The Proof of the Subdivision Lemma

Recall that if $\mathcal{U} = \{U_{\alpha}\}$ is a open cover of X, $C^{\mathcal{U}}_{*}(X) = \langle \sigma | \text{ im } \sigma \subset U_{\alpha} \text{ for some } \alpha \rangle$ is a subcomplex of $C_{*}(X)$. The goal of this note is to prove

Theorem 1 (The Subdivision Lemma). Let \mathcal{U} be an open cover of X. If $i : C^{\mathcal{U}}_*(X) \to C_*(X)$ is the inclusion, the induced map $i_* : H^{\mathcal{U}}_*(X) \to H_*(X)$ is an isomorphism.

The proof of this theorem is similar in structure to the proof that if $f \sim g$, $f_{\#} \sim g_{\#}$. There are five steps:

- Define a chain map $B_n: S_*(\Delta^n) \to C_*(\Delta^n)$. B is called *barycentric subdivision*. It is defined by the requirements that
 - (1) $B_0(f_0) = \mathrm{id}_{\Delta^0}$.
 - (2) If |I| < n, $B_n(f_I) = F_{I\#} \circ B_{|I|}(\mathbf{f}_{|I|})$, where $F_I : \Delta^{|I|} \to \Delta^n$ is the face map.
 - (3) $B_n(\mathbf{f}_n)$ is the cone on $B_n(d(\mathbf{f}_n))$.
- Let $\varphi_n : S_*(\Delta^n) \to C_*(\Delta^n)$ be the map induced by id_{Δ^n} . We show that $B_n \sim \varphi_n$ by a chain homotopy T_n .
- Next, we check that B_n and T_n are *natural* in the sense that if $F_I : \Delta^k \to \Delta^n$ is a face map, then $B_n \circ \phi_I = F_{I\#} \circ B_k$ and $T_n \circ \phi_I = F_{I\#} \circ T_k$.
- We define a map $B : C_*(X) \to C_*(X)$ by $B(\sigma) = \sigma_{\#}(B_n(\mathbf{f}_n))$ for $\sigma : \Delta^n \to X$. Naturality of B_n and T_n implies that B is a chain map and $B \sim \mathrm{id}_{C_*(X)}$.
- Suppose that \mathcal{U} is an open cover of X. If $x \in C_*(X)$, we show there is some r > 0 so that $B^r(x) \in C^{\mathcal{U}}_*(X)$. Using this, we complete the proof.

Preliminaries

We start by fixing some notation. If $I = \{i_0, i_1, \ldots, i_k\} \subset \{0, \ldots, n\}$, we let $|I| = k \pmod{k+1}$, as I used in class!) We define $F_I : \Delta^{|I|} \to \Delta^n$ be the corresponding face map. We have chain maps $\varphi_n : S_*(\Delta^k) \to C_*(\Delta^k)$ given by $\varphi_n(f_I) = F_I$, and $\phi_I : S_*(\Delta^k) \to S_*(\Delta^n)$ given by $\phi_I(f_J) = f_{I \circ J} := f_{i_{j_0} \ldots i_{j_l}}$, where l = |J|. Then we have $F_{I \circ J} = F_I \circ F_J$, which implies $\varphi_n \circ \phi_I = F_{I\#} \circ \varphi_k$. Finally, we define $\mathbf{f}_n := f_{01\ldots n} \in S_n(\Delta^n)$ to be the top dimensional face of Δ^n .

Next we discuss cones.

Definition 2. If X is a space, the cone on X is $CX = X \times [0, 1]/X \times 0$.

A map $f: X \to Y$ induces a map $Cf: CX \to CY$ given by Cf(x,t) = (f(x),t). The cone $C\Delta^{n-1}$ can be identified with Δ^n by the map ψ which sends $((x_0, \ldots, x_{n-1}, t)$ to $(1 - t, tx_0, tx_1, \ldots, tx_{n-1})$. Thus $\sigma: \Delta^{n-1} \to X$ induces a map $c\sigma: \Delta^n \to CX$ given by $c\sigma = C\sigma \circ \psi^{-1}$. Hence we have a map $c: C_*(X) \to C_{*+1}(CX)$ given by $c(\sigma) = c\sigma$. If $i: X \to CX$ is the map given by i(x) = (x, 1), it follows easily from the definition that

$$dc(\sigma) = i_{\#}(\sigma) - c(d\sigma).$$

Let $\pi : C\Delta_n \to \Delta_n$ be the map given by $\pi(\mathbf{v}, t) = t\mathbf{v} + (1-t)\mathbf{b}$, where $\mathbf{b} = \frac{1}{n+1}(1, \ldots, 1)$ is the barycenter of Δ_n , and define $\beta = \pi_{\#} \circ c : C_*(\Delta_n) \to C_{*+1}(\Delta^n)$. Since $\pi \circ i = \mathrm{id}_{\Delta^n}$, we have

$$d\beta(\sigma) = \sigma - \beta(d\sigma).$$

Barycentric Subdivision

We define a chain map $B_n : S_*(\Delta^n) \to C_*(\Delta_n)$ inductively. First, $B_0 : S_0(\Delta^0) \to C_0(\Delta^0)$ is uniquely defined by the requirement that $B_0(f_0) = \mathrm{id}_{\Delta^0}$. In general, if I is a proper subset of $\{0, \ldots, n\}$, we define

$$B_n(f_I) = F_{I\#}(B_{|I|}(\mathbf{f}_{|I|}))$$

Finally, we define

$$B_n(\mathbf{f}_n) = \beta(B_n(d\mathbf{f}_n)) \in C_n(\Delta_n).$$

Observe that all the singular simplices appearing in the image of B_n are given by affine linear maps.

Lemma 3. B_n is a chain map.

Proof. This is proved by induction on n. The case n = 0 is trivial. Given that B_k is a chain map for k < n, it follows from the definition that B_n is a chain map when restricted to $S_*(\Delta^n)$ where * < n. Thus the only thing to check is that $B_n(d\mathbf{f}_n) = dB_n(\mathbf{f}_n)$. We compute

$$dB_n(\mathbf{f}_n) = d\beta(B_n(d\mathbf{f}_n))$$

= $B_n(d\mathbf{f}_n) - \beta(dB_n(d\mathbf{f}_n))$
= $B_n(d\mathbf{f}_n) - \beta(B_n(d^2\mathbf{f}_n))$
= $B_n(d\mathbf{f}_n).$

We have used the fact that the statement holds in gradings < n in passing from the second to the third lines.

The Chain Homotopy

Next, we want to define a chain homotopy $T_n : S_*(\Delta_n) \to C_{*+1}(\Delta^n)$. As with the chain map B_n , we define T_n inductively. First, let T_0 be the zero map. Next, if I is a proper subset of $0, \ldots, n$, define

$$T_n(f_I) = F_{I\#}(T_{|I|}(\mathbf{f}_{|I|})).$$

Finally, we define

$$T_n(\mathbf{f}_n) = \beta(B_n(\mathbf{f}_n) - \varphi_n(\mathbf{f}_n) - T_n(d\mathbf{f}_n))$$

Lemma 4. $dT_n + T_n d = B_n - \varphi_n$.

Proof. This is proved by induction on n. The case n = 0 is easily verified, since $T_0 = 0$ and $B_0 = \varphi_0$. Suppose the result holds for all k < n. As in the case of B_n , we need only verify the identity when both sides are applied to \mathbf{f}_n ; the other cases follow from the induction hypothesis. For \mathbf{f}_n , we compute

$$dT_n(\mathbf{f}_n) = d\beta (B_n(\mathbf{f}_n) - \varphi_n(\mathbf{f}_n) - T_n(d\mathbf{f}_n))$$

= $B_n(\mathbf{f}_n) - \varphi_n(\mathbf{f}_n) - T_n(d\mathbf{f}_n) - \beta (B_n(d\mathbf{f}_n) - \varphi_n(d\mathbf{f}_n) - dT_n(d\mathbf{f}_n))$
= $B_n(\mathbf{f}_n) - \varphi_n(\mathbf{f}_n) - T_n(d\mathbf{f}_n) - \beta (T_n(d^2\mathbf{f}_n))$
= $B_n(\mathbf{f}_n) - \varphi_n(\mathbf{f}_n) - T_n(d\mathbf{f}_n)$

where we have used the fact that the identity holds for f_I with |I| < n in going from the second to the third line. So $dT_n(\mathbf{f}_n) + T_n(d\mathbf{f}_n) = B_n(\mathbf{f}_n) - \varphi_n(\mathbf{f}_n)$ as desired.

Naturality

Lemma 5. If $F_I : \Delta^k \to \Delta^n$ is a face map, then $B_n \circ \phi_I = F_{I\#} \circ B_k$ and $T_n \circ \phi_I = F_{I\#} \circ T_k$.

Proof. We have

$$B_n(\phi_I(f_J)) = B_n(f_{I \circ J}) = (F_{I \circ J})_{\#}(B_{|J|}(\mathbf{f}_{|J|})) = F_{I\#}(F_{J\#}(B_{|J|}(\mathbf{f}_{|J|}))) = F_{I\#}(B_k(e_J)).$$

The proof of the second statement is identical, but with B's replaced by T's.

Subdivision on X

If X is a space, define $B: C_*(X) \to C_*(X)$ by $B(\sigma) = \sigma_{\#}(B_n(\mathbf{f}_n))$ for $\sigma: \Delta^n \to X$. It is clear from the definition that if $g: X \to Y$, $B(g_{\#}(\sigma)) = g_{\#}(B(\sigma))$

Lemma 6. B is a chain map.

Proof. We compute

$$B(d\sigma) = \sum (-1)^{j} B(\sigma \circ F_{\hat{j}})$$

= $\sum (-1)^{j} \sigma_{\#}(F_{\hat{j}\#}(B_{n-1}(\mathbf{f}_{n-1})))$
= $\sum (-1)^{j} \sigma_{\#}(B_{n}(\phi_{\hat{j}}(\mathbf{f}_{n-1})))$ (by Lemma ??)
= $\sigma_{\#}(B_{n}(d\mathbf{f}_{n}))$
= $\sigma_{\#}(dB_{n}(\mathbf{f}_{n}))$ (B_{n} is a chain map)
= $dB(\sigma)$

Lemma 7. B is chain homotopic to $id_{C_*(X)}$.

Proof. Let us define $T: C_*(X) \to C_{*+1}(X)$ by $T(\sigma) = \sigma_{\#}(T_n(\mathbf{f}_n))$. As in the previous lemma, we compute

$$T(d\sigma) = \sum (-1)^{j} T(\sigma \circ F_{\hat{j}})$$

= $\sum (-1)^{j} \sigma_{\#}(F_{\hat{j}\#}(T_{n-1}(\mathbf{f}_{n-1})))$
= $\sum (-1)^{j} \sigma_{\#}(T_{n}(\phi_{\hat{j}}(\mathbf{f}_{n-1})))$ (by Lemma ??)
= $\sigma_{\#}(T_{n}(d\mathbf{f}_{n})).$

Somewhat more easily, we have $dT(\sigma) = \sigma_{\#}(dT_n(\mathbf{f}_n))$, so

$$dT(\sigma) + Td(\sigma) = \sigma_{\#}(dT_n(\mathbf{f}_n) + T_n(d\mathbf{f}_n)) = \sigma_{\#}(B_n(\mathbf{f}_n) - \varphi_n(\mathbf{f}_n)) = B(\sigma) - \sigma.$$

Completing the proof

Let $\mathbf{F}_n = \varphi_n(\mathbf{f}_n) \in C_n(\Delta^n)$ be the singular simplex corresponding to the map id_{Δ^n} . If $\sigma : \Delta^n \to X$, then $\sigma = \sigma_{\#}(\mathbf{F}_n)$, so $B^r(\sigma) = \sigma_{\#}(B^r(\mathbf{F}_n))$. The simplices appearing in $B^r(\mathbf{F}_n)$ are all affine linear simplices obtained by iteratively applying barycentric subdivision to Δ^n .

Lemma 8. If Δ is an affine linear simplex of dimension n, and Δ' is a simplex obtained by applying barycentric subdivision to Δ , then diam $(\Delta') \leq \frac{n}{n+1}$ diam (Δ) .

Proof. Let $\mathbf{v}_0, \ldots, \mathbf{v}_n$ be the vertices of Δ , so $d = \operatorname{diam}(\Delta) = \max \|\mathbf{v}_i - \mathbf{v}_j\|$. We induct on n. Suppose \mathbf{v}, \mathbf{v}' are two vertices of Δ' . If \mathbf{v}, \mathbf{v}' lie in a k-dimensional proper face Δ_I of Δ , they are vertices of a simplex appearing in the barycentric subdivision of Δ_I . By induction we have $\|\mathbf{v} - \mathbf{v}'\| \leq \frac{k}{k+1}\operatorname{diam}(\Delta_I) \leq \frac{n}{n+1}d$. So it suffices to consider the case where $\mathbf{v} = \frac{1}{n+1}(\mathbf{v}_0 + \ldots + \mathbf{v}_n)$ is the barycenter. Without loss of generality, we may assume the other vertex is of the form $\frac{1}{k+1}(\mathbf{v}_0 + \ldots + \mathbf{v}_k)$ for some k. Then

$$\mathbf{v}' - \mathbf{v} = \frac{1}{(n+1)(k+1)} \big[(n-k)\mathbf{v}_0 + \ldots + (n-k)\mathbf{v}_k - (k+1)\mathbf{v}_{k+1} \dots - (k+1)\mathbf{v}_n \big].$$

The sum in the parentheses on the RHS can be rearranged into a sum of (n - k)(k + 1) terms of the form $\mathbf{v}_i - \mathbf{v}_j$, so

$$\|\mathbf{v}' - \mathbf{v}\| \le \frac{n-k}{n+1} \max \|\mathbf{v}_i - \mathbf{v}_j\| = \frac{n-k}{n+1} d \le \frac{n}{n+1} d.$$

Corollary 9. If we normalize Δ^n to have diameter 1, then every simplex appearing in $B^r(\mathbf{F}_n)$ has diameter less than or equal to $\left(\frac{n}{n+1}\right)^r$.

We will use the following standard fact about metric spaces:

Lemma 10. If $\{U_i\}$ is an open cover of a compact metric space X, then there is some $\epsilon > 0$ so that any $A \subset X$ with diameter $< \epsilon$ is contained in some U_i .

Proof. Since any $x \in C_*(X)$ is a finite linear combination of singular simplices, it suffices to prove the claim in the case where $x = \sigma$ for some $\sigma : \Delta^k \to X$. Let $V_i = \sigma^{-1}(U_i)$. Then the V_i are an open cover of Δ^n , so we can apply Lemma ?? to find an $\epsilon > 0$ such that any $A \subset X$ with diameter $< \epsilon$ is contained in some V_i . By Corollary ??, we can choose r so that the diameter of any simplex in $B^r(\mathbf{F}_n)$ is $< \epsilon$. Thus, any simplex appearing in $B^r(\mathbf{F}_n)$ is contained in some V_i . Since $B^r(\sigma) = \sigma_{\#}(B^r(\mathbf{F}_n))$, every singular simplex appearing in $B^r(\sigma)$ is contained in some U_i .

Proof of Theorem 1. We first show the map $i_*: H^{\mathcal{U}}_*(X) \to H_*(X)$ is surjective. Given $[x] \in H_*(X)$, we apply Proposition ?? to see that $B^r(x) \in C^{\mathcal{U}}_*(X)$ for some r. $B^r \sim \mathrm{id}_{C_*(X)}$, so $[x] = [B^r(x)]$. It follows that i_* is surjective.

Next, we show that i_* is injective. If $[x] \in H^{\mathcal{U}}_*(X)$ and x = dy for some $y \in C_*(X)$, then we can find r so that $B^r(y) \in C^{\mathcal{U}}_*(X)$. Since B is a chain map, $B^r(x) = B^r(dy) = dB^r(y)$, so $[x] = [B^r(x)] = 0$ in $H^{\mathcal{U}}_*(X)$.