
The Proof of the Subdivision Lemma

Recall that if U = {Uα} is a open cover of X, CU
∗ (X) = ⟨σ | imσ ⊂ Uα for some α⟩ is a subcomplex of

C∗(X). The goal of this note is to prove

Theorem 1 (The Subdivision Lemma). Let U be an open cover of X. If i : CU
∗ (X) → C∗(X) is the

inclusion, the induced map i∗ : HU
∗ (X) → H∗(X) is an isomorphism.

The proof of this theorem is similar in structure to the proof that if f ∼ g, f# ∼ g#. There are five steps:

• Define a chain map Bn : S∗(∆
n) → C∗(∆

n). B is called barycentric subdivision. It is defined by the
requirements that
(1) B0(f0) = id∆0 .
(2) If |I| < n, Bn(fI) = FI# ◦B|I|(f|I|), where FI : ∆|I| → ∆n is the face map.
(3) Bn(fn) is the cone on Bn(d(fn)).

• Let φn : S∗(∆
n) → C∗(∆

n) be the map induced by id∆n . We show that Bn ∼ φn by a chain
homotopy Tn.

• Next, we check that Bn and Tn are natural in the sense that if FI : ∆k → ∆n is a face map, then
Bn ◦ ϕI = FI# ◦Bk and Tn ◦ ϕI = FI# ◦ Tk.

• We define a map B : C∗(X) → C∗(X) by B(σ) = σ#(Bn(fn)) for σ : ∆n → X. Naturality of Bn

and Tn implies that B is a chain map and B ∼ idC∗(X).
• Suppose that U is an open cover of X. If x ∈ C∗(X), we show there is some r > 0 so that
Br(x) ∈ CU

∗ (X). Using this, we complete the proof.

Preliminaries

We start by fixing some notation. If I = {i0, i1 . . . , ik} ⊂ {0, . . . , n}, we let |I| = k (not k+1, as I used in
class!) We define FI : ∆|I| → ∆n be the corresponding face map. We have chain maps φn : S∗(∆

k) → C∗(∆
k)

given by φn(fI) = FI , and ϕI : S∗(∆
k) → S∗(∆

n) given by ϕI(fJ) = fI◦J := fij0 ...ijl , where l = |J |. Then

we have FI◦J = FI ◦ FJ , which implies φn ◦ ϕI = FI# ◦ φk. Finally, we define fn := f01...n ∈ Sn(∆
n) to be

the top dimensional face of ∆n.
Next we discuss cones.

Definition 2. If X is a space, the cone on X is CX = X × [0, 1]/X × 0.

A map f : X → Y induces a map Cf : CX → CY given by Cf(x, t) = (f(x), t). The cone C∆n−1

can be identified with ∆n by the map ψ which sends ((x0, . . . , xn−1, t) to (1 − t, tx0, tx1, . . . , txn−1). Thus
σ : ∆n−1 → X induces a map cσ : ∆n → CX given by cσ = Cσ ◦ ψ−1. Hence we have a map c : C∗(X) →
C∗+1(CX) given by c(σ) = cσ. If i : X → CX is the map given by i(x) = (x, 1), it follows easily from the
definition that

dc(σ) = i#(σ)− c(dσ).

Let π : C∆n → ∆n be the map given by π(v, t) = tv+(1− t)b, where b = 1
n+1 (1, . . . , 1) is the barycenter

of ∆n, and define β = π# ◦ c : C∗(∆n) → C∗+1(∆
n). Since π ◦ i = id∆n , we have

dβ(σ) = σ − β(dσ).

Barycentric Subdivision

We define a chain map Bn : S∗(∆
n) → C∗(∆n) inductively. First, B0 : S0(∆

0) → C0(∆
0) is uniquely

defined by the requirement that B0(f0) = id∆0 . In general, if I is a proper subset of {0, . . . , n}, we define

Bn(fI) = FI#(B|I|(f|I|))

Finally, we define

Bn(fn) = β(Bn(dfn)) ∈ Cn(∆n).

Observe that all the singular simplices appearing in the image of Bn are given by affine linear maps.

Lemma 3. Bn is a chain map.
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Proof. This is proved by induction on n. The case n = 0 is trivial. Given that Bk is a chain map for k < n,
it follows from the definition that Bn is a chain map when restricted to S∗(∆

n) where ∗ < n. Thus the only
thing to check is that Bn(dfn) = dBn(fn). We compute

dBn(fn) = dβ(Bn(dfn))

= Bn(dfn)− β(dBn(dfn))

= Bn(dfn)− β(Bn(d
2fn))

= Bn(dfn).

We have used the fact that the statement holds in gradings < n in passing from the second to the third
lines. □

The Chain Homotopy

Next, we want to define a chain homotopy Tn : S∗(∆n) → C∗+1(∆
n). As with the chain map Bn, we

define Tn inductively. First, let T0 be the zero map. Next, if I is a proper subset of 0, . . . , n, define

Tn(fI) = FI#(T|I|(f|I|)).

Finally, we define

Tn(fn) = β(Bn(fn)− φn(fn)− Tn(dfn))

Lemma 4. dTn + Tnd = Bn − φn.

Proof. This is proved by induction on n. The case n = 0 is easily verified, since T0 = 0 and B0 = φ0.
Suppose the result holds for all k < n. As in the case of Bn, we need only verify the identity when both
sides are applied to fn; the other cases follow from the induction hypothesis. For fn, we compute

dTn(fn) = dβ(Bn(fn)− φn(fn)− Tn(dfn))

= Bn(fn)− φn(fn)− Tn(dfn)− β(Bn(dfn)− φn(dfn)− dTn(dfn))

= Bn(fn)− φn(fn)− Tn(dfn)− β(Tn(d
2fn))

= Bn(fn)− φn(fn)− Tn(dfn)

where we have used the fact that the identity holds for fI with |I| < n in going from the second to the third
line. So dTn(fn) + Tn(dfn) = Bn(fn)− φn(fn) as desired.

□

Naturality

Lemma 5. If FI : ∆k → ∆n is a face map, then Bn ◦ ϕI = FI# ◦Bk and Tn ◦ ϕI = FI# ◦ Tk.

Proof. We have

Bn(ϕI(fJ)) = Bn(fI◦J) = (FI◦J)#(B|J|(f|J|)) = FI#(FJ#(B|J|(f|J|))) = FI#(Bk(eJ)).

The proof of the second statement is identical, but with B’s replaced by T ’s. □

Subdivision on X

If X is a space, define B : C∗(X) → C∗(X) by B(σ) = σ#(Bn(fn)) for σ : ∆n → X. It is clear from the
definition that if g : X → Y , B(g#(σ)) = g#(B(σ))

Lemma 6. B is a chain map.
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Proof. We compute

B(dσ) =
∑

(−1)jB(σ ◦ Fĵ)

=
∑

(−1)jσ#(Fĵ#(Bn−1(fn−1)))

=
∑

(−1)jσ#(Bn(ϕĵ(fn−1))) (by Lemma ??)

= σ#(Bn(dfn))

= σ#(dBn(fn)) (Bn is a chain map)

= dB(σ)

□

Lemma 7. B is chain homotopic to idC∗(X).

Proof. Let us define T : C∗(X) → C∗+1(X) by T (σ) = σ#(Tn(fn)). As in the previous lemma, we compute

T (dσ) =
∑

(−1)jT (σ ◦ Fĵ)

=
∑

(−1)jσ#(Fĵ#(Tn−1(fn−1)))

=
∑

(−1)jσ#(Tn(ϕĵ(fn−1))) (by Lemma ??)

= σ#(Tn(dfn)).

Somewhat more easily, we have dT (σ) = σ#(dTn(fn)), so

dT (σ) + Td(σ) = σ#(dTn(fn) + Tn(dfn)) = σ#(Bn(fn)− φn(fn)) = B(σ)− σ.

□

Completing the proof

Let Fn = φn(fn) ∈ Cn(∆
n) be the singular simplex corresponding to the map id∆n . If σ : ∆n → X, then

σ = σ#(Fn), so B
r(σ) = σ#(B

r(Fn)). The simplices appearing in Br(Fn) are all affine linear simplices
obtained by iteratively applying barycentric subdivision to ∆n.

Lemma 8. If ∆ is an affine linear simplex of dimension n, and ∆′ is a simplex obtained by applying
barycentric subdivision to ∆, then diam(∆′) ≤ n

n+1diam(∆).

Proof. Let v0, . . . ,vn be the vertices of ∆, so d = diam(∆) = max ∥vi−vj∥. We induct on n. Suppose v,v′

are two vertices of ∆′. If v,v′ lie in a k-dimensional proper face ∆I of ∆, they are vertices of a simplex
appearing in the barycentric subdivision of ∆I . By induction we have ∥v−v′∥ ≤ k

k+1diam(∆I) ≤ n
n+1d. So

it suffices to consider the case where v = 1
n+1 (v0 + . . . + vn) is the barycenter. Without loss of generality,

we may assume the other vertex is of the form 1
k+1 (v0 + . . .+ vk) for some k. Then

v′ − v =
1

(n+ 1)(k + 1)

[
(n− k)v0 + . . .+ (n− k)vk − (k + 1)vk+1 . . .− (k + 1)vn

]
.

The sum in the parentheses on the RHS can be rearranged into a sum of (n − k)(k + 1) terms of the form
vi − vj , so

∥v′ − v∥ ≤ n− k

n+ 1
max ∥vi − vj∥ =

n− k

n+ 1
d ≤ n

n+ 1
d.

□

Corollary 9. If we normalize ∆n to have diameter 1, then every simplex appearing in Br(Fn) has diameter

less than or equal to

(
n

n+ 1

)r

.

We will use the following standard fact about metric spaces:

Lemma 10. If {Ui} is an open cover of a compact metric space X, then there is some ϵ > 0 so that any
A ⊂ X with diameter < ϵ is contained in some Ui.



4

Proposition 11. Let U be an open cover of X. If x ∈ C∗(X), there is some r > 0 so that Br(x) ∈ CU
∗ (X).

Proof. Since any x ∈ C∗(X) is a finite linear combination of singular simplices, it suffices to prove the claim
in the case where x = σ for some σ : ∆k → X. Let Vi = σ−1(Ui). Then the Vi are an open cover of ∆n, so
we can apply Lemma ?? to find an ϵ > 0 such that any A ⊂ X with diameter < ϵ is contained in some Vi.
By Corollary ??, we can choose r so that the diameter of any simplex in Br(Fn) is < ϵ. Thus, any simplex
appearing in Br(Fn) is contained in some Vi. Since B

r(σ) = σ#(B
r(Fn)), every singular simplex appearing

in Br(σ) is contained in some Ui. □

Proof of Theorem 1. We first show the map i∗ : HU
∗ (X) → H∗(X) is surjective. Given [x] ∈ H∗(X), we

apply Proposition ?? to see that Br(x) ∈ CU
∗ (X) for some r. Br ∼ idC∗(X), so [x] = [Br(x)]. It follows that

i∗ is surjective.
Next, we show that i∗ is injective. If [x] ∈ HU

∗ (X) and x = dy for some y ∈ C∗(X), then we can find
r so that Br(y) ∈ CU

∗ (X). Since B is a chain map, Br(x) = Br(dy) = dBr(y), so [x] = [Br(x)] = 0 in
HU

∗ (X). □


