THE COMPLEX OF INJECTIVE WORDS IS HIGHLY CONNECTED

OSCAR RANDAL-WILLIAMS

Let S be a finite set. The complex of injective words $X(S)$ • is the semi-simplicial set

$$
X(S)_{p}:=\operatorname{Inj}([p], S),
$$

in which the (semi-)simplicial structure maps are given by precomposition. We think of elements of $X(S)_{p}$ as being words of length $(p+1)$ in the alphabet S, in which each letter occurs at most once.

The geometric realisation $\left|X(S)_{\bullet}\right|$ clearly has dimension $(|S|-1)$. It has been shown by F. D. Farmer that $|X(S) \bullet|$ is in fact $(|S|-2)$-connected, so that it is in fact a (finite) wedge of $(|S|-1)$-spheres. This note gives what must surely be a geodesic proof of the easier fact that

Theorem 1. The space $\left|X(S)_{\bullet}\right|$ has trivial homology in degrees $0<* \leq \frac{|S|-1}{2}$.
This worse range is sufficient to prove homological stability for symmetric groups with the optimum range.

Proof. The claim holds trivially for $|S| \leq 2$ and can be shown by hand for $|S|=3$, so let $|S| \geq 4$. Let $X:=|X(S) \bullet|$, and for each $\alpha \in S$ let $X_{\alpha}:=|X(S \backslash \alpha) \bullet| \subset X$ be the sub-CW-complex of those injective words which do not use the letter α. The map

$$
Y:=\bigcup_{\alpha \in S} X_{\alpha} \hookrightarrow X
$$

is the inclusion of the $(|S|-2)$-skeleton (every word of length strictly less than $|S|$ misses some letter), so induces a surjection on homology in degrees $* \leq|S|-2$.

Apply the Mayer-Vietoris spectral sequence to the cover of Y by the X_{α} (these are not open, but are sub-CW-complexes so we are safe), giving

$$
E_{p, q}^{1}=\bigoplus_{\left\{\alpha_{0}, \alpha_{1}, \ldots, \alpha_{p}\right\} \subset S} H_{q}\left(X_{\alpha_{0}} \cap X_{\alpha_{1}} \cap \cdots \cap X_{\alpha_{p}}\right) \Longrightarrow H_{p+q}(Y) .
$$

Note that $X_{\alpha_{0}} \cap X_{\alpha_{1}} \cap \cdots \cap X_{\alpha_{p}}=\left|X\left(S \backslash\left\{\alpha_{0}, \alpha_{1}, \ldots, \alpha_{p}\right\}\right) \bullet\right|$, which we may suppose by induction to have trivial homology in degrees $0<* \leq \frac{|S|-p-2}{2}$. Thus $E_{p, q}^{1}=0$ for $0<q \leq \frac{|S|-p-2}{2}$. Furthermore, we recognise the row ($E_{*, 0}^{1}, d^{1}$) as the simplicial chain complex of the boundary of the simplex on the set of vertices S, so it just has homology \mathbb{Z} in degrees 0 and $(|S|-2)$. Now $\frac{|S|-1}{2}<|S|-2$ by our assumption that $|S| \geq 4$, so $E_{p, q}^{2}=0$ for $p \geq 1$ and $p+q \leq \frac{|S|-1}{2}$.

It follows that the edge homomorphism $\bigoplus_{\alpha \in S} H_{*}\left(X_{\alpha}\right) \rightarrow H_{*}(Y)$ is onto in degrees $0 \leq * \leq \frac{|S|-1}{2}$. However the inclusion $X_{\alpha} \hookrightarrow X$ is nullhomotopic: adding the letter α last gives a semi-simplicial contraction. Thus $H_{*}(Y) \rightarrow H_{*}(X)$ is zero for $0<* \leq \frac{|S|-1}{2}$, but is also surjective for $* \leq|S|-2$. As the former range is included in the latter as long as $|S| \geq 3$, it follows that X has the claimed vanishing of its homology.

Email address: o.randal-williams@dpmms.cam.ac.uk
Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB3 0WB, UK

