ALGEBRAIC TOPOLOGY (PART III)

EXAMPLE SHEET 2

PART A

- 1. (*Reduced homology*) Let X be a space, and recall that $C_0(X) = \langle e_x | x \in X \rangle$. Define a homomorphism $\phi : C_0(X) \to \mathbb{Z}$ by setting $\phi(e_x) = 1$ and extending linearly. Show that ϕ descends to a well-defined map $\phi_* : H_0(X) \to \mathbb{Z}$. The *reduced homology* $\widetilde{H}_n(X)$ is defined to be $H_n(X)$ for n > 0 and ker ϕ_* for n = 0. Show that $\widetilde{H}_*(X) \simeq H_*(X, x)$ for any $x \in X$.
- 2. If X is a space, the cone on X is defined to be $CX = X \times [0,1]/(X \times 1)$. If $f: X \to Y$ is a map, the mapping cone of f is $C(f) = Y \cup_F CX$, where $F: X \times 0 \to Y$ is given by F(x,0) = f(x).
 - (a) Suppose $A \subset X$, and let $\iota : A \to X$ be the injection. Show that $\widetilde{H}_*(C(\iota)) \simeq H_*(X, A)$.
 - (b) The suspension of X is defined to be $\Sigma X = CX/(X \times 0)$. Show that $H_*(\Sigma X) \cong H_{*-1}(X)$.
- 3. Consider the cell structure on S^n which has two cells of each dimension between 0 and n, corresponding to the northern and southern hemispheres of S^k . Write out its cellular chain complex and verify that it has the correct homology. What does this have to do with \mathbb{RP}^n ?
- 4. Suppose G_n (n > 0) is a finitely generated abelian group, and that all but finitely many G_n are 0. Construct a finite cell complex X with $H_n(X) \simeq G_n$ for all n > 0.
- 5. Recall that $A \in GL_2(\mathbb{Z})$ defines a map $A : T^2 \to T^2$. Let X_A be the space obtained by starting with $X \times [0,1]$ and identifying (x,0) with (A(x),1). Compute $H_*(X_A)$ for $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ and $A = \begin{pmatrix} 1 & 2 \\ 3 & 5 \end{pmatrix}$.
- 6. Show there is a connected closed 4-manifold with Euler characteristic n for all $n \in \mathbb{Z}$. Is analogous statement for 2-manifolds true?
- 7. Show that $H^1(X)$ is free for any space X.
- 8. Define a natural map $H^n(X;G) \to Hom(H_n(X;G),G)$, and show that if G is a field this map is an isomorphism. For $G = \mathbb{Z}$, give an example where it is not.

PART B

1. (*The Puppe sequence*) Suppose $A \subset X$ and that $i : A \to X$ is the inclusion. Show that there is a sequence of maps

$$A \xrightarrow{i} X \xrightarrow{j} C(i) \xrightarrow{\delta} \Sigma A \xrightarrow{\Sigma(i)} \Sigma X \xrightarrow{\Sigma(j)} C(\Sigma(i)) \to \dots$$

such that if we apply H_n to this sequence, we get the long exact sequence of the pair (X, A). What is δ ? From this, deduce that the boundary map in the long exact sequence is *natural*, in the sense that if $f: (X, A) \to (Y, B)$, there is an induced map of long exact sequences so that all squares commute.

- 2. Let $X = S^1 \vee S^2$. Give an example of a map $f : X \to X$ which is not homotopic to the identity on X, but for which $f_* = 1_{H_*(X)}$. (Hint: lift the map of S^2 to the universal cover.) Is C(f) contractible?
- 3. Suppose $x \in H_n(X)$, where X is an arbitrary topological space. Show that there is a finite cell complex A and a map $f: A \to X$ so that $x \in \text{im } f_*$.
- 4. Let $R = \mathbb{C}[x]/(x^3)$, and for i = 1, 2, let M_i be the *R*-module $\mathbb{C}[x]/(x^i)$. Find a free resolution of M_1 and use it to compute $\operatorname{Tor}^R_*(M_1, M_1)$ and $\operatorname{Tor}^R_*(M_1, M_2)$.
- 5. Suppose X is a finite cell complex, and that $p: \tilde{X} \to X$ is the universal covering map. Let $G = \pi_1(X)$, so that G acts on \tilde{X} as the group of deck transformations.
 - (a) If we give \tilde{X} the cell structure lifted from X, show that $C^{cell}_*(\tilde{X})$ can be viewed as a chain complex over the group ring $R = \mathbb{Z}[G]$.
 - (b) If $X = T^2$, describe $C^{cell}_*(\tilde{X})$ as a complex over the group ring $\mathbb{Z}[\mathbb{Z}^2] \simeq \mathbb{Z}[t^{\pm 1}, s^{\pm 1}]$.
 - (c) Suppose that \tilde{X} is contractible, and that $\pi : X' \to X$ is a normal covering map with deck group K. Show that $H_*(X) = \operatorname{Tor}^R_*(\mathbb{Z}, \mathbb{Z}[K])$. (First decide how R acts on \mathbb{Z} and $\mathbb{Z}[K]$.)
- 6. With notation as in the previous problem, suppose that H is an abelian group, and that $\phi: G \to Aut(H)$ is a homomorphism. Explain how ϕ can be used to make H into a module over R. The homology of the chain complex $C_*(\tilde{X}) \otimes_R G$ is called the homology of X with coefficients twisted by ϕ (written $H_*(X;\phi)$).
 - (a) Let $H = \mathbb{C}$. What are the possible values of $H_*(T^2; \phi)$ as ϕ varies over homomorphisms $\pi_1(T^2) \to \mathbb{C}^*$?
 - (b) Suppose $f : X \to X$ is a homeomorphism, and let $Y = X \times [0,1]/\sim$, where $(x,1) \sim (f(x),0)$. Show that $H_*(Y) \simeq H_*(S^1;\phi)$, where $\phi : \mathbb{Z} \to Aut(H_*(X))$ is defined by $\phi(1) = f_*$.

J.Rasmussen@dpmms.cam.ac.uk