ≥ 3

Q in degree d n = 1

0 n = 0, 2.

Suppose d ≥ 3 is odd. Then

H̃∗(Cn(Sd);Q) =

{
Q in degree d n ≥ 1

0 n = 0.

This theorem is not new (for example, it may be quickly deduced from [8, Theorem
18]), but the method of proof we offer is different and, we feel, somewhat interesting.
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2. A “multiplicative” decomposition of configuration spaces

Let Cn(M,X) denote the space of n unordered points in a topological manifold
M , labeled by the space X, and let

C(M,X) :=
∐
n≥0

Cn(M,X).

If the manifold M has dimension d, fix an embedding e : Rd ↪→M and let S(t) ⊂M
denote the image under e of the sphere of radius t centred at the origin of Rd. Define

Bn := {(t0, . . . , tn; c) ∈ Rn+1
>0 × C(M,X) | t0 < · · · < tn and c ∩ S(ti) = ∅ for all i}.

Let di : Bn → Bn−1 be the map that forgets ti, and ε : B0 → C(M,X) be the
map that forgets t0; with this structure B• is a semi-simplicial topological space,
augmented over C(M,X).

Proposition 2.1. — The map |ε| : |B•| → C(M,X) is a weak homotopy equivalence.

Proof. — The augmented semi-simplicial space ε : B• → C(M,X) is a “topological
flag complex” in the sense of [3, Definition 6.1]. Furthermore, it satisfies the conditions
of [3, Theorem 6.2]: conditions i) and ii) are clear, and for condition iii) we observe
that for any configuration c, and any finite collection of elements of the set

{t ∈ R>0 | c ∩ S(t) = ∅},

which is the set of vertices over the configuration c, there exists another element of
that set which is larger than them all, as the set is infinite (because the configuration
c is finite). Theorem 6.2 of [3] then implies that the augmentation map induces a
weak homotopy equivalence on geometric realisation.

The space C((0, 1)× Sd−1, X) is an H-space via stacking cylinders end-to-end. If

we write M̊ for M \ e(D1) then the spaces C(M̊,X) and C(Rd, X) are right and left
H-modules over C((0, 1)× Sd−1, X) respectively. Thus, fixing a field F,

(i) A := H∗(C((0, 1)× Sd−1, X);F) is a ring,

(ii) H∗(C(M̊,X);F) is a right A-module,
(iii) D := H∗(C(Rd, X);F) is a left A-module.

Proposition 2.2. — There is a spectral sequence

(2.1) E2
s,∗ := TorsA(H∗(C(M̊,X);F), D) =⇒ H∗(C(M,X);F).

Proof. — Let us write Dt ⊂ Rd for the open ball of radius t, and Dt for its closure.
There is a map

ϕ : Bn −→ C(M̊,X)× (C((0, 1)× Sd−1, X))n × C(Rd, X)

given by the canonical identifications of

(i) M \ e(Dtn) with M̊ ,
(ii) Dti+1

\Dti with (0, 1)× Sd−1,

(iii) Dt0 with Rd.
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The product of ϕ with the map to Rn+1
>0 given by (t0, . . . , tn; c) 7→ (t0, t1 − t0, t2 −

t1, . . . , tn − tn−1) is a homeomorphism, and so ϕ is a homotopy equivalence. Fur-
thermore, it is clear that ϕ gives an identification of semi-simplicial objects in the
homotopy category of spaces, where

C(M̊,X)× (C((0, 1)× Sd−1, X))• × C(Rd, X)

is such a semi-simplicial object via the H-space and H-module structure maps (and
the simplicial identities hold by the homotopy associativity of these maps).

If we filter |B•| by skeleta |B•|(k), then we have identifications

|B•|(k)/|B•|(k−1) ∼= ∆k ×Bk/∂∆k ×Bk ∼= Sk ∧ (Bk)+.

The spectral sequence for this filtration has

E1
s,t = Hs+t(|B•|(s), |B•|(s−1);F) ∼= Ht(Bs;F)

and, following [9, §5], we see that under this identification the differential d1 : E1
s,t →

E1
s−1,t is given by

∑s
i=0(−1)i(di)∗, the alternating sum of the maps induced on ho-

mology by the face maps. By the identification ϕ and the Künneth theorem we have

H∗(Bs;F) ∼= H∗(C(M̊,X);F)⊗H∗(C((0, 1)× Sd−1, X);F)⊗s ⊗H∗(C(Rd, X);F)

∼= H∗(C(M̊,X);F)⊗A⊗s ⊗D

and by inspection of the differential d1, the chain complex (E1
∗,∗, d

1) agrees with

the bar complex B(H∗(C(M̊,X);F), A,D). Thus the E2 page has the description
claimed.

Everything in sight has an extra grading: for any manifold N , there is a canonical
decomposition H∗(C(N,X)) =

⊕
n≥0H∗(Cn(N,X)). We call this the multiplicity

grading, and write the grading of an element as (h,m) where h is the homological
grading and m is the multiplicity grading.

Remark 2.3. — The notion of topological chiral homology, c.f. [4, §5.3.2], [1], [7],
roughly speaking associates to a framed En-algebra A (in topological spaces) and
an n-manifold N a space

∫
N
A. The association N 7→

∫
M
A is covariant, and sends

disjoint union to cartesian product.
In particular, for an n-manifold N with boundary the space

∫
[0,1]×∂N A is an A∞-

algebra, as for each configuration of m little 1-cubes there is an embedding
∐m

[0, 1]×
∂N → [0, 1]× ∂N to which

∫
−A can be applied.

It can be shown that
∫
N
A is a

∫
[0,1]×∂N A-module (right or left, as

∫
[0,1]×∂N A

has a canonical antiinvolution). Furthermore, if ∂N = ∂N ′ then there is a natural
equivalence (∫

N
A
)
⊗L∫

[0,1]×∂N
A

(∫
N ′
A
)
−→

∫
N∪∂NN ′

A,

from the (derived) tensor product of these two A∞-modules. This gives a bar spectral
sequence

TorsH∗(
∫
[0,1]×∂N

A)

(
H∗(

∫
N
A), H∗(

∫
N ′
A)
)

=⇒ H∗(
∫
N∪∂NN ′

A).
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If we take A = C(Rd, X) to be the free Ed-algebra on a space X, then the topo-
logical chiral homology

∫
N
A may be shown to be homotopy equivalent to C(N,X),

so taking N = M \ int(Dd) and N ′ = Dd we obtain a spectral sequence

TorsH∗(C([0,1]×∂Sd−1,X)

(
H∗(C(M̊,X)), H∗(C(Rd, X))

)
=⇒ H∗(C(M,X))

which agrees with ours.

3. The structure of A and D in characteristic zero

Let X = ∗ and F = Q. In this section we wish to give a generators and relations
description of the ring A and the left A-module D, and construct an explicit resolution
(which will have length 1) of D as an A-module.

For a smooth manifold with boundary M , a choice of boundary component E gives
a stabilisation map

sE : Cn(M) −→ Cn+1(M).

Let τM+ denote the fibrewise one-point compactification of the tangent bundle of M ,
and Γn(M) denote the space of sections of this bundle which are compactly supported
in the interior of M , and which have degree n. There is an “electric charge”, or
“scanning”, map

S : Cn(M) −→ Γn(M),

cf. [5]. We shall need the following result. We state it for integral homology, though
we only need it for rational homology.

Proposition 3.1. — The map S induces an injection on integral homology, and an
isomorphism on integral homology in degrees 2∗ ≤ n.

Proof. — This is obtained by combining the main results of [5] and [6].

Remark 3.2. — In the following, for a set S we write Q[S] for the free commutative
Q-algebra on the set S, Q〈S〉 for the free noncommutative Q-algebra on the set S,
and Q{S} for the free Q-vector space on the set S.

3.1. The disc: C(Rd). — We write [n] ∈ H0(Cn(Rd);Q) for the class of any
configuration of n points; these satisfy sE∗([n]) = [n+ 1], and [n] has bidegree (0, n).
We also write τ ∈ Hd−1(C2(Rd);Q) for the image of the fundamental class under the
map

(3.1) Sd−1 −→ C2(Rd)
which sends x to the configuration {0, x}, which has bidegree (d− 1, 2).

Proposition 3.3. — The class τ2 ∈ H2(d−1)(C4(Rd);Q) is zero, τ and [1] commute,
and the induced map

φ :

{
Q[[1]] d odd

Q[[1], τ ]/(τ2) d even
−→ H∗(C(Rd)) = D

is an isomorphism.
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Proof. — The scanning map in this case is

S : Cn(Rd) −→ ΩdnS
d.

By a theorem of Serre, ΩdnS
d has trivial rational homotopy groups if d is odd, so also

has trivial rational homology, and has a single nontrivial rational homotopy group
πd−1(ΩdnS

d) ⊗ Q ∼= Q if d is even. It is a simple calculation that in this case it also
has a single nontrivial rational homology group in degree (d−1), and we claim that as
long as n ≥ 2 the class S∗(τ · [n− 2]) is a generator. By the homotopy commutativity
of the diagram

C2(Rd) S //

s◦n−2
E
��

Ωd2S
d

−·S([n−2])'
��

Cn(Rd) S // ΩdnS
d,

and the injectivity of S∗, it suffices to prove that τ ∈ Hd−1(C2(Rd);Q) is nontrivial.
But C2(Rd) is homeomorphic to RPd−1, an orientable manifold, and the map (3.1)
has degree ±2, so τ is nothing but (±) twice the fundamental class of RPd−1, hence
nontrivial. (For d odd, Hd−1(RPd−1;Q) = 0 so the class τ is zero.)

It is clear that τ and [1] commute, by geometric considerations (the multiplication
on C(Rd) extends to an Ed-algebra structure). The class S∗(τ2) lies in a group
which is zero (as Ωd4S

d has trivial rational homology in degree 2(d− 1), by the above
discussion), and S∗ is injective so τ2 = 0 and we obtain an induced map φ as in the
statement of the proposition.

This map is clearly an isomorphism in multiplicity grading 0 or 1, and it remains
to show that φn : Q{[n], τ · [n − 2]} → H∗(Cn(Rd);Q) is an isomorphism for n ≥ 2.
But S∗ ◦ φn is an isomorphism, and S∗ is injective, so φn is an isomorphism too, as
required.

It is convenient to note, as we did in the proof, that the class τ is defined for all d,
but is zero if d is odd.

3.2. The cylinder: C((0, 1) × Sd−1). — We perform an analysis similar to the
above. There is a map

(3.2) Sd−1 −→ C1((0, 1)× Sd−1)

sending x to the one-point configuration ( 1
2 , x), and we let ∆ ∈ Hd−1(C1((0, 1) ×

Sd−1);Q) be the image of the fundamental class, so deg(∆) = (d−1, 1). By identifying

Rd with (0, 1)×Dd−1
− , the lower half of the cylinder, we obtain an inclusion

C(Rd) −→ C((0, 1)× Sd−1)

and we write [n] and τ for the images of the elements defined in the previous section.

Proposition 3.4. — In the ring A = H∗(C((0, 1)× Sd−1);Q) the relations

τ is central [1] ·∆ = ∆ · [1]− τ
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hold. The induced map

φ :

{
Q[[1],∆] d odd

Q〈[1], τ,∆〉/(τ2, [[1],∆] = −τ, τcentral) d even
−→ H∗(C((0, 1)×Sd−1);Q) = A

is an isomorphism.

Proof. — First consider the proposed relation [1] ·∆ = ∆ · [1]− τ in Hd−1(C2((0, 1)×
Sd−1);Q). This follows from the homology between the cycles ∆ · [1] − [1] · ∆ and
τ , which may be seen in the following diagram of cycles in the configuration space of
two points on the cylinder.

The fact that τ is central follows from similar geometric considerations (clearly τ and
[1] commute, then one sees from a similar figure that [∆, τ ] is homologous to a cycle
which is supported in a disc, but by the previous section H2(d−1)(C3(Rd);Q) = 0 so
there are no nontrivial homology classes of this dimension supported in a disc).

The target of the scanning map in this case is map∂n([0, 1] × Sd−1, Sd), the space
of continuous maps f : [0, 1]× Sd−1 → Sd which send {0, 1} × Sd−1 to the basepoint
∗ ∈ Sd, and which have degree n in the sense that the induced map

f∗ : Hd([0, 1]× Sd−1, {0, 1} × Sd−1;Z) −→ Hd(S
d, ∗;Z)

sends the relative fundamental class to n times the fundamental class. The collection
of all these mapping spaces fit into a fibration sequence

(3.3) ΩdSd −→ map∂([0, 1]× Sd−1, Sd)
p−→ ΩSd,

where p restricts a map to the interval [0, 1]×{∗}. By taking the adjoint in the middle
mapping space, we can express it as Ωmap(Sd−1, Sd). This exhibits the fibration
sequence (3.3) as obtained from looping the evaluation fibration

Ωd−1Sd −→ map(Sd−1, Sd) −→ Sd

so it is a principal fibration. Moreover, the evaluation fibration has a section, given
by the inclusion of the constant maps, so after looping it splits as a product: thus
(3.3) is a trivial fibration.

Let us compute the rational homology of the H-space map∂([0, 1]×Sd−1, Sd) with
its Pontrjagin ring structure. Suppose first that d is odd. Then ΩdnS

d has trivial
rational homology, and ΩSd = ΩΣ(Sd−1) so by the Bott–Samelson theorem has ra-

tional Pontrjagin ring the free (non-commutative) algebra on H̃∗(S
d−1;Q), i.e. Q[u]
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where the class u is obtained from the map Sd−1 → ΩSd adjoint to the identity map.
As p∗(S∗(∆)) = u and p and S are H-space maps, it follows that

Q[[1]±1,S∗(∆)] −→ H∗(map∂([0, 1]× Sd−1, Sd);Q)

is an isomorphism of rings.
Suppose now that d is even. We again have that H∗(ΩS

d;Q) ∼= Q[u] as a ring. We
have the path components [n] ∈ H0(map∂([0, 1] × Sd−1, Sd);Q) for n ∈ Z as well as
the classes S∗(∆) and S∗(τ), which we will simply call ∆ and τ again to save space,
and we obtain an induced map

Q〈[1]±1,∆, τ〉/(τ2, [[1],∆] = −τ, τ central) −→ H∗(map∂([0, 1]× Sd−1, Sd);Q).

It follows from the fact that p∗(S∗(∆)) = u and that (3.3) is a fibration sequence
of H-spaces which is trivial as a fibration of spaces (so the homology Serre spectral
sequence is one of rings, in fact even of Hopf algebras c.f. [2, §5]) that this map is
surjective, but by the splitting of (3.3) and counting dimensions it follows that in fact
it is an isomorphism.

From these two calculations it follows that the induced map φ in the statement of
the proposition is injective. To see that it is an isomorphism, note that the cokernel
vanishes after stabilisation by [n] (as φ induces an isomorphism after inverting [1]),
so it is enough to show that if x, of bidegree (k(d− 1),m), is such that

(3.4) x · [n] = A ·∆k · [n+m− k] +B ·∆k−1 · τ · [n+m− k − 1]

for n� 0, then if m− k < 0 then A and B are zero, and if m− k = 0 then B is zero.
We prove this by induction on the multiplicity grading of x: if m = 0 then the class
x is in the homology of C0((0, 1)× Sd−1) = ∗, and the claim follows.

For the induction step, we use a map

t∗ : H∗(Cn((0, 1)× Sd−1);Q) −→ H∗(Cn−1((0, 1)× Sd−1);Q)

constructed as follows. Let π : Cn,1((0, 1) × Sd−1) → Cn((0, 1) × Sd−1) denote the
n-fold covering space whose total space consists of a configuration of n points in
(0, 1)×Sd−1 with one distinguished point, and π forgets which point is distinguished.
There is a map f : Cn,1((0, 1) × Sd−1) → Cn−1((0, 1) × Sd−1) which removes the
distinguished point, and we let t∗ be the composition of the transfer map for the
finite covering π followed by f∗. The construction of t∗ shows that it is a derivation
for the H-space multiplication, and it is easy to compute that

t∗(∆) = 0 t∗(τ) = 0 t∗([1]) = [0].

If m − k < 0 then applying t∗ to (3.4) n times annihilates ∆k · [n + m − k] and
∆k−1 · τ · [n+m− k − 1], and we obtain

n! · x+ y · [1] = 0

for y some expression in iterated applications of t∗ to x. The class y is of bidegree
(k(d − 1),m − 1) and satisfies the analogue of (3.4), so by induction both A and B
are zero, which finishes the proof in this case.

If m− k = 0 then applying t∗ to (3.4) n times gives

n! · x+ y · [1] = A · n! ·∆k
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and substituting back into (3.4) gives y · [n + 1] = −n! · B ·∆k−1 · τ · [n − 1]. But y
has bidegree (k(d− 1),m− 1) so by induction B = 0, which finishes the proof in this
case.

3.3. D as an A-module (d even). — The left A-module structure on D is given
by

[k] • (τ ε · [n]) = τ ε · [n+ k] τ • (τ ε · [n]) = τ ε+1 · [n]

and

∆ • (τ ε · [n]) = n · τ ε+1 · [n− 1].

The first two are clear and the last follows from ∆• [0] = 0 (as C1(Rd) is contractible,
so has trivial homology in degree (d− 1)), ∆ • τ = 0 (as C3(Rd) has trivial homology
in dimension 2(d− 1)), and the commutation relation [∆, [1]] = τ . One verifies that

0 // Σd−1,1A
·∆ // A

[0]7→[0]
// D // 0

is an exact sequence of left A-modules.

3.4. D as an A-module (d odd). — The left A-module structure on D is given
by [k] • [n] = [n+ k] and ∆ • [n] = 0. One verifies that

0 // Σd−1,1A
·∆ // A

[0]7→[0]
// D // 0

is an exact sequence of left A-modules.

4. Configuration spaces of spheres

We apply the spectral sequence (2.1) to M = Sd, for d even. In this case M̊ = Dd

so H∗(C(M̊);Q) = D, but it has a right A-module structure. This is induced from
the left A-module structure by the antiinvolution of A, which in turn is induced by
reflecting the first coordinate of the cylinder around 1

2 . It is easy to see that this
antiinvolution : A→ A is given on generators by

[n] = [n] τ = −τ ∆ = ∆.

Concretely, the right module structure is given by

(−) • (∆i · τ ε · [n]) := ([n] · (−τ)ε ·∆i) • (−).

We have shown that D has a length 1 resolution by free A-modules, so the complex

Σd−1,1D
−•∆−→ D computes the E2 page of the spectral sequence. This map is given

explicitly by

(τ ε · [n]) 7→ (τ ε · [n]) •∆ = ∆ • (τ ε · [n]) = n · τ ε+1 · [n− 1],

so is as shown in Figure 1.
By inspection there can be no further differentials in the spectral sequence, and we
immediately see the correct rational homology for C0(Sd) = ∗, C1(Sd) = Sd, and
C2(Sd) ' RP d, and also deduce that for all n ≥ 3, Cn(Sd) has the rational homology
of S2d−1.
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Figure 1. A complex computing the E2 page of the spectral sequence
for d even, with multiplicity grading along the horizontal axis, and Tor
grading along the vertical axis. The homological grading is not shown.

The analysis for d odd is the same, but a little easier as the element τ does not
appear.

5. Final remarks

The reader will realise that the multiplicative decomposition technique described
in Section 2 admits many variations. Let us describe one, which leads to what appears
to be a difficult calculation in homological algebra. For the manifold M = S1×Sd−1

we may let

Bn :=

{
(p0, . . . , pn; c) ∈ (S1)n+1 × C(M)

∣∣∣∣ pi distinct, cyclically ordered
c ∩ {pi} × Sd−1 = ∅

}
and as in Section 2 we may show that the augmentation |B•| → C(M) is a homotopy
equivalence. Following the proof of Proposition 2.2, we find that the E1 page of
the resulting spectral sequence is now the cyclic bar complex for the algebra A =
H∗(C((0, 1)× Sd−1);F), so we have a spectral sequence

E2
s,∗ = HHs(A,A) =⇒ H∗(C(S1 × Sd−1);F).

starting with the Hochschild homology of the algebra A with coefficients in itself. For
F = Q, one ought to be able to use the calculation in Section 3.2 of the algebra A to
study this spectral sequence, but the homological algebra seems to be a lot harder.
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