MILLER-MORITA-MUMFORD CLASSES VANISH ON THE MODULI SPACE OF HYPERSURFACES

OSCAR RANDAL-WILLIAMS

The following is now redundant in view of the work of Aumonier [Aum23], especially Section 8.2 of that paper. Namely, he shows that the universal family of smooth hypersurfaces admits a particular tangential structure, from which it is easy to see that all Miller–Morita–Mumford classes vanish.

Let us write

$$U_d^n \subset H^0(\mathbb{CP}^{n+1}; \mathcal{O}(d))$$

for the open subset of those homogeneous polynomials of degree d which define a smooth hypersurface. The group $GL_{n+1}(\mathbb{C})$ acts on the space of such polynomials and hence on U_d^n , and this action has finite stabilisers. We let

$$M_d^n := U_d^n /\!\!/ GL_{n+1}(\mathbb{C})$$

denote the orbifold, or stack, quotient of this action. This is the moduli space of degree d hypersurfaces of dimension n. Tommasi [Tom14] has proved the following surprising vanishing result.

Theorem 0.1 (Tommasi). $H^i(M^n_d; \mathbb{Q}) = 0$ for $0 < i < \frac{d+1}{2}$ and $d \ge 3$.

The space

$$\bar{U}_d^n := \{ (f, x) \in U_d^n \times \mathbb{CP}^{n+1} \, | \, f(x) = 0 \}.$$

has a forgetful map $p: \overline{U}_d^n \to U_d^n$, which is a smooth fibre bundle with fibre over $f \in U_d^n$ given by the projective hypersurface defined by f. The map p is $GL_{n+1}(\mathbb{C})$ -equivariant and descends to a morphism

$$\pi : E_d^n := U_d^n / \!\!/ GL_{n+1}(\mathbb{C}) \longrightarrow M_d^n$$

which is the universal family of degree d hypersurfaces of dimension n. This is equipped with a vertical tangent bundle $T_v E_d^n \to E_d^n$, a complex vector bundle of dimension n, and for any monomial c_I in Chern classes we can therefore define, by analogy with the classical Miller–Morita–Mumford classes,

$$\kappa_I := \int_{\pi} c_I(T_v E_d^n) \in H^{|c_I| - 2n}(M_d^n; \mathbb{Q}).$$

Our goal is to show that all such classes of non-zero degree vanish.

Theorem 0.2. If $|c_I| - 2n > 0$ then $\kappa_I = 0 \in H^{|c_I| - 2n}(M_d^n; \mathbb{Q})$.

- (i) If $|c_I| = 2n$ then κ_I is just a scalar and is simply the corresponding Chern number of the degree d hypersurface, which need not vanish.
- (ii) If $|c_I| 2n < \frac{d+1}{2}$ then Tommasi's theorem means that the relevant cohomology group vanishes: the point of our result is that the κ_I vanish universally.
- (iii) It is more usual to consider the Miller–Morita–Mumford classes associated to polynomials in the Euler class e and Pontrjagin classes $p_1, p_2, \ldots, p_{n-1}$ of the underlying oriented real vector bundle of $T_v E_d^n$. However, these may be expressed as certain polynomials in the Chern classes, so the Miller–Morita– Mumford classes $\kappa_{e^i p_I}$ also vanish.

OSCAR RANDAL-WILLIAMS

(iv) If V_d^6 is the underlying smooth manifold of a degree d projective hypersurface of complex dimension 3, then in [GRW18, Section 5.3] Galatius and I have computed the cohomology of $BDiff^+(V_d^6)$ in degrees $* \leq \frac{d^4 - 5d^3 + 10d^2 - 10d + 4}{4}$, where it is highly non-trivial and for example contains the polynomial algebra on the classes κ_c with $c \in \mathbb{Q}[e, p_1, p_2]$ of degree > 6. Thus the map

$$M_d^3 \longrightarrow BDiff^+(V_d^6)$$

recording the underlying smooth structure is highly trivial on cohomology. Analogous conclusions can be made for all $2n \ge 6$.

Proof. The stack M_d^n carries a (n+1)-dimensional complex vector bundle $V \to M_d^n$, which is equipped with a section s of $\mathcal{O}(d) \to \mathbb{P}(V)$ defining a smooth hypersurface in each fibre. The zero locus $s^{-1}(0) \subset \mathbb{P}(V)$ is identified with E_d^n , and we write $i : E_d^n \to \mathbb{P}(V)$ for the inclusion. We write $p : \mathbb{P}(V) \to M_d^n$ and $\pi : E_d^n \to M_d^n$ for the bundle projections.

The usual description of the (stable) tangent bundle of a hypersurface extends to families as

$$T_v E_d^n \oplus i^* \mathcal{O}(d) \cong i^* T_v \mathbb{P}(V)$$

The usual description of the (stable) tangent bundle of a projective space extends to families as

$$T_v \mathbb{P}(V) \oplus \mathbb{C} = p^*(V) \otimes \mathcal{O}(1).$$

Writing $x := c_1(\mathcal{O}(1)) \in H^2(\mathbb{P}(V); \mathbb{Q})$, we have

$$c(T_vH) = i^* \left(\frac{c(p^*(V) \otimes \mathcal{O}(1))}{1 + dx}\right).$$

Now $c(p^*(V) \otimes \mathcal{O}(1))$ is some polynomial in x and $p^*c_1(V), p^*c_2(V), \ldots, p^*c_{n+1}(V)$, and so each $c_j(T_v E_d^n)$ is a polynomial in i^*x and $\pi^*c_1(V), \pi^*c_2(V), \ldots, \pi^*c_{n+1}(V)$. Thus, by the projection formula, each κ_I is a polynomial in $c_1(V), c_2(V), \ldots, c_{n+1}(V)$ and the classes $\delta_j := \pi_!(i^*(x^j))$. We may compute the pushforward for the map

$$\pi: E_d^n \xrightarrow{i} \mathbb{P}(V) \xrightarrow{p} M_d^n$$

in two steps, giving

$$b_j = \pi_!(i^*(x^j)) = p_!i_!(i^*(x^j)) = p_!(i_!(1) \smile x^j).$$

Now $i_!(1)$ is the Poincaré dual of $i(E_d^n) \subset \mathbb{P}(V)$, so is $e(\mathcal{O}(d)) = c_1(\mathcal{O}(d)) = d \cdot x$, and so

$$\delta_j = d \cdot p_!(x^{j+1}).$$

But by the identity $0 = \sum_{i=0}^{n+1} p^* c_i(V) x^{n+1-i} \in H^*(\mathbb{P}(V); \mathbb{Q})$ one can write x^{j+1} as a linear combination of $1, x, x^2, \ldots, x^n$ with coefficients given by polynomials in $p^* c_1(V), p^* c_2(V), \ldots, p^* c_{n+1}(V)$. Then, using the projection formula and the fact that $p_!(x^n) = 1$, we see that each δ_j is also a polynomial in $c_1(V), c_2(V), \ldots, c_{n+1}(V)$.

The conclusion of the above discussion is that each $\kappa_I(\pi)$ may be expressed as a polynomial in the classes $c_1(V), c_2(V), \ldots, c_{n+1}(V)$.

Now we use the theorem of Peters and Steenbrink [PS03, Theorem 1], that the Leray spectral sequence for the quotient map

$$U_d^n \longrightarrow M_d^n = U_d^n /\!\!/ GL_{n+1}(\mathbb{C})$$

in \mathbb{Q} -cohomology degenerates at E_2 . In particular this map is injective in \mathbb{Q} cohomology, and so the associated map

$$M_d^n = U_d^n /\!\!/ GL_{n+1}(\mathbb{C}) \longrightarrow * /\!\!/ GL_{n+1}(\mathbb{C}) = BGL_{n+1}(\mathbb{C})$$

is trivial in \mathbb{Q} -cohomology in positive degrees. This is the map which classifies the vector bundle V, meaning that $c_i(V) = 0 \in H^{2i}(M_d^n; \mathbb{Q})$ for all i > 0. As the Miller-Morita-Mumford classes are polynomials in these, they vanish as claimed. \Box

 $\mathbf{2}$

References

- [Aum23] A. Aumonier, Scanning the moduli of smooth hypersurfaces, arXiv:2311.07560, 2023.
- [GRW18] S. Galatius and O. Randal-Williams, *Moduli spaces of manifolds: a user's guide*, 2018, arXiv:1811.08151, to appear in the Handbook of Homotopy Theory.
- [PS03] C. A. M. Peters and J. H. M. Steenbrink, Degeneration of the Leray spectral sequence for certain geometric quotients, Mosc. Math. J. 3 (2003), no. 3, 1085–1095, 1201.
- [Tom14] O. Tommasi, Stable cohomology of spaces of non-singular hypersurfaces, Adv. Math. 265 (2014), 428–440.

 $Email \ address: \verb"o.randal-williams@dpmms.cam.ac.uk"$

Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB3 0WB, UK $\,$