
CORRIGENDUM TO:

CONFIGURATION SPACES AS COMMUTATIVE MONOIDS

SAMUEL A. MOORE AND OSCAR RANDAL-WILLIAMS

Abstract. We correct the statement of Theorem 1.2 and its proof. In full
generality that theorem is only valid rationally, but in some key cases the

integral statement is still valid.

1. The issue

We refer throughout to the paper [RW24]. The first named author has observed
that the statement of Theorem 1.2 cannot possibly be true, by direct calculation
with Fp-homology:

Counterexample. Let M = {pt.} be the 1-point manifold, π : L → M be the
trivial rank d vector bundle with d ≥ 3 odd, and p be an odd prime. Writing
Symk

∗(−) = (−)∧k
Sk

for the symmetric powers in based spaces, and using that p

is odd, one sees that (L ⊕ L)+S2
= Sym2

∗(S
d) has trivial reduced Fp-homology.

The reduced homology of a based symmetric power depends only on the reduced
homology of the input, by a theorem of Dold [Dol58, Theorem 7.2], so it follows

that Symk
∗([(L⊕L)+]S2

) also has trivial Fp-homology for each k > 0, and therefore
the map ϵ : Com([(L⊕ L)+]S2

[2]) → S0[0] is a Fp-homology isomorphism. If the
square in [RW24, Theorem 1.2] were a homotopy pushout of commutative monoids,
then it would follow that the map Com(L+[1]) → C({pt.};L) is a Fp-homology
isomorphism too. But in grading p this map is Symp

∗(S
d) → {pt.}, which is not a

Fp-homology isomorphism by e.g. [Nak61, Theorem 6.7]. □

The error is the claim in the proof of Lemma 3.2 that the first displayed square is
a pushout in TopN∗ . This claim is true when π : L → M is the trivial rank 0 vector
bundle, which is the case corresponding to Theorem 1.1: hence Theorem 1.1 seems
to be correct as stated. But it is not true when the bundle π : L → M has strictly
positive rank. (A further error is that S is not a subobject of R in this case.) The
same issue arises in the setting treated in Appendix A; we comment on it later.

2. The correction

We will explain how to modify the argument to prove the following variant of
(the incorrect) Theorem 1.2.

Theorem 1.2′. There is a pushout square

Com([(L⊕ L)+]S2 [2]) S0[0]

Com(L+[1]) C(M ;L)

ϵ

∆

of unital commutative monoids in TopN∗ , where ϵ is the augmentation and ∆ is
induced by the diagonal inclusion [(L⊕ L)+]S2

→ [L+ ∧ L+]S2
= Com(L+[1])(2).

The induced map from the homotopy pushout of commutative monoids

Com(L+[1])⊗L
Com([(L⊕L)+]S2

[2]) S
0[0] −→ C(M ;L)

1
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is a rational homology equivalence, and is an integral homology equivalence if L has
rank at most 1.

The applications discussed in Section 2 of the published paper are all in rational
(co)homology, and so follow from Theorem 1.2′ with no changes required. Taking L
of rank (at most) 1 allows one to treat all M ’s except those which are non-orientable
and even-dimensional, so even integrally most cases of interest are covered.

3. Proof of Theorem 1.2′

Let us first comment on how it can be that the first displayed square in the
proof of Lemma 3.2 is a pushout in TopN∗ when L → M is the trivial rank 0 vector
bundle, but not more generally. For a vector bundle L → M , we think of elements
of Com(L+[1]) as (the point at ∞ together with) unordered configurations of points
in M , possibly with repeats, where a point at location m ∈ M is equipped with a
label in the fibre Lm. When L has rank 0, so the label data is trivial, every element
can be canonically written as µ + 2λ, where the unordered tuple µ of points in
M has no repeats. But when the rank of L is positive this is no longer possible:
although the underlying points in M can be canonically partitioned in this way, if
there is an odd number of labels at the same point of M then there is no way to
decide which of these labels should be attributed to µ and which to 2λ.

We can define a variant R′ of R = Com(L+[1]) that precisely solves this problem:
it consists of (the point at ∞ together with) unordered configurations of points in
M , possibly with repeats, where a point at location m ∈ M is equipped with a label
ℓ in the fibre Lm, and where whenever there is an odd number of labels at the same
location in M then one of them is selected. This is again a commutative monoid
by superposition, where we ‘deselect’ points when necessary; we then let S′ ⊆ R′

be the submonoid consisting of those tuples where each point in M carries an even
number of labels. We topologise R′(n) as the one-point compactification of a space
R′

o(n) given as the set described above, and with the quotient topology induced by
the surjective map

Φ : Ln −→ R′
o(n)

which sends (ℓ1, . . . , ℓn) to the unordered collection of these points where whenever
there is an odd number of ℓi’s lying over the same point of M , then the one with the
smallest index i is the selected one. There is a filtration {FpR

′}p by the subspaces
FpR

′(n) ⊂ R′(n) where there are ≤ p selected points (i.e. ≤ p points in M carry an
odd number of labels), and S′ = F0R

′. The unordered configuration space Cn(M ;L)
is homeomorphic to the subspace of R′

o(n) consisting of those configurations where
each point of M carries ≤ 1 label (which will necessarily be selected).

Lemma 3.2 is then replaced by the following.

Lemma 3.2′. R′ is a flat S′-module, in the sense that R′ ⊗S′ − preserves weak
equivalences between left S′-modules whose underlying objects are well-based.

Proof. By the proof of Lemma 3.2 it suffices to show that for each p ≥ 1 the square

Fp−1R
′(p)[p]⊗ S′ Fp−1R

′

R′(p)[p]⊗ S′ FpR
′

is a pushout in TopN∗ . This can be checked in each grading n.
We first claim that Fp−1R(n) and the image of (R′(p)[p] ⊗ S′)(n) = R′(p) ∧

S′(n− p) cover FpR
′(n), i.e. that configurations having exactly p selected points

come from R′(p) ∧ S′(n− p). This is because such configurations can be written
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as the superposition of p points which are all selected (coming from R′(p)) with a
configuration having an even number of labels at each point of M (coming from
S(n− p)). We then claim that the preimage of Fp−1R

′(n) in R′(p) ∧ S′(n− p) is
Fp−1R

′(p) ∧ S′(n− p). This is because superposition with a configuration which
has an even number of labels at each point does not affect the collection of points
having an odd number of labels. This proves that the square is a pushout of sets,
i.e. the map from the pushout to FpR

′(n) is a continuous bijection. As the spaces
involved are compact Hausdorff, it is a homeomorphism. □

Applying R′ ⊗S′ − to the weak equivalence B(S′,S′, S0[0])
≃−→ S0[0], it follows

that the map

B(R′,S′, S0[0]) −→ R′ ⊗S′ S0[0]

is an equivalence. The right-hand term is C(M ;L), just as in Lemma 3.4, as
tensoring over S′ with S0[0] identifies all configurations on R′ having ≥ 2 labels over
some point of M with the basepoint. To finish the argument, we will show that:

Proposition 3.6′. The natural surjective maps

Com((L⊕ L)+]S2 [2]) −→ S′

R′ −→ Com(L+[1])

are rational homology equivalences, and are integral homology equivalences if L has
rank at most 1.

This gives a zig-zag of maps

B(R′,Com((L⊕ L)+]S2 [2]), S
0[0) B(R′,S′, S0[0])

B(Com(L+[1]),Com((L⊕ L)+]S2
[2]), S0[0])

which are rational—or integral if L has rank at most 1—homology equivalences
and so establishes Theorem 1.2′. The proof of Proposition 3.6′ uses the following
elementary lemma about pointed symmetric powers.

Lemma 3.7′. The natural maps

Symj
∗(Sym

2
∗(S

d)) → Sym2j
∗ (Sd), and Sd ∧ Symm−1

∗ (Sd) → Symm
∗ (Sd) with m ̸= 2,

are rational homology equivalences, and are integral homology equivalences if d = 1.

Proof. For a pointed space X there are canonical isomorphisms

H̃∗(Sym
k
∗(X);Q) ∼= Symk(H̃∗(X;Q)).

If d is odd this shows that Symk
∗(S

d) has trivial rational homology for all k ≥ 2;

if d is even then it shows that the natural quotient map (Sd)∧k → Symk
∗(S

d) is a
rational homology isomorphism. This proves the lemma in either case.

If d = 1 then Symk
∗(S

1) is contractible for all k ≥ 2. This follows by recognising

it as the 1-point compactification of Symk(R), then using that points in R are

canonically ordered to obtain a homeomorphism Symk(R) ∼= R× [0,∞)k−1, whose
1-point compactification is S1 ∧ [0,∞]∧k−1 ≃ ∗. Using this we see that the source
and target of all maps in question are contractible, except in the case m = 1, where
the map in question is the identity map of S1. □

Proof of Proposition 3.6′. Throughout, we take cohomology with rational or integral
coefficients as the case may be. The source and target (with the points at∞ removed)
of each map admit filtrations F ′

k by closed subspaces by asking that there be ≤ k
distinct points in M which carry labels; the maps respect these filtrations. Let
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Sk(−) denote the kth strata of these filtrations, i.e. the loci where there are precisely
k points in M with labels. It suffices to show that the induced maps on strata
induce isomorphisms on compactly-supported cohomology; the map of spectral
sequences in compactly supported cohomology for these filtrations then gives the
desired conclusion.

The source and target of

(3.1) SkCom((L⊕ L)+]S2
[2])(n) −→ SkS

′(n)

fibre over the unordered configuration space Ck(M) by recording the underlying
points in M . On fibres over {m1, . . . ,mk} ∈ Ck(M), this map takes the form∐

n=2n1+···+2nk

k∏
i=1

Symni(Sym2(Lmi
)) −→

∐
n=2n1+···+2nk

k∏
i=1

Sym2ni(Lmi
),

This induces an isomorphism on compactly-supported cohomology by Lemma 3.7′.
The Leray–Serre spectral sequence in compactly-supported cohomology then implies
that (3.1) is an isomorphism on compactly-supported cohomology, as required.

The source and target of

(3.2) SkR
′ −→ SkCom(L+[1])

similarly fibre over Ck(M), and on fibres over {m1, . . . ,mk} ∈ Ck(M), this map is∐
n=n1+···+nk

k∏
i=1

S̃ym
ni

(Lmi
) −→

∐
n=n1+···+nk

k∏
i=1

Symni(Lmi
)

where

S̃ym
m
(V ) :=

{
Symm(V ) m even

V × Symm−1(V ) m odd.

This again induces an isomorphism on compactly-supported cohomology by Lemma
3.7′. The Leray–Serre spectral sequence in compactly-supported cohomology then
implies that (3.2) is an isomorphism on compactly-supported cohomology, as required.

□

Remark 3.1. The integral result in Theorem 1.2′ is sharp in that the analogue for
rank(L) = 2 does not hold. For example, suppose the conclusion of that Theorem
holds for M = R2 with the trivial rank 2 vector bundle L → M . Fix an odd prime
p and take Fp coefficients in the following.

One computes that H̃∗([(L ⊕ L)+]S2
) = Σ6Fp and H̃∗(L

+) = Σ4Fp; the latter

implies that H̃∗(Sym
2
∗(L

+)) ≃ Σ8Fp since 2 ∈ F×
p . The map C̃∗([(L⊕ L)+]S2) →

C̃∗(Sym
2
∗(L

+)) therefore factors (up to homotopy) through 0. Following Dold [Dol58,

Section 7], we may identify C̃∗(Com(L+[1])) with the free simplicial commutative

Fp-algebra LSym∗(C̃∗(L
+)[1]), and hence see that the induced map C̃∗(R) → C̃∗(S)

factors (up to homotopy of maps of simplicial commutative Fp-algebras) through
Fp = LSym∗(0). It follows that we may write

C̃∗(C(M ;L);Fp) ≃ (Fp ⊗L
LSym∗(Σ6Fp[2])

Fp)⊗Fp
LSym∗(Σ4Fp[1]),

where we have implicitly chosen formality equivalences for the chains. In particular,

LSym∗(Σ4Fp[1]) is a homotopy retract of C̃∗(C(M ;L);Fp). But one computes that
H2p+2(LSymp(Σ4Fp)) ̸= 0 (for example by considering the homology of Symp

∗(S
4)

[Nak61, Theorem 6.7], or applying [Bou, Theorem 8.11]), so also

H2p−2(Cp(R2);Fp) ≃ H2p+2(Cp(R2;L)+;Fp) ̸= 0,

where the first equivalence is an application of Poincaré duality (as in [RW24, §2.1]).
This contradicts the theorem of Arnol’d that Hi(Cn(R2);Z) = 0 for i ≥ n [Arn70].
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4. Analogous corrections to Appendix A

The same oversight arises in the claimed equivalence (A.2). Again, it is still true
rationally and is true integrally if L has rank 0 (and if L has rank 1 and m = 1, as
we will see below). If L has rank d > 0 then one should instead make a variant R′

of the Nm-graded topological monoid R := Com(
∨m

i=1 L
+[1i]). To do so, say that

a collection of coloured labels in Lm is k-uniform if there is an ℓ such that there
are precisely k · ℓ labels of each colour. (This generalises having an even number of
labels over each point.) Define R′ to be (the point at ∞ together with) unordered
configurations of points in M , possibly with repeats, where each point is equipped
with one of m colours as well as a label in the fibre of L → M over it, and where
a subset of the labels is selected, such that for each point of M there is a colour
having < k selected labels, and the non-selected labels over each point of M are
k-uniform. (This somewhat complicated formulation is just the analogue of what
we did previously.) There is a filtration FpR

′ by those configurations having ≤ p
points with selected labels, and one sets S′ := F0R

′ and shows that R′ is a flat left
S′-module just as in Lemma 3.2′. We deduce that

B(R′,S′, S0[0, . . . , 0]) −→ R′ ⊗S′ S0[0, . . . , 0] = Zm,k(M ;L)

is an equivalence. This is the correct integral version of (A.2).
To deduce something closer to (A.2) itself we use the natural surjections

Com([(L⊕mk)+]Sk
m
[k, . . . , k]) −→ S′

R′ −→ Com(

m∨
i=1

L+[1i])

which the argument of Proposition 3.6′ shows are rational homology equivalences,
using that the natural maps

Symℓ
∗(Sym

k
∗((S

d)∧m)) → Symℓk
∗ ((Sd)∧m)), and Symi

∗(S
d)∧Symℓk

∗ (Sd) → Symi+ℓk
∗ (Sd)

are rational homology equivalences for 0 ≤ i < k. (They are also integral homology
equivalences if d = 0 or if d = 1 and m = 1 as in Lemma 3.7′.) This shows that
(A.2) is a rational homology equivalence, and an integral homology equivalence if L
has rank 0, or has rank 1 and m = 1.

The applications discussed in Section A.2 are in rational homology, so are un-
changed; the applications discussed in Section A.3 treat the case L has rank 0, so
are unchanged.
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